
Power Efficiency through Application-Specific
Instruction Memory Transformations �

Peter Petrov
University of California at San Diego

CSE Department
ppetrov@cs.ucsd.edu

Alex Orailoglu
University of California at San Diego

CSE Department
alex@cs.ucsd.edu

ABSTRACT
The instruction memory communication path constitutes a significant
amount of power consumption in embedded processors. We propose
an encoding technique that exploits application information to re-
duce the associated power consumption. The microarchitectural sup-
port enables reprogrammability of the encoding transformations so
as to track code particularities effectively. The restriction to func-
tional transformations enables effective coding while delivering major
power savings, in the process obviating furthermore the necessity to
rely on dictionary lookup, one of the major shortcomings of prior ap-
proaches. The frugal functional transformation, reliant on a single bit
logic gate, introduces no impact to the critical fetch stage of the pro-
cessor pipeline while delivering fully all the theoretically achievable
power savings. The reprogrammable hardware implementation en-
ables flexible and inexpensive switches between the transformations.
Extensive experimental results on numerical and DSP codes confirm
the theoretically expected magnitude of power savings, evincing re-
ductions that range up to half of the original transitions.

1. INTRODUCTION
The ever-growing improvements in process technology have made

the utilization of System-On-a-Chip (SOC) design approaches highly
attractive. Improved time-to-market, cost-efficient designs, easy de-
sign reuse, and flexible implementation constitute some of the many
SOC advantages. Embedded processor cores typically constitute the
cornerstones of such systems, enabling better time-to-market, lower
design cost, and easily reprogrammable implementations. However,
increased silicon integration, together with ever increasing clock fre-
quencies, have led to proportional increases in terms of power.

While power consumption is an increasingly important character-
istic in general purpose processor architectures, it assumes a much
heightened importance when embedded processor architectures are
considered. In mobile applications, such as hand-held and wireless
devices, not only does it impact directly cost of ownership, but fur-
thermore may severely undermine the usability and acceptance of the
product by limiting its spatial and temporal range. Consequently, tech-
niques for minimizing system power consumption are of significant
importance for achieving high product quality. These techniques can
be applied on various design abstraction levels, from circuit level to
system architecture.

While a number of power saving techniques have been promul-
gated for general purpose processor architectures, their success is con-
strained by the lack of application-specific information that can be
utilized, severely restricting both impact and predictability of the re-
sults in particular contexts. The dramatic volumes in the embedded
processor marketplace necessitate innovative approaches, particularly
to surmount the obstacles posed by power considerations in a diverse
set of embedded processor market segments. Outpacing the solutions
provided by the general purpose processor architecture community to

�

This work is supported by NSF Grant 0082325.

satisfy the more stringent power challenges in the embedded proces-
sor marketplace necessitates an ability to exploit the one aspect that
differentiates embedded processors, namely, advance knowledge re-
garding their application context.

A typical SOC design contains several embedded processor cores
responsible for various parts of the total system functionality. Each
of these processors accesses an on-chip or off-chip instruction mem-
ory containing the application code. An access to these memories
is typically performed each cycle in order to fetch the next instruc-
tion to be executed. Therefore, the interaction between a processor
and its instruction memory significantly contributes to the total power
consumption. It is well known that transferring addresses and data on
long interconnect busses consumes a significant amount of power, due
to the high capacitance of the bus lines [1]. This effect is further aggra-
vated if the instruction memory is off-chip (e.g. external flash mem-
ory) due to the significantly higher capacitance of the buslines going
through the system I/O pins. We propose in this paper a technique
for minimizing this significant power overhead in processor memory
communication. The technique we propose is reprogrammable, en-
abling the design, implementation and manufacturing of a single chip,
while allowing the appropriate microarchitectural customizations to
reduce power drastically.

We present an application-specific dynamic customization technique
for power minimization in the data bus of the instruction memory.
Prior to its deployment to the system’s instruction memory, the appli-
cation code is analyzed with particular emphasis on the major appli-
cation loops. Efficient and simple transformations for each bit posi-
tion of the loop code are identified, so that the number of bit transi-
tions in the resultant sequence is highly reduced. The processor fetch
unit restores the original bit sequence for each bus line by applying
the transformations. In contrast to previously proposed techniques for
compression, our technique delivers power reduction results that are
essentially independent of the particular input values or of the input
value distributions.

