
Low-power Data Memory Communication for
Application-Specific Embedded Processors�

Peter Petrov and Alex Orailoglu

Computer Science & Engineering Department
University of California, San Diego

(ppetrov,alex)@cs.ucsd.edu

ABSTRACT
We propose a novel customization methodology for power reduc-
tion on the communication link between an embedded processor
and its data memory. We target the address bus and show how by
utilizing application information about the memory references in
the data intensive program loops, a power efficient address com-
munication protocol can be established between the processor core
and the data memory. The data memory controller thus generates
the addresses for the various data streams with minimal run-time
information from the processor engine, achieving significant power
reductions on the address bus. An efficient reprogrammable hard-
ware support is presented for enabling the proposed methodology.
The experimental results demonstrate the efficacy of the approach
for a set of data intensive applications.

Categories and Subject Descriptors
B.3 [Hardware]: Memory structures; B.4 [Hardware]: Input/Output
and Data Communications; C.1 [Computer Systems Organiza-
tion]: Processor Architectures; C.3 [Computer Systems Organi-
zation]: Special-Purpose and Application-Based Systems

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
Significant advances in VLSI process technology have made the

utilization of system-on-a-chip design approaches highly attractive.
Cost-efficient products, easy design reuse, and flexible implemen-
tation constitute some of the many SOC advantages. Embedded
processor cores are being utilized widely in such systems in order
to achieve better time-to-market, lower design cost, and easily re-
programmable implementations. However, the increased silicon in-
tegration, together with the ever increasing clock frequencies, leads
to proportional increases in terms of power consumption.

At the same time, energy dissipation is becoming a prominent
characteristic for a large number of important applications, such as
hand-held and wireless devices. Less energy dissipation leads not

�This work is supported by NSF Grant 0082325.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

only to longer battery life, but also enables larger die sizes. Con-
sequently, techniques for minimizing system power consumption
are of paramount importance for achieving high product quality.
These techniques can be applied on various design abstraction lev-
els, from circuit level to system architecture.

In a typical DSP or data intensive embedded environment, the in-
teraction between the processor core and the on-chip/off-chip data
memory or cache can be significant. Typically, in such environ-
ments the local working set is stored in a fast local scratch-pad
memory, while a large off-chip data memory is used to bring the
data to be processed from the system’s environment. In the case of
VLIW or SIMD processor engines with multiple load/store units,
several data accesses are typically performed within a cycle. Con-
sequently, a significant amount of the system power is consumed in
the interaction between processor and data memory subsystem.

Hardware/software co-design techniques play a significant role
in building complex SOCs comprising processor cores and dedi-
cated ASIC modules. Processor cores are still the most viable so-
lution in implementing these complex SOCs if special care is taken
to obviate the fundamental disadvantages of reduced performance
and high power consumption stemming from their general-purpose
nature. Customizing the processor microarchitecture to particular
application-specific needs has been shown to be an efficient tech-
nique for boosting processor performance and significantly reduc-
ing its power consumption [1].

In this paper, we propose an application-specific customization
methodology for power reduction in the processor’s communica-
tion to its data memory. The communication between processor
and memory consists of the following operations. A processor
load/store unit generates an effective address. This address is sent
to the memory subsystem through the address bus along with cer-
tain control information. In the case of a store instruction, the data
that needs to be stored is sent along to the memory on the data
bus. If the transfer is a load, the memory subsystem reads in the
data being referenced by the address and returns it to the proces-
sor through the data bus. It is well known that transferring ad-
dresses and data on long interconnect busses consumes a significant
amount of power, due to the high capacitance of the lines [2].

We present a technique for minimizing the traffic on the address
bus to the data memory subsystem. Application-specific informa-
tion is statically extracted and dynamically transferred to the data
memory controller prior to the execution of a major loop. Conse-
quently, only an insignificant amount of information is transferred
from the processor core to the data memory controller instead of a
complete effective address, typically 32 bits long. The inherent re-
programmability of the proposed approach, extends its applicabil-
ity to practically all areas of data-intensive embedded applications.

