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ABSTRACT
This paper presents a software implementation of a very fast 
parallel Reed-Solomon decoder on the second generation of 
MorphoSys reconfigurable computation platform, which is 
targeting on streamed applications such as multimedia and DSP. 
Numerous modifications of the first-generation of the architecture 
have made a scalable computation and communication intensive 
architecture capable of extracting parallelisms of fine grain in 
instruction level. Many algorithms and the whole Digital Video 
Broadcasting base-band receiver as well, have been mapped onto 
the second architecture with impressing performance. The 
mapping of a Reed-Solomon decoder proposed in this paper 
highly parallelizes all of its sub-algorithms, including Syndrome 
Computation, Berlekamp Algorithm, Chein Search, and Error 
Value Computation, in a SIMD fashion. The mapping is tested on 
a cycle-accurate simulator, “Mulate”, and the performance is 
encouragingly better than other architectures. The decoding speed 
of the RS (255,239,16) decoder using two different methods of 
GF multiplication can be 1.319Gbps and 2.534Gbps, respectively. 
Furthermore, since there is no functionality specifically tailored to 
Reed-Solomon decoder, the result has demonstrated the capability 
of MorphoSys architecture to extracting Instruction Level 
Parallelism from streamed applications.  
 
Categories and Subject Descriptors 
C.1.2 [Computer System Organization]:  Processor 
Architectures, Multiple Data Stream Architectures 
(Multiprocessors), Single-instruction-stream, Multiple-Data -
Stream Processors 
 
General Terms 
Algorithms, Performance, Design, Experimentation 
 
Keywords: Reconfigurable Architecture, SIMD Processor, 
Reed_Solomon codes, Berlekamp Algorithm, Chein Search 
 
1. INTRODUCTION 
Toward a coming billion-transistor era, today’s computation 
platform design has already foreseen the end of the road for 
conventional micro-architectures [4], and numerous new 

approaches have arisen above the horizon, such as EPIC (Itanium 
2) [5], RAW [6], Imagine [7], and VIRAM [8], etc. Many of them 
target on stream applications, which have already been consuming 
more than 90% of total computing cycles nowadays [7]. The 
biggest challenge of architecture design is the scalability, only 
with which can one follow up the step of Moore’s Law. The 
difficulty of scalability is imposed by slower decrease of wire 
transmission delay than that of transistor switching delay. This 
discrepancy requires a new philosophy on design of scalar 
operand network [9] and memory hierarchy. In this paper, we will 
introduce the 2nd-generation MorphoSys reconfigurable 
architecture called M2, a computation and communication 
intensive platform capable of extracting fine grain parallelisms at 
the instruction level. Many algorithms and the whole Digital 
Video Broadcasting base-band receiver as well, have been 
mapped onto M2 with impressing performance. The mapping of a 
Reed-Solomon decoder is proposed in this paper. RS codes are 
powerful block codes widely used as an error correction method 
in the areas such as digital communication, digital disc error 
correction, etc. Recently, concatenated codes made up of 
convolutional codes followed by RS codes have been proved as 
an efficient way of error correction in wireless data 
communication systems. We present M2 Architecture at the first 
section of the paper, including the architecture different parts,  M2 
implementation and its programming model. Section 3 introduces 
the RS decoding Algorithms and the mapping procedure on the 
M2. The section also includes the M2 architecture feasibility for 
different parts of the Algorithms. In section 4 we compare the 
result of the RS (255,239,16) decoder with the existing 
benchmarks including the TI64x and different Asics. The 
decoding speed of the RS (255,239,16) decoder using two 
different methods of GF multiplication can be 1.319Gbps and 
2.534Gbps, respectively 
 

