

Efficient Mapping of Hierarchical Trees on Coarse-Grain
Reconfigurable Architectures

F. Rivera, M. Sanchez-Elez, M. Fernandez, R. Hermida, N. Bagherzadeh§

Depto. de Arquitectura de Computadores y Automática, Universidad Complutense, Madrid, 28040, SPAIN

e-mail: farivera@fis.ucm.es

§Dept. of Electrical and Computing Engineering, University of California, Irvine, CA 92697, USA

ABSTRACT
Reconfigurable architectures have become increasingly important
in recent years. In this paper we present an approach to the
problem of executing 3D graphics interactive applications onto
these architectures. The hierarchical trees are usually implemented
to reduce the data processed, thereby diminishing the execution
time. We have developed a mapping scheme that parallelizes the
tree execution onto a SIMD reconfigurable architecture. This
mapping scheme considerably reduces the time penalty caused by
the possibility of executing different tree nodes in SIMD fashion.
We have developed a technique that achieves an efficient
hierarchical tree execution taking decisions at execution time. It
also promotes the possibility of data coherence in order to reduce
the execution time. The experimental results show high
performance and efficient resource utilization on tested
applications.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) – Single-instruction-stream,
multiple-data-stream processors (SIMD).

General Terms: Algorithms, Design.

Keywords: Hierarchical trees, reconfigurable architectures,
computer graphics, SIMD, multimedia.

1. INTRODUCTION
The emergence of high capacity reconfigurable devices is

starting a revolution in general-purpose processors. Many coarse-
grain reconfigurable architectures have appeared as reconfigurable
coprocessors, considerably relieving the burden from the main
processor in many multimedia applications due to their very high
degree of parallelism. In addition, they generally have wider
flexibility than an application specific circuit. These facts
contribute to making them better alternatives to traditionally used
DSPs or ASICs.

Coarse-grain reconfigurable architectures are an example of
reconfigurable systems. They have identical Processing Elements
(PEs) richly connected through programmable interconnections.
The PE functionality and connection is configured through
context words stored in an internal memory to allow dynamic
reconfiguration. Examples of such architectures are MorphoSys
[1], REMARC [2] and MATRIX [3].

Multimedia applications are fast becoming one of the
dominating workloads for reconfigurable systems. Many
interactive virtual reality applications such as 3D games, virtual
museum or virtual shop applications have become feasible on
reconfigurable systems [1, 4].

Multimedia applications deal with large sets of data that have
to be processed in a little amount of time in order to accomplish
interactive results. One of the most used algorithms in 3D image
processing is the hierarchical trees, in particular, the Space
Partitioning Trees (SPTs). The SPTs provide a recursive
hierarchical subdivision of the application’s domain. They
provide a computational representation of the application
including a search structure and a representation of geometry.
Common applications that employ SPTs are ray tracing [5] and
rendering [6].

Mapping applications based on SPTs onto SIMD
reconfigurable architectures is a complex task. The SPT has a fine
granularity and the branch decisions must be taken locally during
the execution time, but the SIMD computation model does not
support this condition because it takes branch decisions globally.
Therefore, mapping applications based on SPTs onto such
architectures can be achieved but some time penalty is inevitable.

In this paper we propose mapping methodologies and we
evaluate the time penalty of each one. Our goal is to exploit the
application’s data coherence in order to minimize the time
penalty.

A mapping scheme study in coarse-grain reconfigurable
architectures was done in [7]. In this paper the authors analyze the
effects of PE interconnections in order to execute efficiently DSP
applications. However, they do not deal with fine granularity
loops as occurs in applications based on hierarchical trees.
Another study of loop execution appears in [8], but focuses on the
usage of memory operations sharing. A brief study of tree
execution onto these architectures appears in [9]. However, this
paper does not find an optimum mapping scheme because it
focuses in ray tracing algorithm optimization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

30

Our work goes more deeply than previous efforts by making
a detailed analysis of different mapping schemes for applications
based on Space Partitioning Trees onto SIMD coarse-grain
reconfigurable architectures. A proper mapping solution can
exploit data coherence in a parallel way, at a reasonable amount of
time and a feasible hardware cost.