219



2. RELATED WORK
Power optimization techniques at the circuit-level have been the

dominant approach in designing energy efficient systems so far [3,
4]. However, in recent years, architecture-level approaches have
attained popularity due to their ability to eliminate redundancies
on a higher, microarchitectural level, thus resulting in even larger
power optimizations [5].

The problem of minimizing the number of transitions on com-
munication busses within a microprocessor-based system has been
attacked recently by a number of research groups. The Bus-Invert
method has been proposed in [6]. In this approach, the bus con-
tent is inverted if this leads to a smaller Hamming distance com-
pared to the previous value on the bus. An additional bus signal
informs the receiver whether the bus content is inverted or not. The
approach is applicable to any communication bus, but its general-
ity prevents it from achieving significant improvements on busses
with highly correlated data. The T0 approach [7] introduces an
additional line to the instruction memory address bus in order to
exploit the typical sequentiality of the instruction addresses. When
this line is asserted, the memory controller computes the new ad-
dress by incrementing the previous one. In [8] this technique is
extended and the requirement for an additional redundant control
line eliminated. The low-power encoding proposed in [9] utilizes
self-organizing lists in order to achieve an optimal encoding for the
most frequently accessed addresses. By utilizing a rather complex
hardware implementation of self-organizing lists, the approach ex-
ploits the temporal and spatial locality of the addresses on both
instruction and data address busses.

3. MOTIVATION
The recent research efforts for reducing bus switching activity in

general-purpose processors [6, 8] have largely aimed at reducing
the traffic on the address bus to the instruction memory as the typi-
cal incrementality of the instruction reference stream, violated only
in the cases of control instructions, makes it highly amenable to
power optimizations. While the address bus to the instruction mem-
ory is important in terms of power consumption, the data memory
address bus plays a similar role in importance and contribution to
the total system power. Nonetheless, no significant results have
been achieved in minimizing the address traffic to the data mem-
ory subsystem, which in some cases, most notably for VLIW or
vector processors, can even exceed in amount the traffic to the in-
struction memory. The typically limited knowledge regarding the
application and its data memory reference patterns in general pur-
pose processor architectures may account for the dearth of research
efforts in this direction. Even in the case when some application
information can be gathered, such as in the case of a typical DSP or
data intensive application, where loop accesses through a number
of arrays in quite a regular fashion following constant strides pre-
dominate, the end result on the data memory address bus consists
of an intertwined, seemingly irregular mix, of these addresses.

It is the thesis of this paper that the utilization of application-
specific knowledge within both the memory controller and the pro-
cessor core can nonetheless result in quite efficient techniques for
minimizing the amount of information that needs to be transferred
from the processor core to the data memory subsystem. The re-
search challenge resides in identifying effective means of commu-
nicating memory requests, utilizing application knowledge.

In typical data intensive applications, such as DSP or numerical
analysis algorithms, the program execution is concentrated within
a small number of heavily executed loops. These application loops
frequently contain multiple nesting levels, reflecting the dimension

of the problem being solved. The data being processed resides in
large array structures and is commonly accessed using affine index
calculations [10]. In order to eliminate or minimize to a large extent
the amount of information that needs to be sent on the address bus
to the data memory, application knowledge about the strides of the
memory accesses as well as the execution order of these accesses
is required on the data memory side. Knowledge of address strides
for each load/store instruction and the relative order of execution
within the data memory controller can help autonomously generate
the next effective address with no need of an effective address sent
by the processor, simply by adding the corresponding stride and
processing the load/store request. Let’s consider, for example, the
following loop.

for i=1 to 100
for j=1 to 100
A[2i,j]=B[i,2j+5]+C[i+1,3j+1];

