

A Fast Parallel Reed-Solomon Decoder
On a Reconfigurable Architecture

Arezou Koohi, Nader Bagherzadeh, Chengzi Pan

EECS Department EECS Department EECS Department
University of California Irvine University of California, Irvine University of California, Irvine

949-8242481 949-8242481 949-8242481
akoohi@ece.uci.edu Nader@ece.uci.edu panc@uci.edu

ABSTRACT
This paper presents a software implementation of a very fast
parallel Reed-Solomon decoder on the second generation of
MorphoSys reconfigurable computation platform, which is
targeting on streamed applications such as multimedia and DSP.
Numerous modifications of the first-generation of the architecture
have made a scalable computation and communication intensive
architecture capable of extracting parallelisms of fine grain in
instruction level. Many algorithms and the whole Digital Video
Broadcasting base-band receiver as well, have been mapped onto
the second architecture with impressing performance. The
mapping of a Reed-Solomon decoder proposed in this paper
highly parallelizes all of its sub-algorithms, including Syndrome
Computation, Berlekamp Algorithm, Chein Search, and Error
Value Computation, in a SIMD fashion. The mapping is tested on
a cycle-accurate simulator, “Mulate”, and the performance is
encouragingly better than other architectures. The decoding speed
of the RS (255,239,16) decoder using two different methods of
GF multiplication can be 1.319Gbps and 2.534Gbps, respectively.
Furthermore, since there is no functionality specifically tailored to
Reed-Solomon decoder, the result has demonstrated the capability
of MorphoSys architecture to extracting Instruction Level
Parallelism from streamed applications.

Categories and Subject Descriptors
C.1.2 [Computer System Organization]: Processor
Architectures, Multiple Data Stream Architectures
(Multiprocessors), Single-instruction-stream, Multiple-Data -
Stream Processors

General Terms
Algorithms, Performance, Design, Experimentation

Keywords: Reconfigurable Architecture, SIMD Processor,
Reed_Solomon codes, Berlekamp Algorithm, Chein Search

1. INTRODUCTION
Toward a coming billion-transistor era, today’s computation
platform design has already foreseen the end of the road for
conventional micro-architectures [4], and numerous new

approaches have arisen above the horizon, such as EPIC (Itanium
2) [5], RAW [6], Imagine [7], and VIRAM [8], etc. Many of them
target on stream applications, which have already been consuming
more than 90% of total computing cycles nowadays [7]. The
biggest challenge of architecture design is the scalability, only
with which can one follow up the step of Moore’s Law. The
difficulty of scalability is imposed by slower decrease of wire
transmission delay than that of transistor switching delay. This
discrepancy requires a new philosophy on design of scalar
operand network [9] and memory hierarchy. In this paper, we will
introduce the 2nd-generation MorphoSys reconfigurable
architecture called M2, a computation and communication
intensive platform capable of extracting fine grain parallelisms at
the instruction level. Many algorithms and the whole Digital
Video Broadcasting base-band receiver as well, have been
mapped onto M2 with impressing performance. The mapping of a
Reed-Solomon decoder is proposed in this paper. RS codes are
powerful block codes widely used as an error correction method
in the areas such as digital communication, digital disc error
correction, etc. Recently, concatenated codes made up of
convolutional codes followed by RS codes have been proved as
an efficient way of error correction in wireless data
communication systems. We present M2 Architecture at the first
section of the paper, including the architecture different parts, M2
implementation and its programming model. Section 3 introduces
the RS decoding Algorithms and the mapping procedure on the
M2. The section also includes the M2 architecture feasibility for
different parts of the Algorithms. In section 4 we compare the
result of the RS (255,239,16) decoder with the existing
benchmarks including the TI64x and different Asics. The
decoding speed of the RS (255,239,16) decoder using two
different methods of GF multiplication can be 1.319Gbps and
2.534Gbps, respectively

2. MORPHOSYS RECONFIGURABLE
ARCHITECTURE
2.1. Introduction of MorphoSys

MorphoSys is a reconfigurable computation platform targeting
computation intensive data parallel applications, including
streamed applications. M1 [1-2], the first prototype of
MorphoSys, has been used as a platform for many applications
such as multimedia, wireless communication, signal processing,
and computer graphics. M2, the 2nd generation of MorphoSys,
follows the basic concepts of MorphoSys; however, it is
redesigned in both scalar operand network and memory hierarchy,
thus greatly enhanced in performance. Feedbacks from numerous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