This paper is organized as follows. In Section 2 we describe
the target architecture. Section 3 presents the problem overview
focused on applications based on hierarchical trees and Section 4
complements it with relevant aspects on data coherence. Our
proposed mapping methodologies are given in Section 5 and the
hardware support required is treated in Section 6. We evaluate the
effectiveness of the mapping schemes in Section 7 and conclude
the paper in Section 8.

2. GENERIC RECONFIGURABLE
ARCHITECTURE

Reconfigurable fabrics provide massive parallelism, high
computational capability and their behaviour can be configured
dynamically. These coarse-grain architectures typically consist of
a set of Processing Elements (PEs) connected in a 2D array, a
high-speed memory interface and a main processor that controls
overall operation. Based on previous features, a generic
reconfigurable architecture template has been proposed [8]. This
architecture is not designed for a specific application and
reconfiguration can be used to cover a range of different
applications.

All the PEs in a generic coarse-grain architecture are
considered to be identical (it supports the same functionalities and
latency remains constant) to guarantee architecture regularity. The
PE array has a SIMD execution model, so the entire array has to
execute the same configuration (context). Each PE is the basic
unit of reconfiguration and is similar to a simple microprocessor
having a data-path made up by some type and number of
functional units (ALUs, multipliers, shifters) and storage units
(RAM, register files). A configuration register stores its
functionality and contains the operation-code and the control
signals to define operation type and to select source and
destination operands.

The interconnection network in the architecture usually
exists among the PEs of either the same row or the same column,
as well as, every PE has communication links with its nearest
neighbours.

Memory interface must guarantee equally distributed
memory access resources along the rows or columns. Fast transfer
of computation parameters and results between the on-chip data
memory and the PEs must be provided through a direct data
transfer path.

Our target architecture, MG, is the implementation of
MorphoSys for 3D Graphics and has the same features of any
coarse-grain architecture. MorphoSys (Figure 1) is composed of a
reconfigurable cell array (PE Array), a high-bandwidth memory
interface and a RISC processor. The PE Array is the

programm
of PEs. A
functiona

Mor
implemen
the DMA
Array and
This buff
transparen
computat
the PE A
of each P
the same

Ther
Context M
operation
main me
Simultane

3. APP
HIERA

In m
symbolic
partitioni
interactiv
scene), th
computin
between
(whose n
many op
considera
Partitioni
algorithm
space in
geometry
subdivisio
making a
behind S

)

31
Figure 1. MorphoSys Architecture (MG

able core of MorphoSys and it consists of an 8 × 8 array
 context word stored in the context register defines the

lity of the PE and the control bits for proper operation.

phosys high-bandwidth memory interface is
ted through the Frame Buffer, the Context Memory and
 controller. Frame Buffer is located between the PE
 the main memory and it is analogous to a data cache.
er is organized in two sets and makes memory access
t to the PE Array by overlapping data transfers with

ion. The Context Memory broadcasts context words to
rray. Context words are loaded into the context register
E to configure it. All eight PEs in a row or column share
context and perform the same operations.

efore, Morphosys supports only SIMD operations.
emory can be updated concurrently with the PE Array

. The DMA controller enables fast transfers between the
mory and the Frame Buffer or the Context Memory.
ous transfers of data and contexts are not possible.

LICATIONS BASED ON
RCHICAL TREES

ost applications involving computation on large sets of
data or manipulation of 3D geometric models,

ng trees are extremely useful. For example, in the field of
e 3D graphics (representation and interaction over a 3D
e generation of every frame of an animation requires

g spatial relations like intersection and occlusion
objects. To compute spatial relations between n objects
umber may be anything from 102 to 106) would require
erations (O(n2)). The number of operations can be
bly reduced by using a data search algorithm. Space
ng Trees (SPTs) represent the most used search
s. They provide a computational representation of the
cluding a search structure and a representation of
. The SPT corresponds to a recursive hierarchical
n of 3D space into two or eight convex subspaces

 binary tree [10] or an octree [11], respectively. The goal
PTs is to quickly find the proper object instead of

checking all objects. Common applications that employ this
search algorithm are ray tracing [5] and rendering [6].

