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Abstract 
 

    Embedded processors like Intel’s XScale use dynamic 
branch prediction to improve performance. Due to the 
presence of context switches, the accuracy of these 
predictors is reduced because they end up storing 
prediction histories for several processes. This paper 
shows that the loss in accuracy can be significant and 
depends on predictor type and size. Several new schemes 
are proposed to save and restore the predictor state on 
context switches in order to improve prediction 
accuracy.  The schemes differ in the amount of 
information they save and vary in their accuracy 
improvement.  It is shown that even  for a small 128 entry 
skew predictor, 2 - 6%  improvement in prediction rate 
can be achieved (for an average context interval of 100K 
instructions) for different embedded applications while 
saving and restoring a minimal amount of state 
information (less than 32bits) on a context switch. 
 
 
1. Introduction 
 
    Modern embedded processors use pipelining to exploit 
parallelism and improve performance. Conditional 
branches in the instruction stream degrade performance 
by causing pipeline flushes. Branch prediction 
mechanisms can overcome this limitation by predicting 
the outcome of the branch before its condition is 
resolved. As a result, instruction fetch is not interrupted 
as often and the window of instructions over which ILP 
can be exposed increases. In fact, accurate branch 
predictors can eliminate over 90% [13] of these pipeline 
stalls and are thus critical to realizing the performance 
potential of a processor. Improving branch prediction 
accuracy is important because the new generation of 
embedded processors have deeper pipelines, which result 
in larger misprediction penalties. In the XScale [8] 
processor which has a 7 stage pipeline, the penalty for 
each misprediction is as high as 4 cycles. 
    Most processors use dynamic branch prediction 
[5,6,12,13,15] to predict branch directions. Dynamic 

predictors record and utilize information from previous 
runs of a static branch instruction to predict its outcome 
in the future. This requires additional hardware to store 
the branch history. These predictors dynamically adjust 
their prediction to match the changing behavior of a 
branch instruction as the program executes.  
    One aspect of branch prediction that has largely been 
ignored is the effect of context switches. In typical 
systems, several processes are in the active queue at any 
given time and they share the branch predictor structure. 
Each process runs for its allotted time slice and then 
yields the processor to allow another waiting process to 
execute. Unless steps are taken to change the state of the 
predictor structure, it will contain stale information from 
the run of the previous process when the new process 
commences execution. Since different processes 
generally have completely different branch behaviors, 
reusing the stale information will increase the 
misprediction rate. It is desirable to overcome this 
limitation. This research explores the effects of context 
switches on dynamic branch prediction schemes, in the 
context of embedded processors which have stringent 
hardware resource constraints. We find that context 
switches cause substantial decrease in prediction rate – an 
average of 4% for the skew predictor for instance. 
Having established that context switches degrade 
prediction accuracy, we then propose several methods to 
alleviate this performance loss for the skew scheme, at 
different costs to the architect. We choose the skew 
predictor because it provides the best performance for a 
limited hardware budget, but the proposed schemes work 
for other dynamic predictors too. 
    This paper is organized as follows: Section 2 presents 
previous work in this area. Section 3 illustrates the effect 
of context switches on these dynamic branch predictors. 
Section 4 presents schemes to improve branch predictor 
performance in the presence of context switches. Section 
5 reports the simulation results and our analysis for the 
proposed schemes. Section 6 provides some concluding 
remarks. 
 
2. Related Work 



    Several papers on branch prediction acknowledge the 
effects of context switching on branch prediction 
accuracy. 
    Yeh and Patt [6] examined the effect of context 
switches on two-level branch prediction schemes. They 
found that the average accuracy degradations for the 
PAp, PAg and GAg schemes are less than one percent for 
a context switch interval of 500K instructions. However 
in their experiments they did not change the pattern 
history table on a context switch, which explains the 
exceptionally small decrease in prediction accuracy for 
the large predictor structures used. In an actual multi-
programming environment, the pattern history tables for 
different processes will differ and if the PHT is kept 
unchanged, prediction accuracy will suffer. 
    Gloy, et al [7] studied dynamic branch prediction 
schemes on system workloads. They found that including 
kernel level branches with user level branches in 
experiments significantly affected branch prediction 
accuracies, increasing aliasing and thus decreasing 
prediction accuracy.  They emphasized the need to 
consider the whole system rather than just user level code 
when evaluating branch prediction schemes. This 
motivated us to study the impact of context switches on 
the performance of dynamic prediction schemes. 
    More recently, Michele Co. and K. Skadron [1] 
claimed that context switching has negligible effect on 
branch predictor performance. They measured the context 
switch interval based on the default time slice value for 
Windows NT (25 ms), and it turned out to be around 
50M instructions. Our experiments calculate this interval 
from context switching information obtained from 
several multi-programmed systems with varying 
workloads. The interval we obtain is much smaller than 
theirs and agrees with the findings of previous studies [2, 
3, 4, 10] that consider the effect of context switching on 
branch prediction. 
    A.S. Dhodapkar and James E. Smith [3] presented the 
case for saving predictor information on a context switch. 
They proposed (for a gshare predictor) saving the most 
significant bits of all the counters in the branch predictor 
tables on a context switch. They also proposed setting the 
predictor counters to weakly taken on a context switch, as 
an alternative. This work is the only one that we know of 
which proposes mechanisms to improve predictor 
accuracy in the presence of context switches. They 
rightly identify the need to reduce the ‘ learning time’  of 
the predictor after a context switch by restoring 
previously saved prediction values into the predictor. 
This paper extends this study and proposes several other 
mechanisms that will improve performance. 
 
