
COSMECA: Application Specific Co-Synthesis of Memory and Communication
Architectures for MPSoC

Sudeep Pasricha and Nikil Dutt

Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA
{sudeep, dutt}@cecs.uci.edu

Abstract

Memory and communication architectures have a significant
impact on the cost, performance, and time-to-market of complex
multi-processor system-on-chip (MPSoC) designs. The memory
architecture dictates most of the data traffic flow in a design, which in
turn influences the design of the communication architecture. Thus
there is a need to co-synthesize the memory and communication
architectures to avoid making sub-optimal design decisions. This is in
contrast to traditional platform-based design approaches where
memory and communication architectures are synthesized separately.
In this paper, we propose an automated application specific co-
synthesis methodology for memory and communication architectures
(COSMECA) in MPSoC designs. The primary objective is to design a
communication architecture having the least number of busses, which
satisfies performance and memory area constraints, while the
secondary objective is to reduce the memory area cost. Results of
applying COSMECA to several industrial strength MPSoC
applications from the networking domain indicate a saving of as
much as 40% in number of busses and 29% in memory area
compared to the traditional approach.

1 Motivation

Modern multi-processor system-on-chip (MPSoC) designs are
rapidly increasing in complexity. These designs are characterized by
large bandwidth requirements and massive data sets which must be
stored and accessed from memories, especially for applications in the
multimedia and networking domains. The communication architecture
in such systems, which must cope with the entire inter-component
traffic, not only impacts performance considerably, but also consumes
a significant chunk of the design cycle [1-2]. Another major factor
influencing performance is the memory architecture, which can
occupy upto 70% of the die area [3]. Estimates indicate that this
figure will go up to 90% in the coming years [4]. Since memory and
communication architectures have such a significant impact on
system cost, performance and time-to-market, it becomes imperative
for designers to focus on their exploration and synthesis early in the
design flow, with the help of efficient design flow concepts such as
those proposed in platform-based design [6].

Traditionally, in platform-based design, memory synthesis is
performed before the communication architecture synthesis step [7-
11]. While treating these two steps separately is done mainly due to
tractability issues [5][12], it can lead to sub-optimal design decisions.
Consider the example of a networking MPSoC subsystem shown in
Fig. 1(a). The figure shows the system after HW/SW partitioning,
with all the IPs defined, including memory which is synthesized based
on data size and high-level bandwidth constraint analysis. Fig. 1(b)
shows the traditional approach where communication architecture
synthesis is performed after memory synthesis, while Fig. 1(c) shows
the case where memory and communication architectures have been
co-synthesized. Now let us consider the implications of using a co-
synthesis methodology. Firstly, the co-synthesis approach is able to

detect that the data arrays stored in Mem1 and Mem2 end up sharing
the same bus, and automatically merges and then maps the arrays onto
a larger single physical memory from the library, thus saving area.
Secondly, the co-synthesis approach is able to merge data arrays
stored in Mem3 and Mem5 onto a single memory from the library,
saving not only area but also eliminating two busses, as shown in Fig.
1(c). However, Mem5 cannot share the same bus as Mem3 (or Mem4)
in Fig. 1(b) because the access times of the pre-synthesized physical
memories are such that they cause traffic conflicts which violate
bandwidth constraints. Thirdly, due to the knowledge of support for
out-of-order (OO) transaction completion [14] by the communication
architecture, the co-synthesis approach is able to add an OO buffer of
depth 6 to Mem4, which enables it to reduce the number of ports from
2 to 1, thus saving area, while still meeting bandwidth constraints. It
is thus apparent that the co-synthesis approach is able to make better
decisions by taking the communication architecture into account
while allocating/mapping data arrays to memory components, which
reduces the cost of the system.

µP1

µP2

µP3

µP4

µP5

Mem1

Mem2

Mem5

S3

Mem4

S1
S2

Mem3

µP1

µP2

µP3

µP4

µP5

Mem1 Mem2

Mem5

S3 Mem4

i

ii

iii

S1 S2 Mem3

µP1

µP2

µP3

µP4

µP5

Mem12 Mem35

S3 Mem4

i ii

iii
S1 S2

|OO(mem4)| = 6

 mem area = 34.12 mm2, |bus|=11 mem area = 25.93 mm2, |bus|=9

 (a) (b) (c)

Fig. 1 (a) MPSoC system example with (b) memory synthesis
before communication architecture synthesis, and (c) co-synthesis
of memory and communication architectures