The implementation of this useful search algorithm over a
SIMD reconfigurable architecture is not an easy task. This is
because the SPT algorithm has a fine control granularity. It
implies that the branch decisions can not be taken globally for the
entire PE Array; they must be taken locally inside each PE.
However the PEs do not have program counter and the entire PE
Array has to execute the same context. Therefore, the problem
could be defined as:

“Given a SPT based application find the mapping scheme
that allows its SIMD execution with the less time penalty”.

A SPT has two kinds of nodes: the non-leaf nodes that
contain the partitioning information such as a partitioning
boundary and the pointers to their children; and the leaf nodes
which are associated to a set of data, i.e. objects in the case of 3D
graphics (Figure 2). The SPT search algorithm finds the data to
process after searching the tree. This process takes lower
computation time than searching all the application data, because
only a subset of nodes is processed. In order to execute an
application based on hierarchical trees, the search algorithm
begins at the root node to find the next visited nodes until it
reaches a leaf. The root node is loaded in the PE Array and in
each PE is loaded different input data of the algorithm. The next
node to process is obtained as a result of the SPT algorithm
execution over those input data. If the next node is non-leaf, the
SPT search algorithm continues. In the case of the leaf node the
application is executed over the leaf node data. When a leaf is
found, its type is identified and the corresponding process is
executed. This means that the application is made up by as many
different processes as types of leafs the tree has, besides the tree
search process.

Reconfigurable fabrics, as explained above, are arranged in a
SIMD style. This means that the entire reconfigurable array has to
execute the same context on different data. In the particular case
of the Space Partitioning Tree search algorithm, it could imply
that different PEs need to execute different contexts at the same
time, for example, leaf nodes and non-leaf nodes contexts. Since
this is not possible in SIMD way, it is convenient that the data
processed at the same time are data coherent to minimize this
overhead.

4. DATA COHERENCE
Coherence means that several PEs may traverse the same nodes
and test the same set of leaves. Therefore, a coherent group of PEs
requests the same data set. If we take this into consideration the
execution model can be simplified. In fact, a mapping scheme that
promotes the coherence can achieve the best performance results
with coherent data. However, when a set of PEs that is supposed
to be data coherent turns out to be incoherent a special scheme
must be applied to process different requests in different phases.
These separate phases generate an overhead that has to be
minimized.

For a typical N×N reconfigurable array there are several possible
parallel schemes. They are: (1) all N×N PEs are assumed to be
data coherent; (2) G groups K×N are coherent, wherein N is a
multiple of K; (3) N groups 1×N are coherent. Option (1) requires
the smallest memory bandwidth and option (3) requires the largest

one. So whenever it is possible, option (1) should be chosen.
However, finding N×N PEs data coherent is really difficult. The
number of coherent PEs is usually small. In this paper we suppose
that our application has 1×N coherence which, for example, is the
case of ray tracing in MorphoSys [9], all the PEs in the same row
(column) are supposed to be coherent. Moreover, a study in 1×N
can be easily extrapolated to the K×N and the N×N cases. We call
this a 2-level SIMD mapping scheme, since it is organized into
two levels: each group of N PEs are assumed to be data coherent,
and the N groups of N PEs are allowed to process different nodes.
This means that in the MorphoSys case all the PEs in the same
row or column are supposed to be data coherent, but different
rows or columns can process different data.

The level of data coherence the application has, depends directly
on how many times the tree is traversed to complete the
application. This means that with a high number of times it is
easier to find groups that require the same data. For example, in
the case of 3D image processing the SPT search algorithm is
executed as many times as the number of screen pixels. Therefore,
an increase in the screen size (M×M) entails more data coherence.
Clearly, the data coherence depends also on the number of PEs
that are supposed to be coherent (1×N): a small N value makes
coherence easier. In order to evaluate how a mapping scheme
promotes the coherence, we calculate the PE Unbalance Factor
(tPE). This factor shows idleness of PE.

