
Automatic Identification of Application-Specific Functional Units
with Architecturally Visible Storage

Partha Biswas∗

partha@cecs.uci.edu

Nikil Dutt∗

dutt@cecs.uci.edu

Center for Embedded Computer Systems
Donald Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

Paolo Ienne

paolo.ienne@epfl.ch
School of Computer and Comm. Sciences

Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Laura Pozzi†

laura.pozzi@unisi.ch
Faculty of Informatics
University of Lugano

CH-6900 Lugano, Switzerland

Abstract
Instruction Set Extensions (ISEs) can be used effectively

to accelerate the performance of embedded processors. The
critical, and difficult task of ISE selection is often performed
manually by designers. A few automatic methods for ISE
generation have shown good capabilities, but are still lim-
ited in the handling of memory accesses, and so they fail
to directly address the memory wall problem. We present
here the first ISE identification technique that can auto-
matically identify state-holding Application-specific Func-
tional Units (AFUs) comprehensively, thus being able to
eliminate a large portion of memory traffic from cache and
main memory. Our cycle-accurate results obtained by the
SimpleScalar simulator show that the identified AFUs with
architecturally visible storage gain significantly more than
previous techniques, and achieve an average speedup of
2.8× over pure software execution. Moreover, the number
of required memory-access instructions is reduced by two
thirds on average, suggesting corresponding benefits on en-
ergy consumption.

1. Introduction

The design of embedded processors poses a great chal-
lenge due to a stringent demand for high performance, low
energy consumption and low cost—a blend which is not
often found in general purpose processors. On the other
hand, since embedded processors are dedicated to a single

∗ This work was partially supported by NSF grants CCR-0203813 and
CCR-0205712.

† This work was performed while Laura Pozzi was at EPFL.

application—or to a small set of them—unique possibilities
arise for designers, who can exploit their knowledge of the
application in order to achieve the aforementioned blend.

Generally, a cost-effective way to simultaneously speed
up execution and reduce energy consumption is to delegate
time-consuming tasks of the application to dedicated hard-
ware, and leaving less critical parts to traditional software
execution. This can be achieved by adding Application-
specific Functional Units (AFUs) to the processor and In-
struction Set Extensions (ISEs) to the instruction set for ex-
ecuting the critical portions of the application on the AFUs.

Since time-to-market is an important feature for the suc-
cess of embedded processors and manual selection of ISEs
can be a very time-demanding task, automatic identifica-
tion of ISEs for a given application is of extreme impor-
tance. Indeed, a few automated techniques have been pre-
sented that sometimes match the performance of an expert
designer. However, limitations still exist and in some cases
the proposed techniques are still far from achieving the de-
sired results. In particular, an important limitation is the in-
ability of dealing with memory operations and allowing in-
ternal storage inside AFUs; in fact, apart from some sim-
ple exceptions treated in [4], the existing techniques are not
able to include operations that access memory—while it is
well-known that memory traffic reduction is always of vital
importance for performance as well as energy-efficiency.

In this paper, we present an innovative algorithm for
automatic identification of ISEs with architecturally visi-
ble storage: we envision AFUs with small internal mem-
ory (Figure 1) and propose a way to automatically detect
and accelerate even those parts of the application that in-
volve memory accesses. To show the effectiveness of our

3-9810801-0-6/DATE06 © 2006 EDAA

(a) (b) (c)

Register File Register FileRegister File

ScratchpadCacheCache

Memory
Main

Memory
Main

Memory
Main

Cache Scratchpad

AFUAFU AFU

Figure 1. (a) Data is copied from main memory, through cache

and register file, before reaching the AFU. (b) A scratchpad helps

reducing copies and pollution. (c) A local memory inside the AFU

goes beyond previous achievements, by bypassing even the reg-

ister file and reducing copies and pollution to the minimum.

approach, we augment the SimpleScalar [19] processor with
ISEs identified by our proposed algorithm on different ap-
plications. Our cycle-accurate results show that adding ar-
chitecturally visible storage to an AFU results in an increase
in average application speedup over pure software execu-
tion from 1.4× to 2.8×. Furthermore, the number of ac-
cesses to cache and main memory is also reduced by 66%,
which also yields a significant energy reduction.

