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Abstract 

 

Memory and communication architectures have a significant 
impact on the cost, performance, and time-to-market of complex 
multi-processor system-on-chip (MPSoC) designs. The memory 
architecture dictates most of the data traffic flow in a design, which in 
turn influences the design of the communication architecture. Thus 
there is a need to co-synthesize the memory and communication 
architectures to avoid making sub-optimal design decisions. This is in 
contrast to traditional platform-based design approaches where 
memory and communication architectures are synthesized separately. 
In this paper, we propose an automated application specific co-
synthesis methodology for memory and communication architectures 
(COSMECA) in MPSoC designs. The primary objective is to design a 
communication architecture having the least number of busses, which 
satisfies performance and memory area constraints, while the 
secondary objective is to reduce the memory area cost. Results of 
applying COSMECA to several industrial strength MPSoC 
applications from the networking domain indicate a saving of as 
much as 40% in number of busses and 29% in memory area 
compared to the traditional approach.  

 

1 Motivation 
 

Modern multi-processor system-on-chip (MPSoC) designs are 
rapidly increasing in complexity. These designs are characterized by 
large bandwidth requirements and massive data sets which must be 
stored and accessed from memories, especially for applications in the 
multimedia and networking domains. The communication architecture 
in such systems, which must cope with the entire inter-component 
traffic, not only impacts performance considerably, but also consumes 
a significant chunk of the design cycle [1-2]. Another major factor 
influencing performance is the memory architecture, which can 
occupy upto 70% of the die area [3]. Estimates indicate that this 
figure will go up to 90% in the coming years [4]. Since memory and 
communication architectures have such a significant impact on 
system cost, performance and time-to-market, it becomes imperative 
for designers to focus on their exploration and synthesis early in the 
design flow, with the help of efficient design flow concepts such as 
those proposed in platform-based design [6].  

Traditionally, in platform-based design, memory synthesis is 
performed before the communication architecture synthesis step [7-
11]. While treating these two steps separately is done mainly due to 
tractability issues [5][12], it can lead to sub-optimal design decisions. 
Consider the example of a networking MPSoC subsystem shown in 
Fig. 1(a). The figure shows the system after HW/SW partitioning, 
with all the IPs defined, including memory which is synthesized based 
on data size and high-level bandwidth constraint analysis. Fig. 1(b) 
shows the traditional approach where communication architecture 
synthesis is performed after memory synthesis, while Fig. 1(c) shows 
the case where memory and communication architectures have been 
co-synthesized. Now let us consider the implications of using a co-
synthesis methodology. Firstly, the co-synthesis approach is able to 

detect that the data arrays stored in Mem1 and Mem2 end up sharing 
the same bus, and automatically merges and then maps the arrays onto 
a larger single physical memory from the library, thus saving area. 
Secondly, the co-synthesis approach is able to merge data arrays 
stored in Mem3 and Mem5 onto a single memory from the library, 
saving not only area but also eliminating two busses, as shown in Fig. 
1(c). However, Mem5 cannot share the same bus as Mem3 (or Mem4) 
in Fig. 1(b) because the access times of the pre-synthesized physical 
memories are such that they cause traffic conflicts which violate 
bandwidth constraints. Thirdly, due to the knowledge of support for 
out-of-order (OO) transaction completion [14] by the communication 
architecture, the co-synthesis approach is able to add an OO buffer of 
depth 6 to Mem4, which enables it to reduce the number of ports from 
2 to 1, thus saving area, while still meeting bandwidth constraints. It 
is thus apparent that the co-synthesis approach is able to make better 
decisions by taking the communication architecture into account 
while allocating/mapping data arrays to memory components, which 
reduces the cost of the system.  
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Fig. 1 (a) MPSoC system example with (b) memory synthesis 
before communication architecture synthesis, and (c) co-synthesis 
of memory and communication architectures 
 