MM
NNttPE ×

×=

Wherein t stands for the application execution time; N×N stands
for the PE Array size; and the product M×M stands for the
number of times that the SPT algorithm is executed to complete
the application.

The tPE value indirectly indicates the coherence whilst maintaining
the application data size; an increase in tPE means that with that
mapping scheme the PE is more time idle because there is less
coherence as will be explained in the next section. This tPE value
can be used to check if changes in hardware resources improve
their usage. For example, an increase in the PE Array size usually
implies a reduction in the application execution time. But only
when there is a decrease in tPE, a better exploitation of the
hardware resources is achieved. This is because a reasonable
amount of data coherence is maintained. On the other hand, this
factor is independent of the number of times that the tree is
traversed, so an increase in the M×M factor that always means a

Figure 2. SPT Algorithm

32

rise in the execution time (t) entails a reduction in the tPE when it
increases data coherence.

5. SIMD COHERENT MAPPING SCHEME
Programming frameworks for coarse-grain reconfigurable

architectures include many tasks like kernel extraction and
mapping onto the architecture, bandwidth requirements and
additional overhead estimation, all of them having great influence
on the performance of the implementation. In this section we
analyze some mapping solutions. As was explained above, the
goal is to find one solution that minimize the execution time, and
therefore promotes the data coherence.

In the MIMD solution PEs can perform different operations
on different data. MIMD style leads to the minimum execution
time for the application because on the same execution step all the
PEs are performing different and useful computations. Memory
overhead, network topology and communication delays among
PEs must be carefully considered in order to obtain optimum
performance. However, in almost all coarse-grain reconfigurable
architectures that have been proposed, the PEs are typically
arranged in SIMD style to exploit spatial and temporal mapping.
Therefore, SIMD promotes inherent application’s parallelism, and
reduces memory overhead and control hardware. Our 2-level
SIMD mapping scheme mentioned previously is focused on
getting a balance between spatial and temporal mapping as we
shall see.

In the SIMD computation model, the entire PE Array will
perform the same operations on different data. However, in many
applications it is very unlikely that all the PEs execute the same
operation at the same time. This depends on how much coherence
the application has. If data coherence is high enough we should
have the execution of identical processes on nearby data. This
means that PEs operating on a set of nearby data that are supposed
to be coherent, will traverse the same nodes and execute the same
processes associated with the found leaves. The execution model
which encourages coherence achieves the best performance.

When an application based on hierarchical trees starts
running in MorphoSys, the entire PE Array operates on the root
node data. As we have assumed, N rows (columns) of N coherent
PEs traverse the tree in a parallel way. The N PEs forming a row
will operate on the same node, but different rows can process
different nodes. When executing ray tracing, each PE computes
one pixel over node data. Therefore, during an execution step
N×N pixels will be processed in the PE Array against N nodes. In
every search algorithm step the next visited nodes are found. As a
row is computing N different pixels against the same node the
following cases can occurs: (1) All N found nodes are non-leaf
nodes; and (2) At least one of the N found nodes is a leaf node. If
all N rows are in case (1), search algorithm keeps on executing. If
the second case appears in any row a problem arises because on
the next execution step some PEs should be processing non-leaf
nodes and some of them should be operating on leaf nodes: SIMD
style does not allow execute search algorithm and at the same time
to process a leaf on the PE Array. Mapping solutions for this kind
of applications onto SIMD architectures must define when to pass
from the tree search algorithm, to start executing processes
associated with leaves reached by several PEs. Also, the mapping
solution must determine how to continue traversing the tree when
leaf processing are completed. This must be achieved with the

lowest time penalty and the mapping solutions have to promote
that all the PEs perform useful work.