The technique that we propose minimizes the total number of tran-
sitions on each bit line on the data bus from the instruction memory.
Fundamentally, it utilizes application-specific information for identi-
fying an optimal power encoding. The encoded instructions are di-
rectly stored into the memory, while the information about the trans-
formation is provided to the processor core either when loading the
program or by software prior to entering the application hot spot be-
ing targeted. This information is used to efficiently restore the orig-
inal bit sequence on each bus line. Not only is the hardware support
cost-efficient, but is reprogrammable as well, thus preserving the gen-
erality of the processor core while applying the application-specific
power encoding that we propose.

2. RELATED WORK
The problem of minimizing the number of transitions on commu-

nication busses within a microprocessor-based system has been at-
tacked recently by a number of research groups. Various techniques
for low-power address bus encoding exploiting the regularity of these

1530-1591/03 $17.00 2003 IEEE

busses have been developed. The T0 approach [2] introduces an ad-
ditional line to the instruction memory address bus in order to exploit
the typical sequentiality of the instruction addresses. When this line
is asserted, the memory controller computes the new address by in-
crementing the previous one. In [3] this technique is extended and the
requirement for an additional redundant control line eliminated. The
low-power encoding proposed in [4] utilizes self-organizing lists in
order to achieve an optimal encoding for the most frequently accessed
addresses. By utilizing a rather complex hardware implementation of
self-organizing lists, the approach exploits the temporal and spatial
locality of the addresses on both instruction and data address busses.
The Bus-Invert method [5] inverts the bus content whenever this leads
to a smaller Hamming distance compared to the previous value on the
bus; an additional bus signal informs the receiver whether the bus con-
tent has been inverted. The approach is applicable to any communi-
cation bus, but its extremely general nature limits relatively the power
savings benefits deliverable on data streams exhibiting regularities. In
[6] a methodology for low power ISA encoding has been proposed.
Statistical data concerning instruction adjacency is collected from in-
struction set simulations on a set of applications. The opcode space is
selected in such a way that the Hamming distance between frequently
encountered pairs of instructions is minimized. A code compression
technique utilizing Markov statistics and arithmetic coding has been
proposed in [7], with various implementation architectures being eval-
uated in terms of hardware budget and system power reduction.

3. MOTIVATION
Fundamentally all encoding approaches, whether they be for code

compression or for power minimization, are an exercise in code trans-
formation. The ability to exploit arbitrary transformations provides
optimal results, but runs a sizable bill in terms of communicating the
transformation mapping, itself an avid consumer of bandwidth, power
and/or storage. Bounding the communication cost can be achieved by
restricting the number of transformations, yet possibly at the expense
of reducing the ensuing benefits. Statistical techniques, such as Huff-
man encoding, rely on the assumption of an underlying nonuniform
distribution in the input space, an assumption frequently challenged
as the input size increases. In the context of instruction fetching, such
statistical techniques, frequently reliant on operating in sizable and
variable length chunks of input streams, are further challenged, par-
ticularly in the face of frequent branch instructions.

A straightforward attempt to ameliorate this set of shortcomings
consists of the application of the transformation techniques on short
segments of code and altering the transformation mapping continu-
ously as the segments are traversed. The appreciable cost of continu-
ous transmission of the changing transformation mapping needs to be
paid though either through transfers, thus degrading performance and
power, or in the form of predetermined and stored memory tables. In
either case, the significant cost precludes its use in practical settings.

Practicality can be possibly restored by ameliorating the apprecia-
ble cost of continuously communicating dictionary tables of arbitrary
transformation mappings through restricting the universe of mappings
to ones that can be expressed as functional transformations, which can
be communicated a lot more economically.

We propose to examine in this paper and intend to show that af-
firmative answers to the following questions can provide the basis of
an innovative, powerful technique for the design of embedded proces-
sors with frugal memory consumption in the all important instruction
memory path:

� Is it possible to construct functional mappings with high locality
capable of ideally delivering high levels of power reduction?

� Is it possible to further restrict the number of functionals in such
codes and still attain the theoretical maximal reductions?

� What are the appropriate hardware implementations that deliver
the ability to reprogram the transformation mapping expedi-
tiously and inexpensively?

We propose to show that affirmative answers exist to all these ques-
tions, thus enabling drastic savings in instruction memory communi-
cation at low hardware cost. We intend to show that not only can
the functionals be restricted in locality but that quite frugal transfor-
mations reliant on a single two-input logic gate only, fundamentally
using single bit history, can be effectively utilized with no significant
delays introduced to the embedded processor front-end.

