
 Improving Branch Prediction Accuracy in Embedded Processors in the
Presence of Context Switches

Sudeep Pasricha, Alex Veidenbaum
Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA
{ sudeep, alexv} @cecs.uci.edu

Abstract

 Embedded processors like Intel’s XScale use dynamic
branch prediction to improve performance. Due to the
presence of context switches, the accuracy of these
predictors is reduced because they end up storing
prediction histories for several processes. This paper
shows that the loss in accuracy can be significant and
depends on predictor type and size. Several new schemes
are proposed to save and restore the predictor state on
context switches in order to improve prediction
accuracy. The schemes differ in the amount of
information they save and vary in their accuracy
improvement. It is shown that even for a small 128 entry
skew predictor, 2 - 6% improvement in prediction rate
can be achieved (for an average context interval of 100K
instructions) for different embedded applications while
saving and restoring a minimal amount of state
information (less than 32bits) on a context switch.

1. Introduction

 Modern embedded processors use pipelining to exploit
parallelism and improve performance. Conditional
branches in the instruction stream degrade performance
by causing pipeline flushes. Branch prediction
mechanisms can overcome this limitation by predicting
the outcome of the branch before its condition is
resolved. As a result, instruction fetch is not interrupted
as often and the window of instructions over which ILP
can be exposed increases. In fact, accurate branch
predictors can eliminate over 90% [13] of these pipeline
stalls and are thus critical to realizing the performance
potential of a processor. Improving branch prediction
accuracy is important because the new generation of
embedded processors have deeper pipelines, which result
in larger misprediction penalties. In the XScale [8]
processor which has a 7 stage pipeline, the penalty for
each misprediction is as high as 4 cycles.
 Most processors use dynamic branch prediction
[5,6,12,13,15] to predict branch directions. Dynamic

predictors record and utilize information from previous
runs of a static branch instruction to predict its outcome
in the future. This requires additional hardware to store
the branch history. These predictors dynamically adjust
their prediction to match the changing behavior of a
branch instruction as the program executes.
 One aspect of branch prediction that has largely been
ignored is the effect of context switches. In typical
systems, several processes are in the active queue at any
given time and they share the branch predictor structure.
Each process runs for its allotted time slice and then
yields the processor to allow another waiting process to
execute. Unless steps are taken to change the state of the
predictor structure, it will contain stale information from
the run of the previous process when the new process
commences execution. Since different processes
generally have completely different branch behaviors,
reusing the stale information will increase the
misprediction rate. It is desirable to overcome this
limitation. This research explores the effects of context
switches on dynamic branch prediction schemes, in the
context of embedded processors which have stringent
hardware resource constraints. We find that context
switches cause substantial decrease in prediction rate – an
average of 4% for the skew predictor for instance.
Having established that context switches degrade
prediction accuracy, we then propose several methods to
alleviate this performance loss for the skew scheme, at
different costs to the architect. We choose the skew
predictor because it provides the best performance for a
limited hardware budget, but the proposed schemes work
for other dynamic predictors too.
 This paper is organized as follows: Section 2 presents
previous work in this area. Section 3 illustrates the effect
of context switches on these dynamic branch predictors.
Section 4 presents schemes to improve branch predictor
performance in the presence of context switches. Section
5 reports the simulation results and our analysis for the
proposed schemes. Section 6 provides some concluding
remarks.