In this paper, we propose an automated application specific co-
synthesis methodology for memory and communication architectures
(COSMECA) in MPSoC designs. The primary objective is to design a
communication architecture having the least number of busses, which
satisfies performance and memory area constraints, while the
secondary objective is to reduce the memory area cost. We consider a
bus matrix (sometimes also called crossbar switch) [18] type of
communication architecture for synthesis, since it is increasingly
being used by designers in high bandwidth designs today. Our
approach tailors the memory and communication architectures to the
application being considered, to reduce system cost. Using a
combination of an efficient static branch and bound hierarchical
clustering algorithm and heuristics, we are able to quickly prune the
uninteresting portion of the design space, while using fast transaction-
based bus cycle-accurate SystemC [19] simulation models to capture
dynamic system-level effects accurately and verify the results.
COSMECA effectively synthesizes bus topology, arbitration schemes,
bus speeds and OO buffer sizes for the communication architecture;
and simultaneously performs data array allocation/mapping to
memory blocks, deciding their number, sizes, ports and types from the
memory library, for the memory subsystem. To the best of our

3-9810801-0-6/DATE06 © 2006 EDAA

knowledge, no previous work has performed automated co-synthesis
considering so many exploration parameters. Results of applying
COSMECA to several industrial strength MPSoC networking
applications indicate a saving of as much as 40% in number of busses
and 29% in memory area, compared to the traditional approach of
separate synthesis.

2 Related Work

Communication architectures have been the focus of much research
over the past several years because of their significant impact on
system performance [12][24][26]. Hierarchical shared bus
communication architectures such as those proposed by AMBA [15],
CoreConnect [16] and STbus [17] can cost effectively connect few
tens of IPs, but are not scalable to cope with the demands of modern
MPSoC systems. Network-on-Chip (NoC) based communication
architectures [20] have recently emerged as a promising alternative to
handle communication needs for the next generation of high
performance designs, but research on the topic is still in its infancy,
and few concrete implementations of complex NoCs exist to date
[21]. Currently, designers are increasingly making use of bus matrix
[18] communication architectures to meet the bandwidth requirements
of modern MPSoC systems. The need for bus matrix architectures in
high performance designs and its superiority over hierarchical shared
busses has been emphasized in previous work [22-24]. Accordingly,
we focus on the synthesis of bus matrix communication architectures.

Although a lot of work has been done in the area of hierarchical
shared bus architecture synthesis (e.g. [25-26]) and NoC architecture
synthesis (e.g. [27-28]), few efforts have focused on bus matrix
synthesis. [29] proposed a transaction based simulation environment
that allows designers to explore and design a bus matrix. But the
designer needs to manually specify the communication topology, and
arbitration scheme, which is too time consuming for today’s complex
systems. The automated synthesis approach for STBus crossbars
proposed in [30] generates crossbar topology, but does not consider
generation of parameters such as arbitration schemes, bus speeds and
OO buffer sizes, which considerably impact system performance
[12][26]. COSMECA overcomes these shortcomings by automating
the synthesis of both topology and parameters for the bus matrix.

Previous research in the area of memory and communication
architecture synthesis has either ignored the co-synthesis aspect, or
focused on a small subset of the problem. Typically, high-level
synthesis approaches perform memory allocation and mapping before
communication architecture synthesis [7-11], ignoring the overhead
of the communication protocol during synthesis. While treating these
two steps separately is mainly due to tractability issues [5][12], the
merits of integrating communication synthesis with memory synthesis
are clearly demonstrated in [13]. Only a few approaches have
attempted to simultaneously explore memory and communication
subsystems. [31] presents a tool to automatically generate a full
crossbar and a dynamic memory management unit (DMMU). [32]
considers the connectivity topology early in the design flow in
conjunction with memory exploration, for simple processor-memory
systems. More recently, [33] deals with bus topology and static
priority based arbitration exploration, to determine the best memory
port-to-bus mapping for pre-synthesized memory blocks. Other
approaches which deal with memory synthesis make use of static
estimations of communication architectures such as those proposed in
[34]. However, these techniques are unable to capture dynamic effects
such as contention and capture only a limited exploration space.
COSMECA improves upon previous approaches by (i) automatically
generating bus topology and parameter values for arbitration schemes,
bus speeds and OO buffer sizes, while considering dynamic
simulation effects, and (ii) simultaneously determining a mapping of

µP1

µP2

S1

S2

M1

M2

M3µP3

Input
stage

arb

arb

arb

arb

arb

slavesarbitersmatrixmasters Decode

Input
stage

Decode

Input
stage

Decode

µP1

µP2

S1

S2

M1

M2

M3µP3

Input
stage arb

arb

matrix
masters Decode

Input
stage

Decode

Input
stage

Decode

A

B

 (a) full bus matrix (b) partial bus matrix

Fig. 2 Bus matrix architecture

data arrays to physical memories while also deciding the number,
size, ports and type of these memories, from a memory library.