These transformations can be further restricted while retaining es-
sentially all achievable power benefits, for realistic block sizes that
track basic block sizes in programs. The ensuing hardware cost can
be thus sharply limited both vertically by tracking basic block sizes
and also horizontally by reducing the width of the index that pin-
points the appropriate transformation functional for each block. The
approach we propose, theoretically innovative and well matching pro-
gram structure in practice, coupled with the frugal supporting hard-
ware structure, promises to deliver new flexible and programmable
power-efficient architectures for fixed-silicon embedded processors.

4. OPERATIONAL OVERVIEW
An application typically spends most of its execution time within a

few tight loops. A relatively short sequence of instructions is repeti-
tively executed after fetching them one by one either from instruction
memory or instruction cache. The transfers on the data bus from the
instruction storage cause a significant amount of transitions on each
bus line. An example can be seen in Figure 1a in which a sequence
of four instructions is shown. Fetching these instructions sequentially
causes frequent bit transitions on all of the bus lines.

Since power consumption is proportional to the transition numbers
for all bus lines, it is evident that targeting directly and independently
the bit sequences corresponding to the bus lines will have a significant
impact on the total energy dissipation. Figure 1b shows the “verti-
cal” bit sequences targeted for power encoding. This type of encoding
would consider the bit streams associated to each bus line in an inde-
pendent way. If, for example, we consider the leftmost bit-line column
in Figure 1b, one might observe that each bit can be easily generated
by simply applying inversion on the previous bit on the original bit se-
quence. This rather simple transformation takes into account only the
original value of the predecessor bit. Therefore, the “1010” sequence
can be easily stored as “1000” in the instruction memory as shown in
Figure 1c. The latter has two fewer transitions, delivering significant
power savings. The purpose of these transformations is to identify
any functional correlation that might exist between the original pattern
and a pattern with significantly fewer number of transitions. Conse-
quently, the more power efficient bit sequence can be utilized instead
in the instruction storage. Applying the transformation upon receiving
each bit from the encoded sequence reveals the original bit value, thus
restoring the original instruction.

An application-specific processor can take advantage of the applica-
tion knowledge and utilize an optimal power encoding of the type de-
scribed in the previous paragraph. The application knowledge in this
case is the program code; it can be analyzed and its major loops pin-
pointed. Power efficient transformations can be identified within the
basic blocks and the stream of bits corresponding to each instruction

inst1
inst2
inst3
inst4

1
0
1
0

1
0
0
0

. . .

. . .

. . .

. . .

0
1
1
0

inst1
inst2
inst3
inst4

1
0
1
0

1
0
0
0

. . .

. . .

. . .

. . .

0
1
1
0

b)

1
0
1
0

1
0
0
0

c)a)

Figure 1: “Vertical” instruction code transformation

� �� � ��� ���� � �� � ��� ����
000 000 � 0 0 100 100 � 1 1
001 111 	� 1 0 101 111 	
 2 0
010 000 	
 2 0 110 000 	� 1 0
011 011 � 1 1 111 111 � 0 0

Figure 2: Power efficient transformations for three bit blocks

bus line stored in an encoded and power efficient form. Significantly
less power would be consumed when transferring the bit sequences
to the processor core thereupon. The processor core having the infor-
mation about the selected transformations would restore the original
code sequence. The information about the optimal transformations is
provided to the hardware support prior to entering the particular ap-
plication loop.

As the power reductions to be effected occur in bus transitions on
the bitline, the proposed technique is applied to the same bitline of
a sequence of instructions vertically, as shown in Figure 1b. Each
bit, or column in Figure 1b, undergoes a distinct encoding analysis
and consequent transformation, as there is no consideration of power
reductions to be effected across bits of a single instruction.