2. Motivation

Many applications access small portions of mem-
ory multiple times in a frequently executed part of
code. While previous techniques have attempted to
move such memory accesses closer to the computa-
tional core (e.g., using scratchpad memories to reduce
cache pollution), it is clear that we can gain significant ben-
efit from moving such memory accesses directly into
the computation core—i.e., directly into the AFUs (Fig-
ure 1(c)). For example, consider a portion of the fft ker-
nel from the EEMBC suite [20] shown in Figure 2. The
innermost loop is run 2n/2k—i.e., 2n−k times. There-
fore, for each k, there are 2k−1 · 2n−k or 2n−1 ac-
cesses to memory. For n = 8, k goes from 1 to 8 leading
to 8 · 127 = 1024 memory accesses for each array vari-
able in the critical region. Since there are 6 memory
reads and 4 memory writes corresponding to array vari-
ables RealBitRevData[] and ImagBitRevData[], there are
6144 memory reads and 4096 memory writes in the fft ker-
nel for n = 8.

Existing automatic ISE techniques would identify in-
structions composed of data-flow and non-memory-access
operations, such as the butterfly, leaving the memory-
accesses to the processor core. However, if the fft kernel ex-
ecutes in an AFU with a small local memory with a storage
space for 256 elements, all 10240 accesses to main mem-
ory can be redirected to the fast and energy-efficient
AFU-resident local memory.

for (k = 1; k ≤ n; k++)
n1 = 1<<k;
n2 = n1>>1;
...
for (j = 0; j < n2; j++)

...
for (i = j; i < 2n; i += n1)

l = i + n2;
tRealData = (WReal * RealBitRevData[l])

+ (WImag * ImagBitRevData[l]);
tImagData = (WReal * ImagBitRevData[l])

- (WImag * RealBitRevData[l]);
tRealData = tRealData >> SCALE FACTOR;
tImagData = tImagData >> SCALE FACTOR;
RealBitRevData[l] = RealBitRevData[i]

- tRealData;
ImagBitRevData[l] = ImagBitRevData[i]

- tImagData;
RealBitRevData[i] += tRealData;
ImagBitRevData[i] += tImagData;

Figure 2. The fft kernel.

In general, the advantages of an AFU-resident mem-
ory are manifold: it lowers cache pollution, it increases the
scope of ISE algorithms, it increases the resulting perfor-
mance, and it reduces energy consumption. This paper is
the first to present a formal framework for automatically ex-
ploiting AFU-resident memories during ISE generation.

3. Related Work

Most related research efforts in automatic Instruction Set
Extension, such as [1, 6, 7, 5, 2, 3], do not allow memory
instructions to be selected in the acceleration section, and
thus do not consider either memory ports in AFUs or AFU-
resident memory. Thus, they miss the speedup opportuni-
ties enabled for the first time in this work. One recent work
indeed considered memory inside AFUs [4], but only in
very special cases—namely in the cases of read-only mem-
ory and loop-carried scalars. This paper, on the other hand,
presents a general formulation that considers any kind of
vector or scalar access without restriction. Our solution, in
fact, encompasses the special cases treated in [4].

PICO-NPA [14] bears a similarity with our work as its
architectural model permits the storage of reused memory
values in accelerators. But, it does not present a method for
identifying the portions of application code to be mapped
on the accelerator; that is left to a manual choice, while we
present an automated approach in this paper. Another work
in reconfigurable computing [8] considered automatically
selected coprocessors with direct memory access. On the
other hand, our technique identifies whole arrays or scalars
to be loaded into an AFU, and furthermore permits the pro-
cessor to access the AFU memory directly (rather than the
main memory) during inner loop execution. This is an in-
novative proposal, which was not considered in prior work;
our experimental results prove its effectiveness.

