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ABSTRACT 
Reconfigurable architectures have become increasingly important 
in recent years. In this paper we present an approach to the 
problem of executing 3D graphics interactive applications onto 
these architectures. The hierarchical trees are usually implemented 
to reduce the data processed, thereby diminishing the execution 
time. We have developed a mapping scheme that parallelizes the 
tree execution onto a SIMD reconfigurable architecture. This 
mapping scheme considerably reduces the time penalty caused by 
the possibility of executing different tree nodes in SIMD fashion. 
We have developed a technique that achieves an efficient 
hierarchical tree execution taking decisions at execution time. It 
also promotes the possibility of data coherence in order to reduce 
the execution time. The experimental results show high 
performance and efficient resource utilization on tested 
applications.   

Categories and Subject Descriptors 
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors) – Single-instruction-stream, 
multiple-data-stream processors (SIMD). 

General Terms: Algorithms, Design. 

Keywords: Hierarchical trees, reconfigurable architectures, 
computer graphics, SIMD, multimedia. 

1. INTRODUCTION 
The emergence of high capacity reconfigurable devices is 

starting a revolution in general-purpose processors. Many coarse-
grain reconfigurable architectures have appeared as reconfigurable 
coprocessors, considerably relieving the burden from the main 
processor in many multimedia applications due to their very high 
degree of parallelism. In addition, they generally have wider 
flexibility than an application specific circuit. These facts 
contribute to making them better alternatives to traditionally used 
DSPs or ASICs. 

Coarse-grain reconfigurable architectures are an example of 
reconfigurable systems. They have identical Processing Elements 
(PEs) richly connected through programmable interconnections. 
The PE functionality and connection is configured through 
context words stored in an internal memory to allow dynamic 
reconfiguration. Examples of such architectures are MorphoSys 
[1], REMARC [2] and MATRIX [3]. 

Multimedia applications are fast becoming one of the 
dominating workloads for reconfigurable systems. Many 
interactive virtual reality applications such as 3D games, virtual 
museum or virtual shop applications have become feasible on 
reconfigurable systems [1, 4]. 

Multimedia applications deal with large sets of data that have 
to be processed in a little amount of time in order to accomplish 
interactive results. One of the most used algorithms in 3D image 
processing is the hierarchical trees, in particular, the Space 
Partitioning Trees (SPTs). The SPTs provide a recursive 
hierarchical subdivision of the application’s domain. They 
provide a computational representation of the application 
including a search structure and a representation of geometry. 
Common applications that employ SPTs are ray tracing [5] and 
rendering [6]. 

Mapping applications based on SPTs onto SIMD 
reconfigurable architectures is a complex task. The SPT has a fine 
granularity and the branch decisions must be taken locally during 
the execution time, but the SIMD computation model does not 
support this condition because it takes branch decisions globally. 
Therefore, mapping applications based on SPTs onto such 
architectures can be achieved but some time penalty is inevitable. 

In this paper we propose mapping methodologies and we 
evaluate the time penalty of each one. Our goal is to exploit the 
application’s data coherence in order to minimize the time 
penalty. 

A mapping scheme study in coarse-grain reconfigurable 
architectures was done in [7]. In this paper the authors analyze the 
effects of PE interconnections in order to execute efficiently DSP 
applications. However, they do not deal with fine granularity 
loops as occurs in applications based on hierarchical trees. 
Another study of loop execution appears in [8], but focuses on the 
usage of memory operations sharing. A brief study of tree 
execution onto these architectures appears in [9]. However, this 
paper does not find an optimum mapping scheme because it 
focuses in ray tracing algorithm optimization. 
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Our work goes more deeply than previous efforts by making 
a detailed analysis of different mapping schemes for applications 
based on Space Partitioning Trees onto SIMD coarse-grain 
reconfigurable architectures. A proper mapping solution can 
exploit data coherence in a parallel way, at a reasonable amount of 
time and a feasible hardware cost. 