In this paper, we propose an automated application specific co-
synthesis methodology for memory and communication architectures 
(COSMECA) in MPSoC designs. The primary objective is to design a 
communication architecture having the least number of busses, which 
satisfies performance and memory area constraints, while the 
secondary objective is to reduce the memory area cost. We consider a 
bus matrix (sometimes also called crossbar switch) [18] type of 
communication architecture for synthesis, since it is increasingly 
being used by designers in high bandwidth designs today. Our 
approach tailors the memory and communication architectures to the 
application being considered, to reduce system cost. Using a 
combination of an efficient static branch and bound hierarchical 
clustering algorithm and heuristics, we are able to quickly prune the 
uninteresting portion of the design space, while using fast transaction-
based bus cycle-accurate SystemC [19] simulation models to capture 
dynamic system-level effects accurately and verify the results. 
COSMECA effectively synthesizes bus topology, arbitration schemes, 
bus speeds and OO buffer sizes for the communication architecture; 
and simultaneously performs data array allocation/mapping to 
memory blocks, deciding their number, sizes, ports and types from the 
memory library, for the memory subsystem. To the best of our 
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knowledge, no previous work has performed automated co-synthesis 
considering so many exploration parameters. Results of applying 
COSMECA to several industrial strength MPSoC networking 
applications indicate a saving of as much as 40% in number of busses 
and 29% in memory area, compared to the traditional approach of 
separate synthesis. 
 

2 Related Work 
 

Communication architectures have been the focus of much research 
over the past several years because of their significant impact on 
system performance [12][24][26]. Hierarchical shared bus 
communication architectures such as those proposed by AMBA [15], 
CoreConnect [16] and STbus [17] can cost effectively connect few 
tens of IPs, but are not scalable to cope with the demands of modern 
MPSoC systems. Network-on-Chip (NoC) based communication 
architectures [20] have recently emerged as a promising alternative to 
handle communication needs for the next generation of high 
performance designs, but research on the topic is still in its infancy, 
and few concrete implementations of complex NoCs exist to date 
[21]. Currently, designers are increasingly making use of bus matrix 
[18] communication architectures to meet the bandwidth requirements 
of modern MPSoC systems. The need for bus matrix architectures in 
high performance designs and its superiority over hierarchical shared 
busses has been emphasized in previous work [22-24]. Accordingly, 
we focus on the synthesis of bus matrix communication architectures. 

Although a lot of work has been done in the area of hierarchical 
shared bus architecture synthesis (e.g. [25-26]) and NoC architecture 
synthesis (e.g. [27-28]), few efforts have focused on bus matrix 
synthesis. [29] proposed a transaction based simulation environment 
that allows designers to explore and design a bus matrix. But the 
designer needs to manually specify the communication topology, and 
arbitration scheme, which is too time consuming for today’s complex 
systems. The automated synthesis approach for STBus crossbars 
proposed in [30] generates crossbar topology, but does not consider 
generation of parameters such as arbitration schemes, bus speeds and 
OO buffer sizes, which considerably impact system performance 
[12][26]. COSMECA overcomes these shortcomings by automating 
the synthesis of both topology and parameters for the bus matrix.  

Previous research in the area of memory and communication 
architecture synthesis has either ignored the co-synthesis aspect, or 
focused on a small subset of the problem. Typically, high-level 
synthesis approaches perform memory allocation and mapping before 
communication architecture synthesis [7-11], ignoring the overhead 
of the communication protocol during synthesis. While treating these 
two steps separately is mainly due to tractability issues [5][12], the 
merits of integrating communication synthesis with memory synthesis 
are clearly demonstrated in [13]. Only a few approaches have 
attempted to simultaneously explore memory and communication 
subsystems. [31] presents a tool to automatically generate a full 
crossbar and a dynamic memory management unit (DMMU). [32] 
considers the connectivity topology early in the design flow in 
conjunction with memory exploration, for simple processor-memory 
systems. More recently, [33] deals with bus topology and static 
priority based arbitration exploration, to determine the best memory 
port-to-bus mapping for pre-synthesized memory blocks. Other 
approaches which deal with memory synthesis make use of static 
estimations of communication architectures such as those proposed in 
[34]. However, these techniques are unable to capture dynamic effects 
such as contention and capture only a limited exploration space. 
COSMECA  improves upon previous approaches by (i) automatically  
generating bus topology and parameter values for arbitration schemes, 
bus speeds and OO buffer sizes, while considering dynamic 
simulation effects, and (ii) simultaneously determining a  mapping  of  
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Fig. 2 Bus matrix architecture 
 