3 Bus Matrix Communication Architectures

This section describes bus matrix architectures. Fig. 2 (a) shows a
three-master, five-slave full AMBA bus matrix. A bus matrix consists
of several busses in parallel which can support concurrent high
bandwidth data streams. The Input stage is used to handle interrupted
bursts, and to register and hold incoming transfers if receiving slaves
cannot accept them immediately. Decode generates select signals for
slaves. Unlike in traditional shared bus architectures, arbitration in a
bus matrix is not centralized, but distributed so that every slave has its
own arbitration. Also, typically, all busses within a bus matrix have
the same data bus width, which usually depends on the application.

One drawback of the full bus matrix structure shown in Fig. 2(a) is
that it connects every master to every slave in the system, resulting in
a prohibitively large number of busses. The excessive wire congestion
can make it practically impossible to route and achieve timing closure
for the design [1-2]. Fig. 2(b) shows a partial bus matrix which has
fewer busses and consequently uses fewer components (e.g. decoders,
arbiters, buffers), has a smaller area and also utilizes less power. The
basic idea here is to group slaves/memories on shared busses, as long
as performance constraints are met. Points A and B in Fig. 2(b) are
referred to as slave access points (SAPs). The communication
architecture synthesis in COSMECA attempts to generate a partial bus
matrix tailored to the target application, with a minimal number of
busses in the matrix. Additionally, we generate arbitration schemes at
the SAPs, bus clock speed values and OO buffer size values.

4 Memory Subsystem

There are a variety of different memory types available to satisfy
memory requirements in applications. Typically, designers have used
off-chip DRAMs for larger memory requirements and on-chip
embedded SRAMs for smaller memory requirements. Lately, on-chip
embedded DRAMs are gaining in popularity as they eliminate I/O
signals to separate memory chips, boosting performance and reducing
noise, as well as pin count, which ends up lowering system cost.
Although SRAMs have smaller access times than DRAMs, they also
take up a larger area, requiring a tradeoff between area and
performance between the two memory types during synthesis. There
is also a need for non-volatile memories such as EPROMs and
EEPROMs to typically store read-only data in a system. The memory
synthesis in COSMECA uses a memory library populated by on-chip
SRAMs, on-chip DRAMs, EPROMs and EEPROMs having different
capacities, areas, ports and access times. We assume that the word
size of these memories is fixed, based on the application. Data arrays
and groups of scalars in the application are grouped together into
virtual memories (VMs) based on certain rules, before being mapped
onto the appropriate physical memories from the library, which allow
the application to meet its area and performance constraints. This
grouping of data blocks allows us to reduce the number of memories
in the design, thus reducing area. We also try to avoid multi-port
memories because of their excessive area and cost overhead.

5 COSMECA Co-Synthesis Methodology

5.1 Assumptions and Problem Definition

We are given an application for which we assume the HW/SW
partitioning has already been performed. The resulting MPSoC design
has possibly several hardware and software IPs onto which
application functionality has been mapped. Memory in this model is
initially represented by abstract data blocks (DBs) which are
collections of scalars or arrays accessed by the application, similar to
basic groups in [10]. Generally, this MPSoC design will have
performance constraints, dependent on the application. The
throughput of communication between components is a good measure
of the performance of a system [25]. To represent performance
constraints in COSMECA, we define a Communication Throughput
Graph CTG = G(V,A) [2] which is a directed graph, where each
vertex v represents an IP (or DB) in the system, and an edge a
connects components that need to communicate with each other. A
Throughput Constraint Path (TCP) is a sub-graph of a CTG,
consisting of a single master for which data throughput must be
maintained and other masters, slaves and DBs which are in the critical
path that impacts the maintenance of the throughput.
Problem Definition: A bus B can be considered to be a partition of
the set of components V in a CTG, where B ⊂ V. Then our primary
objective is to determine an optimal component to bus assignment for
a bus matrix architecture, such that the partitioning of V onto N
busses results in a minimal number of busses |N| and satisfies memory
area bounds while meeting all constraints in the design, represented
by the TCPs in a CTG. As a secondary objective, we attempt to reduce
memory area cost of the solution.

5.2 Simulation Engine

Since communication behavior in a system is characterized by
unpredictability due to dynamic bus requests from IPs, contention for
shared resources, buffer overflows etc., a simulation engine is
necessary for accurate performance estimation. COSMECA uses a
hybrid approach based on static estimation as well as dynamic
simulation. For the dynamic simulation part, we capture behavioral
models of IPs and bus architectures in SystemC [19][26], and keep
them in an IP library database. Since simulation speed is important,
we chose a fast transaction-based, bus cycle accurate modeling
abstraction, which averaged simulation speeds of 150–200
Kcycles/sec [26], while running embedded software applications on
processor ISS models. The communication model in this abstraction
is extremely detailed, capturing delays arising due to frequency and
data width adapters, bridge overheads, interface buffering and all the
static and dynamic delays associated with the standard bus
architecture protocol being used.

