
Operation Tables for Scheduling in the
Presence of Incomplete Bypassing∗

Aviral Shrivastava† Eugene Earlie‡ Nikil Dutt† Alex Nicolau†

aviral@ics.uci.edu eugene.earlie@intel.com dutt@ics.uci.edu nicolau@ics.uci.edu

Center for Embedded Computer Systems† Intel Labs‡
School of Information and Computer Science 77 Reed Road

University of California, Irvine, CA 92697 Hudson, MA, 01749

ABSTRACT
Register bypassing is a powerful and widely used feature
in modern processors to eliminate certain data hazards. Al-
though complete bypassing is ideal for performance, bypass-
ing has significant impact on cycle time, area, and power
consumption of the processor. Due to the strict constraints
on performance, cost and power consumption in embedded
processors, architects need to evaluate and implement in-
complete register bypassing mechanisms. However tradi-
tional data hazard detection and/or avoidance techniques
used in retargetable schedulers break down in the presence of
incomplete bypassing. In this paper, we present the concept
of Operation Tables, which can be used to detect data haz-
ards, even in the presence of incomplete bypassing. Further-
more our technique integrates the detection of both data, as
well as resource hazards, and can be easily employed in a
compiler to generate better schedules. Our experimental re-
sults on the popular Intel XScale embedded processor plat-
form show that even with a simple intra-basic block schedul-
ing technique, we achieve upto 20% performance improve-
ment over fully optimized GCC generated code on embedded
applications from the MiBench suite.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—Code Gener-
ation, Compilers, Optimization, Retargetable Compilers

General Terms
algorithms, measurement, performance, experimentation

Keywords
Operation Table, Reservation Table, Bypass, Scheduling,
Retargetable Compilers, Hazard Detection

∗This work was partially funded by grants from Intel Corpo-
ration, UC Micro(03-028), and SRC contract 2003-HJ-1111

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

1. INTRODUCTION
Bypasses or forwarding paths are simple yet powerful and

widely used feature in modern processors to eliminate some
data hazards[11]. With Bypasses, additional datapaths and
control logic are added to the processor so that the result
of an operation is available for subsequent dependent op-
erations even before it is written in the register file. This
benefit of bypassing comes with significant impact on the
wiring area on the chip, possibly widening the pitch of the
execution-unit datapaths. Paths including the bypasses of-
ten are timing critical and cause pressure on cycle time,
especially the single cycle paths. The delay of bypass logic
can be significant for wide issue machines. Due to exten-
sive bypassing very wide multiplexors or buses with several
drivers may be needed. Apart from the delay, bypass paths
increase the power consumption of the processor. Thus by-
passes have a significant impact, in terms of area, cycle time,
and power consumption of the processor[3]. The situation
is aggravated owing to the trend of long pipelines and high
degrees of parallelism in modern processors.
Initial exploration experiments have shown that some by-

passes may be rarely used in an applications, and a few of
them may not be used at all. Thus some bypasses may be re-
moved with a very minimal impact on performance[7]. With
incomplete bypassing becoming popular in modern proces-
sors, developing retargetable compilers for such processors
is important not only to easily adapt to minor changes in
the design, but also for rapid and automated design space
exploration of processors with such features.
Traditionally retargetable compilers use constant opera-

tion latencies to avoid data hazards[13]. Operation latency
is defined as the delay (in cycles) between the cycle when
the operation is issued to the cycle when dependent oper-
ations can use its results. Complete bypassing enables the
subsequent dependent operations to read the value of the re-
sult as soon as the result is generated, irrespective of when
it is written back in the register file. Complete bypassing
reduces the operation latency. In the absence of bypassing
or in the presence of complete bypassing, the operation la-
tency can be modeled by a single value, and can be used in a
DFG to detect data hazards. In processors with incomplete
bypassing however, the result of an operation is only some-
times bypassed and thus available for dependent operations
intermittently. Due to incomplete bypassing, the operation
latency cannot be accurately described by a single value.

