
Instruction-Level DFT for Testing Processor and IP Cores
in System-on-a-Chip

Wei-Cheng Lai, Kwang-Ting (Tim) Cheng
Department of ECE, University of California, Santa Barbara, CA 93106

E-mail: {wlai, timcheng} @yellowstone.ece.ucsb.edu

Abstract

Self-testing manufacturing defects in a system-on-a-chip
(SOC) by running test programs using a programmable
core has several potential benefits including, at-speed test-
ing, low DfT overhead due to elimination of dedicated test
circuitry and better power and thermal management during
testing. However, such a self-test strategy might require a
lengthy test program and might not achieve a high enough
fault coverage. We propose a DfT methodology to improve
the fault coverage and reduce the test program length, by
adding test instructions to an on-chip programmable core
such as a microprocessor core. This paper discusses a
method of identifying effective test instructions which could
result in highest benefits with low area/performance over-
head. The experimental results show that with the added
test instructions, a complete fault coverage for testable path
delay faults can be achieved with a greater than 20%
reduction in the program size and the program runtime, as
compared to the case without instruction-level DfT.

1. Introduction

A system-on-a-chip (SOC) device usually contains one
or more programmable cores (such as processor cores and
DSP cores) and uses buses to connect various programma-
ble and non-programmable IP cores. One possible test strat-
egy for a SOC is to utilize the on-chip programmable cores
to test the manufacturing defects on the SOC. Under this
test strategy, we view test as an application of a program-
mable SOC, which reuses on-chip resources for test pur-
pose. This strategy minimizes the addition of dedicated test
circuitry for DfT or self-test. We refer to this self-test strat-
egy as functional self-test or embedded-software-based self-
test [1][2].

For high-speed circuits, self-testing has clear advan-

tages over testing relying on external testers. On-chip clock
speed is increasing dramatically while the tester's Overall
Timing Accuracy (OTA) is not. This trend implies an
increasing yield loss due to external testing since guard-
banding to cover tester errors results in loss of more and
more good chips [3]. Self-testing offers the ability to apply
and analyze at-speed test signals on chip with greater accu-
racy than that available on the tester.

Pure embedded-software-based self-testing may not
achieve a desired level of fault coverage. Furthermore, the
size of the test program may be too large to fit in on-chip
memory. The total test application time may also be too
long. The low controllability and observability of some
wires and registers in an SOC is the key reason for such
problems. In this paper, we propose a DfT methodology to
improve the test quality of embedded-software-based self-
testing by adding a small number of test instructions to
enhance the testability of a processor core. We call this
methodology as instruction-level DfT.

Instruction-level DfT, which inserts test circuitry in the
form of test instructions, should be a less intrusive approach
as compared to the gate-level DfT technique which
attempts to create a separate test mode somewhat orthogo-
nal to the functional mode. If the test instructions are care-
fully designed such that their micro-instructions reuse the
datapath for the functional instructions and do not require
any new datapath, the overhead, which only occurs in the
controller, should be relatively low. This methodology is
also more attractive for applying at-speed test and for
power/thermal management during test, as compared to the
existing logic BIST approaches. To apply at-speed tests,
existing structural logic BIST needs to resolve complex
timing issues related to multiple clock domains, multiple
frequencies and test clock skews. In contrast, self-testing
the devices using instruction sequences allows much more
natural application of at-speed tests. At-speed tests are
applied by executing instruction sequences that are
designed to achieve high path or gate delay fault coverages.
Moreover, structural logic BIST applies non-functional,
high-switching random patterns thus causes much higher
power consumption than normal system operation. Self-
testing the devices using the instruction set of processor
cores can alleviate such problems.

This work was supported in part by the MARCO/DARPA Gigascale Silicon
Research Center (http://gigascale.eecs.berkeley.edu). Their support is gratefully
acknowledged.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006.... $5.00

5.2

59

A number of approaches [2][4][5][6][7][8][9] have
been proposed to generate a test program to self-test a
microprocessor for either stuck-at or delay faults. Shen and
Abraham [7] propose an approach for improving the test
quality by adding instructions to control the exception cir-
cuitry to the processor such as interrupts and reset. With the
new instructions, the test program can achieve fault cover-
age between 87% and 90% for stuck-at faults. This
approach cannot achieve a higher coverage because their
test program, which is synthesized based on a random
approach, is not able to effectively control or observe some
internal registers which have low testability.