2. Related Work

 Several papers on branch prediction acknowledge the
effects of context switching on branch prediction
accuracy.
 Yeh and Patt [6] examined the effect of context
switches on two-level branch prediction schemes. They
found that the average accuracy degradations for the
PAp, PAg and GAg schemes are less than one percent for
a context switch interval of 500K instructions. However
in their experiments they did not change the pattern
history table on a context switch, which explains the
exceptionally small decrease in prediction accuracy for
the large predictor structures used. In an actual multi-
programming environment, the pattern history tables for
different processes will differ and if the PHT is kept
unchanged, prediction accuracy will suffer.
 Gloy, et al [7] studied dynamic branch prediction
schemes on system workloads. They found that including
kernel level branches with user level branches in
experiments significantly affected branch prediction
accuracies, increasing aliasing and thus decreasing
prediction accuracy. They emphasized the need to
consider the whole system rather than just user level code
when evaluating branch prediction schemes. This
motivated us to study the impact of context switches on
the performance of dynamic prediction schemes.
 More recently, Michele Co. and K. Skadron [1]
claimed that context switching has negligible effect on
branch predictor performance. They measured the context
switch interval based on the default time slice value for
Windows NT (25 ms), and it turned out to be around
50M instructions. Our experiments calculate this interval
from context switching information obtained from
several multi-programmed systems with varying
workloads. The interval we obtain is much smaller than
theirs and agrees with the findings of previous studies [2,
3, 4, 10] that consider the effect of context switching on
branch prediction.
 A.S. Dhodapkar and James E. Smith [3] presented the
case for saving predictor information on a context switch.
They proposed (for a gshare predictor) saving the most
significant bits of all the counters in the branch predictor
tables on a context switch. They also proposed setting the
predictor counters to weakly taken on a context switch, as
an alternative. This work is the only one that we know of
which proposes mechanisms to improve predictor
accuracy in the presence of context switches. They
rightly identify the need to reduce the ‘ learning time’ of
the predictor after a context switch by restoring
previously saved prediction values into the predictor.
This paper extends this study and proposes several other
mechanisms that will improve performance.

3. Effect of Context Switches

 Context switches can occur during program execution

for several reasons such as I/O requests, system calls,
page faults, expiration of time slice etc. The frequency of
these context switches depends on factors like the
number of applications active on a system, the types of
these applications, the operating system used and the
scheduling scheme. We performed experiments to
determine context switch intervals on several different
systems, with varying workloads and running different
operating systems such as UNIX, Linux and Windows
2K. For UNIX and Linux we used the vmstat utility while
for Windows we used the ntimer utility, which is part of
the Windows 2000 Resource Kit. Our results indicate a
context switch frequency varying from 100/sec to
8000/sec and a context switch interval ranging from 75K
– 1000K instructions. For instance, one of the machines
we tested was a SUN UltraSparc-II workstation running
SunOS 5.8 at a maximum clock speed of 400 MHz. The
context switch frequency on it varied from 400/sec to
4500/sec, with a changing workload. If it is assumed that
one instruction is executed every cycle, we get a context
switch interval of 90K instructions for the higher end. In
another experiment, we tested a 996 MHz Intel PIII
machine running Windows 2000 and found that the
context switch frequency varied from about 1000/sec to
8000/sec which gives a context switch interval of around
125K instructions for the higher end, assuming an IPC of
1. These numbers are in line with the results obtained in
[3] as well as other studies done previously that analyze
branch predictor performance in the presence of context
switches [2, 4, 10].

80

82

84

86

88

90

92

94

96

2bitcounter gshare hybrid bimode skew

A
ve

ra
ge

 P
re

di
ct

io
n

 R
at

e
%

no CS

CS

Figure 1. Predictor accuracy in the presence of
context switches (128 entries, 100K CS interval)

 Figure 1 shows the average performance degradation
for several commonly used dynamic branch prediction
schemes in the presence of context switches, for around
20 benchmarks from the MiBench [11] suite. “no CS”
represents the ideal case when no context switches occur.
We do not modify the branch predictor tables on a
context switch, allowing the prediction information of