endfor
endfor

The references to B and C are loads from the data memory,
while the reference to A is a store. Nonetheless, all three refer-
ences need to send an effective address to the data memory in order
to perform their memory operation. Each of these three references
constitutes a series of regular accesses with a constant stride. In
the inner loop, for instance, the reference A[2i; j] generates a se-
quence of incremental effective addresses, while the references to
B[i; 2j + 5] and C[i + 1; 3j + 1] generate streams with strides 2
and 3, respectively. Executing the next iteration of the outer loop
seemingly introduces a discontinuity to this pattern; nonetheless, it
is easy to notice that fundamentally the regularity is not violated,
but needs to be examined a bit more subtly by taking into consid-
eration the two-level structure of the loop. The steady state loop
execution strides as well as the outer loop execution strides in any
case are fixed and their values can be easily computed during com-
pile time by analyzing the index expression; in neither case do the
multiplicative constants before either subscript effect the computa-
tion method, except for altering the constant value of the relevant
stride. Consequently, this stride regularity can be easily identified
and exploited by simply identifying the direction of the correspond-
ing loop branches. Autonomous generation of these addresses ne-
cessitates transmission to the data memory controller of informa-
tion regarding these strides and the point at which the outer loops
are executed. While the effective addresses of these three memory
accesses are intertwined on the address bus to the data memory, the
order of their appearence is fixed and regular throughout the loop
execution, ensuring their easy identification and communication.

Given the application knowledge about these references, i.e., their
execution order and address strides, an enhanced data memory con-
troller can utilize this additional information in order to generate
the needed addresses internally, obviating completely the processor
core responsibility to provide these addresses to the data memory
subsystem. The only limited amount of information that the proces-
sor needs to send is the type of memory request, and an indication
as to whether the innermost loop is in its steady state of execu-
tion or an outer loop is to be executed, so that the memory con-
troller can access which set of strides to use for computing the next
effective address. Therefore, by utilizing application information
within the data memory controller, an efficient address communi-
cation scheme can be established, such that the memory controller
is able to generate the appropriate effective addresses by itself by
utilizing statically obtained information about the load/store order
and their strides across the loop dimensions.

220



Processor
Core

Data
Memory

ld/st
unit

Customized Processor
Side Interface (CPSI)

Customized Data
Memory Interface (CDMI)

��
��
��
��

Address

Data

Figure 1: General Architecture

4. CUSTOMIZED COMMUNICATION
The proposed methodology essentially transfers application in-

formation regarding the load/store instructions to the data memory
controller, so that it can generate effective addresses by itself, thus
obviating the need for receiving these addresses from the processor
core. The general architecture of the proposed approach is depicted
in Figure 1. The programmable interface associated to the data
memory, the CDMI, is responsible for generating the addresses of
the load/store instructions executed within the application loop. In
the case of complete knowledge of the memory reference execution
order and their strides, the traffic on the address bus is completely
eliminated. The application information is provided to the CPSI
and CDMI, as shown in Figure 1, by software before starting the
loop execution.

If the CDMI is aware of the load/store execution order, no in-
formation whatsoever is needed from the processor to identify the
memory reference. Knowing the starting memory reference, the
CDMI can generate its effective address by adding its stride and
automatically updating its state to the next memory operation for
the application loop, thus obviating the need to send an address for
the next instance of that memory operation.

Attaining such implicit communication of the required data ad-
dresses necessitates knowledge of the appropriate strides and of the
initial values of the effective addresses for all the load/store instruc-
tions. These can be determined at compile time and either stored
a priori or sent to the CDMI before entering the loop.1 A table,
traversed sequentially, contains the current effective addresses for
the memory reference instructions, while the strides are stored in
similar tables. The number of entries corresponds to the total num-
ber of memory reference instructions that can be handled by the
proposed approach. If any load/stores remain uncovered, they can
be executed in their usual way by sending the complete address to
the data memory. Each time a load/store instruction is executed,
the CPSI sends the stride index and asserts a special additional
line denoted as NA for not an address, associated to the address
bus, which signals the CDMI that the data memory request received
does not contain an effective address. A fixed number of least sig-
nificant address bus lines hold the stride index, an index that points
to the appropriate stride array corresponding to the loop nesting
level. Subsequently, the CDMI utilizes the information about this
particular load/store and computes its effective address by simply
adding its current address and stride. The address computed thus is
used for accessing the data memory, while the CDMI stores it for
utilization in the next loop iteration.