194

To our knowledge there is no existing technique that mod-
els such multi-valued operation latency, and uses it to detect
data hazards. However conservative scheduling can be per-
formed by assuming the operation latency to be equal to the
latency in absence of any bypassing. Although such schedul-
ing produces legitimate schedules (even for statically sched-
uled processors), it does not allow the compiler to effectively
exploit available bypasses. The other option is to perform
optimistic scheduling by assuming the operation latency to
be equal to the latency in presence of complete bypassing.
It can be shown that any scheduling technique that uses
constant operation latency will produce sub-optimal results,
and that a better schedule may be generated using precise
latency of operations. Thus there is a growing need for a
schema to detect data hazards in a retargetable compiler
framework in the presence of incomplete bypassing.
We solve this problem using Operation Tables (OTs). An

OT models the resources and registers used by each opera-
tion supported by the processor. OTs can then be used to
detect both the resource and data hazards more accurately
in an integrated manner. We also show that the OT based
hazard detection mechanism can be used by most existing
scheduling algorithms.

2. MOTIVATING EXAMPLE
Consider the three flavors of bypassing in a simple 5-stage

pipeline shown in Figure 1. In all these pipelines we assume
that the write in the register file takes place at the end of
the cycle. Thus if the same register is read and written in a
cycle, the old value is read.
The pipeline in Figure 1 (a) does not have any bypasses.

Figure 1 (b) contains bypasses from both EX pipeline stage
and WB pipeline stage to both the operands of OR pipeline
stage. This is an example of “complete bypassing”. The
pipeline in Figure 1 (c) contains bypass only from EX pipeline
stage to both the operands of OR pipeline stage. There is
no bypass from WB pipeline stage. This is an example of
incomplete bypassing.
Now consider the execution of an ADD operation in these

pipelines. In absence of any hazards, if the ADD operation
is in F pipeline stage in cycle i, then it will be in OR pipeline
stage in cycle i + 2. At this time it needs to read the two
source registers. The ADD operation will then write back
the destination register in cycle i + 4, when it reaches WB
pipeline stage. The result of the ADD operation can be read
from the register file in and after cycle i+ 5.
In Figure 1 (a), there is only one way to read operands,

i.e. from RF. Thus the operation latency of ADD is 3 cycles.
Any dependent operation should be scheduled 3 cycles after
ADD to avoid any data hazard. In the completely bypassed
pipeline in Figure 1 (b), the operation latency of ADD is
1 cycle. A data dependent operation scheduled 1 or 2 cy-
cles after ADD can read the result of ADD from the bypass,
while a data dependent operation scheduled 3 or more cycles
after ADD can read the result from RF. The effect of having
complete bypassing is to reduce the operation latency. But
in either case (no bypassing, or complete bypassing), the
operation latency can be accurately described by a single
value. Now consider the pipeline in Figure 1 (c). Schedul-
ing a data dependent operation 1 cycle after ADD will not
result in a data hazard, because the result of ADD can be
read from EX pipeline stage via the bypass. However if the
data dependent operation is scheduled 2 cycles after schedul-

(c) Incomplete Bypassing

(b) Complete Bypassing

(a) No Bypassing

F

RF

WBEXORDF

RF

WBEXORDF

RF

WBEXORD

data path
pipeline path

Figure 1: Pipelines with variations in bypasses

ing ADD, there is no way to read the result of ADD. There
is a data hazard. But again, if the data dependent operation
is scheduled 3 or more cycles after ADD, then the result of
ADD can be read from the RF. Thus the data hazard can be
avoided by scheduling a data dependent operation of ADD
1 cycle or 3 or more cycles after scheduling the ADD oper-
ation. The operation latency of ADD in the incompletely
bypassed pipeline in Figure 1 (c) is denoted by 1, 3, which
means that scheduling a data dependent operation 1 or 3 or
more cycles after the schedule cycle of ADD will not cause
a data hazard.
In general for similar pipelines the operation latency of

an operation can be represented as, {l1, l2, ...lk}|li ∈ N, 1 ≤
i ≤ k, li < li+1, which implies that there will be no data
hazard if any dependent operation is scheduled j cycles after
scheduling the operation, such that, j = li, i ≤ k, or j >
lk. Thus due to incomplete bypassing, the operation latency
of ADD cannot be accurately specified using just one value.
Unlike previous approaches that use a single value, in this
paper we show how OTs can be used to accurately model
such multi-valued latencies.
The operation latency in the presence of incomplete by-

passes is very much linked to the structure of the pipeline
and the presence and absence of bypasses, and the path
operation takes in the pipeline. Operation Tables define a
binding between an operation and the resources it may use
and the registers it will read/write in each cycle of its exe-
cution. Using a resource and register model of a processor,

195

OTs can be used to model both the data and resource haz-
ards.

