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ABSTRACT
High-performance processors use a large set–associative L1
data cache with multiple ports. As clock speeds and size in-
crease such a cache consumes a significant percentage of the
total processor energy. This paper proposes a method of sav-
ing energy by reducing the number of data cache accesses.
It does so by modifying the Load/Store Queue design to
allow ”caching” of previously accessed data values on both
loads and stores after the corresponding memory access in-
struction has been committed. It is shown that a 32-entry
modified LSQ design allows an average of 38.5% of the loads
in the SpecINT95 benchmarks and 18.9% in the SpecFP95
benchmarks to get their data from the LSQ. The reduction
in the number of L1 cache accesses results in up to a 40%
reduction in the L1 data cache energy consumption and in
an up to a 16% improvement in the energy–delay product
while requiring almost no additional hardware or complex
control logic.

Categories and Subject Descriptors
C.1.1 [Processor Architecture]: Load/Store Queue, Cache

General Terms
Design, Performance

Keywords
low power, low energy, memory, cache, LSQ, load queue,
store queue, low latency

1. INTRODUCTION
The data cache energy consumption of modern wide issue

out–of–order processors is growing due to increasing clock
frequencies, support for higher degrees of associativity and
an increased number of read/write ports. L1 data cache en-
ergy consumption can amount to 15% of the total processor
energy consumption. Thus it is important to minimize it.
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Modern processor caches also have an increased load to use
latency. For example Alpha 21264 [8] has 3 and 4 cycle load
to use latency for integer and floating point loads, respec-
tively. The latencies are 2 and 6 cycles for Intel Pentium4
[6]. High load to use latencies increase program execution
time and the energy–delay product. Aggressive out–of–order
processor designs can mask some of the L1 latency, but not
all of it.
A decrease in the L1 data cache energy consumption and

the energy–delay product can be achieved by reducing the
number of L1 data cache accesses and by reducing the effec-
tive cache access latency. This paper proposes a technique to
reduce the data cache energy consumption and to decrease
the load to use latency. The technique uses resources already
present in the processor, adding very little extra hardware.
The size of the LSQ has grown significantly in modern pro-

cessors due to the need to better exploit instruction level
parallelism. However, the average LSQ occupancy is not
very high. This leads to the availability of the storage space
in the unoccupied LSQ entries. The technique proposed in
this paper exploits this temporarily unused storage space
in the LSQ to store data values. This allows load instruc-
tions to “hit” in this storage space, thus avoiding a cache
access. The energy dissipated in a LSQ access is much lower
than that required to access the cache leading to significant
energy savings. Actually, only a part of the LSQ access
energy is newly spent, the rest is the same as in current de-
signs. The new technique also does not require additional
data storage or significantly change the cache access data-
path. This avoids increasing the complexity of the already
complex memory system of a CPU.
A commonly implemented non–speculative data cache ac-

cess avoidance and latency reduction technique is store–to–
load forwarding. The technique exploits store to load lo-
cality in programs. Store instructions waiting in the LSQ
have their store data placed in the storage area of the queue
when it becomes ready. All subsequent load instructions
check their source address against the destination address
of all store instructions present in the queue to maintain
correct memory access ordering. If a load address is in-
cluded in the address range that a store instruction covers,
the corresponding data from the queue is used by the load
instruction without performing a cache access. The queue
access is faster than a cache access and the load instruction
completes faster.
An LSQ entry is released when a corresponding load or

store instruction retires. The design proposed here “caches”
load/store data in the LSQ entries after the corresponding
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instruction retires. Hits on such data will decrease the num-
ber of load instructions that need to access the data cache
and reduce the average load latency. These “cached” LSQ
entries are a temporary storage and can be freed if needed
for new load/stores. Overall, there can be four types of
retained data in the LSQ that can potentially be reused:

1. in–progress store instructions
2. retired store instructions
3. retired load instructions
4. in–progress load instruction.