5.3 Communication-Memory Constraint Set Ψ

In the interest of generating a practically realizable system, we
allow a designer to specify a discrete set of valid values (referred to as
a constraint set Ψ) for communication parameters such as bus clock
speeds, OO buffer sizes and arbitration schemes. Additionally, Ψ
allows the specification of constraints on the type of memory to
allocate for DBs, for instance, in the case of a DB which the designer
knows must be read from an EEPROM memory. We allow the
specification of two types of constraint sets for components – a global
constraint set (ΨG) and a local constraint set (ΨL). The presence of a
local constraint overrides the global constraint, while the absence of it
results in the resource inheriting global constraints. For instance, a
designer might set the allowable bus clock speeds for a set of busses
in a subsystem to multiples of 33 MHz, with a maximum speed of 166
MHz, based on the operation frequency of the cores in the subsystem,

while globally, the allowed bus clock speeds are multiples of 50 MHz,
up to maximum of 400 MHz. This provides a convenient mechanism
for the designer to bias the co-synthesis process based on knowledge
of the design and the technology being targeted. Such knowledge
about the design is not a prerequisite for using our co-synthesis
framework, but informed decisions can help avoid the synthesis of
unrealistic system configurations.

5.4 COSMECA Flow

We describe the COSMECA flow in more detail in this section. Fig.
3 gives a high level overview of the flow. The inputs to COSMECA
include a Communication Throughput Graph (CTG), a library of
behavioral IP models (IP library) and memory models (mem library),
a Data Block Dependency Graph (DBDG), a target bus matrix
template (e.g. AMBA [15] bus matrix) and a communication-memory
constraint set (Ψ) – which includes ΨG and ΨL. The general idea is to
first preprocess the memory (represented by DBs in the CTG) in the
design by merging the non conflicting DBs into virtual memory (VM)
blocks to reduce memory cost. Then we map the modified CTG to a
full bus matrix template and optimize the matrix by removing unused
busses. Next, we perform a static branch and bound hierarchical
clustering of slave components in the matrix which further reduces
the number of busses, and store prospective matrix architecture
solutions in a ranked matrix solution database. We then use a
heuristic (memmap), which first merges VMs at each SAP to further
reduce memory cost and then maps these VMs to physical memory
modules from the memory library. The output of memmap is a set of
N valid solutions which meet memory area and performance
constraints. Finally we optimize the output solutions to reduce bus
speeds, arbitration costs and fix OO buffer sizes. We now elaborate
on the five phases in the COSMECA flow, shown in Fig. 3.

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

1

2

3

4

optimize designoptimize design
5

mem
library
mem

library

IP
library

IP
library

Fig. 3 COSMECA flow

Phase 1. mem preprocess: In the first phase, we merge DBs in the
CTG into VMs to reduce memory area cost, by potentially reducing
the number of memory modules in the system. Only DBs with (i)
similar edges (i.e. edges from the same masters) and (ii) non-
overlapping access are merged, so as not to constrain mapping
freedom later in the flow. We use a Data Block Dependency Graph
(DBDG) to determine if DBs have non-overlapping access. Fig. 4(b)
shows the DBDG for the example in Fig. 4(a). The DBDG shows the
dependency of DB accesses on each other – a DB cannot be accessed
till the source DBs of all its input edges have been accessed. If two
DBs have similar edges and non-overlapping access, they are eligible
for merger (e.g. DB1, DB2 in Fig. 4(b)). The size of the VM created
depends on the lifetime analysis of merged DBs – it is the sum of the
sizes of the merged DBs, unless the lifetimes do not overlap, in which
case it is the size of the larger DB being merged. Fig 4(b) shows the
lifetime of DB1. It is possible for DB2 to overwrite DB1, thus saving
memory space. More details can be found in our technical report [35].

