
Abstract 
Application-specific instructions can significantly improve the 
performance, energy, and code size of configurable processors. A 
common approach used in the design of such instructions is to convert 
application-specific operation patterns into new complex instructions. 
However, processors with a fixed instruction bitwidth cannot 
accommodate all the potentially interesting operation patterns, due to the 
limited code space afforded by the fixed instruction bitwidth. We present 
a novel instruction set synthesis technique that employs an efficient 
instruction encoding method to achieve maximal performance 
improvement. We build a library of complex instructions with various 
encoding alternatives and select the best set of complex instructions 
while satisfying the instruction bitwidth constraint. We formulate the 
problem using integer linear programming and also present an effective 
heuristic algorithm. Experimental results using our technique generate 
instruction sets that show improvements of up to 38% over the native 
instruction set for several realistic benchmark applications running on a 
typical embedded RISC processor. 
 

1. Introduction 
 
Configurable processors are application-specific synthesizable 
processors where the instruction set and/or microarchitectural parameters 
such as register file size, functional unit bitwidth, etc. can be easily 
changed for different applications at the time of the processor design. 
Easier integration and manufacturing, and architectural and 
implementational flexibility make them better suited for embedded 
processors in system-on-a-chip (SOC) designs than traditional custom 
designed architectures [1]. With the commercialization of such 
configurable processors [2][3], and also the increased interest in 
platform-based SOCs that employ such configurable processors, the 
problem of instruction set (IS) optimization is receiving a lot of attention 
from both industry and academia [4][5].  
  In the design of such application-specific instructions, one of the 
common ways of improving performance is to make complex 
instructions from frequently occurring operation patterns [6][8][9], where 
a complex instruction is an instruction with more than one basic 
operation. The use of such complex instructions generally leads to better 
performance, smaller code size, and lower energy1, since they replace 
sequences of simple instructions. However, in a processor with a fixed 
instruction bitwidth, not every operation pattern can be made into a new 
instruction due to the instruction bitwidth limitation.2 This paper presents 
a novel instruction set synthesis technique that employs efficient 
instruction encoding to achieve maximal performance improvement. Our 
approach first builds a library of complex instructions with various 
encoding alternatives and then selects the best set of complex 

                                                 
1  Due to the reduced number of instruction fetches. 
2 We consider fixed instruction bitwidth because it is more common in 
contemporary embedded RISC processors. 

instructions while satisfying the instruction bitwidth constraint. We 
formulate the problem using integer linear programming (ILP). But since 
solving an ILP problem takes a prohibitively long time even for a 
moderately sized problem, we also present an effective heuristic 
algorithm. Experimental results show that our proposed technique 
synthesizes instruction sets that generate up to 38% performance 
improvement over the processor’s native3 IS for different application 
domains. 
  The contributions of our work are three-fold: First, it is aimed at 
modern RISC pipelined architectures with multi-cycle instruction 
support –– representative of current configurable processors –– while 
most existing methodologies [6][8][9] apply to only VLIW-like 
processors. Second, it tries to improve a given processor hardware 
through IS specialization, which makes our technique suitable for an 
emerging class of configurable processors that build on existing, popular 
ISA families. Third, our technique takes instruction encoding into 
account so that the obtained IS can be as compact and efficient as custom 
designed ones.  
  The rest of this paper is organized as follows. Section 2 introduces 
application-specific instruction set synthesis using motivating examples. 
Section 3 summarizes related work and Section 4 details the proposed IS 
synthesis technique with the problem formulation and heuristic 
algorithm. Section 5 shows the efficacy of our techniques through 
experiments on a typical embedded RISC processor running realistic 
applications, and Section 6 concludes the paper.  
 

2. Motivation 
 
We illustrate the potential for significant performance improvements 
using application-specific instructions on a typical embedded RISC 
processor (the Hitachi SH-3 [12]) and a realistic application (the H.263 
decoder algorithm). Initial profiling of the H.263 decoder application 
shows that about 50% of the actual execution time is spent in a simple 
function that does not contain any function calls and which consists of 
only two nested loops, either one of which, depending on a conditional, 
is actually executed. One of these inner-most loops, when processed by 
an SH-3 targeted GCC compiler, generates 13 native instructions that 
executes in 14 cycles (not including branch stall). By devising a custom 
instruction that takes 6 cycles, the loop is reduced to 4 instructions that 
execute in 9 cycles. Alternatively, the entire loop can be encoded into a 
single custom instruction that executes in 7 cycles. In this example, it is 
obvious that greater performance enhancement and code size reduction 
can be obtained by introducing custom instructions than by relying on 
traditional compiler optimizations or assembly coding.  
  However, those two custom instructions require 4 and 5 register 
arguments respectively: since one SH-3 register argument requires 4 bits, 
each of these seemingly attractive custom instructions cannot fit into a 16 
bit instruction. On the other hand, if we fix the positions of register 
arguments for these custom instructions, we do not need to specify 

                                                 
3 By “native” we mean the existing IS for a processor family. 

 

Efficient Instruction Encoding for Automatic  
Instruction Set Design of Configurable ASIPs 