Register Promotion [15] is a compiler technique that
aims at reducing memory traffic by promoting memory ac-
cesses to register accesses. However, previous efforts have

not used it in the context of ISEs, where memory accesses
can instead be eliminated by AFU residency—i.e., both
dataflow computation and memory accesses are identified
together and delegated to special computation units, by-
passing even the register file. Finally, the contributions pre-
sented in this paper bear some resemblance with a recent
work on scratchpads [12], and with one using application-
specific memories instead of caches [13]. We go beyond
such approaches by bringing portions of storage closer to
the core—directly inside the AFU that is going to use them
(as shown in Figure 1(c)).

4. Memory-Aware ISE Identification

We first introduce a general formulation of the ISE iden-
tification problem [2] and then we list the differences re-
quired to identify memory holding ISEs. We call G (V, E)
the DAGs representing the dataflow of a critical basic block;
nodes V represent primitive operations and edges E repre-
sent data dependencies. A cut C is a subgraph of G: C ⊆ G.
A function M (C) measures the merit of a cut C, and rep-
resents an estimation of the speedup achievable by imple-
menting C as a special instruction.

We call IN (C) and OUT(C) the number of inputs and
outputs respectively of cut C, while values Nin and Nout in-
dicate the number of register-file read and write ports, re-
spectively, which can be used by the special instruction.
Also due to microarchitectural constraints, operations of a
certain type might not be allowed in a special instruction.
We call F (with F ⊆ V) the set of forbidden nodes that
should never be part of C.

The identification problem is formally stated as follows:
Problem 1 Given a graph G and the microarchitectural features Nin, Nout , and
F , find the cut C which maximizes M (C) under the following constraints:

1. IN (C) ≤ Nin,
2. OUT(C) ≤ Nout,
3. F ∩ C = ∅, and
4. C is convex.

The first two constraints guarantee I/O feasibility, the
third one disallows inclusion of forbidden nodes, while the
last constraint ensures that all inputs are present at the time
of issue. When considering state-holding ISEs, (rather than
purely combinational ones as in [2]), two features must be
adapted: the content of F and the definition of M (C). Ide-
ally, all memory access nodes can now be excluded from
the set F , i.e., they can be included in a cut (in practice,
we apply a compiler pass to exclude from F all accesses
to vectors and loop-carried scalars; pointer accesses are still
not treated at present). The merit function M (C) must take
into account the cost of transferring data between the AFU-
memory and the main memory.

4.1. Architectural Organization

If all memory accesses are forbidden in C, as in previ-
ous work, the envisioned situation is that of Figure 3(a): a

DMA write before loop

DMA read after loop

Basic Block

AFU
cut

(a) (b)

(c) (d)

LD

LD

LD

ST

ST

x

+ -

LD LD LD

-
x x

-+

ST ST

Basic Block

cut

LD LD LD

-
x x

-+

ST ST

x

LD LD
LD

x

+ -

x

ST ST

Local
Mem.

Reg.
File

Main
Mem.

Main
Mem.

Reg.
File

AFU Rest of the processor

Rest of the processorAFU

Figure 3. In previous work, (a) a cut could not include any mem-

ory access nodes (LD/ST) and (b) the corresponding AFU did not

hold state; the AFU fetched all operands from the register file.

Now, (c) a cut can include memory-access operations to a vec-

tor and (d) the corresponding AFU has a copy of the vector in its

internal memory; all memory operations in this basic block ac-

cess the AFU internal memory instead of main memory.