Phase 2. matrix map and analyze: In the second phase, the
modified CTG is mapped onto a full bus matrix, which is then pruned
by removing unused busses. Dedicated slave and memory
components are migrated to the local busses of their corresponding

µP1

µP2

µP3

DB0 DB1 DB1 DB2 DB2 DB3 DB3

DB1 DB4 DB5 DB6 DB6 DB2 DB4

DB6 DB5 DB3 DB4

DB1 lifetime

 (b) DBDG

µP1

µP2

µP3

S1
DB0

DB1
DB2

DB3

DB4

DB5

DB6

S2

S3

VM0

VM1

VM2

VM3

VM4
 (a) CTG

VM2

VM3

VM4
(c) VM access trace

S2

S3

VM1

VM4

VM3

VM2

µP1

µP2

µP3

S1

VM0

S2

S3 VM4

VM3VM2

µP1

µP2

µP3

S1

VM0
VM1

VM23

 (d) reduced matrix (e) best synthesized solution

Fig. 4 COSMECA co-synthesis example

masters to further reduce busses in the matrix. Fig. 4(d) shows the bus
matrix after these steps, for the example in Fig. 4(a). Finally, we
perform Transaction Level (TLM) simulation [26] of the application,
assuming no arbitration contention, to obtain application-specific data
traffic statistics such as the number of transactions on a bus and
average transaction burst size on a bus. Knowing the bandwidth to be
maintained on a bus from the TCPs in the CTG, we can also estimate
the minimum clock speed at which any bus in the matrix must
operate, in order to meet its throughput constraint, as follows. The
data throughput (Γ TLM/B) from the TLM simulation, for any bus B in
the matrix is given by

Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / σ

where numT is the number of data transactions on bus B, sizeT is the
average data transaction size, width is the bus width, Ω is the clock
speed, and σ is the total number of cycles of TLM simulation for the
application. The values for numT, sizeT and σ are obtained from the
TLM simulation. To meet throughput constraint Γ TCP/B for bus B,

Γ TLM/B ≥ Γ TCP/B
∴ Ω B ≥ (σ × Γ TCP/B) / (numTB × sizeTB × widthB)

The minimum bus speed thus found is used to create (or update) the
local bus speed constraint set ΨL(speed) for bus B.
Phase 3. Branch and bound clustering algorithm: In the third
phase, a static branch and bound hierarchical clustering algorithm is
used to cluster slave/memory components to reduce the number of
busses in the matrix even further. Note that we do not consider
merging masters because it adds two levels of contention (one at the
master end and another at the slave end) in a data path, which can
drastically degrade system performance. Before describing the
algorithm, we present a few definitions. A slave cluster SC = {s1…sn}
refers to an aggregation of slaves that share a common arbiter. Let
MSC refer to the set of masters connected to a slave cluster SC. Next,
let Π SC1/SC2 be a superset of sets of busses which are merged when
slave clusters SC1 and SC2 are merged. Finally, for a merged bus set
β = {b1…bn}, where β ⊂ Π SC1/SC2, βΚ refers to the set of allowed
bus speeds for the newly created bus when the busses in set β are
merged, and is given by

βΚ = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … ∩ ΨL(speed)(bn)
The branching algorithm starts by clustering two slave clusters at a
time, and evaluating the gain from this operation. Initially, each slave
cluster has just one slave. The total number of clustering
configurations possible for a bus matrix with n slaves is given by (n!
× (n-1)!)/2(n-1). This creates an extremely large exploration space, that

 Step 1: if (exists lookupTable(SC1,SC2)) then discard duplicate clustering
 else updatelookupTable(SC1, SC2)
 Step 2: if (MSC1 ∩ MSC2 == φ) then bound clustering
 else cum_weight = cum_weight + | MSC1 ∩ MSC2|
 Step 3: for each set β ∈ Π SC1/SC2 do

 if ((βΚ == φ) || (∑
=

||β

Γ
1i

TCP/i > (widthB × max_speedB))) then

 bound clustering

Fig. 5 bound function

is too time-consuming to traverse. In order to consider only valid
clustering configurations, we make us of a bounding function.

Fig. 5 shows the pseudocode for the bound function which is called
after every clustering operation of any two slave clusters SC1 and
SC2. In Step 1, we use a look up table to see if the clustering
operation has already been considered previously, and if so, we
discard the duplicate clustering. Otherwise we update the lookup table
with the entry for the new clustering. In Step 2, we check to see if the
clustering of SC1 and SC2 results in the merging of busses in the
matrix, otherwise the clustering is not beneficial and the solution can
be bounded. If the clustering results in bus mergers, we calculate the
number of merged busses for the clustering and store the cumulative
weight of the clustering operation in the branch solution node. In Step
3, we check to see if the allowed set of bus speeds for every merged
bus is compatible or not. If the allowed speeds for any of the busses
being merged are incompatible (βΚ == φ for any β), the clustering
is not possible and we bound the solution. Additionally, we also
calculate if the throughput requirement of each of the merged busses
can be theoretically supported by the new merged bus. If this is not
the case, we bound the solution. The bound function thus enables a
conservative pruning process which quickly eliminates invalid
solutions and allows us to rapidly converge on the optimal solution.
The solutions obtained from the algorithm are ranked from best (least
number of busses) to worst and stored in a ranked matrix solution
database. Fig. 4(e) shows the best solution after this phase, for the
example in Fig. 4(a). For each of the solutions, we set OO buffer sizes
to the maximum allowed in Ψ, for the components which support it.
For the arbitration scheme at the SAPs, we use a TDMA/RR strategy
to proportionally grant accesses to masters based on the magnitude of
throughput requirements. Our previous work has shown the
effectiveness of TDMA/RR for this purpose [26].