3. RELATED WORK
Most retargetable scheduling algorithms use constant op-

eration latencies are used to detect data hazards[13]. Most
scheduling algorithms use a DFG based data hazard avoid-
ance.
Reservation Tables (RTs)[6] or Finite State Automata (gen-

erated from Reservation Tables) are used to detect resource
hazards in retargetable compiler frameworks[12, 14, 9]. Reser-
vation tables model the structure of the processor including
the pipeline of a processor and the flow of operations in
pipeline. OTs, on the other hand, add register information
of operands, so that both data and resource hazards can be
effectively modeled.
Bypassing was first implemented in IBM Stretch[4]. Since

then it has been used extensively to eliminate certain data
hazards[11]. There is a definite trade-off between the amount
of bypassing and the performance, cost and power of proces-
sor. Initial experimental results show that some bypasses are
rarely used and can be removed with minimal performance
penalty[3, 7, 2, 5]. But all these works either do not include
the compiler in the design space exploration, or perform op-
timistic scheduling.
Traditional DFG based data hazard detection techniques

break down in the presence of incomplete bypassing. Our
approach using OTs alleviates this problem and provides a
retargetable mechanism to detect (and possibly avoid) data
hazards, and furthermore allows its use with many schedul-
ing approaches.
The rest of the paper is as follows: In Section 4 we define

the concept of Operation Tables (OTs), and in Section 5
we develop a data and resource hazards detection algorithm
using OTs. Section 6 illustrates the working of the algo-
rithm on a given schedule of operations on a simple proces-
sor pipeline. In Section 7 we demonstrate that OTs can be
easily integrated into popular scheduling algorithms, using
list scheduling as an example. In Section 8, we compare
the result of a simple basic block scheduling technique using
OTs with the best schedule generated by GCC. And finally
in Section 9, we present a summary of this contribution.

4. OPERATION TABLE
An Operation Table (OT) is a binding between an op-

eration and the processor resources and registers. An OT
lists resources that an operation uses in each cycle of its
execution. It also contains information about the registers
the operation reads and writes. The operation table is a
hierarchical structure defined in Table 1.
The processor pipeline divides the execution of an oper-

ation into cycles. An otCycle is defined corresponding to
each execution cycle of an operation. The OT is defined
as an ordered list of otcycle. Thus the length of the OT
is equal to the lifetime of the operation in the pipeline, as-
suming no hazards. An otcycle specifies the list of resources
that the operation may use in the cycle. It also contains
a list of operands to read and write, i.e., ReadOperands,
WriteOperands, and DestOperands. A readOperand, or
writeOperand describes all the Paths to access (read or
write) the operand Register. Each path describes a list of
processor Resources (e.g. connection, port etc.) required

Operation Table Definition
OperationTable := [otCycle]
otCycle := (Resources, ReadOperands,

WriteOperands, DestOperands)
ReadOperands := {readOperand}
WriteOperands := {writeOperand}
DestOperands := {destOperand}
readOperand := (Register, Paths)
writeOperand := (Register, Paths)
destOperand := (Register, RegisterFile)
Paths := path
path := (Resources, RegisterFile)

Table 1: Operation Table Definition

RFORCnx1 BRFORCnx

RFORCnx2

WBRFCnx

EXBRFCnx

BRF

WBEXORDF

RFpipeline path
data path

Figure 2: A simple 5-stage pipeline

to access the Register, from RegisterF ile. DestOperands
specify the Register that should be present in RegisterF ile
to avoid Write After Write (WAW) hazard while issuing an
operation.
A register bypass can be modeled as a read and write into

a bypass register. The read and write in a bypass regis-
ter happen in the same cycle and the bypass value is not
available in the next cycle. Although each bypass can be
modeled separately in the OT, doing so results in a verbose
description. Bypasses to the same operand destination can
be aggregated to form a bypass register file.
Consider the pipeline shown in Figure 2 with incomplete

bypassing. This pipeline has a bypass from the EX pipeline
stage to OR pipeline stage. The bypass is modeled as a read
and write in an imaginary register file BRF . Note that the
bypass can be used to read the second operand only.
Consider the execution of an ADD operation (ADD R1