cut can only contain dataflow operations. Figure 3(b) de-
scribes the architectural side: the load/store unit of the pro-
cessor effects the transfers between register file and main
memory, and the AFU fetches its operands from the register
file—like any functional unit. However, when memory ac-
cesses to some vector are allowed in a cut, as shown in Fig-
ure 3(c), a state-holding AFU is taken into consideration.
A state-holding AFU can also include scalar accesses; these
can be treated as a special case of vectors. Figure 3(d) shows
the AFU corresponding to the cut chosen: a copy of the vec-
tor is resident in the internal memory and all memory ac-
cesses to that vector in the basic block—whether included
in the cut or not—access the local AFU memory rather than
the main memory. Architecturally, in the most general case,
the vector in question needs to be transferred from the main
memory to the AFU local memory by Direct Memory Ac-
cess (DMA) before loop execution (i.e., before executing the
critical basic block). As a result, all memory accesses to the
vector are now transformed into internal accesses to the lo-
cal memory instead. At the end of the loop (i.e., after ex-
ecuting the critical basic block) the vector is copied back
to main memory—only if needed. Note the much decreased
register file pressure (only one register read) and reduced
main memory access (only two accesses) in the example of
Figure 3(d).

4.2. Merit Function and Problem Solution

In the following, critical basic block (cbb) refers to the
basic block for which an ISE is currently being identified.

The merit function M (C) per unit execution of cbb is ex-
pressed as follows:

M (C) = λsw(C) − λhw(C) − λoverhead(C), (1)

where λsw(C) and λhw(C) are the estimated software la-
tency (when executed natively in software) and hardware
latency (when executed on an AFU) of the cut C respec-
tively, and λoverhead estimates the transfer cost. Consider a
DMA latency of λDMA, and suppose that the DMA write
and read operations required will be placed in basic blocks
wbb and rbb, whose execution counts are Nwbb and Nrbb

respectively (ideally much smaller than the execution count
of cbb, Ncbb, where the ISE is identified).

The transfer cost can be expressed as:

λoverhead =
Nwbb + Nrbb

Ncbb
· λDMA.

Note that all the considerations above are valid not only
for vectors but also for inclusion of scalar accesses. How-
ever, in the case of scalar accesses, the transfer will be much
cheaper as it does not involve DMA setup and transfer over-
head. In the rest of the paper we will use the term “memory
transfer” for both vectors and scalars.

For a given cbb, the steps for generating ISEs that in-
clude architecturally-visible storage are: (i) Find vectors
and scalars accessed in cbb; for this we can use some
well-known static memory disambiguation techniques [16].
(ii) Search for the most profitable code positions for in-
serting memory transfers between the AFU and the main
memory—this is a fundamental problem and the solution is
discussed in the next section. (iii) Run ISE identification.
We use the ISE identification algorithm presented in [2],
which is an improvement over [1] and can optimally solve
Problem 1 for basic blocks of approximately 1000 nodes. In
the algorithm, we use the updated merit function M (C) ex-
pressed in Equation (1) to evaluate the merit of a selected
cut. The pruning criterion in [2] had to be relaxed in order
to handle memory-awareness correctly.

4.3. Scheduling Data Transfers

To ensure profitability of memory inclusion in an AFU,
memory transfer operations between main memory and the
AFU must be performed in basic blocks with the least pos-
sible execution count. However, they must be performed in
basic blocks that ensure semantic correctness of the pro-
gram. Now, we will discuss where to insert a DMA write
operation (transfers from main memory to AFU); insertion
of DMA read requires a very similar and dual procedure.

Intuitively, for correctness, a DMA write should be in-
serted in a basic block wbb (1) situated after any basic block

3

0

1

2

4

5

6 13

16

14

1512

7

8

9

1110

cbb

p

(a) (c)

0

1

2

4

5

6

7

8

9

2

4

5

6 13

16

14

1512

7

8

9

1110

3

(b)

Figure 4. For the fft example: (a) Control Flow Graph. (b) Set R3:

the set of nodes that can be reached by polluter node 3. (c) Set

D10: the set of nodes that strictly dominate node 10.

that modifies the vector to be included in the AFU, and (2)
which always reaches cbb in the control flow. Therefore, af-
ter identifying accessed vectors and scalars v in cbb, for ev-
ery v, we execute the following steps to determine the ba-
sic block wbb—a node in the CFG—where a DMA write
should be placed:

1. Determine the set P (polluters) of nodes where v is written, excluding cbb.

2. For each node p ∈ P, determine the set of nodes reachable by it including
p, indicated as Rp. Such a set can be obtained in linear time by traversing the
CFG.