 
2. MORPHOSYS RECONFIGURABLE 
ARCHITECTURE 
2.1. Introduction of MorphoSys  

MorphoSys is a reconfigurable computation platform targeting 
computation intensive data parallel applications, including 
streamed applications. M1 [1-2], the first prototype of 
MorphoSys, has been used as a platform for many applications 
such as multimedia, wireless communication, signal processing, 
and computer graphics. M2, the 2nd generation of MorphoSys, 
follows the basic concepts of MorphoSys; however, it is 
redesigned in both scalar operand network and memory hierarchy, 
thus greatly enhanced in performance. Feedbacks from numerous 
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kernel and system mappings pointed out M1’s bottlenecks, which 
have been revisited in M2.  
M2 architecture consists of three main subsystems: a core 
processor called TinyRISC, an array of 64 Reconfigurable Cells 
(RCs) organized in SIMD fashion, and a special data movement 
unit called Frame Buffer (FB). The programming model is simple. 
TinyRISC takes charge of the whole Data Control Flow (DCF); 
RC array and Frame Buffer are only triggered by TinyRISC and 
executing on their own configurations (called context) 
continuously for a given number of cycles specified by TinyRISC. 
The main difference between M1 and M2 is described in [3]. 
Figure 1 shows the MorphoSys diagram. Main Memory can be 
either on-chip or off-chip without significant difference of the 
connection interface, as long as Main Memory is also composed 
of 64 banks. 
 
 
2.2. M2 implementation 
 
The following table-1 gives out the characteristics of M2 and 
compares it with the other processors. Results of first order 
simulation using Synopsis tools show that the critical-path delay 
is about 1.8~2.3ns. Hence, 450 MHz is used in our simulation. 
Other data are either based on M1 implementation and M2 post-
synthesis (current status), or projected as our design aim, which 
are chosen no more aggressive than commercial processors. 

Though independently designed, M2 combines the structural 
advantages of three important architecture parameters: the overall 
structure of host-processor/slave-computation-fabric, the 
controlled size of distributed memory within each AlU clusters 
and the powerful sequential code, which is hard to be parallelized. 
Second, the modest size of distributed memory enables more 
AlUs to be integrated in the array and, more importantly, reduces 
the latency of scalar operand network, which is essential to extract 
to adopt wide range of optimization techniques, both coarse-grain 
and fine-grain, and avoids usage of hardware-specific languages 
as StreamC.  
 

Frame
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Array

Main
Memory

DMA

TinyRISC

Context
Memory

 
 

Figure 1. MorphoSys Diagram 
 

 
 
Table 1. Comparison of M2 and other architectures* the latency is analyzed in 5-tuple <send occupancy,   send latency, network 
hop latency, receive latency, receive occupancy> [9].  
 

  VIRAM Imagine RAW M2 (with/without on-chip memory) 

Parallelism Parallelism 
model 

Vector SIMD MIMD SIMD 

Peak 16-bit OPS 6.4G 23.7G 3.6G (32-bit) 28.8G 
Clock Speed 200MHz 296MHz 225MHz 450MHz 

Chip area 15*18mm2 12*12mm2 18*18mm2 8*8mm2/16*16mm2 
# Transistors 120M 21M 122M 20M/120M 

Power 2W(averag
e) 

4W 25W 4W(peak MAC) 

 
 

Capability 

Technology 0.18µm 0.15µm 0.15µm 0.13µm 
# Network 

nodes 
8(Banks) 8 16 64 

Total bandwidth 51.2Gbps 75.8Gbps 922Gbps 922Gbps 
Latency* <0,1,1,1,0> <0,1,1,1,0> <0,1,1~6,1,0> <0,0,1~2,0,0> 

Scalar 
Operand 
Network 

Full permutation No Yes Yes Yes 
1st level size 64Kb(VRF

) 
96Kb(LRF) 16.4Kb(RF) 16.4Kb(RF) 

2nd level size 104Mb(DR
AM) 

1Mb(SRF) 16Mb(Local 
Mem.) 

2Mb(Local Mem.) 

3rd level size Off-chip Off-chip Off-chip 16Mb/off-chip 
1st level 

bandwidth 
205Gbps 758Gbps 230Gbps 1382Gbps 

2nd level 
bandwidth 

51.2Gbps 829Gbps** 334Gbps 461Gbps 

 
 