data arrays to physical memories while also deciding the number, 
size, ports and type of these memories, from a memory library.  
 

3 Bus Matrix Communication Architectures 
 

This section describes bus matrix architectures. Fig. 2 (a) shows a 
three-master, five-slave full AMBA bus matrix. A bus matrix consists 
of several busses in parallel which can support concurrent high 
bandwidth data streams. The Input stage is used to handle interrupted 
bursts, and to register and hold incoming transfers if receiving slaves 
cannot accept them immediately. Decode generates select signals for 
slaves. Unlike in traditional shared bus architectures, arbitration in a 
bus matrix is not centralized, but distributed so that every slave has its 
own arbitration. Also, typically, all busses within a bus matrix have 
the same data bus width, which usually depends on the application. 

One drawback of the full bus matrix structure shown in Fig. 2(a) is 
that it connects every master to every slave in the system, resulting in 
a prohibitively large number of busses. The excessive wire congestion 
can make it practically impossible to route and achieve timing closure 
for the design [1-2]. Fig. 2(b) shows a partial bus matrix which has 
fewer busses and consequently uses fewer components (e.g. decoders, 
arbiters, buffers), has a smaller area and also utilizes less power. The 
basic idea here is to group slaves/memories on shared busses, as long 
as performance constraints are met. Points A and B in Fig. 2(b) are 
referred to as slave access points (SAPs). The communication 
architecture synthesis in COSMECA attempts to generate a partial bus 
matrix tailored to the target application, with a minimal number of 
busses in the matrix. Additionally, we generate arbitration schemes at 
the SAPs, bus clock speed values and OO buffer size values. 
 

4 Memory Subsystem 
 

There are a variety of different memory types available to satisfy 
memory requirements in applications. Typically, designers have used 
off-chip DRAMs for larger memory requirements and on-chip 
embedded SRAMs for smaller memory requirements. Lately, on-chip 
embedded DRAMs are gaining in popularity as they eliminate I/O 
signals to separate memory chips, boosting performance and reducing 
noise, as well as pin count, which ends up lowering system cost. 
Although SRAMs have smaller access times than DRAMs, they also 
take up a larger area, requiring a tradeoff between area and 
performance between the two memory types during synthesis. There 
is also a need for non-volatile memories such as EPROMs and 
EEPROMs to typically store read-only data in a system. The memory 
synthesis in COSMECA uses a memory library populated by on-chip 
SRAMs, on-chip DRAMs, EPROMs and EEPROMs having different 
capacities, areas, ports and access times. We assume that the word 
size of these memories is fixed, based on the application. Data arrays 
and groups of scalars in the application are grouped together into 
virtual memories (VMs) based on certain rules, before being mapped 
onto the appropriate physical memories from the library, which allow 
the application to meet its area and performance constraints. This 
grouping of data blocks allows us to reduce the number of memories 
in the design, thus reducing area. We also try to avoid multi-port 
memories because of their excessive area and cost overhead. 