3. Determine the set Dcbb of basic blocks which strictly dominate cbb. A node
n1 strictly dominates a node n2 if every path from the procedure entry node
to n2 passes through n1 and n1 �= n2 . This set can be computed in polyno-
mial time by traversing the CFG [17].

4. Compute the intersection of all sets: Swbb = Dcbb ∩ Rp1 ∩ Rp2 ∩ ..., with
p1, p2, ... ∈ P. This represents the set of nodes where it is correct to place a
DMA write operation.

5. Choose the node in Swbb with the least execution count—this is wbb. If
Swbb = φ, the DMA write is not required.

Figure 4 illustrates the algorithm as applied to the fft
example. Figure 4(a) depicts the CFG of the application,
where the entry node is 0, cbb was identified as node 10,
and the set of polluter nodes P consists of node 3 only.
Figure 4(b) shows the set R3, containing nodes 2 to 16.
Figure 4(c) depicts the set Dcbb, which consists of nodes
{0, 1, 2, 4, 5, 6, 7, 8, 9}. It represents the set of nodes where
it is correct to insert a DMA write operation. The node
where it is correct and most beneficial to insert the DMA
write is the one with the least execution count, which in this
case is node 4 (execution counts, not shown here, are gath-
ered with profiling). Therefore, node 4 is finally chosen as
wbb and a DMA write is placed there.

5. Experiments

We implemented our memory-aware ISE generation al-
gorithm on the MACHSUIF [18] framework. We used six
benchmarks to demonstrate the effectiveness of our ap-
proach: adpcm-d (ADPCM Decoder), adpcm-e (ADPCM
Encoder), fft (Fast Fourier Transform), fir (FIR filter), des

Comparison of Speedup
(on default 4-issue Simplescalar)

1

1.5

2

2.5

3

3.5

4

adpcm-d adpcm-e fft fir des des* aes

no MEM
w/ VEC
w/ VEC+SCA

Comparison of Speedup
(on a single-issue Simplescalar)

1

1.5

2

2.5

3

3.5

4

adpcm-d adpcm-e fft fir des des* aes

no MEM
w/ VEC
w/ VEC+SCA

Figure 5. Comparison of speedup for I/O constraints of 4/2 ob-

tained on a four-issue (default) and a single-issue SimpleScalar

with the ARM instruction set.

(Data Encryption Standard), and aes (Advanced Encryption
Standard), taken from Mediabench, EEMBC, and cryptog-
raphy standards. We chose the cycle-accurate SimpleScalar
simulator [19] for the ARM instruction set and modified
it as follows. For vectors, we introduced a DMA connec-
tion between the local memory inside an AFU and the main
memory by adding four new instructions to the instruction
set: two for setting the source and destination addresses and
two for setting the command registers to transfer data from
main memory to AFU memory and vice versa. For handling
scalars, two additional instructions were added to set and
get local registers inside the AFU. Of course, we also added
the application-specific ISEs identified by our ISE genera-
tion algorithm.

The hardware latency for each instruction was obtained
by synthesizing the constituent arithmetic and logic oper-
ators on the UMC 0.18µm CMOS process using the Syn-
opsys Design Compiler. The access latency of the internal
memory (modeled as an SRAM) was estimated using the
Artisan UMC 0.18µm CMOS process SRAM Generator.
The default SimpleScalar architecture is equipped with 4
integer ALUs, 1 integer multiplier/divider, 4 floating-point
adders, 1 floating-point multiplier/divider, and a three-level
memory hierarchy for both instruction and data. The sizes
of L1 and L2 data caches are 2 KB and 32 KB respectively.
The main memory has a latency of 18 cycles for the first
byte and 2 cycles for subsequent bytes. The same latency
is also used when transferring data between main memory
and AFU by DMA.