different processes to overlap. Due to the destructive
aliasing from overlapping processes, performance
deteriorates in all cases. We simulate this in the “CS”
case by filling the predictor tables with spurious values
(inverting all the bits in some cases and inserting random
values in others) at the point when a context switch is
scheduled to occur. We chose to compare predictors with
a small size of 128 entries because the XScale processor
uses a 128 entry bimodal predictor and because it is
typical for embedded processors to have small predictor
sizes. Results are shown for the intervals of 100K, which
gives a lower bound of the performance for the
predictors, in the presence of context switches.
 The first point to note from the figure is that the
prediction accuracy of certain predictors like skew and
hybrid is more than that of the simple 2bit counter
(bimodal) which is used in XScale. This improvement
comes at the cost of additional tables in these predictors.
But future generations of embedded processors are
expected to have deeper pipelines to exploit parallelism
and consequently larger predictor sizes to improve
prediction rates, since misprediction penalty with deeper
pipelines will be more. The main observation from
Figure 1 however is that the loss in prediction accuracy is
significant for all of the predictors, due to the presence of
context switches. Due to lack of space, the performance
for individual benchmarks cannot be shown, but the
difference in prediction accuracy varies from 4-7% for
applications such as jpeg, rijndael, gsm, basicmath, fft
and qsort from the MiBench [11] suite. This shows how
important it is to address the effect of context switches on
prediction accuracy.

0

1

2

3

4

5

6

7

128 256 512 1024

Predictor size (entries)

D
if

fe
re

n
ce

 in
 p

re
d

ic
ti

o
n

 r
at

e
%

2bitcounter
gshare
hybrid
bimode
skew

Figure 2. Difference in prediction rate due to
context switches for dynamic predictors with

varying hardware budgets

 Figure 2 shows the difference in prediction accuracy
for the cases when context switches are absent and when
they are present, for different predictor sizes – 128, 256,
512, 1024 entries in the predictor tables. Although

increasing predictor size improves performance because
larger predictor tables result in lesser destructive aliasing,
it is apparent from the figure that the effect of context
switches becomes more prominent with increasing
predictor size.
 Other experiments (not shown here) show that with an
increase in context switch interval, performance for all
the predictors improves. Nonetheless, low context switch
intervals are quite frequently encountered in systems, and
for these intervals the degradation in performance is large
(Figure 1). In the next section mechanisms to overcome
this performance loss are proposed.

4. New Schemes to Improve Accuracy

 On a context switch, the predictor structure contains
information for the process that just finished execution.
This information does not accurately represent
predictions for other processes, as was shown in Figure 2.
One existing scheme is to flush the predictor bits to zero
every time a context switch occurs [8]. Another scheme
[3] sets all the predictor table entries to weakly taken.
This section describes new schemes we use to improve
on the above.
 If there were a way to save the entire prediction
information from the predictor tables for a process, and
then restore the predictions into the predictor structure
when the process resumes execution, there would be no
loss in performance. However, saving and restoring
entire predictor structures as was done in [3] can be
prohibitive both in terms of time and memory space.
Therefore we investigate several schemes for saving
"representative" portions of the prediction information.
For instance, one simple scheme we propose saves 1 bit
per table for each process when a context switch occurs.
This bit is the predominant bias of the predictor tables –
either taken or not taken. When the process resumes
execution, the bit is used to bias the counters in the
predictor tables based on its value. We call this the
majority bias scheme.
 Another scheme "compresses" the predictor state and
saves N bits per process. The value of N is selected so as
to achieve a desired accuracy improvement without large
overhead. A compression algorithm partitions a predictor
table into blocks of k entries and stores the state
information for each block. The state can be the
dominant bias bit for a block. Alternatively, 2 bits of state
can be saved per block (the scheme evaluated in this
paper). On a context switch, the number of entries in the
block set to strongly not-taken, weakly not-taken, weakly
taken and strongly taken is used to save the state of a
block as following:
• 00: if there are more strongly not-taken entries than

strongly taken entries in the block. If these are equal
then the weakly not-taken and weakly taken entries

are compared and a 00 is saved if there are more
weakly not-taken entries.

• 01: if there are more strongly taken entries than
strongly not-taken entries. If these are equal then the
weakly taken and weakly not-taken entries are
compared and a 01 is saved if there are more weakly
taken entries.

• 10: otherwise if the overall number of taken and not-
taken entries is the same, we save a 10.