59

kernel and system mappings pointed out M1’s bottlenecks, which
have been revisited in M2.
M2 architecture consists of three main subsystems: a core
processor called TinyRISC, an array of 64 Reconfigurable Cells
(RCs) organized in SIMD fashion, and a special data movement
unit called Frame Buffer (FB). The programming model is simple.
TinyRISC takes charge of the whole Data Control Flow (DCF);
RC array and Frame Buffer are only triggered by TinyRISC and
executing on their own configurations (called context)
continuously for a given number of cycles specified by TinyRISC.
The main difference between M1 and M2 is described in [3].
Figure 1 shows the MorphoSys diagram. Main Memory can be
either on-chip or off-chip without significant difference of the
connection interface, as long as Main Memory is also composed
of 64 banks.

2.2. M2 implementation

The following table-1 gives out the characteristics of M2 and
compares it with the other processors. Results of first order
simulation using Synopsis tools show that the critical-path delay
is about 1.8~2.3ns. Hence, 450 MHz is used in our simulation.
Other data are either based on M1 implementation and M2 post-
synthesis (current status), or projected as our design aim, which
are chosen no more aggressive than commercial processors.

Though independently designed, M2 combines the structural
advantages of three important architecture parameters: the overall
structure of host-processor/slave-computation-fabric, the
controlled size of distributed memory within each AlU clusters
and the powerful sequential code, which is hard to be parallelized.
Second, the modest size of distributed memory enables more
AlUs to be integrated in the array and, more importantly, reduces
the latency of scalar operand network, which is essential to extract
to adopt wide range of optimization techniques, both coarse-grain
and fine-grain, and avoids usage of hardware-specific languages
as StreamC.

Frame
Buffer

RC
Array

Main
Memory

DMA

TinyRISC

Context
Memory

Figure 1. MorphoSys Diagram

Table 1. Comparison of M2 and other architectures* the latency is analyzed in 5-tuple <send occupancy, send latency, network
hop latency, receive latency, receive occupancy> [9].

 VIRAM Imagine RAW M2 (with/without on-chip memory)

Parallelism Parallelism
model

Vector SIMD MIMD SIMD

Peak 16-bit OPS 6.4G 23.7G 3.6G (32-bit) 28.8G
Clock Speed 200MHz 296MHz 225MHz 450MHz

Chip area 15*18mm2 12*12mm2 18*18mm2 8*8mm2/16*16mm2
Transistors 120M 21M 122M 20M/120M

Power 2W(averag
e)

4W 25W 4W(peak MAC)

Capability

Technology 0.18µm 0.15µm 0.15µm 0.13µm
Network

nodes
8(Banks) 8 16 64

Total bandwidth 51.2Gbps 75.8Gbps 922Gbps 922Gbps
Latency* <0,1,1,1,0> <0,1,1,1,0> <0,1,1~6,1,0> <0,0,1~2,0,0>

Scalar
Operand
Network

Full permutation No Yes Yes Yes
1st level size 64Kb(VRF

)
96Kb(LRF) 16.4Kb(RF) 16.4Kb(RF)

2nd level size 104Mb(DR
AM)

1Mb(SRF) 16Mb(Local
Mem.)

2Mb(Local Mem.)

3rd level size Off-chip Off-chip Off-chip 16Mb/off-chip
1st level

bandwidth
205Gbps 758Gbps 230Gbps 1382Gbps

2nd level
bandwidth

51.2Gbps 829Gbps** 334Gbps 461Gbps

Memory
Hierarchy

3rd level
bandwidth

N/A 12.4Gbps 200Gbps 115Gbps/56.7Gbps

60

2.3. Programming Model
One potential drawback of M2 is the SIMD model of RC array.
However, mapping experience on MorhpoSys, VIRAM, Imagine,
and other SIMD extension of general-purpose processor like
Pentium MMX, all show that SIMD is sufficient for streamed
multimedia applications, not mentioning the much smaller code
size than that of MIMD model. For example, mapping of DVB-T
system on M2 does not need MIMD generality. Although SPMD
feature might make mapping of MPEG-2 decoder easier, other
subsystems are applying mostly affine array access and small
portion of non-affine but static access involving random
communication, which can be done efficiently by the scalar
operand network. Since SIMD programming has long been a
matured field in general, it is reasonable to suppose that an
efficient C compiler for streamed applications is highly possible,
with some previous experience already [10-11].Moreover, parallel
programming in M2 can adopt domain decomposition or function
decomposition, the former more straightforward, while Imagine
has to stick with cumbersome function decomposition often
experiencing load-unbalanced problem. The following figure
illustrates a real code segment for The Berelekamp algorithm
operation which also shows programming model of MorphoSys.