In this paper, we propose a DfT methodology which
systematically adds test instructions to an on-chip processor
core. The new instructions can improve the testability of a
processor core, reduce the size of the test program, and
reduce the run time of the test program (i.e., reduce the test
application time). To decide which instructions to add, we
first analyze the testability of the processor. If a register in
the processor is identified as hard-to-access, we add a test
instruction to access the register directly. In addition, we
observe that, in the test program, some code segments
appear repeatedly. We identify such frequently appeared
(hot) segments and add a few test instructions to reduce the
size of the hot segments. Test instructions can be added to
speed up the processes of preparing the test vectors by the
processor core, retrieving the responses from the on-chip
core under test, and analyzing the responses (by the proces-
sor core). Our experimental results show that test instruc-
tions can reduce the program size and program running
time by about 20%.

The rest of the paper is organized as follows. Section 2
illustrates the concept of embedded software tester and test
program synthesis. Section 3 shows the analysis of the test-
ability of a processor core and a synthesized test program.
Section 4 focuses on the instruction-level DfT techniques.
Experimental results are presented in Section 5. Section 6
concludes the paper.

2. Embedded-Software-Based Self-Test

A processor core in a SOC design can be configured as
a pattern generator, a test application controller or a
response analyzer simply by running different programs.
For example, consider an exemplar SOC design shown in
Figure 1. It has two programmable cores, a DLX processor
core [10] and a DSP core. There are three on-chip cores: a
memory core, core A and core B. All cores are connected
by a PCI bus. The Virtual Component Interface (VCI) and
the PCI wrapper provide a common interface for a core to
communicate with the underlying bus architecture [11][12].
Since DLX implements memory-mapped I/O, portions of
the address space are pre-assigned to the non-memory
cores. Therefore, DLX can send data to a core by writing

the data to the corresponding address of the core.

To self-test the DLX core, we can first load the test pro-
gram from an external tester into the on-chip memory.
Then, the DLX core executes the test program at-speed.
After the DLX core has been tested, we can use the DLX
core to test other on-chip (non-programmable) cores by
running additional test programs. Here, it is assumed that
each PCI wrapper implements a scan buffer which is con-
nected to the scan chain of the IP core. Each PCI wrapper
also has a mode register which can set the core in test or
functional mode. The scan buffer and the mode register are
all memory-mapped. With this hardware support, the DLX
processor can use normal memory read/write operations to
configure the core in test (or normal) mode, send scan vec-
tors to the core, and read responses back for analysis.

Figure 2 shows the general flow of synthesizing a test
program for testing a processor or an IP core. The detailed
description of a test program synthesis (TPS) algorithm can
be found in [2]. Given the instruction set architecture, the
netlist of the processor core and the netlists of the on-chip
cores, the TPS algorithm first extracts a set of constraints
capturing correlations among input/output (I/O) signals and
registers/flip-flops of the processor. These constraints are
used in the subsequent gate-level ATPG process to rule out
those test vectors which cannot be produced in the func-
tional mode. Then, a constrained structual gate-level ATPG

Fig. 1. A SOC design

Instr. set architecture & netlists

Constraint extraction

Constrained gate-level ATPG

Test Programs

Instruction-level justification

Instruction-level fault propagation

Fig. 2. Test program synthesis process

Any
unprocessed fault?

No

Yes

and response analysis

Instruction-level fault simulation

60

(for stuck-at or delay faults) is used to generate determinis-
tic tests for a target fault. The generated test vector, which
meets the imposed constraints, specifies required values at
the inputs and the registers/flip-flops. Next, an instruction-
level justification process synthesizes a sequence of instruc-
tions which bring the circuit to the state required by the test
vector. In the next step, the instruction-level response analy-
sis process synthesizes a sequence of instructions to propa-
gate the fault effects in registers/flip-flops to memory and
possibly further compress them into signatures. The above
procedure is repeated until all faults have been examined.

3. Testability Analysis and Test Program
Analysis

To identify good candidate test instructions, we first
apply testability analysis to the processor. For registers and
exception circuitry which have low accessibility, test
instructions are added to increase their accessibility. We
further analyze the synthesized test program. It is observed
that many program segments appear repeatedly in the test
program. We can add test instructions to transform those
repeated code segments into smaller and faster code seg-
ments.