The first type is already reused in existing systems, e.g.
store–to–load forwarding. The last type is not explored in
this paper, it is part of the ongoing work. This paper con-
centrates on reusing the data of retired instructions.
The main contributions of the technique proposed in this

paper are:
• it allows data for load instructions to be stored in the
LSQ entries

• it utilizes unused LSQ entries for holding previously
accessed data

• it allows the LSQ to be used as a cache for data ac-
cesses by the CPU

• it shows that this approach leads to significant energy
savings

The paper also shows that a significant reduction in execu-
tion time can be achieved due to reduced latency of the LSQ
cache access as compared to the L1 data cache access. This
speedup is due to both reduced load-to-use latency and re-
duction in the number of mis–speculated instructions. The
reduced execution time leads to further improvement in the
energy–delay product.
All this is achieved by better exploiting data locality. By

allowing more data to be kept and reused in the LSQ, cache
accesses are avoided and load instructions complete faster.
Avoiding cache accesses reduces the energy consumption of
the data cache. Completing load instructions faster speeds
up program execution and reduces the energy–delay prod-
uct. The approach has only minimal impact on system com-
plexity since it largely uses resources already present in the
processor.

1.1 Related Work
Techniques for reducing the cache energy consumption

have been thoroughly researched in the literature. Various,
very diverse techniques have been proposed, ranging from
pure hardware solutions, pure software or pure compiler–
based approaches, or mixed approaches. The approaches
mentioned here are the ones most closely related to the ideas
presented in this paper.
A filter cache [9] is a small and fast L0 cache. It has a

lower energy consumption and latency for hits that the L1
cache. Due to its small size the filter cache has a high miss
rate. Using a filter cache leads to an increase in program
execution time due to the increased load latency in the case
of a filter cache miss, but the overall energy consumption is
decreased.
The concept of load redundancy is presented in [2]. It is

shown that a significant number of load instructions access
the same data in a short time interval. [14] shows an energy
efficient way of removing load redundancy. It does so by
adding an extra pipeline stage, extra storage and control
logic.
A way–prediction scheme [7] uses a predictor with an en-

try for each set in a set–associative cache. Only the cache
way predicted by the predictor is accessed, thus saving en-
ergy. In case of an incorrect prediction the access is replayed,
accessing all the cache ways in parallel and resulting in addi-
tional energy consumption. The technique presented in [12]
determines the precise cache way where the data resides be-
fore a data cache access, avoiding mis–prediction penalties
in energy and time.
Way prediction for instruction caches was described in [8]

and [13], but these mechanisms are not as applicable to D-
caches.
A technique for reducing the load to use latency, and thus

implicitly improving the energy–delay product, is presented
in [1]. A pipeline organization is proposed that allows load
instructions to complete prior to reaching the execute stage
of the pipeline, allowing for an important speedup.
A read–after–read memory dependence prediction is pre-

sented in [11]. By converting series of load–use–load–use
chains to a single load–use–use chain memory accesses can
be eliminated to increase the program execution speed.
The use of the LSQ to squash silent stores is explored in

[10]. Energy savings can be obtained by avoiding to access
memory for silent store instructions. But store instructions
are less frequent than load instructions, hence the potential
for improvement is smaller.
This paper differs from previous work by trying to achieve

data cache energy savings and improvements of the energy–
delay product by doing only small modifications of the pro-
cessor pipeline, adding little extra hardware and complexity
and by making better use of temporarily unused storage
space in the LSQ.

2. THE CACHED LSQ
The LSQ design proposed in this paper and its differences

from previously proposed LSQ designs are briefly described
in this section. A more detailed description of an LSQ design
can be found in [5].
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Figure 1: Load/Store Queue and its data paths

Figure 1 shows a Load/Store Queue used in the AMD K7
[5] and its connection to the rest of the system assuming
a dual–ported cache. The LSQ inputs are Load/Store ad-
dresses and data for store instructions. The LSQ outputs are
addresses and store data for the data cache. It is also con-
nected to the result busses in order to implement store–to–
load forwarding. The LSQ organization with a single tagged
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queue for both loads and stores (called the “base LSQ” from
now on) will be used to present the ideas proposed in this
paper.

