Chapter 2: System Design Methodologies

Overview

- Design methodologies
- Bottom-up
- Top-down
- Meet-in-the-middle
- Platform
- System
- FPGA
- System synthesis flow
- Processor synthesis flow
- Conclusion
Design Methodologies

- Design methodology is a sequence of design models, components and tools used to design the product
- Methodologies evolve with technology, complexity and automation
- A methodology depends on application, company and design group focus
- Standardization arrives when the cost of being special is too high

Y Chart

- 3 design views
 - Behavior, Structure, Physical
- 4 abstraction levels
 - Circuit, Logic, Processor, System
- 5 component libraries
 - Transistors
 - Logic (standard cells)
 - RTL (ALUs, RFs, ...)
 - Processor (standard, custom)
 - System (multi-core with NoC)
Bottom-up Methodology

- Starts from the bottom level
- Each level generates library for the next higher level
 - Circuit: Standard cells for logic level
 - Logic: RTL components for processor level
 - Processor: Processing and communication components for system level
 - System: Embedded systems platforms for different applications
- Floorplaning and layout on each level

Pros
- Abstraction levels clearly separated with its own library
- Accurate metric estimation with layout on each level
- Globally distributed development possible
- Easy management

Cons
- An optimal library for each design is difficult to predict
 - All possible components with all possible parameters
 - All possible optimizations for all possible metrics
- Library customization is outside the design group
- Layout is performed on every level
Top-down Methodology

- Starts with the top level
- Functional description is converted into component netlist on each level
- Each component function is decomposed further on the next abstraction level
- Layout is given only for transistor components

Pros
- Highest level of customization possible on each abstraction level
- Only one small transistor library needed
- Only one layout design at the end

Cons
- Difficult metric estimation on upper levels since layout is not known until the end
- Design decision impact on higher level not clear
- Hot spot removal is difficult
- Metric annotation (closure) from lower to higher levels needed during design iterations
Meet-in-the-Middle Methodology (Option 1)

- Combines top-down and bottom-up
 - Synthesis vs. layout compromise
- Processor level where they meet
- MoC is synthesized into processor components
- Processor components are synthesized with RTL library
- System layout is generated with RTL components

Meet-in-the-Middle Methodology (Option 2)

- RTL level where they meet
- MoC is synthesized with processor components
- Processor components are synthesized with RTL library
- RTL components are synthesized with standard cells
- System layout is performed with standard cells
- Two levels of layout
Meet-in-the-Middle Methodology

- **Pros**
 - Shorter synthesis
 - Less layout
 - Less libraries
 - Better metric closure

- **Cons**
 - Still needs libraries
 - More than one layout
 - Metric closure still needed
 - Library components may not be optimal

Platform Methodology

- System platform with standard components and synthesizable custom components for application optimization
- Layout is on system level or predefined with special area for custom components layout
- Custom components synthesized with RTL and logic and laid out with standard cells
- Custom components must fit into platform structure
Platform Methodology

Pros
- Two types of layout: system layout for platform (could be predefined) and standard cell layout for custom components
- Standard processors are available
- Custom and interface components are added for optimization

Cons
- Platform customization is still needed
- SW and IF components synthesis required

System Methodology

- Methodology for embedded systems developers
- System platform with architecture cells
- Layout on system level with architecture cells
- Architecture cells defined for specific application and design metrics
- Architecture cells pre-synthesized with RTL and logic and laid out with standard cells
- A retableable compiler for architecture cells
System Methodology

- **Pros**
 - Processor-level component only
 - Single retargetable compiler for all architecture cells
 - Processor-level layout
 - Methodology for application experts
 - Minimal knowledge of system and processor levels

- **Cons**
 - Architecture cell definition and library
 - IS definition
 - Change of mind

FPGA Methodology

- Starts with system structure
- Processor components synthesized with RTL and logic components
- Components implemented with LUT and BRAMs
- Layout only once
- Metric estimation very difficult
- Estimation is hidden in the FPGA supplier tools
System Level Synthesis

- Application given in a MoC
- TLM tools
 - Estimation and platform definition
 - Application mapping
 - TLM generation
- Simulation
- Optimization
 - Application change
 - Platform change
 - Mapping change
- CAM tools
 - Platform SW, HW and IF synthesis
 - CAM generation
- Board prototyping
- Satisfactory or optimization

Processor Synthesis

- Compilation
- Estimation
 - Resources
 - Metrics
- HLS
 - Allocation
 - Binding
 - Scheduling
- RTL model generation
- Simulation
- Optimization
 - Change estimates
 - Change HLS parameters
- RTL synthesis
Conclusion

- Basic concepts of system design methodologies introduced
- Many different methodologies in use
 - One for every group, product, and company
- Methodologies differ in:
 - Input specification, MoC
 - Modeling styles and languages
 - Abstraction levels and amount of detail
 - Verification strategy and prototyping
 - CAD tools and component libraries
- Standards emerge slowly through experience
- Application-oriented methodologies are necessary for embedded systems