3. Effect of Context Switches 
 
    Context switches can occur during program execution 

for several reasons such as I/O requests, system calls, 
page faults, expiration of time slice etc. The frequency of 
these context switches depends on factors like the 
number of applications active on a system, the types of 
these applications, the operating system used and the 
scheduling scheme. We performed experiments to 
determine context switch intervals on several different 
systems, with varying workloads and running different 
operating systems such as UNIX, Linux and Windows 
2K. For UNIX and Linux we used the vmstat utility while 
for Windows we used the ntimer utility, which is part of 
the Windows 2000 Resource Kit. Our results indicate a 
context switch frequency varying from 100/sec to 
8000/sec and a context switch interval ranging from 75K 
– 1000K instructions. For instance, one of the machines 
we tested was a SUN UltraSparc-II workstation running 
SunOS 5.8 at a maximum clock speed of 400 MHz. The 
context switch frequency on it varied from 400/sec to 
4500/sec, with a changing workload. If it is assumed that 
one instruction is executed every cycle, we get a context 
switch interval of 90K instructions for the higher end. In 
another experiment, we tested a 996 MHz Intel PIII 
machine running Windows 2000 and found that the 
context switch frequency varied from about 1000/sec to 
8000/sec which gives a context switch interval of around 
125K instructions for the higher end, assuming an IPC of 
1. These numbers are in line with the results obtained in 
[3] as well as other studies done previously that analyze 
branch predictor performance in the presence of context 
switches [2, 4, 10].  
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Figure 1. Predictor accuracy in the presence of 
context switches (128 entries, 100K CS interval) 
 
    Figure 1 shows the average performance degradation 
for several commonly used dynamic branch prediction 
schemes in the presence of context switches, for around 
20 benchmarks from the MiBench [11] suite. “no CS”  
represents the ideal case when no context switches occur. 
We do not modify the branch predictor tables on a 
context switch, allowing the prediction information of 



different processes to overlap. Due to the destructive 
aliasing from overlapping processes, performance 
deteriorates in all cases. We simulate this in the “CS” 
case by filling the predictor tables with spurious values 
(inverting all the bits in some cases and inserting random 
values in others) at the point when a context switch is 
scheduled to occur. We chose to compare predictors with 
a small size of 128 entries because the XScale processor 
uses a 128 entry bimodal predictor and because it is 
typical for embedded processors to have small predictor 
sizes. Results are shown for the intervals of 100K, which 
gives a lower bound of the performance for the 
predictors, in the presence of context switches.  
    The first point to note from the figure is that the 
prediction accuracy of certain predictors like skew and 
hybrid is more than that of the simple 2bit counter 
(bimodal) which is used in XScale. This improvement 
comes at the cost of additional tables in these predictors. 
But future generations of embedded processors are 
expected to have deeper pipelines to exploit parallelism 
and consequently larger predictor sizes to improve 
prediction rates, since misprediction penalty with deeper 
pipelines will be more. The main observation from 
Figure 1 however is that the loss in prediction accuracy is 
significant for all of the predictors, due to the presence of 
context switches. Due to lack of space, the performance 
for individual benchmarks cannot be shown, but the 
difference in prediction accuracy varies from 4-7% for 
applications such as jpeg, rijndael, gsm, basicmath, fft 
and qsort from the MiBench [11] suite.  This shows how 
important it is to address the effect of context switches on 
prediction accuracy. 
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Figure 2. Difference in prediction rate due to 
context switches for dynamic predictors with 

varying hardware budgets  
 
    Figure 2 shows the difference in prediction accuracy 
for the cases when context switches are absent and when 
they are present, for different predictor sizes – 128, 256, 
512, 1024 entries in the predictor tables. Although 

increasing predictor size improves performance because 
larger predictor tables result in lesser destructive aliasing, 
it is apparent from the figure that the effect of context 
switches becomes more prominent with increasing 
predictor size. 
    Other experiments (not shown here) show that with an 
increase in context switch interval, performance for all 
the predictors improves. Nonetheless, low context switch 
intervals are quite frequently encountered in systems, and 
for these intervals the degradation in performance is large 
(Figure 1). In the next section mechanisms to overcome 
this performance loss are proposed.  
 