3.1. Testability analysis of a microprocessor core

In general, instructions can be classified into three cate-
gories: 1) data movement instructions, 2) ALU instructions
and 3) branch instructions. Data movement instructions
move data from memory to register (load), register to mem-
ory (store), and register to register (move). ALU instruc-
tions such as addition and subtraction, perform arithmetic
and logical operations on operands. Branch instructions
such as jump and conditional jump transfer the program
control to a target address specified in the instruction oper-
and.

We determine the testability of a register based on the
availability of data movement instructions between regis-
ters and memory. We define a register as fully controllable
if there exists a sequence of data movement instructions
which can move the desired data from memory to the regis-
ter. Similarly, we define a register as fully observable if
there exists a sequence of data movement instructions to
propagate the register data to memory. Given the micro-
architecture of a processor core, we can identify those reg-
isters which are fully controllable or fully observable. For
registers not fully controllable/observable, new instructions
can be added to improve their accessibility.

For example, general purpose registers are fully con-
trollable and fully observable since a load/store instruction
can move data between the registers and memory. Another
examples of fully controllable registers are program counter
(PC) and memory address register (MAR) since we can use
a “jump” instruction to access them. On the other hand, sta-

tus registers (SR) have poor controllability because setting
up the desired data in SR usually requires specific combina-
tion of instruction and operand sequences. The observabil-
ity of status registers is generally poor because only
conditional branches can propagate the errors in the status
register to data registers and memory. Registers buried
deeply inside the pipeline may have accessibility problems
as well. To set up the desired data in these registers, it may
be necessary to justify them through long pipeline stages
until it reach a fully-controllable register. This justification
process could be very complicated and thus, slow down the
test program generation process. Therefore, we can add test
instructions to directly load data into these registers.

The exception circuitry (e.g., interrupt and reset cir-
cuitry) of a processor receives signals from external
devices. The signals in this circuitry cannot be directly con-
trolled by any instruction which could result in low fault
coverage. We can add test instructions to improve the test-
ability of such circuitry.

3.2. Analysis of a synthesized test program

A test instruction can be added to optimize the test pro-
gram in terms of program size and program run time. We
try to identify repeated common segments in the test pro-
gram and make these segments as short and efficient as pos-
sible using test instructions. Since the TPS algorithm in
Figure 2 iteratively synthesizes the code for each fault, the
resulting test program shows many similar code structures.
These common code structures are good candidates for
optimization using test instructions.

Figure 3(a) shows an example of a common code struc-
ture in the test program for testing a fault inside the proces-
sor. First, the program requires two load operations to read
the desired operands op1 and op2 into the CPU registers. It
applies a sequence of instructions (not shown in the figure)
to activate the fault and the responses are captured in the
CPU registers. At the end, a response analysis subroutine
misr (shown in Figure 3(b)) is invoked. The misr subroutine

(1) load R1, op1
(2) load R2, op2
...............
(N) call misr

(a)

load R1, op1
load R2, op2
......
store 1, tmode
store R1, ibuf
store R2, ibuf
......
store 0, tmode
store 1, tmode
load R1, obuf
load R2, obuf
......
call misr

(c)

misr() {
(1) for i = 1 to 29
(2) xor R30, R30, Ri
(3) br_carry (5)
(4) xor R30, 1
(5) br_overflow (7)
(6) xor R30, 4
(7)}

(b)
Fig. 3. Common structure in test programs

scan
mode

normal

scan
mode

test
preparation

response
analysis

61

computes the response signature (always stored at R30) by
applying exclusive-or operations iteratively to values in all
registers including the status register (SR). Since the values
in SR can only be observed using conditional branch
instructions, misr needs a sequence of branch statements
(e.g., line 3 to line 6 in Figure 3(b)) to retrieve the data from
SR. For example, at line 3, the branch instruction will jump
to line 6 if the carry bit in SR is logic one.