 Sequential functions Data and Computation Parallel (RC Array) functions

CONTROL + DATA CONTROL + DATA CONTROL FLOW DATA PATHCONTROL FLOW DATA PATH

set 0,1 KEEP I I ;
set 1,1 CLOAD!0x004 I I >2 ;
set 2,1 ADD E r0 LSL 2 >0 WE;
set 3,1 ADD XQ r0 LSL 2 >0;
set 4,1 SUB XQ r0 LSL 2 >0;
set 5,1 SUB E r0 LSL 2 >0 WE;
set 6,1 CLOAD!0x004 I I >2 ;
set 7,1 KEEP I I ;

RC context
0: ADD R0 H1 > R6 |R0;
1: SUB H0 R0 > R6 |R0;
2: ADD R0 H3 > R6 |R0;
3: SUB H2 R0 > R6 |R0;
4: ADD R0 H5 > R6 |R0;
5: SUB H4 R0 > R6 |R0;
6: ADD R0 H7 > R6 |R0;
7: SUB H6 R0 > R6 |R0;

RC context
ldfb $2,0,0,256
ldctxt $1, 0, 80
cbcast 0, 0, 0, 0
sbcb 0, 2, 1, 17
dbcbc $1, 1, 4, 64
stfb $6, 1, 0, 16
wfbi 0, 0, 1, 32

subi $15,$15,3
addi $2,0,0,256
ldw $1, 0, 0, 0,
jal 0, 2, 0, 1,
lui 0, 0, 0, 5
addw 0, 0, 0, 1,

TinyRISC assembly

+

Ldrcex $4, 1, 0, 1, 0, 41
Ldrcex $5, 1, 0, 1, 0, 42
addi $4, $4, 64
addi $5, $5, 64
ldrcex $4, 1, 0, 1, 0, 43
ldrcex $5, 1, 0, 1, 0, 44
addi $4, $4, 64

ldfb $1, $2, 8, 511
ldli $10,511
delay4:
subi $10,$10,4
nop
brle $0,$10,delay4
nop

TinyRISC assembly

Context Memory Context Memory

RC Array RC Array

TinyRISC

Frame Buffer Frame Buffer
DMAC DMAC

Context Memory Context Memory

RC Array RC Array

TinyRISC

Frame Buffer Frame Buffer
DMAC DMAC

Figure 2- Programming Model in MorphoSys

2.4. Scalability
There is a misunderstanding in many places, that scalability is
equal to even distribution of resources. Actually, this is not true in
large scale. For example, as the tile number of RAW processor
grows, the scalar operand network latency increases, and more
severely, traffic load per tile increases, which will finally destroy
the scalability. In order to avoid this load increase, one would
expect to keep the atomic size of 8X8 basic array and instead use
an incremental level of inter-array communication network
accommodating this incremental load. This leads to a hierarchical
scaling behavior, in each level of which there are both distributed
and centralized recourses. The real billion-transistor architecture
coming around year 2007 can be made up of 8 M2 together with
the counterpart of TinyRISC and operand network at a high
level.3 Mapping of Reed-Solomon Decoding Algorithm

3. MAPPING OF REED-SOLOMON
DECODING ALGORITHM
3.1 Reed-Solomon Decoding Algorithm [14]
In the RS (n,k) code, n is the block length, k is the transmitted
code word length and n-k is the minimum distance over

GF)2(n . Decoder is capable of correcting
2

)(knt −= error in

the received code word. RS decoder introduced in this paper is
developed for the SIMD reconfigurable processor. It is necessary
to find a RS decoding algorithm, which makes the parallel
processing possible. Let’s consider)(xv is the transmitted code

word and)(xr is the received code word. Then the error added
by channel is

)()()(xvxrxe −= (1)

Considering ν errors are occurred in the transmitted code word
the syndromes are computed as follows:

() () () () j
l

l
i

kj
n

k
k

jjj
j XeeervS

l∑∑
=

−

=

==+==
υ

αααα
1

1

0

 (2)

Eq (3) shows the key equation to find the error locations and error
magnitudes.