4. New Schemes to Improve Accuracy 
 
    On a context switch, the predictor structure contains 
information for the process that just finished execution. 
This information does not accurately represent 
predictions for other processes, as was shown in Figure 2. 
One existing scheme is to flush the predictor bits to zero 
every time a context switch occurs [8]. Another scheme 
[3] sets all the predictor table entries to weakly taken. 
This section describes new schemes we use to improve 
on the above.  
    If there were a way to save the entire prediction 
information from the predictor tables for a process, and 
then restore the predictions into the predictor structure 
when the process resumes execution, there would be no 
loss in performance. However, saving and restoring 
entire predictor structures as was done in [3] can be 
prohibitive both in terms of time and memory space. 
Therefore we investigate several schemes for saving 
"representative" portions of the prediction information. 
For instance, one simple scheme we propose saves 1 bit 
per table for each process when a context switch occurs. 
This bit is the predominant bias of the predictor tables – 
either taken or not taken. When the process resumes 
execution, the bit is used to bias the counters in the 
predictor tables based on its value. We call this the 
majority bias scheme. 
    Another scheme "compresses" the predictor state and 
saves N bits per process. The value of N is selected so as 
to achieve a desired accuracy improvement without large 
overhead. A compression algorithm partitions a predictor 
table into blocks of k entries and stores the state 
information for each block.  The state can be the 
dominant bias bit for a block. Alternatively, 2 bits of state 
can be saved per block (the scheme evaluated in this 
paper). On a context switch, the number of entries in the 
block set to strongly not-taken, weakly not-taken, weakly 
taken and strongly taken is used to save the state of a 
block as following: 
• 00: if there are more strongly not-taken entries than 

strongly taken entries in the block. If these are equal 
then the weakly not-taken and weakly taken entries 



are compared and a 00 is saved if there are more 
weakly not-taken entries.  

• 01: if there are more strongly taken entries than 
strongly not-taken entries. If these are equal then the 
weakly taken and weakly not-taken entries are 
compared and a 01 is saved if there are more weakly 
taken entries. 

• 10: otherwise if the overall number of taken and not-
taken entries is the same, we save a 10.  

    When the process is resumed and before it commences 
execution, the two saved bits for each block of the 
predictor table are used to restore the state as follows: If 
00 was stored, we bias all the counters in the block to 
weakly not-taken. If the saved value was 01, we bias all 
the counters to weakly taken. For the case of a 10, we 
bias successive counters in the tables alternately to 
weakly taken and not-taken. To implement this scheme, 
hardware counters are used together with some 
combinational logic to route and store the data.   
    Another way to reduce the amount of predictor 
information saved would be to save just the most 
significant bit of the two bit counters in the tables as 
proposed in [3]. This snapshot of the most significant bits 
of the counters in the tables reduces the information 
stored by half. Instead of saving snapshots for all the 
tables, a partial snapshot can be taken for a subset of the 
tables in the predictor. This further reduces the 
information stored, at the cost of reduced prediction 
accuracy. 
    To save and restore the predictor information, we 
propose the use of an L2 cache, bypassing the smaller L1 
caches, or alternately we can also use a small dedicated 
buffer for the purpose. The results in the next section 
show that schemes which require saving as little as 19 
bits for a 128 entry predictor can achieve a significant 
improvement in prediction rate (up to 6%) for the skew 
predictor which has the best prediction rate in the 
absence of context switches compared to the other 
dynamic predictors selected for study. The time penalty 
for doing this is a few extra cycles for saving and 
restoring the information, including the combinational 
logic delay for compression. This is a small price to pay 
when compared with the large improvement in 
performance gained from more accurate branch 
prediction. It is also very small compared to the overall 
context switch overhead and can be done entirely in 
hardware. Recall that the minimum penalty on a branch 
misprediction for the XScale processor is 4 cycles. Thus 
if a scheme exhibits even a marginal improvement in 
prediction rate, it can justify the overhead of saving and 
restoring the predictor information. 
 
5. Performance Evaluation 
 
    Our goal was to reduce the prediction accuracy loss 

due to context switches for dynamic branch predictors. 
The skew branch predictor [12] (Figure 3) was selected 
because it gave the best performance among the 128 
entry predictors considered (Figure 1).  
    All simulations were performed on a modified version 
of the sim-outorder simulator from SimpleScalar [19] 
version 3.0. The processor modeled uses a configuration 
similar to the XScale processor: 32KB data and 
instruction L1 caches with 32 byte lines and 1 cycle 
latency, no L2 cache and 50 cycle main memory access 
latency. The machine is in-order and a 32 entry load/store 
queue, with an issue width of 2. It has one integer unit, 
one floating point unit and one multiply/divide unit. The 
branch predictor has 128 entries, and the instruction and 
data TLBs are 32 entry and fully associative.  
 