 
Jong-eun Lee 

Center for Embedded Computer Systems 
Univ. of California, Irvine 

Irvine, CA 92697 
jonglee@ieee.org 

Kiyoung Choi 
School of EECS 

Seoul National University 
Seoul, 151-742 South KOREA 

kchoi@azalea.snu.ac.kr 

Nikil Dutt 
Center for Embedded Computer Systems 

Univ. of California, Irvine 
Irvine, CA 92697 

dutt@cecs.uci.edu 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7803-7607-2/02/$17.00 ©2002 IEEE 

649



arguments and only the opcodes need to be specified (similar to a 
function call with fixed register arguments). Furthermore, such 
instructions are easily handled by compilers in a manner similar to 
function calls. Although such custom instructions can be used very 
effectively and do not cause an argument encoding problem, they are 
only suitable for the hot spots of the application, where the introduction 
of custom instructions can be justified by their heavy dynamic usage 
counts.  
  Another way to improve performance through IS specialization is to 
combine frequently occurring operation patterns into complex 
instructions. Such a methodology is particularly useful since it automates 
the task of finding promising patterns over the entire application 
program. Even though there have been similar works for VLIW-like 
architectures [6][9], to our knowledge no prior work has addressed 
pipelined RISC architectures. VLIW-like architectures have ample 
hardware resources supporting multiple parallel operations. Therefore 
performance improvements can easily be obtained by defining and using 
a complex instruction with multiple parallel operations rather than using 
a sequence of simple instructions. But a typical RISC architecture has 
little or no instruction level parallelism and thus cannot benefit from 
parallel operations combined into one complex instruction. However, 
even in RISC architectures with no explicit instruction level parallelism, 
we can exploit the parallelism in between the pipeline stages: auto 
inc/decrement load/store are typical examples. Many other possibilities 
that combine multiple operations from different pipeline stages are also 
feasible, and can contribute to performance improvements over the 
processor’s native IS.  
  Due to the instruction bitwidth constraint, however, instruction sets may 
not have the full power to express all the possible combinations of the 
operations in the hardware. Furthermore, each processor family has its 
own IS quirks. For instance the SH-3 has a two-operand IS with an 
implicit destination: a typical SH-3 ADD instruction assumes the 
destination is the same as one of the source operands. This instruction 
encoding restriction adversely affects the performance, which further 
motivates the need for an application-specific instruction encoding 
method.  
  One practical consideration is that it is very difficult to add any new 
complex instructions into an existing IS, due to the limited size of the IS 
code space. One possibility is to use “undefined” instruction opcodes, 
which, however, often provide too small a code space for complex 
instructions. Another way to solve this problem is to define a basic IS 
using only a part of the instruction code space. Complex instructions can 
then be created in an application-specific manner and added into the 
remaining code space. To gain performance benefit in this manner, the 
generated complex instructions should be optimized in terms of their 
encoding so that more of those instructions can be located within the 
limited instruction code space. These observations motivate our code 
space-economical IS synthesis technique detailed in Section 4. 
 

3. Related Work 
 
The synthesis of application-specific instruction set architectures (ISAs) 
have been approached in different ways: depending on which part of the 
ISA is decided first, IS-oriented and structure-oriented. In IS-oriented 
approaches [6][7][8], the IS is first optimized from the application’s 
behavior, which is typically represented as dependency graphs. The 
hardware is later designed to implement the instruction set, manually or 
automatically. Among the approaches in this direction, PEAS-I [7] is 
most similar to our approach in that both approaches assume a basic IS 
and target pipelined RISC architectures. However, PEAS-I has a fixed 
set of instructions from which a subset is selected; thus instruction 
encoding is never an issue, unlike in our approach. Other approaches, 
however, tend to presume their own architectural styles (e.g. ‘transport 
triggered architecture’ in [6]) and thus cannot be applied to modern 
pipelined RISC processors. More importantly they do not give any hints 
on how to improve an existing processor architecture, which can be very 

helpful particularly in the context of configurable processor-based 
system-on-a-chip design.  
  Structure-oriented approaches [9][10] have a structural model of the 
architecture either implicitly assumed or as an explicit input and try to 
find the best instruction set matching the application. This approach has 
the advantage that it can leverage existing processor designs. However, 
previous work in this direction has not fully addressed the issue of 
instruction encoding: opcode and operand fields all have fixed widths. 
As a result, the instruction bitwidth cannot be fully utilized as in custom 
processors, leading to limited performance improvement for the same 
bitwidth or increased instruction bitwidth and code size. Our approach is 
significantly different, since multiple field widths are allowed for the 
same operand type, with different benefits and cost profiles, so that the 
optimal set of complex instructions, depending on the application, can be 
selected satisfying the instruction bitwidth constraint. 
  Another very closely related work is application-specific ISA 
customization for configurable processors. Zhao et al., in a case study [5] 
with a commercial configurable core, demonstrated 2 ~ 4 times 
performance improvement via configuration and application-specific 
instructions. They changed the data path width, which is readily 
supported by the core, and designed several custom instructions, which 
require the application program to be re-coded to accommodate the 
newly added instructions. Therefore, their work is limited to the 
application and the core they used. Our approach is significantly 
different, since it automates the design of application-specific 
instructions, tries to improve the processor by changing only the IS, and 
generates the instructions that can be easily supported by compilers 
without re-coding the program. 
 