Figure 3(c) shows a common program structure for
testing a fault in an on-chip (non-programmable) IP core
assuming the IP core has fully-scanned. It consists of five
steps: (1) In the test preparation phase, the desired scan vec-
tors (e.g., op1 and op2) are retrieved from memory into the
CPU registers (e.g., R1 and R2) using a sequence of load
instructions. (2) The CPU configures the IP core to scan
mode by writing a logic one into a memory-mapped core
register “tmode”. Then the CPU starts sending the scan
vectors from the registers into the scan input registers
“ibuf” of the core under test using store operations. The
scan input registers are used to alleviate the speed gap
among the CPU, bus, and the IP core. Data on these buffers
is shifted serially into the scan chain of the IP core during
the scan mode. Similarly, there are scan output buffers
“obuf” which can receive output responses shifted out from
the scan chain. Both buffers (ibuf and obuf) are mapped to
memory addresses. (3) The CPU sets the IP core in the nor-
mal mode for one clock cycle by writing a logic zero to reg-
ister tmode. The responses are captured in the scan chain.
(4) The CPU starts loading the responses from obuf to CPU
registers. (5) A response analysis subroutine (i.e., misr) is
invoked to analyze the responses.

As it can be observed, the test programs in Figure 3
execute a lot of consecutive loading instructions to move a
set of data from memory to CPU registers. Therefore, we
can add a new instruction to speed up these loading opera-
tions. We also observe that the response analysis subroutine
is the most frequently visited code segment. Therefore, we
can use a test instruction to optimize the response analysis
subroutine to reduce the program run time.

4. Instruction-level DfT
In adding new instructions, the existing hardware

should be “reused” as much as possible. To reduce the area
overhead, we should avoid adding extra buses or extra reg-
isters while implementing a new instruction. In fact, in most
cases, a new instruction can be added by introducing new
control signals to the datapath without adding extra hard-
ware to the datapath.

Figure 4 shows an example processor core. It consists
of an ALU, a register file, a status register (SR) and a con-
troller. After the testability analysis, we find that the status
registers have low controllability and low observability. In
addition, exception circuitry such as interrupt vectors, halt,

and reset are very difficult to control. We add the following
instructions to improve the testability of the processor:

(1) Move SR to Rn (s2r): This instruction can move the
data from the status register to any general purpose
register (Rn). Data in SR are propagated through an
existing data path from SR to ALU, to register C, to
the target register Rn. This instruction improves the
observability of the status register and thus, can sim-
plify the instruction-level fault propagation process.

(2) Move A to SR (r2s): This instruction can move the
data from a general purpose register A to the status
register. Similarly, we reuse an existing data path
(register A, to ALU, to SR) to load the values from
register A to SR. This instruction improves the con-
trollability of the status register. It can be used to
simplify the instruction-level justification process.

(3) Read exception signals from register Rn: This instruc-
tion allows the processor to take the exception sig-
nals from a general purpose register rather than from
external devices. A DfT for exception circuitry has
been proposed in [7]. However, this approach does
not consider reusing any existing hardware on the
chip. In contrast, our DfT method try to reuse the
existing hardware as much as possible. The DfT
architecture that we propose for handling the excep-
tion circuitry is shown in Figure 5. Here, without loss
of generality, we select R27 as the register which
provides an alternative source of exception signals to
the controller. By controlling the register T, which is
a 1-bit register, we can select which signals should be
fed to the controller. We can use a data movement
instruction to set the desired values in R27 before
switching the exception signal sources from the
external devices to R27. In this approach, we only
need to add one extra instruction which can write

Fig. 4. An example processor

R27
InterruptHalt

44

4
To controller

CPU

Fig. 5. DfT for exception circuitry

T

62

value into register T. Adding this instruction will
allow self-testing of faults in the exception circuitry.

In Figure 3, we have shown some common program
segments in a test program. To reduce the program size and
improve the program run time, we can add the following
instructions:

(1) Consecutive load to Ri and Rj (load2): This instruc-
tion can read two (or more) consecutive words from a
memory address (stored in another register Rk) and
load them into registers Ri and Rj, respectively. A
consecutive load needs three words in memory (one
for the instruction itself and two for the operands). In
contrast, two load instructions require four words
(two for the load instructions themselves and two for
the operands). By replacing two load instructions
with a consecutive load, the processor retrieves fewer
words from memory and thus, reduces the program
size and run time. For example, in Figure 3(a) and
Figure 3(c), we can replace the code segments that
have two load operations with a consecutive load
operation. Therefore, the data retrieval time for mem-
ory-to-processor transmissions and core-to-processor
transmissions is reduced.

(2) Signature computation (xor_all): To improve the run-
time performance of the signature computation sub-
routine, we can add an instruction which performs a
sequence of exclusive-or operations on all CPU reg-
isters. For the example shown in Figure 4, we can
add an instruction which iteratively moves data from
a general-purpose register to register B, performs an
xor operation at ALU, and forwards the results
latched in register C to register A until all registers
are processed. Note that replacing a sequence of xor
instructions in the response analysis subroutine with
xor_all, which helps reduce the runtime, does not
significantly reduce the size of the test program. This
is because the test program contains only one copy of
the signature analysis subroutine.