R2 R3), or (R1← R2+R3) in the pipeline in Figure 2. Ta-
ble 2 describes the Operation Table of the ADD operation.
In the absence of any hazards, the ADD operation executes
in 5 cycles, thus the OT of ADD contains 5 otCycles. In the
first cycle of its execution, the ADD operation needs the F
pipeline stage, and in the second cycle it needs D pipeline
stage. In the third cycle, ADD occupies OR pipeline stage
and needs to read its source operands R2 and R3. There is
only one path to read the first readOperand R2, while there
are two paths to read the second readOperand R3. The first
readOperand R2, must be read from the register file RF via
the connection RFORCnx1. The second readOperand R3,
can be read either from the register file RF via the con-
nection RFORCnx2, or from the register file BRF via the
connection BRFORCnx. In the fourth cycle the ADD op-
eration is executed and needs EX pipeline stage. The result
of the operation is written to the bypass register file BRF
via connection EXBRFCnx. WB pipeline stage is needed
in the fifth cycle, and the result of the ADD operation is
written back to RF via connection WBRFCnx.
Operation Table thus models all the resources that the

196

Operation Table of ADD R1 R2 R3
1 F
2 D
3 OR

ReadOperands
R2

RFORCnx1, RF
R3

RFORCnx2, RF
BRFORCnx, BRF

DestOperands
R1, RF

4 EX
WriteOperands

R1
EXBRFCnx, BRF

5 WB
WriteOperands

R1
WBRFCnx, RF

Table 2: Operation Table of ADD R1 R2 R3

operation may use during each cycle of its execution. It
also models when and which registers are read and written.
By combining the OTs of operations, both the data and
resource hazards can be detected.

5. HAZARD DETECTION USING OTS
Operation Tables can be used to detect data and resource

hazards in a schedule. However, hazard detection using OTs
requires that the state of the machine be maintained to
reflect the current schedule. The state of the machine is
defined in Table 3. A machineState is an ordered list of
macCycle. Each macCycle is a set of free resources, and
the registers present in the register files (including the by-
pass register files).

Machine State
machineState := [macCycle]
macCycle := (Resources, RF, BRF)

Table 3: Machine State

We define a function detectHazard, that detects both the
data and resource hazards if operation op is scheduled at
time t in a given machineState. Detection of hazards is
a fundamental problem in scheduling. Given a more accu-
rate detectHazard function most existing scheduling algo-
rithms should be able to leverage it to generate better code.
A hazard between a cycle of OT (otCycle) and a cycle of
machineState is detected by detectCycleHazard. There
is no hazard if all the resources needed in the otCycle are
available in macCycle, there is atleast one path to read each
readOperand, one path to write each writeOperand, and all
the destOperand are present in the corresponding register
file.
Figure 4 defines functions AvailRP and AvailWP which

return a path that is available for reading/writing an operand
in the macCycle, or returns φ, if no path is available. A
path is available for writing a Register if all the resources
in the path are free. Reading a Register further requires
the register to be present in the RegisterF ile.

bool detectHazard(machineState, op, t)
for (i = 0; i < op.OT.length; i++)
if detectCycleHazard(machineState[t+ i], op.OT [i])
return TRUE;

return FALSE;

bool detectCycleHazard(macCycle, otCycle)
if otCycle.Resources
⊂ macCycle.Resources
return TRUE;

for each ro ∈ otcycle.ReadOperands
if AvailRP (ro.Register, ro.Paths,macCycle) == φ
return TRUE;

for each wo ∈ otcycle.WriteOperands
if AvailWP (wo.Register,wo.Paths,macCycle) == φ
return TRUE;

for each do ∈ otcycle.DestOperands
regF ile = do.RegisterF ile;
if do.Register
∈ macCycle.regF ile
return TRUE;

return FALSE;