 
 

Fig. 1.  Instruction set synthesis process. 
 

4. IS Synthesis and Instruction Encoding 
 
Fig. 1 presents the overall flow of our approach. Initially, the compiler 
takes the application program and generates preliminary assembly code, 
using only basic instructions (as defined below) and with optimizations 
such as instruction scheduling disabled. Then the IS synthesis process 
consists of two major steps: (1) complex instruction pattern library 
construction, and (2) selection of complex instructions.  
  A multitude of candidate complex instructions are created from the 
assembly code of an application. Complex instructions are put into a 
pattern library and annotated with such information as reference count 
number (how many times it is used during the execution of the 
application), number of bits needed for operands encoding, etc. Then the 
most profitable complex instructions are selected, that collectively satisfy 
the instruction bitwidth constraint and which would maximize the 
application performance.  
  To make it easier to create complex instructions from an application, we 
first define a basic IS: a basic instruction is restricted to have at most one 
operation to maximize the code space for a complex IS. A complex 
instruction can be viewed as a pattern of basic instructions. A target 
processor is then represented by a basic IS, which specifies all operations 
supported by the target processor, and structural information associated 
with each basic instruction, which is crucial to decide the usefulness of 
complex instructions. The structural information reveals functional and 
pipeline resources for each instruction with their cycle-level timing. 
From an assembly code of basic instructions we create complex 
instructions, each of which is essentially a condensed and generalized 
form of a basic instruction sequence. Complex instructions can be multi-
cycle instructions and are created such that their latency is minimized 
under the resource constraints of the processor (e.g. # of register 

650



read/write ports, # of functional units and buses at each pipeline stage, 
etc.). High-level synthesis (HLS) techniques such as resource-
constrained list scheduling [11] can be used to find the number of cycles 
saved by using a complex instruction over a basic instruction sequence. 
If the saving is positive, we create a group of complex instructions, 
differing in the degree of generalization of operands, and put them into 
the complex instruction pattern library, to be used in the subsequent step 
of complex IS selection. We now describe each step in more detail. 
 

4.1 Complex Instruction Pattern Generation 
We assume the total instruction bitwidth is fixed but opcode and operand 
field widths are optimized for the applications. The complex instruction 
patterns generated here have two distinctive features as detailed below.  
  First, the opcode field widths are set to use the remaining bits after the 
widths of the operands are determined. This scheme is more flexible and 
efficient in terms of total instruction bitwidth usage than fixed-width 
opcodes for two reasons: (1) complex instructions with more operands 
(thus requiring more bitwidth) can be allowed if they are used often 
enough to justify the bitwidth usage, and (2) more complex instructions 
can be allowed that have fewer operands and hence requiring fewer 
operand bits. The only condition to be satisfied here is that the sum of the 
code space (defined as 2^{the number of bits needed for operands}) of 
every instruction should not exceed the allowed total code space (defined 
as 2^{the instruction bitwidth}). It is obvious that if this condition is met, 
every instruction can be given an opcode, possibly with a different width.  
  Second, since there can be multiple choices of field widths for an 
operand type, we create operand classes, where each class defines a set 
of operand instances with a bitwidth specification. These operation 
classes are used to define complex instructions. Generally, in a custom 
instruction set, the operand field width of a certain operand type can vary 
among instructions to allow more compact encoding of the operands. For 
example, an immediate field may have only 4 bits in the ADD+LOAD 
type instructions while it may have 8 bits in an ADDI instruction. 
Register fields can also have a reduced size to allow more operands to be 
encoded at the cost of accessing only a subset of the registers in that 
instruction. An example can be found in the SH-3 microprocessor [12], 
where some complex load instructions have the R0 register as their 
destination, so that the destination register need not be specified at all. To 
support such variability in operand field widths, an operand is allowed to 
be generalized into multiple operand classes with different bitwidths.  
  Complex instructions are created for every sequence of N basic 
instruction instances as long as they take fewer number of execution 
cycles than their basic instructions versions, where N is a design 
parameter and more than one value of N can also be used at the same 
time. A group of complex instructions is created by substituting different 
operand classes for operands. Because complex instructions can be 
created from only sequentially appearing instruction instances, the 
number of created complex instructions increases only linearly in the 
code size of the application.  
  Fig. 2 illustrates the process of generating a complex instruction from a 
sequence of basic instruction instances. Fig. 2 (a) shows a conceptual 
view of the two sequences of basic instructions substituted by two 
complex instructions.  Operand classes can be defined as in Fig. 2 (b), 
where “#bits” is the number of bits needed for encoding operands. Fig. 2 
(c) shows a group of complex instructions created from a sequence of 
basic instructions, where “#bits” is defined as before, and CR stands for 
the benefit of a complex instruction in terms of the cycle count reduction. 
  Note that operand classes with smaller bitwidths have not only less cost 
in terms of bitwidth (and hence code space) usage, but less benefit also.  
To wit: (1) immediate fields of smaller size have a smaller chance to be 
matched in other parts of the application program and (2) register fields 
of smaller size may potentially necessitate an additional move 
instruction, which decreases the benefit of the complex instruction. 
Complex instructions with such a register operand class have their CR 
value (cycle count reduction by a single use of the complex instruction) 

reduced by the probability of necessitating an additional move instruction 
(in Fig. 2 (c), this probability is assumed to be 0.75).4  
  Complex instructions thus created are compared with those in the 
library and the library is updated either by including the new complex 
instruction or by increasing the reference count of the matched one in the 
library. At the end of this pattern generation step, the library contains 
distinct complex instructions, from which a complex IS is defined. 
 