() () () txxxSx 2modΓ=Λ (3)

()xΛ is the error location polynomial and its roots are the
inverses of the error locations. It can be presented as follows:

() ()∏
=

−=+++=Λ
ν

υ
ν ασσ

1
1 1...1

l

ilxxxx (4)

After calculating the error location polynomial roots the error
value corresponding to each error location can be easily calculated
using the Eq (5)

 () ()()
()()1

1
1

−

−
−

Λ

Γ−=
l

l
l

i

i
i

le
α
αα (5)

The Berlekamp algorithm [14] is used to find the error location
polynomial for the SIMD implementation of this decoder.

3.2. GF Multiplication and Addition
Inside Each RC
GF multiplication is the basic operation should be considered in
the implementation of RS decoder. There are two ways of
implementing GF multiplication inside each RC. The first method
is using look up tables for converting the vector representation to
the power representation. Being able to change the power
representation to its vector, we can consider GF elements in the
whole decoding procedure as their vector representations. The GF
multiplication will be simply the addition of the two powers. After
addition, Mod 255 of the result should be computed. We avoid
this time consuming computation by storing two look up tables
continuously instead of one for converting the power to vector.
the second look up table will be the vector corresponding for the
power of 255 to 512. This method works if we just have the
multiplication of two GF elements and will convert the result to
its vector presentation soon after that. This is the case in

61

implementing the GF Multiplication. Total application is mainly
consists of GF polynomial computation which is the GF additions
after each GF multiplication. In order to make each RC the
computational cell for the GF addition and multiplication, we are
taking advantage of the local memory inside each RC. These
memories are specially implemented for storing look up tables,
which are extremely, used in the data streamed applications. The
second method comes from the feasibility of implementing the GF
multiplier hardware inside each RC using the fine grain block.
Using this way there is no need to know about the power
presentation of GF elements and all the computation will go on
using the vector presentation. Using the GF multiplier instead of
the look up tables will speed up total application, as now we are
able to multiply two GF elements and get the result in one clock
cycle.

D0
D1
D2

D3
D4

D5

D7

D6

B8-B15

B0-B7

B16-B23

B24-B31

B32-B39

B40-B47

B48-B55

B56-B63

Figure 3. context broadcast to RC columns from the context
memories of each column

3.3. Developing the Parallel Algorithm
of the RS Decoder

In order to achieve the highest performance of the decoder
implemented on the Morphosys, We should develop the
introduced decoding algorithm for the SIMD processor. Fig 3
shows the parallelism exploited at the data level for the RS
(255, 239,16). Each row of RC has been reconfigured for
decoding one block of the data. 8 blocks of data will be decoded
in parallel with each other. This will decrease the throughput to
1/8 of the total time needed for decoding 8 blocks in parallel.
Fig 4 shows the task-flow diagram of the decoder. Each RC holds
one coefficient of the error location polynomial, error magnitude
polynomial and error correction polynomial. Each RC is the basic
operational block for GF addition and multiplication. In the figure

iS Stands for the different syndromes computed during the

syndrome computation. iσ and iT ’s are representing the error
location and error correction polynomials coefficients respectively
which are computed during the Berelekamp algorithm. In the
Chein search part iβ stands for the GF (255) element, which
should be substituted into the error location polynomial, to find
the root of the error location polynomial. iδ presents a coefficient
of the error magnitude polynomial which is computed during the

Forney’s method stage and will be used to calculate the error
values.

3.3.1. Syndrome Computation
The first step is the Syndrome calculation out of the received code
word. Received code word is saved in the frame buffer and will be
transmitted to each RC .Each RC computes two Syndromes in
parallel with the other RCs of the row. This scheme is generalized
depending on the number of Syndromes should be computed. This
has been made easy since there is one bank of the Frame buffer
corresponding to each RC. So we can easily scale the Syndrome
numbers transmitting the data from frame buffer’s bank to each
RC.