Memory 
Hierarchy 

3rd level 
bandwidth 

N/A 12.4Gbps 200Gbps 115Gbps/56.7Gbps 
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2.3. Programming Model  
One potential drawback of M2 is the SIMD model of RC array. 
However, mapping experience on MorhpoSys, VIRAM, Imagine, 
and other SIMD extension of general-purpose processor like 
Pentium MMX, all show that SIMD is sufficient for streamed 
multimedia applications, not mentioning the much smaller code 
size than that of MIMD model. For example, mapping of DVB-T 
system on M2 does not need MIMD generality. Although SPMD 
feature might make mapping of MPEG-2 decoder easier, other 
subsystems are applying mostly affine array access and small 
portion of non-affine but static access involving random 
communication, which can be done efficiently by the scalar 
operand network.  Since SIMD programming has long been a 
matured field in general, it is reasonable to suppose that an 
efficient C compiler for streamed applications is highly possible, 
with some previous experience already [10-11].Moreover, parallel 
programming in M2 can adopt domain decomposition or function 
decomposition, the former more straightforward, while Imagine 
has to stick with cumbersome function decomposition often 
experiencing load-unbalanced problem. The following figure 
illustrates a real code segment for The Berelekamp algorithm 
operation which also shows programming model of MorphoSys.  

 Sequential functions Data and Computation Parallel (RC Array) functions

CONTROL +  DATA CONTROL +  DATA CONTROL FLOW DATA PATHCONTROL FLOW DATA PATH

set 0,1 KEEP I I ; 
set 1,1 CLOAD!0x004 I I  >2 ;
set 2,1 ADD E r0 LSL 2 >0 WE; 
set 3,1 ADD XQ r0 LSL 2 >0; 
set 4,1 SUB XQ r0 LSL 2 >0; 
set 5,1 SUB E r0 LSL 2 >0 WE;
set 6,1 CLOAD!0x004 I I >2 ;
set 7,1 KEEP I I ; 

RC context 
0: ADD  R0 H1 > R6 |R0;
1: SUB  H0 R0 > R6 |R0; 
2: ADD  R0 H3 > R6 |R0; 
3: SUB  H2 R0 > R6 |R0; 
4: ADD  R0 H5 > R6 |R0; 
5: SUB  H4 R0 > R6 |R0; 
6: ADD  R0 H7 > R6 |R0; 
7: SUB  H6 R0 > R6 |R0; 
 

RC context 
ldfb $2,0,0,256 
ldctxt $1, 0, 80 
cbcast 0, 0, 0, 0 
sbcb 0, 2, 1, 17 
dbcbc $1, 1, 4, 64 
stfb $6, 1, 0, 16 
wfbi 0, 0, 1, 32 

subi $15,$15,3 
addi $2,0,0,256 
ldw $1, 0, 0, 0, 
jal 0, 2, 0, 1, 
lui 0, 0, 0, 5 
addw 0, 0, 0, 1, 

TinyRISC assembly 

+ 

Ldrcex $4, 1, 0, 1, 0, 41 
Ldrcex $5, 1, 0, 1, 0, 42 
addi $4, $4, 64 
addi $5, $5, 64 
ldrcex $4, 1, 0, 1, 0, 43 
ldrcex $5, 1, 0, 1, 0, 44 
addi $4, $4, 64 
 

ldfb $1, $2, 8, 511 
ldli  $10,511 
delay4: 
subi  $10,$10,4 
nop 
brle  $0,$10,delay4 
nop 

TinyRISC assembly 

Context Memory Context Memory 

RC Array RC Array 

TinyRISC 

Frame Buffer Frame Buffer 
DMAC DMAC 

Context Memory Context Memory 

RC Array RC Array 

TinyRISC 

Frame Buffer Frame Buffer 
DMAC DMAC  

Figure 2- Programming Model in MorphoSys 

 
2.4. Scalability  
There is a misunderstanding in many places, that scalability is 
equal to even distribution of resources. Actually, this is not true in 
large scale. For example, as the tile number of RAW processor 
grows, the scalar operand network latency increases, and more 
severely, traffic load per tile increases, which will finally destroy 
the scalability. In order to avoid this load increase, one would 
expect to keep the atomic size of 8X8 basic array and instead use 
an incremental level of inter-array communication network 
accommodating this incremental load. This leads to a hierarchical 
scaling behavior, in each level of which there are both distributed 
and centralized recourses. The real billion-transistor architecture 
coming around year 2007 can be made up of 8 M2 together with 
the counterpart of TinyRISC and operand network at a high 
level.3 Mapping of Reed-Solomon Decoding Algorithm 
 