(a) Basic Instructions 
ADDI  R1  R1  4 
LOAD  R1 (R1) 
  ADDI+LOAD  R1 (R1 + 4)    
MULT  mac  R1  R2 
MOV  R1  mac 
LOAD  R2  (R3) 
ADD  R1  R1  R2 
  MULT+MOV+LOAD+ADD  R1  R2  R3 
(b) Operand Classes 

Type Operand Classes Instances #Bits 
[Gen_reg] R0 ~ R15 4 
[Frame_pointer] FP 0 

REG 

[R0_implicit] R0 ~ R13 0 
[Imm_const4] 4 0 
[Imm_4bits] –8 ≤ IMM < 7 4 

IMM 

[Imm_6bits] –32 ≤ IMM < 31 6 
[Disp_normal] –27 ≤ DISP < 27 8 DISP 
[Disp_short] –23 ≤ DISP < 23 4 

(c) Complex Instructions 
Basic Instructions Sequence: 
 ADDI  R1  R1  4 
 LOAD  R1 (R1) 
Complex Instructions Created:   #bits    CR  

ADDI_LOAD_1 [Gen_reg]   [Imm_const4] 4 1 
ADDI_LOAD_2 [Gen_reg]   [Imm_4bits] 8 1 
ADDI_LOAD_3 [Gen_reg]   [Imm_6bits] 10 1 
ADDI_LOAD_4 [R0_implicit]   [Imm_const4] 0 0.25 
ADDI_LOAD_5 [R0_implicit]   [Imm_4bits] 4 0.25 
ADDI_LOAD_6 [R0_implicit]   [Imm_6bits] 6 0.25 

 

Fig. 2.  Creating complex instructions. 
 

4.2 Complex Instruction Set Selection 
Every complex instruction in the library has the following information 
for instruction set selection: the number of bits needed for operands, the 
number of cycles saved by a single use of the complex instruction (CR), 
and a list of basic instruction instances covered. Using the information 
together with the repetition count of each basic block (which can be 
supplied through profiling), the total number of cycles reduced by a 
complex instruction can be estimated.  
  Complex instructions contribute to cycle count reduction at the cost of 
code space. Therefore the problem is to select a set of complex 
instructions that maximizes the cycle count reduction across the entire 
application program while respecting the code space requirement. Let 
{CIi} be the set of complex instructions created, Wi be an associated 
bitwidth needed for a complex instruction CIi, and xi be a binary variable 
representing whether CIi is selected or not. Then the code space 
requirement can be represented as  

Σ xi ⋅ 2Wi ≤ Constr                        (1) 
Constr = 2IBW – Σ 2Bi ,                   (2) 

where IBW is the instruction bitwidth (e.g. 16 or 32) and Bi is the number 
of operand bits needed for each basic instruction. Now the problem of 
                                                 
4 Register operand classes with reduced bitwidth rely on the compiler’s 
register allocation capability. Operand classes with a single register can 
be dealt with relatively easily while those operand classes with multiple 
but not all registers require more complex register allocation.  

651



selecting the most useful complex instructions reduces to mapping {xi} 
to {0, 1} satisfying Eq. (1) such that the total cycle count reduction from 
the selected CIi’s is maximized. 

Table 1. Complex instructions and associated information 
Cmplx 
Instr 

# 
Bits CR Covered Basic Instruction 

Instances 
Benefit 

(Total CR) Cost 

CI1 4 1  (a1 a2 a3) (a9 a10 a11) 30 24 
CI2 6 1  (a1 a2 a3) (a9 a10 a11) (a13 a14 a15) 50 26 
CI3 5 2  (a3 a4 a5) 30 25 

                                     