Phase 4. memmap heuristic: In the next phase, we use a heuristic
(memmap) to guide the mapping of VMs to physical memories in the
memory library. The goal is to find N solutions which satisfy memory
area and performance constraints of the design. The general idea is to
first simulate the best solution from the ranked matrix solution
database, to generate memory access traces, which are used to
determine the extent of access overlap of VMs at each SAP. If the
overlap is below a user defined overlap threshold τ, we merge the
VMs. Fig. 4(e) shows how we merge VM2 and VM3, as their memory
access trace shown in Fig. 4(c) has an overlap less than the chosen
value for τ. We then map the VMs in the design to physical memories
from the memory library. We initially choose the best memory from
the library which fits the size requirement and has the maximum port
bandwidth. If we find that the throughput constraints are not met even
for the memory with best performance, we discard the matrix
solution, and go back to select the next best matrix solution from the
ranked matrix solution database. Otherwise, if throughput constraints
are met, and memory area constraints are also met, we add the
solution to the final solution database. We then attempt to lower
memory area by randomly selecting a VM at every SAP and replacing
the mapped physical memory with one which meets the size
requirements, but has lower area. If there is no performance violation,
and if the area bounds are met, we have found a solution. We keep

repeating this process till all VMs become ineligible for mapping
optimization, or if the required N solutions have been found. If we
encounter the former case and the number of solutions found is less
than N, we proceed to select the next best solution from the ranked
matrix solution database and repeat the process. A detailed
description of the heuristic can be found in our technical report [35].

Phase 5. optimize design: Finally, we call the optimize design
procedure for each of the N solutions obtained in the last phase. This
simple procedure attempts to minimize (i) bus speeds, (ii) arbitration
scheme implementation cost and (iii) fix OO buffer sizes. The
procedure first iterates over the busses in a solution, reducing the bus
speed to the lowest possible allowed, simulating the design to ensure
that no performance constraints are violated. Similarly, the procedure
attempts to iteratively replace the TDMA/RR arbitration scheme with
a static priority based scheme (which has lower implementation cost)
at each SAP, with priorities assigned depending on bandwidth
requirements. Finally we fix the size of the OO buffer sizes wherever
applicable to the maximum number of buffers used during simulation,
if the number is less than the maximum allowed buffer size.

6 Case Studies

We applied the COSMECA approach to four industrial strength
MPSoC applications – PYTHON, SIRIUS, VIPER2 and HNET8 –
from the networking domain. PYTHON and SIRIUS are variants of
existing industrial strength designs, VIPER2 and HNET8 are larger
systems which have been derived from the next generation of MPSoC
applications currently in development. Table 1 shows the number of
components in each of these applications, after HW/SW partitioning.
Note that the Masters column includes the processors in the design,
while the Slaves column does not include the memory blocks, which
will be co-synthesized with the communication architecture later.

Table 1. Core distribution in MPSoC applications

Applications Processors Masters Slaves
PYTHON 2 3 8
SIRIUS 3 5 10
VIPER2 5 7 14
HNET8 8 13 17

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1
ITC2
VM1
VM2

Timer1
Timer2
VM3

VM8

VM12
VM13

Network I/F1

Network I/F2

Network I/F3

VM14

VM16

Acc1

VM4
VM5
VM6
VM7

VM9
VM10
VM11

VM15

VM17
VM18

Fig. 6 SIRIUS Communication Throughput Graph (CTG)

Fig. 6 shows the CTG for the SIRIUS application, after the initial
memory preprocessing phase in which DBs are merged into VMs. Not
shown in the CTG, but included in our memory area analysis are the
32 KB instruction and data caches for each of the three processors.
For clarity, the TCPs are presented separately in Table 2. µP1 is a
protocol processor (PP) while µP2 and µP3 are network processors
(NP). The µP1 PP is responsible for setting up and closing network
connections, converting data from one protocol type to another,

generating data frames for signaling, operating and maintenance and
exchanging data with NP using shared memory. The µP2 and µP3
NPs directly interact with the network ports and are used for
assembling incoming packets into frames for the network
connections, network port packet/cell flow control, assembling
incoming packets/cells into frames, segmenting outgoing frames into
packets/cells, keeping track of errors and gathering statistics. ASIC1
performs hardware cryptography acceleration for DES, 3DES and
AES. The DMA is used to handle fast memory to memory and
network interface data transfers, freeing up the processors for more
useful work. SIRIUS also has a number of network interfaces and
peripherals such as interrupt controllers (ITC1, ITC2), a UART,
timers (Watchdog, Timer1, Timer2) and a packet accelerator (Acc1).