5 COSMECA Co-Synthesis Methodology 
    

5.1 Assumptions and Problem Definition 
 

We are given an application for which we assume the HW/SW 
partitioning has already been performed. The resulting MPSoC design 
has possibly several hardware and software IPs onto which 
application functionality has been mapped. Memory in this model is 
initially represented by abstract data blocks (DBs) which are 
collections of scalars or arrays accessed by the application, similar to 
basic groups in [10]. Generally, this MPSoC design will have 
performance constraints, dependent on the application. The 
throughput of communication between components is a good measure 
of the performance of a system [25]. To represent performance 
constraints in COSMECA, we define a Communication Throughput 
Graph CTG = G(V,A) [2] which is a directed graph, where each 
vertex v represents an IP (or DB) in the system, and an edge a 
connects components that need to communicate with each other. A 
Throughput Constraint Path (TCP) is a sub-graph of a CTG, 
consisting of a single master for which data throughput must be 
maintained and other masters, slaves and DBs which are in the critical 
path that impacts the maintenance of the throughput.  
Problem Definition: A bus B can be considered to be a partition of 
the set of components V in a CTG, where B ⊂  V. Then our primary 
objective is to determine an optimal component to bus assignment for 
a bus matrix architecture, such that the partitioning of V onto N 
busses results in a minimal number of busses |N| and satisfies memory 
area bounds while meeting all constraints in the design, represented 
by the TCPs in a CTG. As a secondary objective, we attempt to reduce 
memory area cost of the solution. 
 

5.2 Simulation Engine 
 

Since communication behavior in a system is characterized by 
unpredictability due to dynamic bus requests from IPs, contention for 
shared resources, buffer overflows etc., a simulation engine is 
necessary for accurate performance estimation. COSMECA uses a 
hybrid approach based on static estimation as well as dynamic 
simulation. For the dynamic simulation part, we capture behavioral 
models of IPs and bus architectures in SystemC [19][26], and keep 
them in an IP library database. Since simulation speed is important, 
we chose a fast transaction-based, bus cycle accurate modeling 
abstraction, which averaged simulation speeds of 150–200 
Kcycles/sec [26], while running embedded software applications on 
processor ISS models. The communication model in this abstraction 
is extremely detailed, capturing delays arising due to frequency and 
data width adapters, bridge overheads, interface buffering and all the 
static and dynamic delays associated with the standard bus 
architecture protocol being used. 
 

5.3 Communication-Memory Constraint Set Ψ 
 

In the interest of generating a practically realizable system, we 
allow a designer to specify a discrete set of valid values (referred to as 
a constraint set Ψ) for communication parameters such as bus clock 
speeds, OO buffer sizes and arbitration schemes. Additionally, Ψ 
allows the specification of constraints on the type of memory to 
allocate for DBs, for instance, in the case of a DB which the designer 
knows must be read from an EEPROM memory. We allow the 
specification of two types of constraint sets for components – a global 
constraint set (ΨG) and a local constraint set (ΨL). The presence of a 
local constraint overrides the global constraint, while the absence of it 
results in the resource inheriting global constraints. For instance, a 
designer might set the allowable bus clock speeds for a set of busses 
in a subsystem to multiples of 33 MHz, with a maximum speed of 166 
MHz, based on the operation frequency of the cores in the subsystem, 

while globally, the allowed bus clock speeds are multiples of 50 MHz, 
up to maximum of 400 MHz. This provides a convenient mechanism 
for the designer to bias the co-synthesis process based on knowledge 
of the design and the technology being targeted. Such knowledge 
about the design is not a prerequisite for using our co-synthesis 
framework, but informed decisions can help avoid the synthesis of 
unrealistic system configurations. 