  Table 1 shows a simple example of complex instructions and the 
associated information. In the fourth column each ai represents a basic 
instruction instance (e.g. one line of assembly code). The benefit of a 
complex instruction is defined as the sum of the CRs from all instances 
of basic instruction sequences covered, with the block repetition count 
taken into account. The last column shows the cost of selecting the 
complex instruction in terms of the code space taken. 
  The benefit and cost can change as complex instructions are selected. 
This complication arises due to two factors: superset instructions and 
multiple covers. In Table 1, CI2 is a superset instruction of CI1 because 
CI2 has the same opcodes and operands as those of CI1 but has more 
general operand classes.5 Therefore CI2 covers more basic instruction 
instances but also requires more bits for representation. In this case, CI1 
is a special case of CI2 so if CI2 is included in the set of selected complex 
instructions, say Sc, then CI1 is in effect already included with no cost. 
On the other hand, the cost of CI2 should be decreased to (26 – 24) when 
it is known that CI1 has been selected. When there are more than one 
superset instructions of a complex instruction, however, only one of them 
should have the decreased cost. 
  Multiple covers occur when more than one complex instruction covers 
the same basic instruction instance. In Table 1, a3 is covered by all the 
complex instructions. Obviously only one complex instruction can 
actually be substituted for a3 (and the neighboring basic instructions), 
which leads to the decrease in their collective benefit. Assuming a 
possible compiler optimization pass that applies, in a predefined order, 
substitutions of complex instructions for certain basic instruction 
patterns, multiple covers lead to the reduction of effective benefit of 
those with lower priority. In Table 1, if only CI1 and CI3 have been 
selected for Sc and CI3 has higher priority than CI1, the total benefit 
(number of reduced cycles) becomes 45 instead of the sum of all the 
benefits. In other words, assuming CI3 has higher priority than CI1, the 
benefit of including CI3 in Sc when CI1 is already in Sc is 15 (= 45 – 30), 
where 30 is the benefit of CI1.  
  A special case of this problem, where no superset instructions or 
multiple covers take place, can be shown to be a knapsack problem 
(which is NP-hard) if the cost value of complex instructions can be any 
positive integer while in the original formulation it should be 2n (n ≥ 0) 
[13].  
 

4.3 ILP Problem Formulation 
For the description of the problem formulation, we first introduce the 
following variables. Let the complex instruction library be given as {CIi | 
i = 1, 2, …, n} and each instruction has bitwidth information Wi that is 
the number of bits needed for operands encoding. With each complex 
instruction (CIi) is associated a set of basic instruction instances 
sequences {BIIij | j=1, 2, …, mi}, each member of which matches CIi. 
Lastly, Gij is the benefit or expected cycle count reduction by replacing 
BIIij with CIi. Gij can be defined as in the following equation, 

Gij = Repetitionij ⋅ Cycle_Reduci  (3) 
where Repetitionij is the repetition count of the block, Cycle_Reduci is 
the CR of CIi . Note that the CR value has been compensated for the 
penalty or probability that CIi necessitates an additional move instruction 
when CIi has register operand generalized with reduced field size. 

                                                 
5 An operand class is more general than another if the set of its instances 
includes that of another. 

  Then the complex instruction set selection problem can be thought of as 
selecting BIIij’s, for which corresponding CIi’s can be substituted. Here 
the actual compiler that will use those complex instructions is assumed to 
be able to find the optimal set of BIIij’s from a sequence of basic 
instruction instances. Now let us define the following binary variables 
for the ILP problem formulation:  

• Aij (i=1,…,n; j=1,…,mi) : 1 if BIIij is selected, 
• Ci (i=1,…,n) : 1 if CIi is selected, that is, if any of Aij 

(j=1,…,mi) is 1, 
• Xi (i=1,…,n) : 1 if CIi is selected and all its superset 

instructions are not selected. 
  Then the objective function (the expected total cycle count reduction) 
and the code space constraint can be represented as 

∑∑
= =

n

i

m

j
ijij

i

AG
1 1

:max     (4) 

ConstrX
n

i
i

Wi ≤∑
=1

2     (5) 

The relationship between the binary variables can be represented as 

iimiii AAAC ∨∨∨= ...21 ,     for ∀i   (6) 

and by letting CIi’s superset instructions be {CIS1, CIS2, …, CISk}, 

SkSSii

SkSSii

CCCCX

CCCCX

∨∨∨∨=⇔

∧∧∧∧=

...

...

21

21 ,   for ∀i. (7) 

Equations (6) and (7) can be linearized using the following identities.  

212121 ,,
1

AACACACAAC
XX

+≤≥≥⇔∨=
−⇔  (8) 

Finally, the constraint due to the multiple covers can be stated as follows: 
If there is more than one basic instruction instances 
sequence covering a basic instruction instance, then only 
one of them can be selected.  

In other words, if a basic instruction instance is covered by these BIII1 J1, 
BIII2 J2, …, BIIIx Jx , then 

1...2211 ≤+++ IxJxJIJI AAA ,   (9) 
which holds for every basic instruction instance.  
  Equations (4) ~ (9) define the ILP formulation for the complex IS 
selection problem. But since solving an ILP takes a prohibitively long 
time even for a moderately sized problem, we also present a heuristic 
algorithm in the next subsection. 
 