Adding test instructions to the programmable core
does not improve the testability of other non-programmable

cores. Therefore, instruction-level DfT cannot increase the
fault coverage of the non-programmable cores. However,
we can use the consecutive load instruction (load2) and sig-
nature computation instruction (xor_all) to optimize the test
programs for testing the non-programmable cores. In other
words, we reuse the same set of test instructions added for
self-testing the programmable cores to reduce the size and
run time of the test programs for testing other non-program-
mable cores.

For pipelined designs, we can also add instructions to
control the registers buried deeply in the pipelines. Figure 6
shows the structure of a pipelined design. Suppose the pipe-
line register B is very difficult to control. We can add a test
instruction, an extra bus (bus D), a mux (mux C), and a mux
control signal to enable loading data directly from a gen-
eral-purpose register to register B. When the test instruction
is decoded and its operands are available on bus D, the test
instruction will enable mux C to select bus D as the signal
sources for the pipeline register B.

It is not necessary to add test instructions to control
every pipeline register. This is because some pipeline regis-
ters are relatively easy to control using instructions. For
example, in Figure 6, after an instruction is decoded, the
operands will be latched by pipeline register A. We can set
up the desired values in register A by controlling the oper-
and values of the instruction. Thus, there is no need to add a
test instruction to control register A.

5. Experimental results
We have applied our method to two simple micropro-

cessor cores: Parwan processor [13] and DLX processor
[14]. The implementations of both processors are non-pipe-
lined. Parwan is an 8-bit processor with 1,810 gates. DLX
is a 32-bit processor with 18,865 gates.

We apply our methodology to both processors. For
PARWAN, we add two instructions for reading and writing
its status registers and one instruction for fast computation
of signatures. For DLX, we also add two instructions for
reading and writing its status register, a signature computa-
tion instruction and a consecutive read instruction based on
the analysis of the synthesized program.

Table 1 compares the test programs synthesized with-
out test instructions [2] against those with test instructions.
All test programs target path delay faults. We show the test
program length (in bytes), the execution time of the test
program (in clock cycles), the fault coverage for testable
path delay faults, the area (in 2-input NAND gate equiva-
lents), and the test generation time for both approaches. We
also show the reduction ratio (in parenthesis) in term of the
program length, program run time and the test generation
time. For example, for the DLX processor core, our
approach reduces the program size by 15%, reduces the run
time by 21%, improves the fault coverage to 100%, reduces

ALU1

ALU2

Decode & operand read

Instruction reg

Pipeline reg A

Pipeline reg B

Mux C

Fig. 6. DfT for pipelined design

Bus D

63

the test generation time by 39% and increases the area by
1.6% when compared to the results in [2].

We synthesize several test programs for the DLX core
to test other on-chip (non-programmable) cores based on
the test delivery mechanism in Section 2 (the details of the
mechanism can be found in [15]). Under this mechanism,
the processor core supplies the scan vectors to the on-chip
core simply by issuing memory read operations. We use
ISCAS-89 benchmark circuits as the on-chip cores and syn-
thesize a test program to apply the delay test vectors
derived in [16]. Table 2 shows the characteristics of the test
programs with and without the support of test instructions.
The third column shows the number of test vectors (includ-
ing the scan vectors and the input vectors) applied to the
cores. The last column shows the test program generation
time in seconds. In these experiments, we use the same set
of test instructions added for self-testing the DLX core to
help prepare the test vectors in DLX, retrieve responses
from the benchmark cores and analyze the responses in
DLX. For s9234, without the instruction-level DfT support,
a test program with 48,912 bytes can deliver 244 test vec-
tors to the s9234 core in 70,088 clock cycles. With the test
instructions, the same amount of scan vectors can be deliv-
ered and analyzed using a program with 36,192 bytes. This
program can be completed by DLX in 45,688 clock cycles.
On average, the added test instructions can reduce the pro-
gram size by 23% and program run time by 29%.