5. THEORETICAL FRAMEWORK

5.1 Transformation structure
Let’s consider an arbitrary sequence of bits

����
..., ������� , ������� ,

..., ������� ,... � . We want to find an alternative sequence of bits
����

..., �� ����� , �� ����� ,..., �� ����� ,... � and a transformation

�
such that the to-

tal number of bit flips within
��

is less than the bit flips in
�

and����������!
. Since the bit sequence length can be arbitrarily long,

identifying a single transformation that maps
��

to
�

and providing
the hardware support needed for it would lead to an extremely expen-
sive and even more power consuming solution than the original bit
sequence. Therefore, in order to control the complexity of the trans-
formations and their hardware support, the initial bit sequence needs
to be divided into smaller blocks, for which power efficient transfor-
mations with inexpensive hardware support can be utilized. The next
step in further restricting the universe of the possible transformations
is to notice that the transformation needs to be capable of restoring the
sequence bit by bit, instead of decoding only upon receiving a com-
plete block. While previous bits can be buffered, future bits require
fetchahead, unnecessarily complicating the pipeline. The transforma-
tion

�
should be a function of the current bit and a highly limited

number, " , of history bits in the form of ��� �#��� �����$%������&'$)(*(+(� ����, .
While transformations with various history lengths can be considered,
in this paper we concentrate our attention on transformations with one
bit history, " �.-

, of the following form: � � �/�0� �� � $%� ����& . These
types of transformations are very efficient to compute, since they cor-
respond to simple binary functions of two variables. The total number
of such logic functions is 1 �32 �4-'5

, but as will be discussed sub-
sequently, a smaller subset of all the transformations does suffice in
achieving an optimal solution in terms of minimizing the bit transi-
tions for a fixed block size.

Given a block size 6 , the task of identifying the optimal subset of
transformations then becomes the problem of finding the transforma-
tion

�0� �� � $7� �8�0& for every block word, such that
���9��� ��!

and the
number of bit transitions within

��
is minimal. Therefore, this trans-

formation needs to satisfy the following system of binary equations:

� � � �� ��:<;�=?> 6�$%� ����@ �9�0� �� ����@ $7� �A��@B��&
In order to find the optimal transformation

�
for all the block words,

this system of equations with variable
�

needs to be solved for all 1�C
block words. In order to evaluate the global optimal solution, solutions
to this problem possibly exploring any of the 16 possible logic trans-
formations were identified for block sizes up to seven. Determination

Size 2 3 4 5 6 7
TTN 2 8 24 64 320 384
RTN 0 2 10 32 180 234

Impr(%) 100.0 75.0 58.3 50.0 43.8 39.1

Figure 3: Transition improvements for various block sizes

of the optimal solution involves an algorithm that exhaustively tries
to find the code word with minimal number of transitions, such that
it can be mapped to the original block word with one of the 16 pos-
sible transformations. This transformation mapping for a block size
of 3 is shown in Figure 2. The columns

�
and

��
show the original

and the encoded bit sequence, respectively. The columns denoted by�
show the analytical form of the selected transformations. For this

code we can see that the total number of transitions for the original
code words is 8, while the transitions within the code words are only
2, hence achieving 75% bit transition reduction.

Let’s consider the step of identifying the optimal code word for a
given block word, for instance D - D . Initially we try to assign a code
word with 0 transitions, i.e.

-E-A-
or DEDAD . The

-A-E-
code word is im-

possible to map to the initial word D - D by using a transformation
�

with the properties specified above, simply because the first equation,
namely � � � �� � , would be violated. The DADED word can be mapped
to D - D only if a transformation

�
exists, such that the equations defin-

ing it are satisfied. That is the middle bit D of the possible code word
DADED and the rightmost bit of the image word D - D produce the middle-

of the image word, i.e.
�0� D8$7D F�G-

, while the leftmost bit D from
the code word and the middle bit

-
of the image word generate the

leftmost bit D of the image, i.e.
��� D�$ -H I� D . Evidently, the transfor-

mation
�0� ��$
 J� 	
 is such a transformation. Consequently, the initial

block word D - D can be obtained from the more power efficient code
word DEDAD by utilizing the transformation

�0� ��$
 J� 	
 , thus effectively
eliminating both bit transitions associated with the initial word D - D .
Let’s consider now the block word D -E- . Similarly, as a first step we
try to assign a code word with 0 transitions, the only possibility in
this case being

-A-E-
. Yet the two equations defining the transforma-

tion
�0�3- $ -K L�M-

,
���3- $ -H L� D constitute an apparently contradictory

set of constraints! Consequently, the next step is to try to find code
words with a single transition only, which are the next best candidates
for power efficient codes. As the original word has a single bit transi-
tion, it is easily observed that by utilizing the identity transformation��� �0$
 J� � , the original value can be used as a code word itself. The
identity transformation ensures that the worst case transition behavior
of the technique we propose is never inferior to the original code.