3. MAPPING OF REED-SOLOMON 
DECODING ALGORITHM 
3.1 Reed-Solomon Decoding Algorithm [14] 
In the RS (n,k) code, n is the block length, k is the transmitted 
code word length  and n-k is the minimum distance over 

GF )2( n . Decoder is capable of correcting 
2

)( knt −= error in 

the received code word. RS decoder introduced in this paper is 
developed for the SIMD reconfigurable processor.  It is necessary 
to find a RS decoding algorithm, which makes the parallel 
processing possible. Let’s consider )(xv is the transmitted code 

word and )(xr is the received code word. Then the error added 
by channel is                                                

)()()( xvxrxe −=                                                 (1) 

Considering ν  errors are occurred in the transmitted code word 
the syndromes are computed as follows: 
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Eq (3) shows the key equation to find the error locations and error 
magnitudes. 

( ) ( ) ( ) txxxSx 2modΓ=Λ                                           (3) 

( )xΛ   is the error location polynomial and its roots are the 
inverses of the error locations. It can be presented as follows: 
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After calculating the error location polynomial roots the error 
value corresponding to each error location can be easily calculated 
using the Eq (5) 
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The Berlekamp algorithm [14] is used to find the error location 
polynomial for the SIMD implementation of this decoder. 

3.2. GF Multiplication and Addition  
Inside Each RC 
GF multiplication is the basic operation should be considered in 
the implementation of RS decoder.  There are two ways of 
implementing GF multiplication inside each RC. The first method 
is using look up tables for converting the vector representation to 
the power representation. Being able to change the power 
representation to its vector, we can consider GF elements in the 
whole decoding procedure as their vector representations. The GF 
multiplication will be simply the addition of the two powers. After 
addition, Mod 255 of the result should be computed. We avoid 
this time consuming computation by storing two look up tables 
continuously instead of one for converting the power to vector. 
the second look up table will be the vector corresponding for the 
power of  255 to 512. This method works if we just have the 
multiplication of two GF elements and will convert the result to 
its vector presentation soon after that. This is the case in 
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implementing the GF Multiplication. Total application is mainly 
consists of GF polynomial computation which is the GF additions 
after each GF multiplication. In order to make each RC the 
computational cell for the GF addition and multiplication, we are 
taking advantage of the local memory inside each RC. These 
memories are specially implemented for storing look up tables, 
which are extremely, used in the data streamed applications. The 
second method comes from the feasibility of implementing the GF 
multiplier hardware inside each RC using the fine grain block. 
Using this way there is no need to know about the power 
presentation of GF elements and all the computation will go on 
using the vector presentation. Using the GF multiplier instead of 
the look up tables will speed up total application, as now we are 
able to multiply two GF elements and get the result in one clock 
cycle. 
 

D0
D1
D2

D3
D4

D5

D7

D6

B8-B15

B0-B7

B16-B23

B24-B31

B32-B39

B40-B47

B48-B55

B56-B63
 

Figure 3. context broadcast to RC columns from the context 
memories of each column 

 
3.3. Developing the Parallel Algorithm  
of the RS Decoder 
 
In order to achieve the highest performance of the decoder 
implemented on the Morphosys, We should develop the 
introduced decoding algorithm for the SIMD processor. Fig 3 
shows the parallelism exploited at the data level for the RS     
(255, 239,16). Each row of RC has been reconfigured for 
decoding one block of the data. 8 blocks of data will be decoded 
in parallel with each other. This will decrease the throughput to 
1/8 of the total time needed for decoding 8 blocks in parallel.    
Fig 4 shows the task-flow diagram of the decoder. Each RC holds 
one coefficient of the error location polynomial, error magnitude 
polynomial and error correction polynomial. Each RC is the basic 
operational block for GF addition and multiplication. In the figure 

iS Stands for the different syndromes computed during the 

syndrome computation. iσ  and iT ’s are representing the error 
location and error correction polynomials coefficients respectively 
which are computed during the Berelekamp algorithm. In the 
Chein search part iβ stands for the GF (255) element, which 
should be substituted into the error location polynomial, to find 
the root of the error location polynomial. iδ presents a coefficient 
of the error magnitude polynomial which is computed during the 

Forney’s  method stage and will be used to calculate the error 
values. 
 