This paper is organized as follows. In Section 2 we describe 
the target architecture. Section 3 presents the problem overview 
focused on applications based on hierarchical trees and Section 4 
complements it with relevant aspects on data coherence. Our 
proposed mapping methodologies are given in Section 5 and the 
hardware support required is treated in Section 6. We evaluate the 
effectiveness of the mapping schemes in Section 7 and conclude 
the paper in Section 8. 

2. GENERIC RECONFIGURABLE 
ARCHITECTURE 

Reconfigurable fabrics provide massive parallelism, high 
computational capability and their behaviour can be configured 
dynamically. These coarse-grain architectures typically consist of 
a set of Processing Elements (PEs) connected in a 2D array, a 
high-speed memory interface and a main processor that controls 
overall operation. Based on previous features, a generic 
reconfigurable architecture template has been proposed [8]. This 
architecture is not designed for a specific application and 
reconfiguration can be used to cover a range of different 
applications. 

All the PEs in a generic coarse-grain architecture are 
considered to be identical (it supports the same functionalities and 
latency remains constant) to guarantee architecture regularity. The 
PE array has a SIMD execution model, so the entire array has to 
execute the same configuration (context). Each PE is the basic 
unit of reconfiguration and is similar to a simple microprocessor 
having a data-path made up by some type and number of 
functional units (ALUs, multipliers, shifters) and storage units 
(RAM, register files). A configuration register stores its 
functionality and contains the operation-code and the control 
signals to define operation type and to select source and 
destination operands. 

The interconnection network in the architecture usually 
exists among the PEs of either the same row or the same column, 
as well as, every PE has communication links with its nearest 
neighbours. 

Memory interface must guarantee equally distributed 
memory access resources along the rows or columns. Fast transfer 
of computation parameters and results between the on-chip data 
memory and the PEs must be provided through a direct data 
transfer path. 

Our target architecture, MG, is the implementation of 
MorphoSys for 3D Graphics and has the same features of any 
coarse-grain architecture. MorphoSys (Figure 1) is composed of a 
reconfigurable cell array (PE Array), a high-bandwidth memory 
interface and a RISC processor. The PE Array is the 
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Figure 1. MorphoSys Architecture (MG

able core of MorphoSys and it consists of an 8 × 8 array 
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checking all objects. Common applications that employ this 
search algorithm are ray tracing [5] and rendering [6]. 

The implementation of this useful search algorithm over a 
SIMD reconfigurable architecture is not an easy task. This is 
because the SPT algorithm has a fine control granularity. It 
implies that the branch decisions can not be taken globally for the 
entire PE Array; they must be taken locally inside each PE. 
However the PEs do not have program counter and the entire PE 
Array has to execute the same context. Therefore, the problem 
could be defined as: 

“Given a SPT based application find the mapping scheme 
that allows its SIMD execution with the less time penalty”. 

A SPT has two kinds of nodes: the non-leaf nodes that 
contain the partitioning information such as a partitioning 
boundary and the pointers to their children; and the leaf nodes 
which are associated to a set of data, i.e. objects in the case of 3D 
graphics (Figure 2). The SPT search algorithm finds the data to 
process after searching the tree. This process takes lower 
computation time than searching all the application data, because 
only a subset of nodes is processed. In order to execute an 
application based on hierarchical trees, the search algorithm 
begins at the root node to find the next visited nodes until it 
reaches a leaf. The root node is loaded in the PE Array and in 
each PE is loaded different input data of the algorithm. The next 
node to process is obtained as a result of the SPT algorithm 
execution over those input data. If the next node is non-leaf, the 
SPT search algorithm continues. In the case of the leaf node the 
application is executed over the leaf node data. When a leaf is 
found, its type is identified and the corresponding process is 
executed. This means that the application is made up by as many 
different processes as types of leafs the tree has, besides the tree 
search process. 