 

5.4 COSMECA Flow 
 

We describe the COSMECA flow in more detail in this section. Fig. 
3 gives a high level overview of the flow. The inputs to COSMECA 
include a Communication Throughput Graph (CTG), a library of 
behavioral IP models (IP library) and memory models (mem library), 
a Data Block Dependency Graph (DBDG), a target bus matrix 
template (e.g. AMBA [15] bus matrix) and a communication-memory 
constraint set (Ψ) – which includes ΨG and ΨL. The general idea is to 
first preprocess the memory (represented by DBs in the CTG) in the 
design by merging the non conflicting DBs into virtual memory (VM) 
blocks to reduce memory cost. Then we map the modified CTG to a 
full bus matrix template and optimize the matrix by removing unused 
busses. Next, we perform a static branch and bound hierarchical 
clustering of slave components in the matrix which further reduces 
the number of busses, and store prospective matrix architecture 
solutions in a ranked matrix solution database. We then use a 
heuristic (memmap), which first merges VMs at each SAP to further 
reduce memory cost and then maps these VMs to physical memory 
modules from the memory library. The output of memmap is a set of 
N valid solutions which meet memory area and performance 
constraints. Finally we optimize the output solutions to reduce bus 
speeds, arbitration costs and fix OO buffer sizes. We now elaborate 
on the five phases in the COSMECA flow, shown in Fig. 3. 
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Fig. 3 COSMECA flow 
 

Phase 1. mem preprocess: In the first phase, we merge DBs in the 
CTG into VMs to reduce memory area cost, by potentially reducing 
the number of memory modules in the system. Only DBs with (i) 
similar edges (i.e. edges from the same masters) and (ii) non-
overlapping access are merged, so as not to constrain mapping 
freedom later in the flow. We use a Data Block Dependency Graph 
(DBDG) to determine if DBs have non-overlapping access. Fig. 4(b) 
shows the DBDG for the example in Fig. 4(a). The DBDG shows the 
dependency of DB accesses on each other – a DB cannot be accessed 
till the source DBs of all its input edges have been accessed. If two 
DBs have similar edges and non-overlapping access, they are eligible 
for merger (e.g. DB1, DB2 in Fig. 4(b)). The size of the VM created 
depends on the lifetime analysis of merged DBs – it is the sum of the 
sizes of the merged DBs, unless the lifetimes do not overlap, in which 
case it is the size of the larger DB being merged. Fig 4(b) shows the 
lifetime of DB1. It is possible for DB2 to overwrite DB1, thus saving 
memory space. More details can be found in our technical report [35].     

Phase 2. matrix map and analyze: In the second phase, the 
modified CTG is mapped onto a full bus matrix, which is then pruned 
by removing unused busses. Dedicated slave and memory 
components are migrated to the  local  busses  of  their  corresponding  
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Fig. 4 COSMECA co-synthesis example 
 

masters to further reduce busses in the matrix. Fig. 4(d) shows the bus 
matrix after these steps, for the example in Fig. 4(a). Finally, we 
perform Transaction Level (TLM) simulation [26] of the application, 
assuming no arbitration contention, to obtain application-specific data 
traffic statistics such as the number of transactions on a bus and 
average transaction burst size on a bus. Knowing the bandwidth to be 
maintained on a bus from the TCPs in the CTG, we can also estimate 
the minimum clock speed at which any bus in the matrix must 
operate, in order to meet its throughput constraint, as follows. The 
data throughput ( Γ TLM/B) from the TLM simulation, for any bus B in 
the matrix is given by 

Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / σ  
 

where numT is the number of data transactions on bus B, sizeT is the 
average data transaction size, width is the bus width, Ω  is the clock 
speed, and σ  is the total number of cycles of TLM simulation for the 
application.  The values for numT, sizeT and σ  are obtained from the 
TLM simulation. To meet throughput constraint Γ TCP/B for bus B,  

Γ TLM/B ≥  Γ TCP/B 
∴    Ω B ≥  (σ  × Γ TCP/B) / (numTB × sizeTB × widthB) 