Syndrom
Computation

Chein Search

Forney's
Method

3β 1σ

1r 2r

4β 1σ

1r 2r

5β 1σ

1r 2r

6β 1σ

1r 2r

7β 1σ

1r 2r

8β 1σ

1r 2r
?

 == 02r

3β 1σ

1r 2r

1σ

1S
8S

2S
10S

4S
12S

5S
13S

7S
15S

3S
11S

6S
14S

8S
16S

4S
12S
4S

12S

Berlekamp Algorithm

1σ
1T

2σ
2T

4S
12S

5σ
5T

7σ
7T

3σ
3T

6σ
6T

8σ
8T

4S
12S
4σ
4T

1σ
1δ

2σ
2δ

4S
12S

5σ
5δ

7σ
7δ

3σ
3δ

6σ
6δ

8σ
8δ

4S
12S
4σ
4δ

Figure 4. Task diagram of the decoding procedure in the time
domain

3.3.2. Berlekamp Algorithm
Berlekamp Algorithm is consisting of three main parts.
Discrepancy computation, calculation of the new error location
polynomial and error correction polynomial. These calculations
are basically made of addition of two polynomials together or
multiplying one of them by the GF element. Addition has been
made possible by storing the coefficients of the same order in the
same RC. Addition of the polynomials will be adding of these two
coefficients together in parallel in all RCs. In order to compute
the discrepancy we need to take advantage of the data movement,
between RCs. This data movement is possible in the same clock
cycle as the multiplication happens using that element from the
other RC. This is depicted in Fig 5.Taking advantage of the data
movement between RCs is like increasing the register file of each
RC to the ones from the RCs of the same row and same column.
This is the strong tool to enhance the level of parallelism of the
algorithm. Each RC can use the results of the other computation,
as it has been stored in its register file.

62

3.3.3. Chein Search
Chein search can be done in parallel in the 7 RCs of the row. The
first RC will check the result for the possible error detections.

Each RC is responsible for trying 33)2(8GF elements. The
whole search has been done in parallel in the 7 RCs. FB will be
used as a secondary memory here to store the elements of the

)2(8GF . Each bank will keep the necessary elements and their
power, since we need up to 8 power of each element to reduce the
computation time. In fact memory hierarchy is one of the
important feature of the Morphosys. We can take advantage of the
different parameter storage in the different levels of the memory.

3.3.4. Error Value computation
Error value calculation will be performed sequentially for the
different error locations. This way we take advantage of parallel
GF addition and multiplication in different RCs. Fig 6 shows
different terms calculation of the error values inside each RC.

1−∆k is the discrepancy calculated during the Berlekamp

algorithm part and iσ s are the error location coefficients.

1σ 2σ 3σ 4σ 5σ 6σ 7σ1S2S3S4S5S6s7S 8S

6s
7S

5S

3S2S
1S

Figure 5. Data movement between RCs in order to calculate
different terms of the Discrepancy in the different RC

4 CONCLUSION AND COMPARISON
MorphoSys as a reconfigurable architecture provides a very
flexible platform for implementing different DSP applications.
This is perfectly demonstrated through the RS decoder
implementation with different error correcting length. Being able
to reconfigure each RC for the different parts of the wireless
communication receiver will provide the best functionality of
each RC for the whole application. TI DSPs have the same
approach to perform GF multiplication. In comparison Morphosys
takes advantage of the higher data parallelism obtained through
the SIMD characteristics of it. DSP C6400 provides the hardware
support for performing the Galois Field multiplies. In the absence
of hardware to effectively perform Galois field math, previous
DSP implementations made use of logarithms to perform
multiplication. This has decreased performance to ¼ of the
present one with hardware GF multiplication. Many different
Reed-Solomon ASIC Architectures are proposed in the literature
[12-13]. These blocks are mostly specified and optimized for the
RS decoder. They can be considered as a single chip RS decoder.
In comparison Morphosys can be viewed as the programmable
architecture optimized for the whole receiver Morphosys
outperforms Asics, which have the smaller size. We have
simulated the result on the Morphosys hardware simulator called
Mulate. The result is given for the RS decoder of (255,239,16)
using two different methods of GF multiplication. The decoding
speed is 1.319Gbps and 2.534Gbps, respectively. Fig 7 shows the
bit rate of the decoder and its comparison with the different Asics
and Also TI64x