For the proposed customization methodology, we target data in-

1In the case of variable loop boundaries, the strides need to be com-
puted dynamically before entering the loop nest and subsequently
sent to the CDMI.

tensive loops with load/store effective addresses computed as affine
linear functions of the loop indices. During compile-time, the strides
for the load/store intructions are computed for subsequent run-time
utilization within the CDMI. The compile analysis includes exami-
nation of the affine index expressions and identifying the strides for
all the loop dimensions. The next code fragment shows an example
of such an affine memory reference in its most general form.

for i1=k1 to n1, step s1
for i2=k2 to n2, step s2
for i3=k3 to n3, step s3

A[a1*i1+b1,a2*i2+b2,a3*i3+b3]
...

endfor
endfor

endfor

The loop has three levels, with indices i1, i2, and i3. The ef-
fective address EA of the reference from this code is computed
as EA = c1i1 + c2i2 + c3i3 + c4, where the coefficients cj de-
pend on the array index and loop parameters al, bl, sl, nl, and kl,
l 2 f1; 2; 3g. Given this general representation, it is evident that
the effective address changes with a fixed stride across the loop it-
erations. The stride can be statically computed in the case of fixed
loop boundaries, or dynamically by software before entering the
loop. Notably, the stride for the first iteration of the innermost
loop differs from that of subsequent loop iterations. We denote
the strides as L3 for the steady case, while L2 and L1 correspond
to the case of the first iteration of the i3 loop after incrementing i2
or i1, respectively.

L3 = c3s3
L2 = c2s2 + c3(k3 � n3)
L1 = c1s1 + c2(k2 � n2) + c3(k3 � n3)

Consequently, if the CDMI contains these stride values and is aware
of which load/store instruction is currently requesting/writing a data,
no address communication is needed from the processor. Since the
memory controller has no information regarding loop execution,
the processor needs to specify which stride is to be used for the
address calculation.

The expressions for the strides Lj do not have to be recomputed
during the loop iterations. Instead, the CDMI stores their values in
a small SRAM array and utilizes them dynamically. The processor
core, therefore, needs to send, through the CPSI, only a very short
index to specify which stride array is to be used. If the architecture
supports up to four levels of loop nesting, for example, then two
bits would suffice. Noteworthy is that since the stride for the inner-
most loop dimension is used repetitively, while the other strides are
used only in the beginning of the innermost loop, the number of bit
transitions is zero in the steady case, and a quite small number of
bit transitions on each start of loop nest i3, constituting practically
a zero overhead operation.

5. HARDWARE IMPLEMENTATION

5.1 Data memory side support
Figure 2 represents the architecture of the CDMI module. The

Load/Store Table (LST) is used to store the current addresses for
the memory reference instructions. An entry in the LST corre-
sponds to a load/store instruction and contains its current address.
The LST is addressed by the LST Index (LI) register. Initially, its
value is reset to 0, so that it refers to the first entry in the LST, where
the address of the first load/store instruction to be executed in the
loop is stored. The strides for the memory references are stored

221



Adder

Address

LST

LI

+1 LI

SA0 SA1

Enable

Stride index

NA

A[0]

Stride

To Memory

Figure 2: CDMI Architecture

in the Stride Arrays (SA). For simplicity, figure 2 shows a CDMI
architecture that supports only two strides (i.e., two loop nesting
levels). In practice, the number of stride arrays can be increased
by inserting additional stride arrays and controlling them with the
stride information received by the CPSI with no practical impact on
circuit hardware complexity or power consumption. After reading
in the current address from the LST, the stride value is added to it
and the resulting address is sent to the data memory for completing
the access, while at the same time the LST entry is updated with
the newly computed address. Subsequently, the LI is incremented
to point to the next entry in the LST, which corresponds to the next
load/store instruction to be executed by the application loop. When
the LI reaches the index of the last load/store for the loop, it needs
to reset its value so as to point to the first memory reference for the
next loop iteration. This is easily achieved by an additional bit asso-
ciated to the LST entries, which specifies whether the current entry
corresponds to the last memory reference instruction for the loop.
This simple policy of updating the LI register allows us to target all
the memory reference instructions within the most frequently exe-
cuted innermost loop with minimal hardware overhead. However,
if load/stores outside the innermost level are to be targeted as well,
then an additional modification to the LI register update logic is
needed. The load/stores from the outer loop iterations need there-
upon to be stored in the beginning of the LST. The starting indices
in the LST for the load/stores of the outer loop nests need to be
kept in separate registers for subsequent utilization. When the LI
index reaches the entry corresponding to the last reference of the
innermost loop, the LI register is updated to point to the beginning
of the corresponding loop nest level depending on the stride index
received from the CPSI. This is, of course, possible because the
stride index completely identifies the loop nest level.