 When the process is resumed and before it commences
execution, the two saved bits for each block of the
predictor table are used to restore the state as follows: If
00 was stored, we bias all the counters in the block to
weakly not-taken. If the saved value was 01, we bias all
the counters to weakly taken. For the case of a 10, we
bias successive counters in the tables alternately to
weakly taken and not-taken. To implement this scheme,
hardware counters are used together with some
combinational logic to route and store the data.
 Another way to reduce the amount of predictor
information saved would be to save just the most
significant bit of the two bit counters in the tables as
proposed in [3]. This snapshot of the most significant bits
of the counters in the tables reduces the information
stored by half. Instead of saving snapshots for all the
tables, a partial snapshot can be taken for a subset of the
tables in the predictor. This further reduces the
information stored, at the cost of reduced prediction
accuracy.
 To save and restore the predictor information, we
propose the use of an L2 cache, bypassing the smaller L1
caches, or alternately we can also use a small dedicated
buffer for the purpose. The results in the next section
show that schemes which require saving as little as 19
bits for a 128 entry predictor can achieve a significant
improvement in prediction rate (up to 6%) for the skew
predictor which has the best prediction rate in the
absence of context switches compared to the other
dynamic predictors selected for study. The time penalty
for doing this is a few extra cycles for saving and
restoring the information, including the combinational
logic delay for compression. This is a small price to pay
when compared with the large improvement in
performance gained from more accurate branch
prediction. It is also very small compared to the overall
context switch overhead and can be done entirely in
hardware. Recall that the minimum penalty on a branch
misprediction for the XScale processor is 4 cycles. Thus
if a scheme exhibits even a marginal improvement in
prediction rate, it can justify the overhead of saving and
restoring the predictor information.

5. Performance Evaluation

 Our goal was to reduce the prediction accuracy loss

due to context switches for dynamic branch predictors.
The skew branch predictor [12] (Figure 3) was selected
because it gave the best performance among the 128
entry predictors considered (Figure 1).
 All simulations were performed on a modified version
of the sim-outorder simulator from SimpleScalar [19]
version 3.0. The processor modeled uses a configuration
similar to the XScale processor: 32KB data and
instruction L1 caches with 32 byte lines and 1 cycle
latency, no L2 cache and 50 cycle main memory access
latency. The machine is in-order and a 32 entry load/store
queue, with an issue width of 2. It has one integer unit,
one floating point unit and one multiply/divide unit. The
branch predictor has 128 entries, and the instruction and
data TLBs are 32 entry and fully associative.

Figure 3. skew predictor

 We selected benchmarks from the MiBench [11] suite
which is designed to be representative of several
embedded systems domains. Due to lack of space, we
show results for a limited set of benchmarks – basicmath
(automotive and control), ghostscript, ispell (office
automation), rijndael (security), fft and gsm
(telecommunications). A context switch interval of 100K
instructions was chosen to represent a lower bound on
performance when context switches are present. A small
128 entry skew predictor was used. All simulations were
run till termination.

5.1. Results

 Figure 4 shows the results for the proposed schemes.
“zero” refers to scheme which sets all entries to zero on a
context switch while “ taken” sets the counters to weakly
taken. For all subsequent schemes that save predictor
state we assume that the 7 bit global history register is
also saved. “snapshot 1”, “snapshot 2” and “snapshot 3”
take partial snapshots of 1, 2 and all 3 of the tables in the
skew predictor saving 128 bits per table (128+7, 256+7
and 384+7 bits overall, respectively). “bias32” uses the
block bias scheme and saves 8 bits per table (24+7 bits

overall) as explained earlier while “majority bias” is the
simple scheme that saves just 1 bit per table (3+7 bits
overall).
 From the figures it is apparent that the flush to zero,
and taken schemes are outperformed by schemes which
save predictor state. As expected, the snapshot schemes
store a lot of information and performance improves
when more tables are considered. The bias32 scheme
interestingly performs nearly as well as the snapshot1
scheme but saves just 24+7 bits instead of 128+7. The
majority bias scheme performs a little worse than bias32
overall (gsm is an exception) but saves just 3+7 bits
overall! For gsm, the majority bias scheme actually
performs better than the other elaborate schemes because
a small predictor size of 128 entries results in a lot of
aliasing in this case. As a result, resetting the counter bits
according to the table bias on a context switch actually
improves performance more than restoring the counters
closer to their original state with the other schemes.
 Overall, the bias32 and majority bias schemes are
better than the negligible overhead schemes (zero, taken)
providing good prediction accuracy without saving as
much information as in the snapshot schemes.