Reconfigurable fabrics, as explained above, are arranged in a 
SIMD style. This means that the entire reconfigurable array has to 
execute the same context on different data. In the particular case 
of the Space Partitioning Tree search algorithm, it could imply 
that different PEs need to execute different contexts at the same 
time, for example, leaf nodes and non-leaf nodes contexts. Since 
this is not possible in SIMD way, it is convenient that the data 
processed at the same time are data coherent to minimize this 
overhead. 

4. DATA COHERENCE 
Coherence means that several PEs may traverse the same nodes 
and test the same set of leaves. Therefore, a coherent group of PEs 
requests the same data set. If we take this into consideration the 
execution model can be simplified. In fact, a mapping scheme that 
promotes the coherence can achieve the best performance results 
with coherent data. However, when a set of PEs that is supposed 
to be data coherent turns out to be incoherent a special scheme 
must be applied to process different requests in different phases. 
These separate phases generate an overhead that has to be 
minimized. 

For a typical N×N reconfigurable array there are several possible 
parallel schemes. They are: (1) all N×N PEs are assumed to be 
data coherent; (2) G groups K×N are coherent, wherein N is a 
multiple of K; (3) N groups 1×N are coherent. Option (1) requires 
the smallest memory bandwidth and option (3) requires the largest 

one. So whenever it is possible, option (1) should be chosen. 
However, finding N×N PEs data coherent is really difficult. The 
number of coherent PEs is usually small. In this paper we suppose 
that our application has 1×N coherence which, for example, is the 
case of ray tracing in MorphoSys [9], all the PEs in the same row 
(column) are supposed to be coherent. Moreover, a study in 1×N 
can be easily extrapolated to the K×N and the N×N cases. We call 
this a 2-level SIMD mapping scheme, since it is organized into 
two levels: each group of N PEs are assumed to be data coherent, 
and the N groups of N PEs are allowed to process different nodes. 
This means that in the MorphoSys case all the PEs in the same 
row or column are supposed to be data coherent, but different 
rows or columns can process different data. 

The level of data coherence the application has, depends directly 
on how many times the tree is traversed to complete the 
application. This means that with a high number of times it is 
easier to find groups that require the same data. For example, in 
the case of 3D image processing the SPT search algorithm is 
executed as many times as the number of screen pixels. Therefore, 
an increase in the screen size (M×M) entails more data coherence. 
Clearly, the data coherence depends also on the number of PEs 
that are supposed to be coherent (1×N): a small N value makes 
coherence easier. In order to evaluate how a mapping scheme 
promotes the coherence, we calculate the PE Unbalance Factor 
(tPE). This factor shows idleness of PE. 

MM
NNttPE ×

×=  

Wherein t stands for the application execution time; N×N stands 
for the PE Array size; and the product M×M stands for the 
number of times that the SPT algorithm is executed to complete 
the application.  

The tPE value indirectly indicates the coherence whilst maintaining 
the application data size; an increase in tPE means that with that 
mapping scheme the PE is more time idle because there is less 
coherence as will be explained in the next section. This tPE value 
can be used to check if changes in hardware resources improve 
their usage. For example, an increase in the PE Array size usually 
implies a reduction in the application execution time. But only 
when there is a decrease in tPE, a better exploitation of the 
hardware resources is achieved. This is because a reasonable 
amount of data coherence is maintained. On the other hand, this 
factor is independent of the number of times that the tree is 
traversed, so an increase in the M×M factor that always means a 

Figure 2. SPT Algorithm 
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rise in the execution time (t) entails a reduction in the tPE when it 
increases data coherence. 

5. SIMD COHERENT MAPPING SCHEME 
Programming frameworks for coarse-grain reconfigurable 

architectures include many tasks like kernel extraction and 
mapping onto the architecture, bandwidth requirements and 
additional overhead estimation, all of them having great influence 
on the performance of the implementation. In this section we 
analyze some mapping solutions. As was explained above, the 
goal is to find one solution that minimize the execution time, and 
therefore promotes the data coherence. 