StatusData

Index
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Cached
entry
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Address

Figure 2: Cached Load/Store Queue

Figure 2 shows the details of the LSQ organization. The
L/S flag identifies the instruction as being a load or a store.
The “address” contains a memory address to access, “data”
contains the data to store for store instructions, and “status”
contains the execution state of the instruction (in progress,
not issued, etc.).
An LSQ entry is allocated when a load or store instruction

is issued. At some point the memory address computation
completes and the address is entered into the “address” part
of the LSQ entry. The addresses are stored in a CAM and
are searched to detect load/store dependencies. The data
part of the entry is maintained in a RAM. An entire LSQ
entry is released when the corresponding instruction retires.
The LSQ design proposed in this paper introduces a new

state for the LSQ entries. This state, called “cached” allows
an entry for a completed instruction to be retained in the
LSQ together with its data. Using the existing address tag
search in the LSQ, a ”cached” entry for the same address
can be detected with no additional time or energy overhead.
Once detected, the data in such an entry can be forwarded
to subsequent loads using the same mechanism as existing
store–to–load forwarding. The new design proposed in this
paper will be called a Cached Load/Store Queue (CLSQ).
The base LSQ does not store load data in the entry. The

CLSQ design changes that and stores the load data in the
“data” part of a corresponding entry. This is accomplished
by writing data into the LSQ as it is moved from the cache
to the CPU over one of the result busses. As a result, both
loads and stores now have data in their LSQ entries. This
allows another type of forwarding: from load instructions
to subsequent loads. The CLSQ design thus allows load
instructions to get their data form either load or store in-
structions that have retired but with entries that are cached
in the LSQ.
A load in the base LSQ does not use the “data” field. The

register file reads the requested data directly from a result
bus. The CLSQ design captures the load data and stores it
in the CLSQ from the result bus at the same time as the
register file. This is done utilizing the base LSQ input ports
from a result bus used by store instructions. The LSQ port
connection to a result bus is unused in this cycle. Thus no
data path changes are required, only the control logic of the
LSQ needs to be changed.
The CLSQ keeps entries after the corresponding instruc-

tion has retired and until the LSQ space is needed for new

instructions. In order to distinguish the LSQ entries for re-
tired instructions from other entries, the “status” field in the
LSQ is augmented with a new, “cached” state. Additional
control logic keeps track of the entries in “cached” state and
allows them to be released when LSQ space is needed.
The design used in this paper is a circular FIFO that

contains an index of the “cached” entry and a valid bit.
When a load or store instruction is put in “cached” state
their LSQ index is pushed in the “cached” entry FIFO and
marked as valid there. When a new instruction arrives in
the LSQ and no entries are free, the oldest entry in “cached”
state (as pointed to by the FIFO head) is used to store the
new instruction. The entry is removed from the FIFO at
the same time. Notice that the FIFO is only accessed when
cached entries are added/removed from the LSQ. Thus its
energy overhead is negligible.
On a store instruction, all entries in the “cached” state

with an address matching the store are invalidated. This
prevents multiple entries with the same address but possi-
bly different data from being in the cached LSQ. No corre-
sponding invalidation of “cached” entries is needed on load
instructions. An additional coherence problem exists with
respect to the L1 cache. An entry in the CLSQ may become
”stale” with respect to the rest of the memory hierarchy.
For instance, this would happen if a coherence request in-
validated the data in L1. A simple approach for dealing with
this problem is to invalidate all cached entries any time a
coherence action occurs in the L1. The inclusion principle
may need to be extended to the CLSQ.

3. EXPERIMENTAL SETUP
The CLSQ energy savings were evaluated by implement-

ing the proposed changes in the Wattch-1.02 [3] simulator.
Derived from SimpleScalar [4], Wattch provides detailed en-
ergy consumption figures for each major element of an out–
of–order processor. The Wattch energy consumption model
used in the experiments takes into account leakage energy.
Of the architectures supported by Wattch, the 64–bit Al-

pha architecture was modeled due to the availability of high
quality compilers for this platform. The SPEC95 benchmark
suite was used, the benchmarks were compiled with the -O4
flag using the Compaq compiler targeted for the Alpha 21264
processor. The benchmarks were executed to completion us-
ing the training input sets. The CMOS process parameters
for the simulated architecture were a 1.5GHz clock and a
.10µm feature size.
The processor modeled uses a memory and cache orga-