Table 2. SIRIUS Throughput Constraint Paths (TCPs)

IP cores in Throughput Constraint Path (TCP) TCP
constraint

µP1, VM3, VM4, DMA, VM16, VM17, VM18 640 Mbps
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps
µP2, Network I/F1, VM8, VM9 5.2 Gbps
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps
µP3, DMA , Network I/F3, VM13 2.8 Gbps

Table 3. SIRIUS Global Constraint Set ΨG

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM

Table 3 shows the global constraint set ΨG for SIRIUS. For the

synthesis we target an AMBA3 AXI [14] bus matrix. We assume a
fixed bus width of 32 bits, as per application requirements. The
memory area constraint is set to 225 mm2 and the estimated memory
area numbers are for a 0.18-µm technology. We assume the value for
overlap threshold τ = 10% for this example. Fig. 7 shows the best
solution (least number of busses) with the least memory area for
SIRIUS. The figure also shows bus speeds, memory sizes, number of
ports and OO buffer sizes.

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1

EEPROM1

EEPROM2

Timer1

Acc1

ITC2
Timer2

eDRAM2

eDRAM1

SRAM1

SRAM2

SRAM3
Network I/F2
Network I/F3

static

static

TDMA/RR

200

400

200

100

200

100

200

200200

50

200

200

100

AXI Matrix (32 bit)
- bus speed

OO(3)

OO(2)

SRAM3
Network I/F1

4 MB

2 MB

memory area = 219.42 mm2

256 KB

512 KB

1 MB

512 KB
64 KB

128 KB

(2 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

Fig. 7 Synthesized output for SIRIUS

Fig. 8 shows the variation in memory area and number of busses
for the ten best solutions (N=10). COSMECA allows a designer to
tradeoff memory area with bus count in the final solution. The dotted
line indicates the solution shown in Fig. 7. It can be seen that the
memory area cost varies dramatically, not only when the bus matrix
configuration is changed (by changing number of busses), but also for
the same configuration, for different memory mapping decisions. The
entire COSMECA flow took only a few hours to complete, including
simulation time. This is in contrast to the traditional semi-automated
(or manual) communication architecture synthesis techniques which
can take several days [2], and would take even longer with the added

complexity of handling memory synthesis. Due to lack of space, we
omit details of the co-synthesis effort for the other three applications.
More information on co-synthesis for these applications as well as an
analysis of the effect of the overlap factor τ on solution quality can be
found in our technical report [35].

150

175

200

225

9 9 9 10 10 10 10 10 11 11

busses in matrix

m
em

 a
re

a
(m

m
 s

q.
)

Fig. 8 SIRIUS final solution set (for N=10)

Finally, Fig. 9 and 10 compare the number of busses and memory

areas for the best solution (having least number of busses, minimum
memory area for the solution) obtained with COSMECA and the
traditional approach (where memory synthesis is done before
communication architecture synthesis) for the four applications. It can
be seen that COSMECA performs much better for each of the
applications, saving from 25-40% in the number of busses in the
matrix and from 17-29% in memory area, because it is able to make
better decisions by taking the communication architecture into
account while allocating and mapping data blocks to physical memory
components.

0

5

10

15

20

25

30

PYTHON SIRIUS VIPER2 HNET8

bu
ss

es
 in

 m
at

rix

traditional
COSMECA

Fig. 9 Comparison of best solution bus count

0
50

100
150
200
250
300
350
400
450

PYTHON SIRIUS VIPER2 HNET8

m
em

 a
re

a
(m

m
 s

q.
) traditional

COSMECA

Fig. 10 Comparison of best solution memory area

7 Conclusion and Future Work

In this paper, we have presented an automated application specific
methodology to co-synthesize memory and communication
architectures (COSMECA) in MPSoC designs. The primary objective
is to design a communication architecture having the least number of
busses, which satisfies performance and memory area constraints,
while the secondary objective is to reduce the memory area cost.
COSMECA couples the decision making process during memory and
communication architecture synthesis, which enables it to generate a
lower cost system. Results of applying COSMECA to several
industrial strength MPSoC applications from the networking domain
indicate a saving of as much as 40% in number of busses and 29% in
memory area compared to the traditional approach, where memory
synthesis is performed before communication architecture synthesis.
Our ongoing work is trying to integrate more detailed memory access
protocol models for the memories in the library. Future work will deal
with incorporating power as another metric to guide the co-synthesis
and including cache customization in the memory synthesis process.