% Redn in #Instructions Executed

0

10

20

30

40

50

60

70

80

90

adpcm-d adpcm-e fft fir des des* aes

no MEM
w/ VEC
w/ VEC+SCA

% Redn in # Memory Accesses

0

10

20

30

40

50

60

70

80

90

adpcm-d adpcm-e fft fir des des* aes

no MEM
w/ VEC
w/ VEC+SCA

Figure 6. Percentage reduction in the number of instructions ex-

ecuted and the number of memory accesses.

Our baseline case is pure software execution of all in-
structions. We set the I/O constraints to 4 inputs and 2
outputs and generated a single cut to be added as an
ISE to the SimpleScalar architecture. First, we gener-
ated the cut without allowing memory inclusion (“no
MEM”). Then, we allowed local memory inside with vec-
tor accesses (“w/VEC”) and subsequently with scalars ac-
cesses also (“w/VEC+SCA”). For these three cases, we
show in Figure 5 a comparison of speedup on several ap-
plications obtained on the default SimpleScalar archi-
tecture (4-width out-of-order issue) as well as on the
single-issue SimpleScalar architecture.

Observe that (1) the speedup is raised tangibly when
state holding AFUs are considered (1.4× on average for the
case with no memory, to 2.8× for the “w/VEC+SCA” case,
on the default architecture, and (2) the trend of speedups
obtained on the two different configurations of the Sim-
pleScalar architecture is the same. The label des∗ indicates
the results for des with 3 ISEs rather than with a single
one (des is the only benchmark where a single cut was not
enough to cover the whole kernel).

Figure 6 shows the reduction in the number of instruc-
tions executed and in the number of memory accesses. In-
terestingly, there is an average 9% reduction in memory op-
erations even before incorporating memory inside the AFU.
This is because the ISEs generally reduce register need
(multiple instructions are collapsed into one) and therefore
reduce spilling.

With the incorporation of memory inside the AFU, the
average reduction in memory instructions is a remarkable
two thirds, hinting a very tangible energy reduction. Ta-
ble 1 shows that the sizes of the vectors incorporated in
the AFU for the given benchmarks are fairly limited. Note
that by handling vectors and scalars in a unified manner,

− +

RealBitRevData[l]

ld ld

* *

>>

st

ld

+

RealBitRevData[l]

st

−
ld

RealBitRevData[i]

>>

ld

st

−

ld

st

+

ImagBitRevData[l]

ImagBitRevData[l]

(4−input
ISE

2−output)

ImagBitRevData[i]

WReal WReal

WImag

**

Figure 7. Data Flow Graph of fft. The whole kernel is chosen

when architecturally visible storage is allowed; only the cut in

a dotted line is chosen otherwise.

our results clearly subsume the merits of including read-
only memory and state registers as presented in [4]. The
benchmarks adpcm-d, adpcm-e, and fir very clearly show
the advantage of including scalars by exhibiting a marked
increase in speedup due to the increased scope of ISE. Fig-
ure 7 shows the kernel of fft, with the omission of address
arithmetic. With local storage inside the AFU, a single cut
covers the entire DFG, thus almost doubling the speedup
obtained without memory in the AFU.

6. Conclusions

Embedded processors can be accelerated by augment-
ing their core with application-specific Instruction Set Ex-
tensions. Traditionally, memory access operations were ei-
ther not included in ISEs or were limited to special classes
of memory operations; thus ISEs were so far limited by
the “memory wall” problem. Our paper is the first compre-
hensive effort to overcome the memory wall problem for
ISEs. Specifically, our main contributions are as follows: (1)
We show an architectural modification to include architec-
turally visible storage inside ISEs, clearly encompassing the
special cases addressed by previous work. (2) We introduce
an algorithm to profitably identify code positions for insert-
ing data transfers between the main memory and the local
storage in ISEs. We demonstrate the effectiveness of our
approach by incorporating the generated ISEs in the cycle-
accurate SimpleScalar simulator. Our results show that the
average speedup on a number of benchmarks increases from
1.4× to 2.8× by including architecturally-visible storage
in ISEs. Furthermore, an accompanied reduction of costly
memory accesses by two thirds clearly highlights a con-
comitant reduction in energy.