In the MIMD solution PEs can perform different operations 
on different data. MIMD style leads to the minimum execution 
time for the application because on the same execution step all the 
PEs are performing different and useful computations. Memory 
overhead, network topology and communication delays among 
PEs must be carefully considered in order to obtain optimum 
performance. However, in almost all coarse-grain reconfigurable 
architectures that have been proposed, the PEs are typically 
arranged in SIMD style to exploit spatial and temporal mapping. 
Therefore, SIMD promotes inherent application’s parallelism, and 
reduces memory overhead and control hardware. Our 2-level 
SIMD mapping scheme mentioned previously is focused on 
getting a balance between spatial and temporal mapping as we 
shall see. 

In the SIMD computation model, the entire PE Array will 
perform the same operations on different data. However, in many 
applications it is very unlikely that all the PEs execute the same 
operation at the same time. This depends on how much coherence 
the application has. If data coherence is high enough we should 
have the execution of identical processes on nearby data. This 
means that PEs operating on a set of nearby data that are supposed 
to be coherent, will traverse the same nodes and execute the same 
processes associated with the found leaves. The execution model 
which encourages coherence achieves the best performance. 

When an application based on hierarchical trees starts 
running in MorphoSys, the entire PE Array operates on the root 
node data. As we have assumed, N rows (columns) of N coherent 
PEs traverse the tree in a parallel way. The N PEs forming a row 
will operate on the same node, but different rows can process 
different nodes. When executing ray tracing, each PE computes 
one pixel over node data. Therefore, during an execution step 
N×N pixels will be processed in the PE Array against N nodes. In 
every search algorithm step the next visited nodes are found. As a 
row is computing N different pixels against the same node the 
following cases can occurs: (1) All N found nodes are non-leaf 
nodes; and (2) At least one of the N found nodes is a leaf node. If 
all N rows are in case (1), search algorithm keeps on executing. If 
the second case appears in any row a problem arises because on 
the next execution step some PEs should be processing non-leaf 
nodes and some of them should be operating on leaf nodes: SIMD 
style does not allow execute search algorithm and at the same time 
to process a leaf on the PE Array. Mapping solutions for this kind 
of applications onto SIMD architectures must define when to pass 
from the tree search algorithm, to start executing processes 
associated with leaves reached by several PEs. Also, the mapping 
solution must determine how to continue traversing the tree when 
leaf processing are completed. This must be achieved with the 

lowest time penalty and the mapping solutions have to promote 
that all the PEs perform useful work. 

There are three possible choices for mapping (Table 1): 

1. Execute tree search algorithm on the N rows of N PEs 
until some PE reaches a leaf (some PEs can reach a leaf 
simultaneously). In this moment leaf processing starts, but only on 
the PEs that have reached a leaf, keeping idle all the others to 
reduce power consumption. When leaf processing has been 
executed, the tree search is continued. 

2. Execute tree search algorithm on the N rows of N PEs. 
When a PE reaches a leaf, the process associated with the leaf 
found starts, but over the entire PE Array. That is, all the N×N 
PEs will process the same leaf node. Some PEs can reach a leaf 
simultaneously, but only the different and previously unprocessed 
leaves are stacked. Once all stacked leaves have been executed, 
the tree search is continued. 

3. Execute tree search algorithm on the N rows of N PEs, 
stalling those PEs that have reached a leaf. The leaf reached must 
be stacked and the corresponding PE continues executing the 
search algorithm. Each row has its own stack. Every time all the N 
stacks have leaves stored, tree search algorithm stops and leaf 
processing starts. This means that leaf processing is executed only 
when all rows found a leaf. For each row only the different and 
previously unprocessed leaves are stacked. Tree search is 
continued while there are no leaves stacked in all the row stacks. 
When tree search finishes, stacked leaves that have been 
postponed are processed. 