The minimum bus speed thus found is used to create (or update) the 
local bus speed constraint set ΨL(speed) for bus B. 
Phase 3. Branch and bound clustering algorithm: In the third 
phase, a static branch and bound hierarchical clustering algorithm is 
used to cluster slave/memory components to reduce the number of 
busses in the matrix even further. Note that we do not consider 
merging masters because it adds two levels  of  contention  (one at the  
master end and another at the slave end) in a data path, which can 
drastically degrade system performance. Before describing the 
algorithm, we present a few definitions. A slave cluster SC = {s1…sn} 
refers to an aggregation of slaves that share a common arbiter. Let 
MSC refer to the set of masters connected to a slave cluster SC. Next, 
let Π SC1/SC2 be a superset of sets of busses which are merged when 
slave clusters SC1 and SC2 are merged. Finally, for a merged bus set 
β = {b1…bn}, where β ⊂ Π SC1/SC2, βΚ  refers to the set of allowed 
bus speeds for the newly created bus when the busses in set β  are 
merged, and is given by 
 

βΚ  = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … ∩ ΨL(speed)(bn) 
The branching algorithm starts by clustering two slave clusters at a 
time, and evaluating the gain from this operation. Initially, each slave 
cluster has just one slave. The total number of clustering 
configurations possible for a bus matrix with n slaves is given by (n! 
×  (n-1)!)/2(n-1). This creates an extremely large exploration space, that 

   Step 1:  if (exists lookupTable(SC1,SC2))  then discard duplicate clustering 
 else  updatelookupTable(SC1, SC2) 
   Step 2:  if (MSC1 ∩  MSC2 == φ ) then bound clustering 
 else  cum_weight = cum_weight + | MSC1 ∩ MSC2| 
   Step 3: for each set β  ∈  Π SC1/SC2 do   

       if  (( βΚ == φ ) || ( ∑
=

||β

Γ
1i

TCP/i > (widthB ×  max_speedB))) then 

       bound clustering 
 

Fig. 5 bound function 
 

is too time-consuming to traverse. In order to consider only valid 
clustering configurations, we make us of a bounding function. 

Fig. 5 shows the pseudocode for the bound function which is called 
after every clustering operation of any two slave clusters SC1 and 
SC2. In Step 1, we use a look up table to see if the clustering 
operation has already been considered previously, and if so, we 
discard the duplicate clustering. Otherwise we update the lookup table 
with the entry for the new clustering. In Step 2, we check to see if the 
clustering of SC1 and SC2 results in the merging of busses in the 
matrix, otherwise the clustering is not beneficial and the solution can 
be bounded. If the clustering results in bus mergers, we calculate the 
number of merged busses for the clustering and store the cumulative 
weight of the clustering operation in the branch solution node. In Step 
3, we check to see if the allowed set of bus speeds for every merged 
bus is compatible or not. If the allowed speeds for any of the busses 
being merged are incompatible ( βΚ == φ  for any β ), the clustering 
is not possible and we bound the solution. Additionally, we also 
calculate if the throughput requirement of each of the merged busses 
can be theoretically supported by the new merged bus. If this is not 
the case, we bound the solution. The bound function thus enables a 
conservative pruning process which quickly eliminates invalid 
solutions and allows us to rapidly converge on the optimal solution. 
The solutions obtained from the algorithm are ranked from best (least 
number of busses) to worst and stored in a ranked matrix solution 
database. Fig. 4(e) shows the best solution after this phase, for the 
example in Fig. 4(a). For each of the solutions, we set OO buffer sizes 
to the maximum allowed in Ψ, for the components which support it. 
For the arbitration scheme at the SAPs, we use a TDMA/RR strategy 
to proportionally grant accesses to masters based on the  magnitude of 
throughput requirements. Our previous work has shown the 
effectiveness of TDMA/RR for this purpose [26]. 