Figure 3: Detecting Hazards using Operation Tables

pathAvailRP(reg, paths, macCycle)
foreach path ∈ Paths

regF ile = path.RegisterF ile;
if path.Resources ⊂ macCycle.Resources
if reg ∈ macCycle.regF ile
return path;

return φ;

pathAvailWP(reg, paths, macCycle)
foreach path ∈ Paths

regF ile = path.RegisterF ile;
if path.Resources ⊂ macCycle.Resources
return path;

return φ;

Figure 4: Finding the available read and write path

The function AddOperation in Figure 5 updates the ma-
chine state after scheduling operation op in cycle t. First
the earliest macCycle is found to schedule an otCycle, so as
not to cause a hazard. Each machineState is updated by
scheduling an otCycle by function AddCycle. AmacCycle is
updated by removing all the Resources required in otCycle
from the Resources inmacCycle. All the required resources
for the operand reads and writes are also marked as busy.
If there are DestOperands, RemRegFromRegF ile removes
the Register from RF in the later cycles. Similarly
WriteOperands are added to RF in the later cycles by
AddRegToRegF ile function.
Thus Operation Tables can be combined to detect data as

well as resource hazards. Moreover we defined a detectHazard
function which can be used in existing scheduling algorithms.

6. ILLUSTRATIVE EXAMPLE
Consider scheduling the sequence of three operations in

the pipeline in Figure 2.
MUL R1 R2 R3 (R1← R2×R3)
ADD R4 R2 R3 (R4← R2 +R3)
SUB R5 R4 R2 (R5← R4−R2)

197

AddOperation(machineState, op, t)
j = t;
for (i = 0; i < op.OT.length; i++)
while detectHazard(machineState[j], op.OT[i])

j++;
AddCycle(machineState[j], op.OT [i]);

AddCycle(macCycle, opcycle)
macCycle.Resources− = macCycle.Resources;
for each ro ∈ otcycle.ReadOperands
path = AvailRP (ro.Register, ro.Paths,macCycle);
macCycle.Resources− = path.Resources;

for each wo ∈ otcycle.WriteOperands
reg = wo.Register;
path = AvailWP (reg,wo.Paths,macCycle);
macCycle.Resources− = path.Resources;
AddRegToRegF ile(reg,path.RegisterF ile, j);

for each do ∈ otcycle.DestOperands
reg = do.Register;
regF ile = do.RegisterF ile;
RemRegFromRegF ile(reg,regF ile, j);

Figure 5: Update the state of the machine

The OTs of ADD and SUB are similar, except for the
register indices. The MUL operation uses the same resources
but spends two cycles in the EX pipeline stage. An operation
bypasses the results only after the execution has finished.
Thus a valid bypass from EX pipeline stage will be generated
only in the second cycle of execution of MUL.
Since MUL occupies the EX pipeline stage for two cycles,

a resource hazard should be detected between the MUL and
ADD operation. SUB requires the result of ADD operation
as the first operand, for which there is no bypass, so there
should be a data hazard. We illustrate the detection of
hazards by scheduling these three operations in-order.
Initially we assume that all the resources are free and that

all the registers are available in the RF. There is no hazard
when MUL is scheduled in the first cycle. Figure 6 shows the
machineState after MUL is scheduled by AddOperation.

R1

R1

D

OR, RFORCnx1, RFORCnx2

EX

EX, EXBRFCnx

WB, WBRFCnx

MUL R1 R2 R3
Cycle Busy Resources ! RF BRF

Operation 1

F

R1

1.

2.

3.

4.

5.

6.

7.

R1

Schedule after scheduling in cycle 1

Figure 6: Schedule after scheduling MUL R1 R2 R3

If we try to schedule ADD in the next cycle, detectHazard
detects a resource hazard. There is a resource hazard when
the fourth otCycle of ADD is tried in the fifth macCycle.
The resource EX is not free in themacCycle. Figure 7 shows
the machineState after scheduling ADD in the second cycle
using AddOperation.
Now in the existing schedule in Figure 7, if we try to sched-

ule SUB in the third cycle, there is a data conflict. The
third otCycle of SUB cannot read R4 from RF. AvailRP
returns φ because even though the connection RFORCnx1

R1

R1 R4

R1

R1

R4

F

D

OR, RFORCnx1, RFORCnx2

EX

EX, EXBRFCnx

WB, WBRFCnx

OR, RFORCnx1, RFORCnx2

D

F

Resource Hazard

EX, EXBRFCnx

WB, WBRFCnx

ADD R4 R2 R3

1.