There are three possible choices for mapping (Table 1):

1. Execute tree search algorithm on the N rows of N PEs
until some PE reaches a leaf (some PEs can reach a leaf
simultaneously). In this moment leaf processing starts, but only on
the PEs that have reached a leaf, keeping idle all the others to
reduce power consumption. When leaf processing has been
executed, the tree search is continued.

2. Execute tree search algorithm on the N rows of N PEs.
When a PE reaches a leaf, the process associated with the leaf
found starts, but over the entire PE Array. That is, all the N×N
PEs will process the same leaf node. Some PEs can reach a leaf
simultaneously, but only the different and previously unprocessed
leaves are stacked. Once all stacked leaves have been executed,
the tree search is continued.

3. Execute tree search algorithm on the N rows of N PEs,
stalling those PEs that have reached a leaf. The leaf reached must
be stacked and the corresponding PE continues executing the
search algorithm. Each row has its own stack. Every time all the N
stacks have leaves stored, tree search algorithm stops and leaf
processing starts. This means that leaf processing is executed only
when all rows found a leaf. For each row only the different and
previously unprocessed leaves are stacked. Tree search is
continued while there are no leaves stacked in all the row stacks.
When tree search finishes, stacked leaves that have been
postponed are processed.

Table 1. Mapping solutions

Mapping
Scheme

Non-leaf execution Leaf execution

1st
Solution

Execute non-leaf
process until one leaf is
found

Execute the leaves over
the PEs that found them

2nd
Solution

Execute non-leaf
process until one leaf is
found

Execute every leaf over
the entire PE Array

3rd
Solution

Execute non-leaf
process until one leaf is
found per group
(column-row)

Execute the leaves over
the corresponding group
(column-row)

In the first choice some PEs can be idle while the others are
processing reached leaves. Typically, algorithms associated with
leaves are more complex and therefore time demanding. This
means that in the first option some PEs can be idle for a
significant amount of time. The number of idle PEs in leaf
processing depends inversely on the degree of data coherence. A
large number of idle PEs is shown by a higher tPE. In the second
alternative all the entire PE Array executes the process associated
with a found leaf. This means that the same process is executed in
the array, using the idle time of some PEs to perform a
computation that can be useful in the future. The performance of
this scheme depends on the degree of coherence since the leaf
results are stored for subsequent use. A higher degree of data
coherence implies that the speculative computations are useful.

33

This condition means a lower value for tPE. If these computations
are useless they will generate a power overhead. The third
mapping solution avoids speculative execution of leaves trying to
reduce time and power overhead. In this case, leaf processing
uses simultaneously all the PE Array resources when the number
of found leaves is enough to fill it. All the leaves processed
represent useful computations because they are required for the
algorithm. Only when the stacked leaves that have been
postponed are processed can appear some idle PEs. The number
of postponed leaves and, therefore, the number of idle PEs
depends on the degree of data coherence. A higher degree of data
coherence results into a reduced number of idle PEs and a lower
value for tPE.

In the case of 3D graphics the data coherence is high, at least
locally. However, sometimes there can be incoherence inside a
row (column). This means that it does not evolve synchronously
and requires very different data to complete the algorithm. It is for
this reason that a multi-pass strategy must be employed to process
different requests on different passes to guarantee the correctness
of the algorithm. A lack of coherence produces time overhead
because of the execution of irrelevant process on some PEs or
waste of hardware resources because of the presence of idle PEs.
Hence, the performance of any mapping solution depends on
application’s data coherence.

6. HARDWARE SUPPORT REQUIRED
The mapping of SPT algorithm onto a reconfigurable fabric

is difficult and inefficient without special hardware support units.
Of course we have to be sure that the cost of these hardware
supports is small and will not compromise the original
architecture.

The possibility of incoherence sometimes results in several
PEs not having to process data. We include pseudo-branch
instructions [12] and extra hardware in the PE to make possible
that any PE can be idle when required.