3.3.1. Syndrome Computation 
The first step is the Syndrome calculation out of the received code 
word. Received code word is saved in the frame buffer and will be 
transmitted to each RC .Each RC computes two Syndromes in 
parallel with the other RCs of the row. This scheme is generalized 
depending on the number of Syndromes should be computed. This 
has been made easy since there is one bank of the Frame buffer 
corresponding to each RC. So we can easily scale the Syndrome 
numbers transmitting the data from frame buffer’s bank to each 
RC.  
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Figure 4. Task diagram of the decoding procedure in the time 
domain 

3.3.2. Berlekamp Algorithm 
Berlekamp Algorithm is consisting of three main parts. 
Discrepancy computation, calculation of the new error location 
polynomial and error correction polynomial. These calculations 
are basically made of addition of two polynomials together or 
multiplying one of them by the GF element. Addition has been 
made possible by storing the coefficients of the same order in the 
same RC. Addition of the polynomials will be adding of these two 
coefficients together in parallel in all RCs.  In order to compute 
the discrepancy we need to take advantage of the data movement, 
between RCs. This data movement is possible in the same clock 
cycle as the multiplication happens using that element from the 
other RC. This is depicted in Fig 5.Taking advantage of the data 
movement between RCs is like increasing the register file of each 
RC to the ones from the RCs of the same row and same column. 
This is the strong tool to enhance the level of parallelism of the 
algorithm. Each RC can use the results of the other computation, 
as it has been stored in its register file. 
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3.3.3. Chein Search 
Chein search can be done in parallel in the 7 RCs of the row. The 
first RC will check the result for the possible error detections. 

Each RC is responsible for trying 33 )2( 8GF elements. The 
whole search has been done in parallel in the 7 RCs. FB will be 
used as a secondary memory here to store the elements of the 

)2( 8GF . Each bank will keep the necessary elements and their 
power, since we need up to 8 power of each element to reduce the 
computation time. In fact memory hierarchy is one of the 
important feature of the Morphosys. We can take advantage of the 
different parameter storage in the different levels of the memory. 

3.3.4. Error Value computation 
Error value calculation will be performed sequentially for the 
different error locations. This way we take advantage of parallel 
GF addition and multiplication in different RCs. Fig 6 shows 
different terms calculation of the error values inside each RC. 

1−∆k  is the discrepancy calculated during the Berlekamp 

algorithm part and iσ s are the error location coefficients.  

1σ 2σ 3σ 4σ 5σ 6σ 7σ1S2S3S4S5S6s7S 8S

6s
7S

5S

3S2S
1S

 

Figure 5. Data movement between RCs in order to calculate 
different terms of the Discrepancy in the different RC 

4 CONCLUSION AND COMPARISON 
MorphoSys as a reconfigurable architecture provides a very 
flexible platform for implementing different DSP applications. 
This is perfectly demonstrated through the RS decoder 
implementation with different error correcting length. Being able 
to reconfigure each RC for the different parts of the wireless 
communication receiver will provide the best functionality of 
each RC for the whole application. TI DSPs have the same 
approach to perform GF multiplication. In comparison Morphosys 
takes advantage of the higher data parallelism obtained through 
the SIMD characteristics of it. DSP C6400 provides the hardware 
support for performing the Galois Field multiplies. In the absence 
of hardware to effectively perform Galois field math, previous 
DSP implementations made use of logarithms to perform 
multiplication. This has decreased performance to ¼ of the 
present one with hardware GF multiplication. Many different 
Reed-Solomon ASIC Architectures are proposed in the literature 
[12-13]. These blocks are mostly specified and optimized for the 
RS decoder. They can be considered as a single chip RS decoder. 
In comparison Morphosys can be viewed as the programmable 
architecture optimized for the whole receiver   Morphosys 
outperforms Asics, which have the smaller size. We have 
simulated the result on the Morphosys hardware simulator called 
Mulate. The result is given for the RS decoder of (255,239,16) 
using two different methods of GF multiplication. The decoding 
speed is 1.319Gbps and 2.534Gbps, respectively.  Fig 7 shows the 
bit rate of the decoder and its comparison with the different Asics 
and Also TI64x 
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Figure7. Bit rate comparison of two decoders implemented on  
Morphosys with the other  Asics and TIC64x 
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Figure 6. Different terms calculation of the error values 
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