6. Conclusions

In this paper, we present an instruction-level DfT meth-
odology by adding new instructions to an on-chip micro-
processor core. With the added test instructions, embedded-
software-based self-testing can achieve a higher fault cover-

age, shorter test generation time and smaller and faster test
programs with a very low area overhead. Our experimental
results show that the proposed DfT methodology can
reduce both the program length and the program run time
by 20% at the cost of 1.6% area overhead for a couple of
example processor cores.

7. References
[1] W.-C. Lai, A. Krstic, and K.-T. Cheng. On Testing the Path Delay Faults of a

Microprocessor Using its Instruction Set. VLSI Test Symp., pages 15-20, 2000.
[2] W.-C. Lai, A. Krstic, and K.-T. Cheng. Test Program Synthesis for Path Delay

Faults in Microprocessor. Proceedings of ITC, pages 1080-1089, 2000.
[3] The National Technology Roadmap for Semiconductors, Semiconductor Indus-

try Association,1997.
[4] L. Chen and S. Dey. DEFUSE: A Deterministic Functional Self-Test Methodol-

ogy for Processors, IEEE VLSI Test Symp.pp. 255-262, May 2000.
[5] D. Brahme and J.A. Abraham. Functional Testing of Microprocessors. IEEE

Transactions on Computers, vol. C-33, pages. 475-485, 1984.
[6] F. Distante and V. Piuri. Optimum Behavioral Test Procedure for VLSI Devices:

A Simulated Annealing Approach. Proceedings of the IEEE International Con-
ference on Computer Design, pages 31-35, 1986.

[7] J. Shen and J.A. Abraham. Native Mode Functional Test Generation for Proces-
sors with Applications to Self Test and Design Validation. Proceedings of Inter-
national Test Conference, pages 990-999, 1998.

[8] K. Batcher and C.A. Papachristou. Instruction Randomization Self Test For Pro-
cessor Cores. VLSI Test Symposium, pages 34-40, 1999.

[9] J. Lee and J.H. Patel. Architectural Level Test Generation for Microprocessors.
IEEE Transactions on Computer-aided Design of Integrated Circuits and Sys-
tems, 13(10):1288-1300, October 1994.

[10] D. A. Patterson and J. L. Hennessy. Computer Organization & Design: the
Hardware/Software Interface, Morgan Kaufmann, San Mateo, California, 1994.

[11] PCI Special Interest Group, PCI Local Bus Specification, Revision 2.2, Porland,
Oregon, Dec. 1998.

[12] Virtual Socket Interface Alliance. VSI Alliance Virtual Component Interface
Standard(OCB 2 1.0). March, 2000.

[13] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill,
New York, December 1997.

[14] M. Gumm. VLSI Design Course: VHDL-Modelling and Synthesis of the DLXS
RISC Processor. University of Stuttgart, Germany, December 1995.

[15] J.-R. Huang, M. K. Iyer, and K.-T. Cheng. A Self-Test Methodology for IP
Cores in Bus-based Programmable System-on-a-chip. VLSI Test Symp., 2001.

[16] K.-T. Cheng, S. Devadas, and K. Keutzer. Delay-Fault Test Generation and Syn-
thesis for Testability Under a Standard Scan Design Methodology. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
12(8):1217-1231, August 1993.

Table 1.
Results of the test programs for testing processors

prog. len (bytes) run time (cycles) coverage% Area CPU (s)

PARWAN [2] 12,586 78,386 99.8 1,729 1.76

DfT 8,333 (-34%) 47,601 (-39%) 100 1,810 (+ 4.7%) 1.21 (-31%)

DLX [2] 141,776 463,185 96.3 18,865 203

DfT 120,232 (-15%) 367,237 (-21%) 100 19,165 (+1.6%) 123 (-39%)

Table 2.
Results for test programs for a DLX core to test the ISCAS-89 cores

test vectors prog. len (bytes) run time (cycles) CPU (s)

s1238 w/o DfT 1220 48,992 125,926 0.61

DfT 1220 39,184 (-20%) 94,154 (-24%) 0.48 (-21%)

s5378 w/o DfT 952 152,432 229,492 2.11

DfT 952 110,512 (-27%) 149,524 (-34%) 1.29 (-38%)

s9234 w/o DfT 244 48,912 70,088 0.64

DfT 244 36,192(-26%) 45,688 (-35%) 0.39 (-39%)

s38584 w/o DfT 37382 35,139,192 42,540,776 524

DfT 37382 27,812,288 (-21%) 30,429,008 (-28%) 306 (-42%)

64