We also add a new memory, the SPT Buffer to transfers data
from/to the external memory to/from the PE Array in a non-
streaming pattern with pointer-jumping behavior. The internal
memory (FB) enables streaming data transfers in the
reconfigurable fabrics. However, if the data are not consecutive in
the FB, there is a time penalty. In the case of the SPT buffer, if
there is no coherence, the PEs can traverse different nodes and the
data could be in different addresses in the memory. Since our
mapping scheme supposes that each column is data coherent, the
SPT Buffer is organized as eight banks, each of which provides
data to one column of eight PEs. The eight banks of the SPT
Buffer are addressed separately. The access to SPT Buffer can be
either on eight banks concurrently or only on one of them. Each
bank provides a 32-bit data element. When eight banks are
accessed a total of eight data elements are broadcast to the eight
columns.

7. EXPERIMENTAL RESULTS
In this section we present the experimental results for

different experiments. We have used the MG architecture to test
these experiments and developed an interactive ray tracing
algorithm for it [9]. Ray tracing involves projecting rays into the
computational model of 3D space and resolving intersections and

occlusions to define what color to display at each point of the
screen. The computational representation of 3D space used by the
algorithm is based on a space partitioning octree; recursive
hierarchical subdivision of 3D space into eight convex subspaces.
Our goal is to explore the performance of the mapping solutions
previously proposed.

We have modelled different experimental setups by varying
hardware and algorithm parameters like screen and PE Array
sizes. In order to evaluate the mapping solutions we have
implemented the ray tracing algorithm in a profiler framework.
This profiler framework executes ray tracing on the target
architecture and delivers the number of clock cycles consumed by
the search algorithm and the leaf processing.

In Figure 3 we compare the three mapping solutions based
on their execution times, corresponding to one specific screen
size. The first mapping solution takes the maximum number of
cycles for all the experimental configurations. The highest number
of cycles is necessary for leaf processing. This is because the same
leaf is usually processed several times. The number of idle PEs
grows inversely proportional with the degree of data coherence, so
the first mapping solution leads to a poor use of hardware
resources that negatively impact on the execution time. The
second mapping solution reduces the number of leaf processing
cycles in comparison to the first one, because this mapping
scheme only processes different leaves and just one at a time over
the entire PE Array. The number of cycles employed on leaf
processing in every SPT algorithm execution is proportional to
the number of different leaves reached by the N rows (columns) of
1×N PEs that make up the array. On its way, the third mapping
solution performs more efficiently the leaf processing. In this
case, the number of cycles employed on leaf processing in every
SPT algorithm execution is proportional to the maximum number
of different leaves reached by one of the N rows (columns) of
1×N PEs that comprise the array. In the worst case this number is
equal to that of the second mapping solution. Typically, leaf
processing are complex and time consuming. Therefore, the third
mapping solution represents the best of the three mapping
solutions, from those proposed, in terms of execution time.

In Figure 4 we compare the three mapping solutions based
on the tPE value. For all the experimental configurations the third
mapping solution shows the lower value for tPE. The third
mapping has the lower number of idle PEs and each PE spends,
on average, less time searching and processing the tree and,
therefore, exploits the data coherence in a better way compared

Figure 3. Execution time for different mapping schemes

Screen Size 128 × 128

0

10 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

1s t 2nd 3rd 1s t 2nd 3rd 1s t 2nd 3rd

4 × 4 8 × 8 16 × 16

PE Array Size

C
lo

ck
 C

yc
le

s

Le ave s
S e arc h

34

with the other methods. In general, for a fixed PE Array size, an
increase in the number of times that the SPT algorithm is executed
to complete the application yields a lower tPE. This means an
increase in the data coherence. Also, for a fixed number of times
that the SPT algorithm is executed to complete the application, an
increase in the PE Array size does not mean an increase in data
coherence but a decrease as shown by a higher tPE. Table 2 shows
these aspects for the third mapping solution.