These two simple examples illustrate how the optimal code words
can be generated, under the assumption that the complete gamut of
transformations is allowed. The detailed results for block words of
size 3 have been given in Figure 2; in a similar manner, the orig-
inal total transition numbers (TTN), the consequent reduced transi-
tions numbers (RTN), and the resultant reductions are all computed
and shown in Figure 3 for block sizes of 2 to 7. Since the total and the
reduced transition numbers are computed by counting the transitions
for all binary blocks of a given length, this percentage can be inter-
preted as the bit transition reduction of the proposed power efficient
encoding on a bit stream with uniform bit value distribution.

One can immediately track the numbers shown in row two of Fig-
ure 3 by observing that the TTN number 8 is exactly the sum of the
entries in column

���
from Figure 2, while the RTN number 2 is the

sum of all entries in column
����

of the same table. The transition re-
duction numbers are particularly high for short block sizes, an aspect
examined in detail in the next subsection. Nonetheless, even for large
block sizes the expected average improvements are still quite signifi-
cant. Because of a hardware area and block size trade-off, examined
subsequently in the paper, a practical solution would be to utilize the
proposed low-power encoding technique at larger block sizes.

� �� � ��� ���� � �� � ��� �	��
00000 00000
 0 0 01000 11000
��� 2 1

00001 11111 �
 1 0 01001 00111
��� 3 1
00010 11100 �
 2 1 01010 00000 � 4 0

00011 00011
 1 1 01011 00011
 ��� 3 1
00100 00100
 2 2 01100 01100
 2 2
00101 01111
��� 3 1 01101 10011 �
 3 2
00110 11000 �
 2 1 01110 10000 �
 2 1
00111 00111
 1 1 01111 01111
 1 1

Figure 4: Power efficient transformations for five bit blocks

5.2 Optimal codes with fewer transformations
In a quest to further enhance the practicality of the technique, one

can explore the sensitivity of the power savings function (the optimal
form having been shown in Figure 3) to a restriction in the space of
possible transformations. In order to answer this question, we pro-
ceed to identify the optimal codes for block sizes up to seven with
the additional constraint of also minimizing the number of transfor-
mations. This examination approach reveals that a unique subset of
only 8 transformations always exists and provides a solution identical
to the globally optimal but transformation-unrestricted power encod-
ing! It is noteworthy that this subset consists of the identical set of
eight transformations for all block sizes up to seven. Reducing the
number of transformations down to eight with no impact on encoding
optimality leads to highly practical and power efficient hardware.

Figure 4 shows the optimal power encoding for block sizes of five
when only the set of 8 transformations is utilized; interestingly, this
restriction in no way impacts the achievement of global optimality.
Figure 4 uses the identical set of definitions for the rows and columns
as in Figure 2. One can observe that only the following functions are
utilized: identity, inversion, XOR, XNOR, and NOR. The columns

� �
and

����
represent the number of transitions in

�
and

��
, respectively.

The table shows only the first half of the lexicographically ordered bit
strings of size five. The second half of the set, i.e., the bit sequences
starting with 1, are not shown as the cases are completely symmet-
rical. The inherent symmetry can be conceptualized as the case in
which all the bits from

�
and

��
are inverted, effecting a change in

the transformations by interchanging XOR with XNOR, and NOR with
NAND, while retaining intact inversion and identity functions. This
set of eight binary functions turns out to be fully sufficient for iden-
tifying the optimal transformations for all blocks of size up to seven.
Consequently, the control information that needs to be stored at the
processor side for selecting the transformation can be reduced to three
bits per block, while the number of logic gates needed to implement
the transformations is reduced from 16 down to 8 resulting in reduced
decoder sizes on the processor side for controlling the transformation
selection. Since the number of control bits is fixed, the longer the
block, the smaller the overhead.

The transformations
�

additionally exhibit the property of leaving
intact the rightmost bit in the binary sequence, as this property en-
ables the overlap of blocks with one bit and thus solves the problem
of minimizing bit transitions between neighboring blocks. This issue
is discussed in detail in the next section.

It is evident that the efficacy of power encoding depends on the
length of the block size. Of course, this insensitivity of the power
savings to the number of functionals that can be utilized is likely to
weaken as block sizes are increased, since the longer the block size,
the larger the set of constraints that needs to be satisfied by the trans-
formation

�
. For extremely long bit sequences, it would be frequently

impossible to find any transformation of the type described above, be-
cause of conflicting equations in defining the optimal transformations.