The proposed hardware support is extremely efficient in terms of
area overhead and power consumption. The LST and SA tables are
very small SRAM arrays (or alternatively can be implemented as
small latch groups if deemed more power efficient) with depth of at
most 32. The number of their entries corresponds to the total num-
ber of load/store instructions within the loop that can be targeted
by the approach we propose; typically the number of static mem-
ory reference instructions within the application tight loops falls
well within the bound of 32.

5.2 Processor side support
The CPSI hardware implementation is even simpler. Its funda-

mental goal is to send to the CDMI block the stride index. Since
the stride index depends on whether any of the outer loop iterations
have moved forward, the CPSI needs to obtain this information dy-
namically from the loop defining instructions. In the case of no

special loop support in the instruction set, conditional branches are
used to form the loop. In this case, the CPSI needs to monitor the
direction of these branches to decide whether the stride index has
changed. The following simple code example illustrates the struc-
ture of a three level loop nest.

L1:
L2:
L3:

// Innermost loop code
branch L3 // B3
branch L2 // B2
branch L1 // B1

A taken B3 branch indicates an innermost loop in a steady state.
If the branch B2 is encountered and taken, then the L2 stride index
needs to be sent to the CDMI, while if B1 is taken, then the stride
in effect is L1. Consequently, the processor side interface needs
to detect these situations and act accordingly. The branches need
to be identified and their direction observed. This can be easily
implemented as three comparators (for supporting three level loop
nests) which compare the content of three registers containing the
branches’ PC to the PC of the currently executing branch instruc-
tion. Their content is initialized before entering the loop together
with setting up the CDMI module.2

Having a special zero-overhead loop instruction is a very com-
mon situation in almost every modern embedded processor. Typ-
ically, these instructions allocate a special counter register which
is initialized with the number of loop iterations and decremented
at each loop iteration. In this case, the CPSI logic can be imple-
mented in a straightforward fashion by associating also the stride
index value to the loop counter. Each time a loop counter is decre-
mented, the corresponding stride index is to be utilized.

The methodology that we propose does not have to target the
complete set of load/store instructions within a loop. In the case
of a normal load/store instruction, the Not an Address (NA) line
is deasserted and the complete effective address is sent to the data
memory instead. Therefore, the CPSI needs to be able to distin-
guish between load/stores that are targeted by our approach and
the rest. The most efficient way to perform this is to introduce
an additional bit to the opcode of the load/store instructions that
would specify whether this instruction is a special case being han-
dled through low-power data address communication. For the in-
structions covered by our scheme, no effective address needs to
be computed and no additional information, such as base register
identifier or immediate offset values, needs to be carried with that
opcode. This new opcode signals to the CPSI to assert the addi-
tional NA line on the address bus and to start the memory request
as soon as the load/store instruction is decoded.

6. UNPREDICTABLE EXECUTION ORDER
Many application loops from the DSP and numerical analysis

domain, such as FFT, FIR, and convolution, contain no control al-
tering instructions other than the loop support code, resulting in the
execution order of the load/store instructions being fixed through-
out for these types of loops. The low-power data memory com-
munication technique presented so far is directly applicable to such
loops. If, however, the application loop contains control altering
instructions, such as branches, then the CDMI needs additional in-
formation in order to identify the memory reference to be executed
subsequently. A simple example is shown below.
2Since the frequency of execution of each loop can be easily iden-
tified, it can be exploited to devise an alternative scheme by storing
the relevant frequencies of execution and counting up against them.