Cycle Busy Resources ! RF BRF
Operation 1 Operation 2

R4

R4

8.

2.

3.

7.

4.

5.

6.

in cycle 2Schedule after scheduling

Figure 7: Schedule after scheduling ADD R4 R2 R3

is free, R4 is not present in RF. The data hazard is re-
solved in the eighth cycle of machineState. Figure 8 shows
machineState after SUB is scheduled in the third cycle us-
ing AddOperation.
Thus Operation Tables can be used to accurately detect

both data and resource conflicts, even in the presence of
incomplete bypassing.

F

WB, WBRFCnx

EX, EXBRFCnx

OR, RFORCnx1, RFORCnx2

WB, WBRFCnx

EX, EXBRFCnx

EX

OR, RFORCnx1, RFORCnx2

D

F

R5

R4

R1

R1

R4R1

R5

D

Operation 3Operation 2Operation 1
BRF! RFBusy ResourcesCycle

SUB R5 R4 R2

WB, WBRFCnx

EX, EXBRFCnx

Resource Hazard

F

D

OR, RFORCnx1, RFORCnx2

Data Hazard

Data Hazard

Data Hazard

R5

R5

R4R1

R4

11.

10.

9.

7.

8.

6.

5.

4.

3.

2.

1.

in cycle 3Schedule after scheduling

Figure 8: Schedule after scheduling SUB R5 R4 R2

7. INTEGRATING OTs IN A SCHEDULER
Detection of hazards is a fundamental problem in schedul-

ing. Our OT-based approach generates accurate hazard de-
tection information, allowing any traditional scheduling al-
gorithm to perform better. For the sake of illustration we
demonstrate in Figure 9, how to integrate OT-driven hazard
detection mechanism into a list scheduler We believe OTs
can similarly be integrated into other scheduling formula-
tions.
List scheduling schedules a data dependence graph G =

(V,E), where each vertex corresponds to an operation, and
there is an edge between v1 and v2 if v2 uses the result of
v1. Vertex v0 and vn are unique start and end node. The
function parents(v) gives a list of all the parents of v.

8. EXPERIMENTS
To demonstrate the need and efficacy of Operation Ta-

bles, we performed scheduling experiments on the Intel XS-
cale[1]. XScale is a popular embedded processor for wireless
and handheld devices. It provides high code density, high
performance and low power, all at the same time. Figure 10
shows the 7-stage out of order superscalar pipeline of XS-
cale. XScale implements dynamic scheduling using register
scoreboarding. Note that XScale uses incomplete bypass-
ing. We present experimental results on benchmarks from
MiBench[8] suite, which is representative of typical embed-
ded applications.

198

ListSchedule(V)
U = V − v0;F = φ;S = v0;
for each v ∈ V
schedT ime[v] = 0;

while (U
= φ)
F = {v|v ∈ U, parents(v) ⊂ S}
for each (v ∈ F) /* by priority */
t =Max(schedT ime(p)), p ∈ parents(v)
while (detectHazard(machineState,v.op, t))

t++;
AddOperation(machineState, v.op, t);
schedT ime[v] = t;

Figure 9: List Scheduling using Operation Tables

Figure 10: 7-stage pipeline of XScale

We compiled the embedded applications from MiBench
suite using GCC cross compiled for XScale. The bench-
marks were compiled using the -O3 option to optimize for
performance. We modeled XScale in EXPRESSION[9], and
generated both, a cycle accurate simulator SIMPRESS, and
a bypass aware, OT based compiler EXPRESS[10]. We
implemented a simple intra-basic block scheduling in EX-
PRESS using OTs for data and resource hazard detection.
EXPRESS recompiles the output of GCC. All the optimiza-
tions in EXPRESS were turned off to isolate the effects of
OT based hazard detection. The performance of the original
GCC code and the EXPRESS code were measured on SIM-
PRESS and the performance improvement was computed
and plotted in Figure 11.