nization based on the Alpha 21264 [8]: 64KB dual ported
data and instruction L1 caches with 64 byte lines and 3 cy-
cles latency, 512KB 2-way set associative, 12 cycle unified
L2 cache, and 80 cycle main memory. The reorder buffer
size is 64. The machine is 4–issue, it has 4 integer units,
4 floating point units and one multiplication/division unit.
These parameters are kept constant for all the experiments,
only the size of the LSQ is varied.
The Alpha “Universal NOP” is encoded as a load hav-

ing as destination the register hardwired to zero. The Sim-
pleScalar/Wattch simulator does not recognize this instruc-
tion as a NOP, treating it as a load. This has an effect of
increasing cache traffic from 2 to 33% for SpecINT bench-
marks. SimpleScalar also contains an error in dealing with
the number of cache read/write ports: it is possible to have
twice as many cache accesses in a cycle than the number of
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cache ports. These issues were corrected in the simulator
used for this paper.

4. EXPERIMENTAL RESULTS
The CLSQ allows for a reduction in the data cache en-

ergy consumption by avoiding cache accesses. The number
of cache accesses that can be eliminated is directly depen-
dent on the number of entries that are available to be put in
“cached” state. The CLSQ can have entries in the “cached”
state only when it is not full. Figure 3 presents the percent-
age of time when the LSQ was full for a system using the
base LSQ. In general, for the integer benchmarks the LSQ
is less full than for the floating point benchmarks. It can
be observed that even a modest 8–entry LSQ is full on av-
erage only 46% of the time for the integer benchmarks, and
81% of the time for the floating point benchmarks. Increas-
ing the LSQ size dramatically decreases the amount of time
the LSQ is full, a 32–entry LSQ is only full 6% and 25%
of the time for the integer and floating point benchmarks,
respectively. A 64–entry LSQ is almost never full because
the configuration used has a 64–entry RUU.
The above results show the availability of a significant

number of unused entries in the base LSQ. Those unused
entries can be put in the “cached” state, allowing for po-
tential hits in the CLSQ, thus avoiding data cache accesses
that are more expensive in terms of both time and energy
consumption.
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Figure 3: Percentage of time when the baseline LSQ
was full

Figure 4 shows the percentage of the total executed load
instructions that hit only on “cached” entries in the CLSQ.
It does not include LSQ hits due to store–to–load forward-
ing. The percentage for integer benchmarks, ranging on
average from 21.5% for an 8–entry LSQ to 45.5% for a 64–
entry LSQ, is higher than the percentage for the floating
point benchmarks that ranges from 4.38% to 27%. The sig-
nificant number of hits in the CLSQ shows that the proposed
design is an effective mean of avoiding cache accesses and
reducing the data cache energy consumption.
It is interesting to compare the number of hits in the

CLSQ with the hits in the base LSQ due to store–to–load
forwarding. Figure 5 shows the percentage of load instruc-
tions that hit in the base LSQ due to store–to–load for-
warding. It can be observed that the percentage of load
instructions that hit in CLSQ is significantly higher than
the percentage of load instructions that get store–to–load
forwarding. This can be explained by the increased number
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Figure 4: Percentage load instructions that hit in
the CLSQ

of entries that can be hit on in the CLSQ, and by a longer
lifetime in the LSQ of the entries in “cached” state. An
example of a case where store–to–load forwarding does not
work as well as it could is passing procedure parameters on
the stack. Writing parameters to the stack is likely to be
a cache hit, so the write operation can complete quickly. If
enough instructions are executed between writing the proce-
dure parameters in the caller and reading them in the callee,
the write instruction has time to complete and be retired, so
store–to–load forwarding cannot take place. For space rea-
sons the LSQ hits due to store–to–load forwarding for the
CLSQ are not shown here, but the results are within 1% of
the ones for the base LSQ.
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Figure 5: Percentage load instructions that hit in
the base LSQ (i.e. store–to–load forwarding)

One of the main ideas implemented by the CLSQ is allow-
ing hits on the data read by load instructions. Figure 6 can
be used to evaluate the effect of reusing data from retired
load instructions. The figure shows the percentage of load
instructions that hit in the CLSQ on “cached” entries that
have been generated by retired load instructions, the rest
of the hits are generated by retired store instructions. The
percentage is over 50% in most cases. This result justifies
adding the capability to hit on data from retired load in-
structions to the CLSQ. All the CLSQ hits, on data from
either retired load or store instructions are new, they are not
the same as the LSQ hits due to store–to–load forwarding.
An important effect of load instructions hitting in the