222



v1=A[i,j];
if (c) then
v2=B[i+1,j];

else
v2=B[i,j+1];

endif

In this code fragment, the load subsequent to A[i; j] might be
either B[i + 1; j] or B[i; j + 1], depending on the branch predi-
cate. Therefore, the branch direction determines the order in which
the memory references are executed. Consequently, the CDMI is
unable in this case to follow this order autonomously with no in-
formation from the CPSI. The CPSI needs to send information to
the CDMI regarding the identity of the load/store. The load/store
identification information can be simply an index that will be used
by the CDMI to access the tables with the application information.
Consequently, instead of allowing the CDMI to update its state to
the next load/store instruction by itself, this state can be explicitly
specified by the processor side. In terms of the hardware speci-
fied in figure 2, this corresponds to just sending the LI value to
the CDMI, instead of the interface updating this register by itself.
For applications that target loops with control altering instructions,
the CPSI needs to send the LI value for the load/store instructions,
resulting in an expansion of the information to be communicated.

The consequent predicated execution of load/store instructions
wreaks havoc with the necessary updating of the effective address
stored in the LST to ensure its correspondance to the particular loop
instance. The validity of the address information in the CDMI can
be guaranteed through a special logic that ensures that all memory
reference instructions handled by the CDMI are updated. Given the
fact that the CDMI table has very few entries, assigning a “dirty” bit
and sequentially updating the entries can be achieved by a simple
and power efficient hardware.3

6.1 Hardware support for loops with control
As described above, in the case of a loop with control altering

instructions, the CPSI needs to additionally transfer the index/name
of the load/store instruction to the CDMI. This index is directly
used by the CDMI to address the small LST table. Since the size of
the LST is in the order of 16 to 32 bits, an additional 4 to 5 bits from
the address bus need to be utilized. As described in the previous
subsection, the new load/store instruction opcode does not need
to carry information about its effective address. Therefore, the LI
value for each instruction can be easily accommodated within the
instruction opcode. Subsequently, when the instruction is decoded,
the CPSI will send the LI value together with the stride index.

While at first glance this might seem to impose a non-trivial over-
head compared to the case of the data-only loops, it delivers an in-
teresting degree of freedom regarding the placement of instructions
within the LST that can be exploited to obtain a highly power ef-
ficient encoding. Since the value of the LST index LI transmitted
to the data memory is of no importance, as long as this index is the
same for both CPSI and CDMI hence enabling the correct identifi-
cation amongst individual memory access instructions, an efficient
power encoding that utilizes the most frequent order of memory
reference instruction executions can be employed. Gray code is a
perfect candidate for such an encoding. In order to find the most

3As the CDMI needs to be able to update all the LST entries during
the loop execution, special consideration needs to be paid to loop
instances that can possibly execute in fewer cycles than the cycles
needed for the LST update logic to accomplish its task. This special
and very rare case can be easily identified at compile time through
shortest path identification applied to the control flow graph and
handled by reducing the number of load/stores in the LST.

frequent paths through the loop’s control-flow graph (CFG), the ap-
plication under consideration is profiled. After that a Gray code can
be utilized for the most frequently utilized load/store sequence. If
the control structure of the loop is due to checking for some bound-
ary/error cases throughout the application loop, then in practice the
traffic of LI to the CDMI will add only a single bus line transition
for each outer loop level iteration.

The CDMI architecture for this case is very similar to the one
shown in Figure 2 with the following new features. The index to
address the LST in this case needs to be able to use the LI value
sent by the processor side instead of the value of the LI register.
The LST entries are complemented with an additional “dirty” bit,
which specifies whether the entry contains the updated value of its
current effective address. When an entry is read, if its “dirty” bit
is clear, then the value of the entry is directly used to access the
data memory; otherwise, the stride is added to this address and the
newly computed address is used to complete the memory access.

A special hardware is needed for updating all the LST entries. It
consists of a 4 to 5 bit counter that generates sequential indices to
the LST, and hardware for updating the entries by adding the corre-
sponding stride and for resetting the “dirty” bit. The update process
is started at the beginning of the loop and all the “dirty” bits set at
the end of the loop. In order to allow this update logic to work si-
multaneously with the memory access requests, an additional read
line is needed from the memory structures (while the only write
line is used by the update logic). Given the extremely small size of
these tables (16 to 32 entries at maximum), the consequent impact
on power and hardware complexity is extremely small.