 
 

Figure 3. skew predictor 
 

    We selected benchmarks from the MiBench [11] suite 
which is designed to be representative of several 
embedded systems domains. Due to lack of space, we 
show results for a limited set of benchmarks – basicmath 
(automotive and control), ghostscript, ispell (office 
automation), rijndael (security), fft and gsm 
(telecommunications). A context switch interval of 100K 
instructions was chosen to represent a lower bound on 
performance when context switches are present. A small 
128 entry skew predictor was used. All simulations were 
run till termination.  
 
5.1. Results 
 
    Figure 4 shows the results for the proposed schemes. 
“zero”  refers to scheme which sets all entries to zero on a 
context switch while “ taken”  sets the counters to weakly 
taken. For all subsequent schemes that save predictor 
state we assume that the 7 bit global history register is 
also saved. “snapshot 1”, “snapshot 2”  and “snapshot 3” 
take partial snapshots of 1, 2 and all 3 of the tables in the 
skew predictor saving 128 bits per table (128+7, 256+7 
and 384+7 bits overall, respectively). “bias32”  uses the 
block bias scheme and saves 8 bits per table (24+7 bits 



overall) as explained earlier while “majority bias”  is the 
simple scheme that saves just 1 bit per table (3+7 bits 
overall). 
    From the figures it is apparent that the flush to zero, 
and taken schemes are outperformed by schemes which 
save predictor state. As expected, the snapshot schemes 
store a lot of information and performance improves 
when more tables are considered. The bias32 scheme 
interestingly performs nearly as well as the snapshot1 
scheme but saves just 24+7 bits instead of 128+7. The 
majority bias scheme performs a little worse than bias32 
overall (gsm is an exception) but saves just 3+7 bits 
overall! For gsm, the majority bias scheme actually 
performs better than the other elaborate schemes because 
a small predictor size of 128 entries results in a lot of 
aliasing in this case. As a result, resetting the counter bits 
according to the table bias on a context switch actually 
improves performance more than restoring the counters 
closer to their original state with the other schemes. 
    Overall, the bias32 and majority bias schemes are 
better than the negligible overhead schemes (zero, taken) 
providing good prediction accuracy without saving as 
much information as in the snapshot schemes. 
 
6. Summary and Conclusion 
 
    This paper evaluated the loss of prediction accuracy in 
the presence of context switches for several branch 
predictors. The loss of accuracy was shown to be 
significant for all the considered predictors.   
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(a) adpcm 
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(b) ghostscript 
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(b) fft 
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(c) gsm 
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(d) basicmath 
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(f) ispell 

 
Figure 4. Improvement in prediction rates for the 
proposed schemes, in the presence of context 
switches (128 entry skew predictor, 100K CS 

interval)  



    Several new mechanisms to restore the lost accuracy 
for the skew predictor were presented. The skew 
predictor was selected due to its high accuracy despite its 
small hardware budget (128 entry) and the new schemes 
evaluated assuming a 100K instructions context switch 
interval.  The latter is a lower bound on observed context 
switch interval size.  
    Most of the proposed schemes involve saving and 
restoring varying amounts of predictor information on a 
context switch. This entails an overhead which needs to 
be considered in selecting a practical scheme. It was 
shown that for the bias32 scheme, saving less than 32 
bits can improve the prediction rate from 2 - 6%. The 
majority bias scheme performs slightly worse than the 
bias32 scheme on the average, but saves just 10 bits to 
achieve improvement. Both these schemes perform 
significantly better then the previously-proposed low-
overhead schemes - flush to zero and weakly taken. 
Overall, we do not consider the snapshot schemes 
practical to implement or their additional performance 
improvement worthwhile.   This paper concentrates on 
prediction accuracy and does not evaluate the impact on 
overall CPU performance.   Thus we do not describe the 
design of the new schemes or their latency in much 
detail.  We believe that it can be done efficiently for the 
low overhead schemes where the information to be stored 
is continuously generated from the predictor data by 
dedicated logic. Therefore only saving/restoring the 
compressed information takes time. This may be doable 
purely in hardware without executing additional 
instructions. 
    These proposed mechanisms are not limited to the 
skew scheme and can be used effectively with other 
dynamic prediction schemes. Similar performance 
improvements can be expected for the hybrid, bimode, 
and gshare predictors. In fact, any dynamic predictor 
using a bimodal table structure can benefit from our 
schemes. Schemes that involve large pattern history 
tables such as the alloy predictor are harder to deal with 
when it comes to reducing the information saved and 
restored on a context switch.  This remains subject of 
future research.  
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