Table 1. Mapping solutions 

Mapping 
Scheme 

Non-leaf execution Leaf execution 

1st 
Solution 

Execute non-leaf 
process until one leaf is 
found 

Execute the leaves over 
the PEs that found them 

2nd 
Solution 

Execute non-leaf 
process until one leaf is 
found 

Execute every leaf over 
the entire PE Array 

3rd 
Solution 

Execute non-leaf 
process until one leaf is 
found per group 
(column-row) 

Execute the leaves over 
the corresponding group 
(column-row) 

 

In the first choice some PEs can be idle while the others are 
processing reached leaves. Typically, algorithms associated with  
leaves are more complex and therefore time demanding. This 
means that in the first option some PEs can be idle for a 
significant amount of time. The number of idle PEs in leaf 
processing depends inversely on the degree of data coherence. A 
large number of idle PEs is shown by a higher tPE. In the second 
alternative all the entire PE Array executes the process associated 
with a found leaf. This means that the same process is executed in 
the array, using the idle time of some PEs to perform a 
computation that can be useful in the future. The performance of 
this scheme depends on the degree of coherence since the leaf 
results are stored for subsequent use. A higher degree of data 
coherence implies that the speculative computations are useful. 
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This condition means a lower value for tPE. If these computations 
are useless they will generate a power overhead. The third 
mapping solution avoids speculative execution of leaves trying to 
reduce time and power overhead. In this case, leaf processing 
uses simultaneously all the PE Array resources when the number 
of found leaves is enough to fill it. All the leaves processed 
represent useful computations because they are required for the 
algorithm. Only when the stacked leaves that have been 
postponed are processed can appear some idle PEs. The number 
of postponed leaves and, therefore, the number of idle PEs 
depends on the degree of data coherence. A higher degree of data 
coherence results into a reduced number of idle PEs and a lower 
value for tPE. 

In the case of 3D graphics the data coherence is high, at least 
locally. However, sometimes there can be incoherence inside a 
row (column). This means that it does not evolve synchronously 
and requires very different data to complete the algorithm. It is for 
this reason that a multi-pass strategy must be employed to process 
different requests on different passes to guarantee the correctness 
of the algorithm. A lack of coherence produces time overhead 
because of the execution of irrelevant process on some PEs or 
waste of hardware resources because of the presence of idle PEs. 
Hence, the performance of any mapping solution depends on 
application’s data coherence. 

6. HARDWARE SUPPORT REQUIRED 
The mapping of SPT algorithm onto a reconfigurable fabric 

is difficult and inefficient without special hardware support units. 
Of course we have to be sure that the cost of these hardware 
supports is small and will not compromise the original 
architecture. 

The possibility of incoherence sometimes results in several 
PEs not having to process data. We include pseudo-branch 
instructions [12] and extra hardware in the PE to make possible 
that any PE can be idle when required. 

We also add a new memory, the SPT Buffer to transfers data 
from/to the external memory to/from the PE Array in a non-
streaming pattern with pointer-jumping behavior. The internal 
memory (FB) enables streaming data transfers in the 
reconfigurable fabrics. However, if the data are not consecutive in 
the FB, there is a time penalty. In the case of the SPT buffer, if 
there is no coherence, the PEs can traverse different nodes and the 
data could be in different addresses in the memory. Since our 
mapping scheme supposes that each column is data coherent, the 
SPT Buffer is organized as eight banks, each of which provides 
data to one column of eight PEs. The eight banks of the SPT 
Buffer are addressed separately. The access to SPT Buffer can be 
either on eight banks concurrently or only on one of them. Each 
bank provides a 32-bit data element. When eight banks are 
accessed a total of eight data elements are broadcast to the eight 
columns. 

7. EXPERIMENTAL RESULTS 
In this section we present the experimental results for 

different experiments. We have used the MG architecture to test 
these experiments and developed an interactive ray tracing 
algorithm for it [9]. Ray tracing involves projecting rays into the 
computational model of 3D space and resolving intersections and 

occlusions to define what color to display at each point of the 
screen. The computational representation of 3D space used by the 
algorithm is based on a space partitioning octree; recursive 
hierarchical subdivision of 3D space into eight convex subspaces. 
Our goal is to explore the performance of the mapping solutions 
previously proposed. 