Acknowledgements

This research was partially supported by grants from SRC
(2005-HJ-1330) and a CPCC fellowship.

References

[1] D. Sylvester, K. Keutzer, “Getting to the bottom of deep submicron”,
ICCAD 1998

[2] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane, "Floorplan-
aware Automated Synthesis of Bus-based Communication
Architectures", DAC 2005

[3] S. Meftali et al, “An optimal memory allocation for application-specific
multiprocessor system-on-chip”, ISSS 2001

[4] A. Allan et al, “2001 Technology Roadmap for Semiconductors”, IEEE
Computer, Vol. 35, No. 1, 2002

[5] J. A. Rowson et al., “Interface based design” DAC 1997
[6] K. Keutzer et al. “System-level design: Orthogonalization of concerns

and platform-based design,” IEEE TCAD, Dec. 2000
[7] I.-M. Daveau, et al. “Synthesis of System-Level Communication by an

Allocation-Based Aporoach”, ISSS, 1995
[8] S. Narayan, D. Gajski, “Protocol generation for communication

channels” DAC 1994
[9] I. Madsen, B. Hald, “An Approach to Interface Synthesis”, ISSS, 1995
[10] S. Wuytack et al. “Minimizing the required memory bandwidth in VLSI

system realizations”, IEEE TVLSI Vol 7, Issue 4, Dec. 1999
[11] L. Cai, H. Yu, D. Gajski, “A novel memory size model for variable-

mapping in system level design”, ASP-DAC 2004
[12] K. Lahiri, et al, "System-level performance analysis for designing

system-on-chip communication architecture", IEEE TCAD Jun, 2001
[13] P. Knudsen, J. Madsen, “Integrating communication protocol selection

with partitioning in hardware/software codesign,” ISSS, 1998
[14] ARM AMBA AXI Specification www.arm.com/armtech/AXI
[15] ARM AMBA Specification (rev2.0), www.arm.com, 2001
[16] "IBM On-chip CoreConnect Bus Architecture", www.chips.ibm.com
[17] “STBus Communication System: Concepts and Definitions”, Reference

Guide, STMicroelectronics, May 2003
[18] M. Nakajima et al. “A 400MHz 32b embedded microprocessor core

AM34-1 with 4.0GB/s cross-bar bus switch for SoC”, ISSCC 2002
[19] SystemC initiative. www.systemc.org
[20] L.Benini, G.D.Micheli, “Networks on Chips: A New SoC Paradigm”,

IEEE Computers, Jan. 2002
[21] J. Henkel, et al, “On-chip networks: A scalable, communication-centric

embedded system design paradigm”, VLSI Design, 2004
[22] V. Lahtinen et al, “Comparison of synthesized bus and crossbar

interconnection architectures”, ISCAS 2003
[23] K.K Ryu, E. Shin, V.J. Mooney, “A Comparison of Five Different

Multiprocessor SoC Bus Architectures”, DSS 2001
[24] M. Loghi, et al “Analyzing On-Chip Communication in a MPSoC

Environment”, DATE 2004
[25] M. Gasteier, M. Glesner “Bus-based communication synthesis on system

level”, ACM TODAES, January 1999
[26] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Fast Exploration of Bus-based

On-chip Communication Architectures”, CODES+ISSS 2004
[27] K. Srinivasan, et al, “Linear Programming based Techniques for

Synthesis of Network-on-Chip Architectures”, ICCD 2004
[28] D. Bertozzi et al. “NoC synthesis flow for customized domain specific

multiprocessor systems-on-chip”, IEEE TPDS, Feb 2005
[29] O. Ogawa et al, “A Practical Approach for Bus Architecture

Optimization at Transaction Level”, DATE 2003
[30] S. Murali, G. De Micheli, “An Application-Specific Design

Methodology for STbus Crossbar Generation”, DATE 2005
[31] M. Shalan, et al, "DX-Gt: Memory Management and Crossbar Switch

Generator for Multiprocessor System-on-a-Chip" SASIMI, 2003
[32] P. Grun, et al, “Memory system connectivity exploration”, DATE 2002
[33] S. Kim, C. Im, S. Ha, “Efficient Exploration of On-Chip Bus

Architectures and Memory Allocation”, CODES+ISSS, 2004
[34] P. V. Knudsen and J. Madsen, “Communication estimation for

hardware/software codesign”, CODES 1998
[35] S. Pasricha, N. Dutt, “A Framework for Memory and Communication

Architecture Co-Synthesis in MPSoCs”, CECS Tech Report, Feb 2006

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