CLSQ is that the number of L1 cache accesses is reduced, as
shown in Figure 7. For the integer benchmarks the reduc-
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Figure 6: Percentage load instructions that hit in
the CLSQ on data from previous load instructions

tion varies on average from 17.25% to 44.30%, and for the
floating point benchmarks from 3.26% to 20.53%.
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Figure 7: Percentage reduction in the number of
data L1 cache accesses when using a CLSQ

Another cause for the reduction in the number of loads
that access the data cache is the reduction in the num-
ber of miss–speculated loads. Load instructions complete
faster when hitting in the CLSQ. Branches that depend on
those loads are therefore resolved faster, allowing a decrease
in the number of speculative load instructions that are is-
sued, hence reducing the number of load instructions that
are miss–speculated. Figure 8 shows the reduction in the to-
tal number of instructions that are issued in a system using
CLSQ as compared to a system using base LSQ. This re-
duction in the number of miss-speculated load instructions
is another contributing factor to the reduction of the data
cache energy consumption. For the floating point bench-
marks the reduction is under 0.6%, and it is not shown in
the graph.
The CLSQ allows for avoiding a significant number L1

cache accesses both directly, by hitting in the CLSQ entries,
and indirectly by allowing for a decrease in the number of
miss-speculated load instructions. The direct consequence of
avoiding a large number of L1 cache accesses is the reduction
in energy spent on cache access during the execution of a
program. The energy savings for the L1 data cache are
shown in Figure 9. The energy savings vary between 5% and
45%. The integer benchmarks show higher energy savings
than the floating point ones. This directly correlates with
the fact that the integer benchmarks have a higher hit rate
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Figure 8: Percentage reduction in the number of
load instructions issued with a CLSQ

in the CLSQ.
The above results show that the CLSQ, a design that is

centered on the idea of better using existing CPU resources
has a significant impact on the data cache energy consump-
tion. The influence of the CLSQ on the total processor en-
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Figure 9: Percentage dcache energy consumption
reduction with a CLSQ

ergy consumption is shown in Figure 10. The total processor
energy consumption savings vary between 1% and 8%. The
main factor contributing to the decrease of the energy con-
sumption for the whole processor is the reduction of energy
consumption by the data cache.
The load instructions that hit in the LSQ complete in 1

cycle, faster than instructions that have to access the cache.
The CLSQ thus allows for an increase in execution speed.
Hence the CLSQ has a positive impact on both factors of
the energy–delay product: it reduces the energy consump-
tion, and it increases the execution speed. Figure 11 shows
the improvement of the energy–delay product when using a
CLSQ. For the integer benchmarks the energy–delay prod-
uct improvement ranges on average from 5.79% to 15.75%
for the integer benchmarks and from 0.83% to 3.44% for the
floating point ones.

5. CONCLUSION
This paper presents a novel technique for reducing the

data cache energy consumption and the energy–delay prod-
uct. The technique is applied in the design of CLSQ, a LSQ
implementation that allows data from Load/Store instruc-
tions to be retained in the deallocated LSQ entries after the
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Figure 10: Percentage processor energy consump-
tion reduction with a CLSQ
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Figure 11: Percentage energy–delay product im-
provement when using a CLSQ

corresponding instructions have been retired. The paper
shows that the number of load instructions that hit in the
CLSQ is significant. Hitting in the CLSQ avoids a cache ac-
cess, is faster and consumes less energy than a cache access,
hence it reduces the total energy spent for a load instruction
and it improves the energy–delay product.
The proposed modifications to the LSQ are small and do

not have a negative impact on performance. The design
makes better use of resources already existent in a mod-
ern CPU. The expected increase in cache latency for future
processor will increase the speed–up obtained by using the
CLSQ. The ideas proposed in this paper can be applied to
other types of Load/Store Unit organization: units that have
separate queues for loads and stores, and units that store full
cache lines in each entry.
Future extensions of this work will include studying the

impact on data cache energy consumption of allowing hits
in the LSQ on pending load instructions and the effect of
squashing silent stores that can be detected at the LSQ level.
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