We have modelled different experimental setups by varying 
hardware and algorithm parameters like screen and PE Array 
sizes. In order to evaluate the mapping solutions we have 
implemented the ray tracing algorithm in a profiler framework. 
This profiler framework executes ray tracing on the target 
architecture and delivers the number of clock cycles consumed by 
the search algorithm and the leaf processing. 

In Figure 3 we compare the three mapping solutions based 
on their execution times, corresponding to one specific screen 
size. The first mapping solution takes the maximum number of 
cycles for all the experimental configurations. The highest number 
of cycles is necessary for leaf processing. This is because the same 
leaf is usually processed several times. The number of idle PEs 
grows inversely proportional with the degree of data coherence, so 
the first mapping solution leads to a poor use of hardware 
resources that negatively impact on the execution time. The 
second mapping solution reduces the number of leaf processing 
cycles in comparison to the first one, because this mapping 
scheme only processes different leaves and just one at a time over 
the entire PE Array. The number of cycles employed on leaf 
processing in every SPT algorithm execution is proportional to 
the number of different leaves reached by the N rows (columns) of 
1×N PEs that make up the array. On its way, the third mapping 
solution performs more efficiently the leaf processing. In this 
case, the number of cycles employed on leaf processing in every 
SPT algorithm execution is proportional to the maximum number 
of different leaves reached by one of the N rows (columns) of 
1×N PEs that comprise the array. In the worst case this number is 
equal to that of the second mapping solution. Typically, leaf 
processing are complex and time consuming. Therefore, the third 
mapping solution represents the best of the three mapping 
solutions, from those proposed, in terms of execution time. 

In Figure 4 we compare the three mapping solutions based 
on the tPE value. For all the experimental configurations the third 
mapping solution shows the lower value for tPE. The third 
mapping has the lower number of idle PEs and each PE spends, 
on average, less time searching and processing the tree and, 
therefore, exploits the data coherence in a better way compared 

Figure 3. Execution time for different mapping schemes
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with the other methods. In general, for a fixed PE Array size, an 
increase in the number of times that the SPT algorithm is executed 
to complete the application yields a lower tPE. This means an 
increase in the data coherence. Also, for a fixed number of times 
that the SPT algorithm is executed to complete the application, an 
increase in the PE Array size does not mean an increase in data 
coherence but a decrease as shown by a higher tPE. Table 2 shows 
these aspects for the third mapping solution. 

Table 2. Effects of PE Array and screen sizes on tPE 

tPE Value (Third Mapping Solution) 

 PE Array Size 

Screen Size 4 × 4 8 × 8 16 × 16 

16 × 16 65.81 133.25 259.00 

64 × 64 42.76 80.09 172.00 

128 × 128 34.72 59.79 108.75 

 

8. CONCLUSIONS AND FUTURE WORK 
We have explored three different mapping schemes of 

hierarchical trees on coarse-grain reconfigurable architectures: (1) 
Execute non-leaf process until one leaf is found and then execute 
the leaves over the PEs that found them; (2) Execute non-leaf 
process until one leaf is found and later execute every leaf over 
the entire PE Array; and (3) Execute non-leaf process until one 
leaf is found per group (column-row) and then execute the leaves 
over the corresponding group (column-row). All of these have 
been evaluated according to their time penalty caused by the 
possibility of executing different tree nodes in SIMD style. Our 
experimental results show that the third mapping solution is more 
efficient with data coherence, achieves the highest performance 
because of its effective leaf processing and makes better use of 
hardware resources by avoiding the growth of idle PEs. 

In order to execute efficiently applications based on 
hierarchical trees and any interactive applications, the scheduling 
should be done at execution time. Therefore, future work will 
address a new task and data management. 
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