6. Summary and Conclusion

 This paper evaluated the loss of prediction accuracy in
the presence of context switches for several branch
predictors. The loss of accuracy was shown to be
significant for all the considered predictors.

0

0.5

1

1.5

2

2.5

3

ze
ro

ta
ke

n

sn
ap

sh
ot

1

sn
ap

sh
ot

2

sn
ap

sh
ot

3

bi
as

32

m
aj

or
ity

 b
ia

s

%
 Im

p
ro

ve
m

en
t

in
 p

re
d

ic
ti

o
n
 r

at
e

(a) adpcm

0

0.5

1

1.5

2

2.5

3

3.5

4

ze
ro

ta
ke

n

sn
ap

sh
ot

1

sn
ap

sh
ot

2

sn
ap

sh
ot

3

bi
as

32

m
aj

or
ity

 b
ia

s

%
 Im

p
ro

ve
m

en
t

in
 p

re
d

ic
ti

o
n

 r
at

e

(b) ghostscript

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ze
ro

ta
ke

n

sn
ap

sh
ot

1

sn
ap

sh
ot

2

sn
ap

sh
ot

3

bi
as

32

m
aj

or
ity

 b
ias

%
 Im

p
ro

ve
m

en
t i

n
 p

re
d

ic
ti

o
n

 r
at

e

(b) fft

3

3.5

4

4.5

5

5.5

6

6.5

ze
ro

ta
ke

n

sn
ap

sho
t1

sn
ap

sho
t2

sn
aps

ho
t3

bi
as

32

m
aj
or

ity
 b
ia
s

%
 Im

p
ro

ve
m

en
t

in
 p

re
d

ic
ti

o
n

 r
at

e

(c) gsm

0

0.5
1

1.5

2

2.5

3

3.5

4

4.5

5

ze
ro

ta
ke

n

sn
ap

sh
ot

1

sn
ap

sh
ot

2

sn
ap

sh
ot

3

bi
as

32

m
aj
or

ity
 b
ia
s

%
 m

p
ro

ve
m

en
t

in
 p

re
d

ic
ti

o
n

 r
at

e

(d) basicmath

0

0.5

1

1.5

2

2.5

3

3.5

4

ze
ro

ta
ke

n

sn
ap

sh
ot

1

sn
ap

sh
ot

2

sn
ap

sh
ot

3

bi
as

32

m
aj
or

ity
 b
ia
s

%
 Im

p
ro

ve
m

en
t

in
 p

re
d

ic
ti

on
 r

at
e

(f) ispell

Figure 4. Improvement in prediction rates for the
proposed schemes, in the presence of context
switches (128 entry skew predictor, 100K CS

interval)

 Several new mechanisms to restore the lost accuracy
for the skew predictor were presented. The skew
predictor was selected due to its high accuracy despite its
small hardware budget (128 entry) and the new schemes
evaluated assuming a 100K instructions context switch
interval. The latter is a lower bound on observed context
switch interval size.
 Most of the proposed schemes involve saving and
restoring varying amounts of predictor information on a
context switch. This entails an overhead which needs to
be considered in selecting a practical scheme. It was
shown that for the bias32 scheme, saving less than 32
bits can improve the prediction rate from 2 - 6%. The
majority bias scheme performs slightly worse than the
bias32 scheme on the average, but saves just 10 bits to
achieve improvement. Both these schemes perform
significantly better then the previously-proposed low-
overhead schemes - flush to zero and weakly taken.
Overall, we do not consider the snapshot schemes
practical to implement or their additional performance
improvement worthwhile. This paper concentrates on
prediction accuracy and does not evaluate the impact on
overall CPU performance. Thus we do not describe the
design of the new schemes or their latency in much
detail. We believe that it can be done efficiently for the
low overhead schemes where the information to be stored
is continuously generated from the predictor data by
dedicated logic. Therefore only saving/restoring the
compressed information takes time. This may be doable
purely in hardware without executing additional
instructions.
 These proposed mechanisms are not limited to the
skew scheme and can be used effectively with other
dynamic prediction schemes. Similar performance
improvements can be expected for the hybrid, bimode,
and gshare predictors. In fact, any dynamic predictor
using a bimodal table structure can benefit from our
schemes. Schemes that involve large pattern history
tables such as the alloy predictor are harder to deal with
when it comes to reducing the information saved and
restored on a context switch. This remains subject of
future research.