Phase 4. memmap heuristic: In the next phase, we use a heuristic 
(memmap) to guide the mapping of VMs to physical memories in the 
memory library. The goal is to find N solutions which satisfy memory 
area and performance constraints of the design. The general idea is to 
first simulate the best solution from the ranked matrix solution 
database, to generate memory access traces, which are used to 
determine the extent of access overlap of VMs at each SAP. If the 
overlap is below a user defined overlap threshold τ, we merge the 
VMs. Fig. 4(e) shows how we merge VM2 and VM3, as their memory 
access trace shown in Fig. 4(c) has an overlap less than the chosen 
value for τ. We then map the VMs in the design to physical memories 
from the memory library. We initially choose the best memory from 
the library which fits the size requirement and has the maximum port 
bandwidth. If we find that the throughput constraints are not met even 
for the memory with best performance, we discard the matrix 
solution, and go back to select the next best matrix solution from the 
ranked matrix solution database. Otherwise, if throughput constraints 
are met, and memory area constraints are also met, we add the 
solution to the final solution database. We then attempt to lower 
memory area by randomly selecting a VM at every SAP and replacing 
the mapped physical memory with one which meets the size 
requirements, but has lower area. If there is no performance violation, 
and if the area bounds are met, we have found a solution. We keep 



repeating this process till all VMs become ineligible for mapping 
optimization, or if the required N solutions have been found. If we 
encounter the former case and the number of solutions found is less 
than N, we proceed to select the next best solution from the ranked 
matrix solution database and repeat the process. A detailed 
description of the heuristic can be found in our technical report [35]. 

Phase 5. optimize design: Finally, we call the optimize design 
procedure for each of the N solutions obtained in the last phase. This 
simple procedure attempts to minimize (i) bus speeds, (ii) arbitration 
scheme implementation cost and (iii) fix OO buffer sizes. The 
procedure first iterates over the busses in a solution, reducing the bus 
speed to the lowest possible allowed, simulating the design to ensure 
that no performance constraints are violated. Similarly, the procedure 
attempts to iteratively replace the TDMA/RR arbitration scheme with 
a static priority based scheme (which has lower implementation cost) 
at each SAP, with priorities assigned depending on bandwidth 
requirements. Finally we fix the size of the OO buffer sizes wherever 
applicable to the maximum number of buffers used during simulation, 
if the number is less than the maximum allowed buffer size. 
 

6 Case Studies 
 

We applied the COSMECA approach to four industrial strength 
MPSoC applications – PYTHON, SIRIUS, VIPER2 and HNET8 – 
from the networking domain. PYTHON and SIRIUS are variants of 
existing industrial strength designs, VIPER2 and HNET8 are larger 
systems which have been derived from the next generation of MPSoC 
applications currently in development. Table 1 shows the number of 
components in each of these applications, after HW/SW partitioning. 
Note that the Masters column includes the processors in the design, 
while the Slaves column does not include the memory blocks, which 
will be co-synthesized with the communication architecture later. 

 

Table 1. Core distribution in MPSoC applications 
 

Applications Processors Masters Slaves 
PYTHON 2 3 8 
SIRIUS 3 5 10 
VIPER2 5 7 14 
HNET8 8 13 17 
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Fig. 6 SIRIUS Communication Throughput Graph (CTG) 
 

Fig. 6 shows the CTG for the SIRIUS application, after the initial 
memory preprocessing phase in which DBs are merged into VMs. Not 
shown in the CTG, but included in our memory area analysis are the 
32 KB instruction and data caches for each of the three processors. 
For clarity, the TCPs are presented separately in Table 2. µP1 is a 
protocol processor (PP) while µP2 and µP3 are network processors 
(NP). The µP1 PP is responsible for setting up and closing network 
connections, converting data from one protocol type to another, 

generating data frames for signaling, operating and maintenance and 
exchanging data with NP using shared memory. The µP2 and µP3 
NPs directly interact with the network ports and are used for 
assembling incoming packets into frames for the network 
connections, network port packet/cell flow control, assembling 
incoming packets/cells into frames, segmenting outgoing frames into 
packets/cells, keeping track of errors and gathering statistics. ASIC1 
performs hardware cryptography acceleration for DES, 3DES and 
AES. The DMA is used to handle fast memory to memory and 
network interface data transfers, freeing up the processors for more 
useful work. SIRIUS also has a number of network interfaces and 
peripherals such as interrupt controllers (ITC1, ITC2), a UART, 
timers (Watchdog, Timer1, Timer2) and a packet accelerator (Acc1).  