C
oic5128

A
m

phion

M
orphosys1

M
orphosys2

TI-C
64x

Xilinx D
ecoder

5 17 M
320M

824 M

1 .319 G

2 .534 G

b p s

Figure7. Bit rate comparison of two decoders implemented on
Morphosys with the other Asics and TIC64x

1r 2r 1r 2r 1r 2r 1r 2r 1r 2r 1r 2r

2σ

1r 2r

3σ 4σ 5σ 6σ 7σ
8σ

1r 2r

1σ1−∆ k
1−∆ k

1−∆ k
1−∆ k

1−∆ k
1−∆ k

1−∆ k
1−∆ k

Figure 6. Different terms calculation of the error values

63

References:
[1] H. Singh, Lee, Lu, Bagherzadeh, Kurdahi, “MorphoSys: An

Integrated Reconfigurable System for Data-Parallel and
Computation –Intensive Applications,” IEEE Transactions
on Computers, vol. 49, No. 5, pp. 465-481, May 2000.

[2] Lee, Singh, Lu, Bagherzadeh, Kurdahi, “Design and
Implementation of the MorphoSys Reconfigurable
Computing Processor,” Journal of VLSI Signal Processing
Systems for Signal, Image, and Video Technology, vol. 24,
No. 2-3, Kluwer Academic Publishers, pp. 147-164, Mar
2000.

[3] Pan, Kamalizad, Koohi, Bagherzadeh, “Design and Analysis
of a Programmable Single-Chip Architecture for DVB-T
Base-Band Receiver,” To Appear in DATE 2003.

[4] Agarwal, Hrishikesh, Keckler, Burger, “Clock rate versus
IPC: the end of the road for conventional
microarchitectures,” Computer Architecture, 2000.
Proceedings of the 27th International Symposium on, 2000
Page(s): 248 -259

[5] Schlansker, Rau, “EPIC: Explicitly Parallel Instruction
Computing,” Computer, Volume: 33 Issue: 2, Feb 2000
Page(s): 37 -45

[6] Taylor, et.al. “The Raw microprocessor: a computational
fabric for software circuits and general-purpose programs,”
Micro, IEEE , Volume: 22 Issue: 2 , Mar/Apr 2002, Page(s):
25 -35

[7] Rixner, et.al. “A bandwidth-efficient architecture for media
processing,” Microarchitecture, 1998. MICRO-31.
Proceedings. 31st Annual ACM/IEEE International
Symposium on , 30 Nov-2 Dec 1998

[8] Kozyrakis, Patterson, “Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks,”
Microarchitecture, 2002. (MICRO-35). Proceedings. 35th

Annual IEEE/ACM International Symposium on, 2002
Page(s): 283 -293

[9] Taylor, Lee, Amarasinghe, Agarwal, “Scalar Operand
Networks: On-chip Interconnect for ILP in Partitioned
Architectures,” HPCA 2003, February 2003.

[10] Venkataramani, Najjar, Kurdahi, Bagherzadeh, Bohm, “A
Compiler Framework for Mapping Applications to a Coarse-
grained Reconfigurable Computer Architecture,” CASES
2001, Atlanta, GA, November 2001.

[11] Maestre, Kurdahi, Bagherzadeh, Singh, Hermida, Fernandez,
“Kernel scheduling in reconfigurable computing,” DATE
1999.

[12] Implementation of high speed Reed-Solomon decoder.
[Conference Paper] 42nd Midwest Symposium on Circuits
and Systems (Cat. No.99CH36356). IEEE. Part vol. 2, 2000,
pp.808-12 vol. 2. Piscataway, NJ, USA.

[13] Martina M, Masera G, Piccinini G, Vacca F, Zamboni M.
VLSI Reed Solomon decoder architecture for networked
multimedia applications. [Conference Paper] Proceedings
14th Annual IEEE International ASIC/SOC Conference
(IEEE Cat. No.01TH8558). IEEE. 2001, pp.347-51.
Piscataway, NJ,USASystems II-Analog & Digital Signal
Processing, vol.47, no.11, Nov. 2000, pp.1254-70. Publisher:
IEEE, USA.

[14] Shu LIN/ Daniel J Costello Error Control Coding
Fundamentals and applications

[15] www.amphion.com
[16] www.ti.com
[17] www.xilinx.com

64