Selecting the appropriate block size is a trade-off between hardware
area overhead and efficacy of the solution. Having longer blocks leads
to smaller hardware overhead at the processor side, where the informa-

tion about the selected transformations needs to be stored. Of course,
the longer the block, the lower the efficacy of the transformation as
was shown in Figure 3. The overall discussion in this section points
out that block sizes of 5 and 6 should receive primary consideration in
possible processor implementations of the proposed techniques.

6. APPLYING THE POWER CODES
In applying the proposed technique on program memories, the bit

lines are considered as independent streams. Each bit stream is split
into the blocks of fixed size and the optimal transformations for each
block are communicated to the special hardware support either during
program load or by software prior to entering the application hot spot.
The special hardware support is responsible for restoring the original
bit sequence. The power encoding methodology is applied only for the
major application loops, which contribute most of the program execu-
tion time and constitute a significantly small fraction from the total
program code. Applying the technique only on an extremely small
part of the application code delivers the benefits of reduced hardware
requirements as the size of the tables for storing the transformation
indices needed for restoring the original bit sequence is reduced.

An important issue that needs to be addressed is the bit transitions
across block boundaries. Were blocks to be disjoint, no improve-
ment can be effected. Overlapping blocks, on the other hand, im-
pose an additional constraint on one of the blocks, subsequently re-
ducing the potential efficacy of the transformations. Consequently,
in order to minimize this impact, an overlap with one bit position
only needs to be considered. If, for example, the block size is to
be fixed to four bits, then the sequence

�
is split into two blocks:� & � � ����$%���8�0&K$%������� $7������� and

� � � � ���A���E$3������� $7���A��&'$3���
with bit � � belonging to both groups. Transformations

� & and
� �

would be assigned to
� & and

� � , respectively. These transformations
would have the property of mapping the power efficient sequences

�� &
and

�� � to
� & and

� � in the following way.

� ����� � �� �8���E: � �8��@ � & �9� & � �� �8��@ � & $%� ����@ $ = ��� $ 1 $ -
��� � ���� : ������@ �9� � � �������@ $%���A��@B��& $ = �/- $71�$ �

The single bit overlap among the subsequent blocks and the encod-
ing assignment to the overlapped bit by the previous block force

�
to use the encoded bit value for both its arguments in the initial in-
stance of the equation of the system defining

�
(i.e.

� & uses ����8���
instead of � ����� and similarly

� � uses �� � instead of � �). Therefore,
the transformation selected for a given block depends on the trans-
formation selected for the previous block. The mutual dependence of
the transformations dooms the chances of simple iterative algorithms,
such as greedy, delivering provably optimal solutions. The sizable
experiments that we have performed on randomly generated bit se-
quences of length 1000, show though that in all the cases the total re-
duction in bit transitions was within 1% of the expected value of 50%
for codes with block size of five bits, with the small deviations, both
on the positive and the negative side, due to slight deviations from the
uniform distribution and to the single bit overlap across the blocks. In
conclusion, the iterative approach leads in practice to optimal results.

7. IMPLEMENTATION

7.1 General framework
The hardware support for implementing the proposed low-power

encoding technique needs to be able to identify the transformation as-
sociated with the current bit sequences and apply them in order to
restore the original program opcodes. The program memory is loaded
directly with the encoded application code and needs no special hard-
ware support. In order to perform instruction decoding, the proces-
sor’s fetch unit needs to capture the order in which the blocks arrive

τ1 τ 2

PC1
PC2

PC3

���
�

B1
B2
B3

BBIT

b)

Index to TT

B1

B2 B3

B4

c)a)

... CTΕ

...

...

TT

τ24

Figure 5: The hardware architecture illustrated on a loop code

from the instruction memory and assign a transformation to the cur-
rently active blocks on all the bus lines.

When the program execution crosses basic block boundaries, i.e. in
executing a branch instruction, which particular execution path is to
be followed cannot consistently be known at compile time. Therefore,
a block considered for low-power encoding cannot span through basic
block boundaries. Consequently, some encoded blocks that comprise
the final set of instructions from a basic block might be incomplete
in length. Knowledge about their length is needed in order to switch
to the transformation for the bit streams from the next basic block to
be executed. Furthermore, some application basic blocks might have
extremely low execution frequency or extremely few instructions; it
is preferable that such infrequently utilized blocks be left intact in the
program memory with no transformation applied, thus avoiding the
associated hardware overhead. For these basic blocks, information is
needed that instructs the fetch engine to treat these instructions with-
out applying transformations (or equivalently just to use the identity
transformation).