Table 2. Effects of PE Array and screen sizes on tPE

tPE Value (Third Mapping Solution)

 PE Array Size

Screen Size 4 × 4 8 × 8 16 × 16

16 × 16 65.81 133.25 259.00

64 × 64 42.76 80.09 172.00

128 × 128 34.72 59.79 108.75

8. CONCLUSIONS AND FUTURE WORK
We have explored three different mapping schemes of

hierarchical trees on coarse-grain reconfigurable architectures: (1)
Execute non-leaf process until one leaf is found and then execute
the leaves over the PEs that found them; (2) Execute non-leaf
process until one leaf is found and later execute every leaf over
the entire PE Array; and (3) Execute non-leaf process until one
leaf is found per group (column-row) and then execute the leaves
over the corresponding group (column-row). All of these have
been evaluated according to their time penalty caused by the
possibility of executing different tree nodes in SIMD style. Our
experimental results show that the third mapping solution is more
efficient with data coherence, achieves the highest performance
because of its effective leaf processing and makes better use of
hardware resources by avoiding the growth of idle PEs.

In order to execute efficiently applications based on
hierarchical trees and any interactive applications, the scheduling
should be done at execution time. Therefore, future work will
address a new task and data management.

9. REFERENCES
[1] H. Singh, M. Lee, G. Lu et al., “MorphoSys: An Integrated

Reconfigurable System for Data-Parallel and Computation-
Intensive Applications,” IEEE Transactions on Computers,
Vol. 49, No. 5, May 2000.

[2] T. Miyamori and K. Olukoton, “REMARC: Reconfigurable
Multimedia Array Coprocessor,” Proc. ACM/SIGDA
International Symp. FPGAs, Feb. 1998.

[3] E. Mirsky, A. DeHon, et al. “MATRIX: A Reconfigurable
Computing Architecture with Configurable Instruction
Distribution and Deployable Resources,” Proc. IEEE
Symposium FCCM, Apr. 1996.

[4] M. Meissner, S. Grimm, W. Strasser, J. Packer and D.
Latimer, “Parallel Volume Rendering on a Single-Chip
SIMD Architecture,” Proc. IEEE Symp. Parallel and Large-
Data Visualization and Graphics, pp. 107-157, Oct. 2001.

[5] A, Glassner, “An Introduction to Ray Tracing,” Academic
Press, 1989.

[6] J. Arvo (Ed.), Graphics Gems II, Academic Press, 1991.
[7] N. Bansal, S. Gupta, N. Dutt et al., “Network Topology

Exploration of Mesh-Based Coarse-Grain Reconfigurable
Architectures,” Proc. of Design, Automation and Test in
Europe Conference (DATE04), Feb. 2004.

[8] J. Lee, K. Choi et al., “Mapping Loops on Coarse-Grain
Reconfigurable Architectures Using Memory Operation
Sharing,” TR 02-34, Center for Embedded Computer
Systems, University of California, Irvine, Sep. 2002.

[9] M. Sanchez-Elez, H. Du, N. Tabrizi et al., “Algorithm
Optimizations and Mapping Schemes for Interactive Ray
Tracing on a Reconfigurable Architecture,” Computer &
Graphics (27), pp. 701-713, Elsevier, 2003.

[10] K. Sung, P. Shirley, “Ray Tracing with the BSP Tree”,
Graphics Gems III, pp. 271-274, Academic Press, 1992.

[11] J. Revelles, C. Urena and M. Lastra, “An Efficient
Parametric Algorithm for Octree Traversal,” Proc. WSCG,
pp. 212-219, 2000.

[12] M. Anido, A. Paar et al., “Improving the Operation
Autonomy of SIMD Processing Elements by Using Guarded
Instructions and Pseudo-Branches,” Proc. of EUROMICRO
DSD, pp. 148-155, Sep. 2002.

Screen Size 128 x 128

0

50

100

150

200

250

1s t 2nd 3rd 1s t 2nd 3rd 1s t 2nd 3rd

4 × 4 8 × 8 16 × 16
P E Array S ize

t P E

Figure 4. PE Unbalance Factor

35