4.4 Heuristic Algorithm 
Fig. 3 shows our heuristic algorithm proposed for the problem of 
complex IS selection and ordering based on the above observations. The 
algorithm works by repeatedly selecting the most promising complex 
instruction (i.e., the one with the largest benefit per cost ratio). The 
ordering of the selected complex instructions is decided by their CR 
values: the greater the CR, the higher the priority. Among those with the 
same CR value, priority follows the order in which they were selected. 
  Superset Instructions: Every complex instruction has a set of pointers 
to more general complex instructions (More_General_Form in Fig. 3). A 
complex instruction is more general when all operands are encoded with 
more general or equal operand classes. This set can be built up as new 
complex instructions are created and added to the library. When a 
complex instruction is selected, its cost is subtracted from the cost of 
each of the more generalized complex instructions. 
  Multiple Covers: If a basic instruction instance is covered by more 
than one complex instruction and those complex instructions are all 
selected, the total benefit of the selected instructions is less than the sum 
of each benefit. To accurately quantify the benefit of selecting a new 
complex instruction under the assumption that a compiler substitutes 
complex instructions for matching patterns in a predefined order, the 
algorithm introduces two new integer variables for every basic 
instruction instance. Max_Cycle_Reduc of an instruction instance is the 

652



maximum of CR’s (Cycle_Reduc) of the complex instructions that cover 
the instruction instance and have been selected so far. 
Complex_Instr_Inst is the instance ID of that complex instruction with 
the Max_Cycle_Reduc. Because the selected complex instructions are 
ordered by the Cycle_Reduc value, a complex instruction (Cj) can only 
be used when all the instruction instances in the matched basic 
instruction sequence have Max_Cycle_Reduc value of less than 
Cycle_Reduc of Cj. Therefore as a complex instruction is selected, other 
complex instructions that share some of the covered basic instruction 
instances (Instances_Covered) are affected in their benefit. The effective 
benefit of choosing one (Ci) is lowered because: (1) for instances that 
already have greater Max_Cycle_Reduc value, Ci will not be used 
(because it is less effective), and (2) for instances that have less 
Max_Cycle_Reduc value, Ci will be used replacing other complex 
instructions with lower Cycle_Reduc, which are already selected and 
would be used if Ci is not selected. 
  The complexity of this algorithm is O(L2⋅M), where L is the number of 
complex instructions in the library and M is the average number of basic 
instruction sequences covered by a complex instruction. M can be as 
large as the total number of basic instruction instances (i.e., code size) 
but is typically much smaller than that. This complexity comes from the 
Update_Benefit part, which iterates over M basic instruction sequences 
covered by Ci and can be called as many as L2 times. 
 

Notation B : a basic instruction instance 
Notation C : a complex instruction 
Initialize Max_Cycle_Reduc : B  integer := 0 
Initialize Complex_Instr_Inst : B  integer :=  0 
Initialize Unselected_Set : Set(C) := {Ci | for all i} 
Initialize Selected_List : List(C) := φ 
Given Constr : integer 
Given More_General_Form : C  Set(C) 
Initialize CI_Inst : integer := 1 
While ( Unselected_Set is not empty ) { 
   Take, from Unselected_Set, Ci that has the largest benefit/cost 
   ratio among those whose Cost is not greater than Constr; if not  
   found, break; 
   Append Ci  to Selected_List 
   Constr = Constr – Cost(Ci) 
   Foreach Cj ∈ More_General_Form(Ci) 
 Cost(Cj) = Cost(Cj) – Cost(Ci) 
   Initialize Affected_Set : Set(C) := { } 
   Foreach Basic_Instr_Seq ∈ Instances_Covered(Ci) 
 If ( Cycle_Reduc(Ci ) > Max_Cycle_Reduc(Basic_Instr_Seq) ) { 
  Foreach Bk ∈ Basic_Instr_Seq { 
   Max_Cycle_Reduc(Bk) = Cycle_Reduc(Ci ) 
   Complex_Instr_Inst(Bk) = CI_Inst 
   Add, to Affected_Set, Cl’s that cover Bk  
  } 
  CI_Inst ++ 
 } 
   Foreach Cj ∈ Affected_Set  
 Update_Benefit(Cj ) 
} 
Sort Selected_List according to the Cycle_Reduc value 
   

Fig. 3.  Complex instruction selection and ordering algorithm. 
  

                 Initialize eff_ben : integer := 0 
Foreach Basic_Instr_Seqk ∈ Instances_Covered(Ci) 
 If ( Cycle_Reduc(Ci) > Max_Cycle_Reduc(Basic_Instr_Seqk ) ) 
  eff_ben += Repetition_Cntk * ( Cycle_Reduc(Ci) 
    – Max_Cycle_Reduc(Basic_Instr_Seqk) * 
   Number_of_CI_Covers(Basic_Instr_Seqk) ) 
Benefit(Ci) = eff_ben 
   

Fig. 4.  Procedure Update_Benefit(Ci). 
 

5. Experiments 
 
For our experiments, we used the SH-3 processor [12] as the 
representative architecture for the basic IS and structural information 
such as pipeline configuration. We ran a number of realistic benchmark 
applications covering multimedia (e.g., H.263 decoder6, JPEG), control-
intensive (e.g., ADPCM7) and cryptography (e.g., DES) domains. These 
applications were processed by the EXPRESS retargetable compiler [14] 
(targeting the basic IS) to generate preliminary assembly code, which 
was used for the experiments.  
  We chose the SH-3 processor because it is representative of popular 
contemporary RISC cores that also contain DSP-like features such as 
auto-increment load and MAC (multiply-accumulation).  The SH-3 has 
an IBW (instruction bitwidth) of only 16 bits, so that it becomes very 
important to find a better IS for a more effective utilization of the 
hardware. From the native IS of the SH-3 architecture, a basic IS was 
defined with code space of 15442, which is a little less than 2^14 or 
quarter of the total code space. Since about half (2^15) of the total code 
space is used for system control function or reserved for other versions of 
the processor family, the code space that is available for a complex IS is 
about 2^14, which is used as the value of Constr in our experiments. 
Another parameter N (the number of basic instructions that are 
considered together for complex instruction creation) was set to be 2 to 4 
(i.e., up to 4 consecutive basic instructions are considered). In defining 
operand classes, we used some statistics such as frequent values of 
immediate/displacement or average register pressure, etc. One definition 
of operand classes was used for all benchmark applications except for the 
DES application. 
 