Percentage Performance Improvement

0

5

10

15

20

25

Bas
icm

at
h

Bitc
ount

Qso
rt

Susa
n.sm

ooth
in

g

Susa
n.co

rn
er

s

Susa
n.ed

ges

Dijk
st

ra

Figure 11: Experimental Results

We observe upto 20% performance improvement over the
best scheduled code by GCC in the case of susan.corners.
susan.corners is an image processing algorithm, which finds
and marks the corners in an image. Using OTs, the sched-
uler was able to detect a data conflict in the innermost loop
of the corner detection algorithm, and was able to find a
schedule that avoided the conflict. A profiling of the results
gave us some insight into the results. In the bitcount bench-
mark, the scheduling could not find a better schedule than
GCC in the frequently executed loops. In the susan.edges
benchmark, cache effects disturbed our OT based fine grain
scheduling technique. Frequent cache misses disrupt the

hazard predictions of the compiler. Thus although the ben-
efits achieved by a scheduler using OTs may be diminished
by coarse grain effects like cache misses, it is always benefi-
cial. In fact on an average it performs 8% better than the
best schedules generated by GCC on the set of benchmarks.

9. SUMMARY
Although register bypassing increases performance by elim-

inating certain data hazards, it has significant impacts on
wiring area, cost, power and complexity of the processor. In-
complete bypassing however results in complicated effective
latency values of operations, which cannot be used by tra-
ditional hazard detection mechanism employed in the com-
pilers today. We present a novel approach to detect data as
well as resource hazards even in presence of incomplete by-
passing. We have shown that our hazard detection technique
is generic and can be used in most existing scheduling algo-
rithms. Our experiments show that accurate modeling and
detection of data hazards due to incomplete bypassing re-
sults in upto 20% performance improvements over the best
performing code generated by GCC on benchmarks from
MiBench applications for Intel XScale. Future work will in-
vestigate the use of OTs in modeling other complex dynami-
cally scheduled processors and explore the retargetability of
our approach.

10. REFERENCES
[1] Intel xscale microarchitecture programmers reference manual.

[2] A. Abnous and N. Bagerzadeh. Pipelining and bypassing in a
vliw processor. In IEEE trans. on Parallel and Distributed
Systems, 1995.

[3] P. Ahuja, D. W. Clark, and A. Rogers. The performance
impact of incomplete bypassing in processor pipelines. In Proc.
of Symposium on Microarchitecture MICRO-28, 1995.

[4] E. Bloch. The engineering design of the stretch computer. In
Proc. of Eastern Joint Computer Conference, pages 48–59,
1959.

[5] M. Buss, R. Azavedo, P. Centoducatte, and G. Araujo.
Tailoring pipeline bypassing and functional unit mapping for
application in clustered vliw architectures. In Proc. of CASES,
2001.

[6] E. S. Davidson. The design and control of pipelined function
generators. Int. IEEE Conf. on Systems Networks and
Computers, pages 19–21, 1971.

[7] K. Fan, N. Clark, M. Chu, K. V. Manjunath R. Ravindran,
M. Smelyanskiy, and S. Mahlke. Systematic register bypass
customization for application-specific processors. In Proc. of
IEEE Intl. Conf. on ASSAP, 2003.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE Workshop
in workload characterization, 2001.

[9] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. In
Proceedings of Design Automation and Test in Europe, 1999.

[10] A. Halambi, A. Shrivastava, N. Dutt, and A. Nicolau. A
customizable compiler framework for embedded systems. In
SCOPES, 2001.

[11] P. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. 1990.

[12] P. G. Lowney, S. M. Freudenberger, . T. J. Karzes, W. D.
Lichtenstein, . R. P. Nix, J. S. O’Donnell, and . J. C.
Ruttenberg. The Multiflow Trace Scheduling compiler. The
Journal of Supercomputing”, 7(1-2):51–142, 1993.

[13] S. Muchnick. Advanced Compiler Design and Implementation.
1998.

[14] The Trimaran Consortium. The Trimaran Compiler
Infrastructure for Instruction Level Parallelism.

199