In this work, we only considered array variables as vec-
tors and manually verified that there is no malicious access
to those vectors through pointers. In future, we plan to ex-
tend our approach to include pointer variables also, using
existing pointer disambiguation techniques. Another possi-
ble future direction is to exploit the data reuse within the

Benchmarks Array Identifier Size (bytes)

adpcm-d stepsizeTable 356
indexTable 64

adpcm-e stepsizeTable 356
indexTable 64

fft RealBitRevData 512
ImagBitRevData 512

fir inbuf16 528
coeff16 128

des des SPtrans 2048
aes Sbox 256

Table 1. Summary of local memories selected for the different

benchmarks.

critical section of an application and pipeline the ISE ex-
ecution in successive iterations, while bringing inside only
the required portion of memory.

References
[1] K. Atasu, L. Pozzi and P. Ienne. Automatic Application-Specific Instruction-

Set Extensions under Microarchitectural Constraints. In Proc. of DAC, 2003.

[2] L. Pozzi, K. Atasu, and P. Ienne. Optimal and Approximate Algorithms for the
Extension of Embedded Processor Instruction Sets. To appear in IEEE TCAD.

[3] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction gener-
ation for configurable processor architectures. In Proc. of FPGA, 2004.

[4] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt. Introduc-
tion of Local Memory Elements in Instruction Set Extensions. In Proc. of DAC,
2004.

[5] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi and P. Ienne. ISEGEN: Generation of
High-Quality Instruction Set Extensions by Iterative Improvement. In Proc. of
DATE, 2005.

[6] N. Clark, H. Zhong and S. Mahlke. Processor Acceleration through Automated
Instruction Set Customization. In Proc. of MICRO, 2003.

[7] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. Synthesis of Custom Proces-
sors based on Extensible Platforms. In Proc. of ICCAD, 2002.

[8] T. Callahan and J. Wawrzynek. Adapting Software Pipelining for Reconfig-
urable Computing. In Proc. of CASES, 2000.

[9] A. Wang, E. Killian, D. Maydan and C. Rowen. Hardware/Software Instruction
Set Configurability for System-on-chip Processors. In Proc. of DAC, 2001.

[10] R. Razdan and M. D. Smith. A High-performance Microarchitecture with
Hardware-programmable Functional Units. In Proc. of MICRO, 1994.

[11] Z. A. Ye, A. Moshovos, S. Hauck and P. Banerjee. CHIMAERA: A High-
performance Architecture with a Tightly-coupled Reconfigurable Functional
Unit. In Proc. of ISCA, 2000.

[12] S. Steinke, L. Wehmeyer, B.S. Lee and P. Marwedel. Assigning Program and
Data Objects to Scratchpad for Energy Reduction. In Proc. of DATE, 2002.

[13] L. Benini, A. Macii, E. Macii, M. Poncino. Synthesis of Application-Specific
Memory for Power Optimization in Embedded Systems. In Proc. of DAC, 2000.

[14] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail et al. PICO-NPA: High-Level
Synthesis of Nonprogrammable Hardware Accelerators. Journal of VLSI Sig-
nal Processing Systems archive, Volume 31, Issue 2, pages 127-142, 2002.

[15] K. D. Cooper and J. Lu. Register Promotion in C Programs. In Proc. of PLDI,
1997.

[16] D. M. Gallagher. Memory Disambiguation to Facilitate Instruction-Level Par-
allelism Compilation. PhD Thesis, University of Illinois, Urbana-Champaign,
1995.

[17] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[18] Machine SUIF. http://www.eecs.harvard.edu/hube/software/
software.html.

[19] The SimpleScalar Tool Set, Version 2.0. Computer Architecture News, pp. 13-
25, 1997.

[20] The EEMBC TeleBenchTM , Version 1.1. http://www.eembc.org/
benchmark/telecom.asp.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