7. TIMING AND POWER IMPLICATIONS
As processor performance strongly depends on the speed of in-

teraction to the data memory, it is essential to ensure that the pro-
posed solution does not adversely effect memory access time. It
can be shown that no such adverse effect exists by noting that the
CDMI has 2 cycles to perform its operations due to the fact that the
effective address computation cycle, which was initially performed
in the processor core, is now shifted to the data memory controller.
Noteworthy is that adding the stride to the current address does not
constitute an additional operation and consequently does not dete-
riorate the net power savings from the eliminated address transfers.
Our approach simply performs this computation on the data mem-
ory side, disabling its execution in the processor core. Any code
whose sole purpose is the computation of the load/store addresses
can be eliminated from the application loop, furthermore.

In a typical pipelined embedded processor implementation, the
load/store instruction execution is split into two cycles. Initially the
effective address is computed and subsequently, a request is sent to
the data memory. In the case of a load/store instruction utilizing
the CPSI and CDMI blocks for low-power address transfers, the
request to the memory subsystem can be sent at the beginning of
the first stage, while the data is effectively returned at the end of
the subsequent pipeline stage. Consequently, the transactions to the
data memory are effectively pipelined and the address calculation
logic in the CDMI adds no delay to the memory access time.

8. METHODOLOGY UTILIZATION FLOW
The proposed methodology utilizes information regarding the

load/store instructions within the application loops and the way
they generate effective addresses. Consequently, the methodology
is based on: extensive compile/link time analysis for extracting this
information; a reprogrammable hardware support for runtime uti-
lization of the application information; and a way to transfer this
information to the processor and data memory hardware support.

223



The first step in the methodology is profiling the application and
identifying the major program loops. The load/store instructions
within these loops are identified and their index functions analyzed
and the strides extracted. In the case of a loop with control code, the
load/store identification indices are determined according to their
most expected execution order through the utilization of Gray en-
coding. Special code for initializing the LST and the Stride Arrays
within the CDMI and the comparator registers of CPSI in the case
of no special loop instruction support is inserted before the pro-
gram loops. At run-time, just prior to entering the loop, this code
prepares the hardware support for the customized data memory ad-
dress transfer. The size of this code is relatively small and is exe-
cuted only once before starting the application loop. Consequently,
its overhead, both in code size and execution cycles, is negligible.

An important characteristic of the proposed customization hard-
ware support is its inherent reprogrammability. Consequently, the
methodology we propose is applicable across a significant range
of applications and does not require spinning of new silicon in the
case of functionality changes or late specification modifications.

9. EXPERIMENTAL RESULTS
In our experimental studies we have measured the effectiveness

of the proposed approach by observing the reduction of the transi-
tions on the address bus to the data memory. We have utilized seven
benchmarks. The first five are important numerical and DSP ker-
nels: Matrix multiplication (mmul) of matrices with size 256x256;
successive over-relaxation (sor) [11] on a matrix with size 256x256;
extrapolated Jacobi-iterative method (ej) [12] on a 256x256 grid;
fast discrete cosine transform (fdct) kernel on a block of data with 8
samples; and the energy loop in fast fourier transform (efft) work-
ing on a block of 512 samples. The last two benchmarks are the
speech coding (adpcm enc) and decoding (adpcm dec) applications
[13], selected for their frequent utilization in many voice process-
ing embedded applications. The first four applications consist of
a single, data-only loop nest, while the efft, adpcm enc, and ad-
pcm dec utilize a loop with a control structure. Consequently, for
the mmul, sor, ej, and fdct, the basic CDMI and CPSI functionality
for data-only loops has been utilized. The only information sent on
the address bus lines to the CDMI consists of the stride index. In
the case of the adpcm and efft benchmarks, a 4 bit LST index has
been additionally provided to the CDMI, effectively utilizing the
hardware support for loops with control structure.

In order to measure the number of transitions on the address bus
to the data memory, we instrumented the application source code
with logic that observes the address stream to the data memory and
accumulates the Hamming distance between the consecutive ad-
dresses. The same instrumentation code was utilized to capture the
number of the bus line transitions in the case of utilizing the pro-
posed methodology. The instrumented application was compiled
and executed on a PC workstation with Linux OS. The results ob-
tained are reported in Figure 3.