 

Table 2. SIRIUS Throughput Constraint Paths (TCPs)  

IP cores in Throughput Constraint Path (TCP) TCP 
constraint 

µP1, VM3, VM4, DMA, VM16, VM17, VM18  640 Mbps 
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps 
µP2, Network I/F1, VM8, VM9  5.2 Gbps 
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps 
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps 
µP3, DMA , Network I/F3, VM13 2.8 Gbps 

 

Table 3. SIRIUS Global Constraint Set ΨG  
 

Set Values 
bus speed 25, 50, 100, 200, 300, 400 
arbitration strategy static, RR, TDMA/RR 
OO buffer size 1 – 8  
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM 

 
Table 3 shows the global constraint set ΨG for SIRIUS. For the 

synthesis we target an AMBA3 AXI [14] bus matrix. We assume a 
fixed bus width of 32 bits, as per application requirements. The 
memory area constraint is set to 225 mm2 and the estimated memory 
area numbers are for a 0.18-µm technology. We assume the value for 
overlap threshold τ = 10% for this example. Fig. 7 shows the best 
solution (least number of busses) with the least memory area for 
SIRIUS. The figure also shows bus speeds, memory sizes, number of 
ports and OO buffer sizes.  
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Fig. 7 Synthesized output for SIRIUS 
 

Fig. 8 shows the variation in memory area and number of busses 
for the ten best solutions (N=10). COSMECA allows a designer to 
tradeoff memory area with bus count in the final solution. The dotted 
line indicates the solution shown in Fig. 7. It can be seen that the 
memory area cost varies dramatically, not only when the bus matrix 
configuration is changed (by changing number of busses), but also for 
the same configuration, for different memory mapping decisions.  The 
entire COSMECA flow took only a few hours to complete, including 
simulation time. This is in contrast to the traditional semi-automated 
(or manual) communication architecture synthesis techniques which 
can take several days [2], and would take even longer with the added 



complexity of handling memory synthesis. Due to lack of space, we 
omit details of the co-synthesis effort for the other three applications. 
More information on co-synthesis for these applications as well as an 
analysis of the effect of the overlap factor τ on solution quality can be 
found in our technical report [35].  
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Fig. 8 SIRIUS final solution set (for N=10) 

 
Finally, Fig. 9 and 10 compare the number of busses and memory 

areas for the best solution (having least number of busses, minimum 
memory area for the solution) obtained with COSMECA and the 
traditional approach (where memory synthesis is done before 
communication architecture synthesis) for the four applications. It can 
be seen that COSMECA performs much better for each of the 
applications, saving from 25-40% in the number of busses in the 
matrix and from 17-29% in memory area, because it is able to make 
better decisions by taking the communication architecture into 
account while allocating and mapping data blocks to physical memory 
components. 
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Fig. 9 Comparison of best solution bus count  
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Fig. 10 Comparison of best solution memory area  

 

7 Conclusion and Future Work 
 

In this paper, we have presented an automated application specific 
methodology to co-synthesize memory and communication 
architectures (COSMECA) in MPSoC designs. The primary objective 
is to design a communication architecture having the least number of 
busses, which satisfies performance and memory area constraints, 
while the secondary objective is to reduce the memory area cost. 
COSMECA couples the decision making process during memory and 
communication architecture synthesis, which enables it to generate a 
lower cost system. Results of applying COSMECA to several 
industrial strength MPSoC applications from the networking domain 
indicate a saving of as much as 40% in number of busses and 29% in 
memory area compared to the traditional approach, where memory 
synthesis is performed before communication architecture synthesis. 
Our ongoing work is trying to integrate more detailed memory access 
protocol models for the memories in the library. Future work will deal 
with incorporating power as another metric to guide the co-synthesis 
and including cache customization in the memory synthesis process.  
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