7. References

[1] Michele Co., K. Skadron “The Effects of Context Switching
on Branch Predictor Performance” . Proceedings of the 2001
ISPASS, November, 2001, Tuscon, AZ

[2] Marius Evers, Po-Yung Chang, Yale N. Patt “Using Hybrid
Branch Predictors to Improve Branch Prediction Accuracy in
the Presence of Context Switches” . Proceedings of the 23rd
ISCA, pp. 3-11, 1996.

[3] Ashutosh S. Dhodapkar and James E. Smith “Saving and
Restoring Implementation Contexts with co-Designed Virtual

Machines” . Workshop on Complexity-Effective Design, June 30
2001, Goteborg, Sweden.

[4] R. Nair. “Dynamic Path-Based Branch Correlation” . 28th
MICRO, pages 15--23, November 1995.

[5] A. N. Eden and T. Mudge, “The YAGS Branch Prediction
Scheme” , Proceedings of the 31st Annual ACM/IEEE MICRO,
pages 69-77, 1998.

[6] Tse-Yu Yeh, Yale N. Patt, “Alternative Implementations of
Two-Level Adaptive Branch Prediction” Nineteenth ISCA, 1992

[7] Nicolas Gloy, Cliff Young, J. Bradley Chen, Michael D.
Smith, “An Analysis of Dynamic Branch Prediction Schemes
on System Workloads”, Proc. 23rd Annual ISCA, 1996

[8] Intel, Intel XScale Microarchitecture, 2001

[9] C. Perleberg and A. Smith, “Branch Target Buffer Design
and Optimization” , IEEE Transactions on Computers, 42(4):
pages 396-412, 1993.

[10] T.Juan, S.Sanjeevan and J.J.Navarro, “Dynamic History-
Length Fitting: A third level of adaptivity for branch
prediction”, Proceedings of the 25th Annual ISCA, pp 155-166,
June 1998.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. “Mibench: A free, commercially
representative embedded benchmark suite” IEEE 4th Annual
Workshop on Workload Characterization, pages 83–94, 2001.

[12] S. McFarling. “Combining branch predictors” . DEC WRL
TN-36, June 1993.

[13] C.-C. Lee, I.-C. Chen, and T. Mudge. “The bi-mode branch
predictor” . Proceedings of MICRO-30, Dec 1997.

[14] S. T. Pan, K. So, and J. T. Rahmeh. “ Improving the
accuracy of dynamic branch prediction using branch
correlation” Proceedings of ASPLOS V, pages 76–84, Boston,
MA, October 1992.

[15] P. Michaud, A. Seznec, and R. Uhlig, "Trading conflict
and capacity aliasing in conditional branch predictors,"
Proceedings of the 24th Annual ISCA, pp. 292--303, 1997

[16] P. Chang, E. Hao, T. Yeh, and Y. Patt. “Branch
classification: a new mechanism for improving branch predictor
performance”. MICRO-27, November 1994.

[17] J. Smith. “A study of branch prediction strategies”
Proceedings of the 8th Annual ISCA, May 1981.

[18] Johny Lee and Alan Smith. “Branch prediction strategies
and branch target buffer design” Computer, 17(1):6-22, 1984.

[19] D. Burger and T. M. Austin. “The SimpleScalar tool set,
version 2.0.” Technical Report 1342, Computer Sciences
Department, University of Wisconsin-Madison, June 1997