The second column (#TR) in Figure 3 reports the total number
of transitions in millions on the address bus to the data memory in
the general case. It is notable that mmul generates, due to its higher
execution complexity, a significantly larger number of transitions
compared to the rest of the benchmarks. The next column (#TR
Opt) of the table represents the minimized number of transitions
after utilizing the methodology we propose. The fourth column
(#Ref) shows the total number of memory reference instructions
residing in the loop nest and targeted by the proposed methodol-
ogy. Finally, the last column shows the reduction in percentage of
the total number of transitions on the address bus. For the first four
benchmarks containing data-only loops, the reductions consistently

#TR*106 #TR Opt #Ref. Reduction(%)

mmul 203.06 261,633 3 99.88
sor 1.56 1,020 5 99.94
ej 46.91 15,360 11 99.97

fdct 0.041 256 6 99.37
efft 0.01 2,039 8 78.67

adpcm enc 3.37 738,868 4 78.05
adpcm dec 3.26 589,932 4 81.88

Figure 3: Data memory address bus transitions

exceed 99%; this extremely high level of reductions has been antic-
ipated, given the fact that only the two bit stride indices are sent and
changed only on the outer loop iterations. Since the efft and adpcm
benchmarks contain a loop with control altering instructions, addi-
tional traffic of the LST indices had to be introduced. Three out
of all four references in adpcm were control independent for both
the encoder and the decoder, while for efft three out of all eight
references were subject to a predicate resolution. A straightfor-
ward Gray code encoding was utilized for these benchmarks and
was subsequently considered in measuring the optimized number
of bus line transitions.

10. CONCLUSION
In this paper we have presented a power optimization methodol-

ogy that targets the address communication between an embedded
processor core and its data memory. The number of transitions
is greatly reduced by utilizing application-specific information re-
garding the order and address strides of the memory reference in-
structions within the major application loops. We have shown how
by judiciously utilizing this information, the data memory con-
troller can autonomously generate the effective address for most
of the data references, thus obviating the need for address commu-
nication. The conducted experimental results confirm the expected
significant reductions in terms of total number of power consuming
transitions on the data memory address bus. The hardware microar-
chitecture is inherently reprogrammable, thus enabling the utiliza-
tion of the proposed methodology for a wide range of applications.

11. REFERENCES
[1] P. Petrov and A. Orailoglu, “Performance and power effectiveness in embedded

processors - Customizable Partitioned Caches”, IEEE TCAD, vol. 20, n. 11,
pp. 1309–1318, November 2001.

[2] S. Ramprasad and N. R. Shanbhag, “A coding framework for low-power ad-
dress and data busses”, IEEE TVLSI, vol. 7, pp. 212–221, June 1999.

[3] M. B. Kamble and K. Ghose, “Analytical energy dissipation models for low-
power caches”, in ISLPED, pp. 143–148, August 1997.

[4] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor caches
using subbanking, multiple line buffers and bit-line segmentation”, in ISLPED,
pp. 70–75, August 1999.

[5] N. Bellas, I. Hajj and C. Polychronopoulos, “Using dynamic cache man-
agement techniques to reduce energy in a high-performance processor”, in
ISLPED, pp. 64–69, August 1999.

[6] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O”, IEEE
TVLSI, vol. 3, pp. 49–58, March 1995.

[7] L. Benini et al., “Asymptotic zero-transition activity encoding for address
busses in low-power microprocessor-based systems”, in 7th GLSVLSI, pp. 77–
82, March 1997.

[8] Y. Aghaghiri, F. Fallah and M. Pedram, “Irredundant address bus encoding for
low-power”, in ISLPED, pp. 182–187, August 2001.

[9] M. Mamidipaka, D. Hirschberg and N. Dutt, “Low power address encoding
using self-organizing lists”, in ISLPED, pp. 188–193, August 2001.

[10] M. S. Lam, E. E. Rothberg and M. E. Wolf, “The Cache Performance and Op-
timizations of Blocked Algorithms”, in 4th ASPLOS, pp. 63–74, April 1991.

[11] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm”, in PLDI,
pp. 30–44, June 1991.

[12] S. Nakamura, Applied Numerical Methods with Software, Prentice-Hall, Engle-
wood Cliffs, N.J., 1991.

[13] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems”, in
30th MICRO, pp. 330–335, December 1997.

224