5.1 Comparison of ILP and Heuristic Algorithm 
For the comparison of the two proposed selection methods –– ILP and 
heuristic algorithm (HA), we used small benchmark programs so that the 
ILP solver would terminate within a reasonable amount of time. Each 
small benchmark program written in C contains only one function other 
than main. For each benchmark program, a pattern library was created 
and then the two selection methods were applied. For an ILP solver, a 
public domain software lp_solve [15] was used on a Pentium 866 MHz 
Linux PC. Table 2 shows the results.  
 

Table 2. Comparison of ILP and heuristic algorithm 
Exp. total  

#cycle reduction 
run-
time

#C.I.’s 
selected 

Bench-
mark 

(Func) 

#inst 
(code
size)

#patt. 
in the 
library

#cycle 
(basic 

IS) ILP HA ILP ILP HA 
EncAC 157 135 586062 229674 229674 129 19 19 
Quant 67 106 302782 139693 139693 11 14 15 
Bound 51 78 141502 47533 47533 < 1 10 11 
Zigzag 47 81 174801 70033 70033 3 11 12 
Decode 217 193 50932 16706 16704 89 25 24 
AdpEnc 195 178 932700 239788 239779 104 23 25 

 

  In Table 2, the 2nd to 4th columns show the code size (in terms of the 
number of basic instructions), the number of (unique) complex 
instructions in the library 8 , and the cycle count with the basic IS, 
respectively. The fifth and sixth columns show the number of cycles 
reduced by the selected set of complex instructions. The seventh column 
shows the ILP solver run-time in seconds, and the eighth and ninth 
columns show the number of selected complex instructions. In all cases, 
the heuristic algorithm could find the optimal or a near-optimal solution 
with a very short run-time (less than 1 second), while the ILP problems 
sometimes cannot be solved due to rounding errors.  This demonstrates 
the efficacy of our heuristic with respect to an ILP formulation. 
                                                 
6 From Telenor R&D distribution (ver. 2.0), which is originally based on 
an implementation by MPEG Software Simulation Group, 1994. 
7 From MediaBench, http://www.cs.ucla.edu/~leec/mediabench/ . 
8 Complex instructions that require more bits than IBW are not added to 
the library. 

653



5.2 Comparison of Basic, Synthesized, Native IS’s 
To evaluate the effectiveness of the proposed IS synthesis technique, 
four realistic applications were used as benchmark programs: JPEG 
encoder, H.263 decoder, ADPCM coder/decoder, and DES (Data 
Encryption Standard) algorithm. The first two are multimedia 
applications, the third one is control-intensive, and the last one is a 
number crunching application with many bit-level operations. For each 
benchmark program, a different complex IS was generated using our 
heuristic algorithm. The generated complex IS was used in a back-end 
optimization pass, which, in a given order, substitutes complex 
instructions for basic instruction sequences. 
  Table 3 compares the results for three different IS’s: the basic IS, the 
synthesized IS (= basic + complex), and the native IS. Both the 
synthesized and the native IS’s include the basic IS, but the synthesized 
IS is specialized for each application while the native IS (the IS of the 
SH-3 architecture) remains the same for all the applications. In the table, 
the 4th to 6th columns show the cycle counts (in millions of cycles) for the 
three IS’s. The performance improvements of the synthesized IS over the 
basic and the native IS are shown in the 7th and 8th columns, where the 
performance is defined as the inverse of the number of cycles. The last 
column shows the number of complex instructions synthesized for each 
benchmark program.  
 

Table 3. Comparison of synthesized IS with the basic & native IS’s 
Bench-
mark 
Prog. 

#inst 
(code 
size) 

#patt. 
in the 
library 

#cycle 
basic 

IS 

#cycle 
native 

IS 

#cycle 
synth. 

IS 

%impr 
over 
basic 

%impr 
over 

native
#C.I.

JPEG 1192 557 2.609 1.855 1.557 67.6 19.1 37 
H263 1475 615 3.090 2.550 1.844 67.6 38.3 36 
ADPCM 437 235 1.674 1.243 1.179 42.0 5.5 39 
DES 1135 517 0.611 0.466 0.399 53.3 16.9 40 

 

  From the table, it is evident that complex instructions improve the 
performance significantly (40 ~ 67 %) compared to the basic IS. 
Furthermore, our approach generates consistent performance 
improvements over the native IS. The amount of this improvement, 
however, depends on the application: it is significant for multimedia 
applications (nearly 20 ~ 40 %), and positive (5 ~ 15 %) for the other 
domains.  
  One of the reasons the synthesized IS gives only a slight improvement 
for the ADPCM application is that the application is control-intensive 
and has small basic blocks often with a few instructions. Since the 
proposed scheme creates complex instructions only within basic blocks, 
it often cannot find performance-improving complex instructions for 
those blocks in control-intensive applications. And in the H.263 
application, one of the reasons the synthesized IS gives especially good 
improvement is that the application has a number of multiplication 
operations (which take place in a different pipeline stage than ALU 
operations in the SH-3 architecture), which makes it possible to exploit 
the parallelism in between the pipeline stages. On the other hand, all the 
other applications have very few multiplication operations.  
  The results in Table 3 also show that, contrary to conventional wisdom, 
the code size and the performance improvement obtained through the use 
of application-specific instructions do not always go against each other. 
This shows that the performance improvement by application-specific 
instructions is not very dependent upon the size of the application, 
although it is certain that the amount will diminish as the application 
grows bigger and more complex.  
  The newly generated complex instructions using our approach include 
subword access instructions (e.g., byte load), their combinations with 
other operations, and several kinds of load-shift and shift-store 
instructions, as well as those already included in the native IS such as 
ADDI+LOAD. One of the interesting instructions found in only 
multimedia applications is the ADD instruction with three different 
register operands, the absence of which, however, is one of the 
distinguishing features of the native IS.  
 

6. Conclusion 
 
We presented a novel IS synthesis technique employing an efficient 
instruction encoding method for configurable ASIPs. The technique 
improves the processor architecture through IS specialization, which 
makes the technique suitable for the emerging class of configurable 
ASIPs being deployed in contemporary SOCs and platform-based 
designs. We formulated the problem using integer linear programming 
and presented an efficient heuristic algorithm. Our experimental results 
demonstrate that through the use of efficient instruction encoding, our 
technique can generate up to 38% performance improvement over the 
native IS of a typical embedded RISC processor, for different domains of 
applications. We believe our approach is thus very useful for designers of 
systems that need customization of programmable engines, but which 
leverage software investments made in existing RISC-based ISAs. 
  Hardware implementation of the synthesized instruction set demands 
the modification of control path, most importantly instruction decoder. 
Modifying instruction decoder to support complex instructions may 
affect the critical path and further the clock speed of the processor, 
potentially leading to degraded performance improvement. This is 
particularly true if we compare the synthesized instruction set with the 
basic one.  Native instruction sets, however, often have their own 
“complex” instructions, sometimes with many odd ones. The instruction 
set synthesis replaces the native complex instructions with application-
specific ones. Therefore, complexity increase of instruction decoder (and 
also the cycle time increase) by using synthesized instruction sets rather 
than the native ones are not necessarily substantial. Thorough 
investigation is needed, though, to quantify the effect of the synthesized 
instructions on the cycle time and the final performance. 
 

7. Acknowledgements 
 
This research was supported in part by grants from Hitachi Inc., 
Motorola Corp. and NSF (CCR-0203813). We also thank members of 
the EXPRESS compiler team in the ACES laboratory for their assistance.  
 

References 
[1] R. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE 

Micro, 2000. 
[2] Tensilica Inc., http://www.tensilica.com/ . 
[3] ARC Cores Inc., http://www.arc.com/ . 
[4] A. Cataldo, “Compiler that converts C-code to processor gates advances,” 

EE Times, Oct. 23, 2001, http://www.eet.com/story/OEG20011023S0028 . 
[5] Y. Zhao et al., “Matching architecture to application via configurable 

processors,” In Proc. ICCD 2001. 
[6] M. Arnold and H. Corporaal, “Designing domain-specific processors,” In 

Proc. Codesign Symposium 2001. 
[7] A. Alomary et al., “PEAS-I: A hardware/software co-design system for 

ASIPs,” In Proc. EURO-DAC 1993. 
[8] J. Van Praet et al., "Instruction set definition and instruction selection for 

ASIPs," In Proc. HLS Symposium 1994. 
[9] H. Choi et al., “Synthesis of application specific instructions for embedded 

DSP software,” IEEE Trans. on Computers, 1999. 
[10] I.-J. Huang and A. Despain, "Synthesis of application specific instruction 

sets," IEEE Trans. on CAD, 1995. 
[11] D. Gajski, High-Level Synthesis, Kluwer Academic Publishers, 1992. 
[12] SH-3/SH-3E/SH3-DSP Programming Manual, Hitachi, Ltd., 2000, available 

at http://www.hitachi-eu.com/hel/ecg/products/micro/pdf/sh7700p.pdf . 
[13] J. Lee et al., “Automatic instruction set design through efficient instruction 

encoding for application-specific processors,” Tech. Report, #02-23, CECS, 
UC Irvine. 

[14] EXPRESS Retargetable Compiler, Univ. of California, Irvine, Project 
website http://www.cecs.uci.edu/~aces/ . 

[15] lp_solve, Version 3.2, available at ftp://ftp.ics.ele.tue.nl/pub/lp_solve/ . 

654