An important aspect in designing the hardware architecture for sup-
porting the proposed low-power customization technique is the re-
quirement of achieving a reprogrammable implementation. The archi-
tecture needs to be able to utilize the application-specific low-power
encoding, namely, the sequence of transformations selected for the
particular application loop. Consequently, a mechanism is needed for
transferring this information to the fetch engine of the processor core
before executing the application loop. It is evident that the support ar-
chitecture would contain tables with information about the low-power
transformations being selected and their usage order. Two alternatives
can be implemented as a possible solution. The first one is to load the
content of these tables at the same time as the application code upload
to the instruction memory. This approach is particularly suitable for
firmware applications, as their code changes infrequently. The second
alternative is to have the application-specific information transferred
by software. The tables containing the power transformation infor-
mation can be accessed as a memory of a special peripheral device.
The amount of information needed is insignificant in volume, since it
corresponds only to application hot spots, and can be easily written
to this memory by a set of instructions inserted within the application
code and executed just prior to entering the loop under consideration.

7.2 Hardware architecture
The hardware architecture of the proposed implementation is pre-

sented in Figure 5. The Transformation Table (TT) stores transforma-
tion indices associated to each encoded block of bits from the instruc-
tion memory. An entry in the TT contains the set of transformations
for the fixed-length bit sequences on all the bus lines. The TT table
can be easily implemented as a small SRAM array with a very lim-
ited number of entries. A TT entry, as shown in Figure 5a, contains

the control bits for selecting the transformation associated to each bit
sequence. As the low-power encoding cannot span through the ap-
plication loop basic blocks, a set of entries in the TT is allocated for
each basic block targeted. Figure 5c shows an example application
loop represented as a control-flow graph. Four basic blocks exist and
for each of these basic blocks, a contiguous set of entries from the TT
is allocated. The last TT entry for a particular basic block must con-
tain information about how long the last bit sequence targeted with the
transformation is. The End (E) bit field in the TT entry is asserted for
the entries that correspond to the tail end sequence for a given basic
block. The final field, denoted by CT, is a counter corresponding to
the size of the last bit sequence. This field is only read from the table
for the cases in which the E field is set. Once this entry is utilized the
value of the counter is decremented with each instruction fetched and
decoded; a zero would indicate that the sequence of the tail instruc-
tions for the basic block has been completed.

Fundamentally, the E bit is a delimiter, which separates the set of
entries in the TT corresponding to an application loop basic block.
Once a basic block from the CFG is executed, information is needed
about the next application basic block to be executed. More specif-
ically, an index into the TT is required so that the decoding trans-
formations for the subsequent block of instructions can be identified.
In order to achieve this, the Basic Block Identification Table (BBIT),
shown in Figure 5, is introduced. The number of entries in this ta-
ble corresponds to the number of CFG basic blocks for the particular
application loop. Each entry contains the Program Counter (PC) of
the starting instruction together with an index into the TT. This index
points to the first entry in the TT for this basic block. Therefore, when
an application loop basic block is complete, a lookup into the BBIT
produces the TT index for the next basic block.

It is evident that the hardware overhead for the proposed low-power
encoding technique is the size of the TT and BBIT arrays. The number
of the BBIT entries corresponds exactly to the maximum number of
basic blocks that the application loop’s CFG can contain. Typically,
this is a very small number in the range of 10. Note that, if func-
tion calls within the loop exist, then their code can be handled in the
traditional way without applying any low-power encoding; only upon
return to the application loop is the low-power decoding resumed. An
alternative solution is to consider the function code as a part of the
loop and utilize the low-power encoding, if the total number of ap-
plication basic blocks can be accommodated in the BBIT. In terms of
added power consumption, we must note that a lookup into the BBIT
is performed only in the beginning of a basic block; given the small
size of this array, the overhead is insignificant.

The number of entries in the TT determines the total number of
instructions within the application loop that can be handled by the
proposed methodology. Since an entry in the TT is allocated per code
block, the longer this size, the larger the TT utilization. For example,
if the low-power code utilizes sequences of size 7, then a 16 entry TT
can handle a total of

��� -'5 �M-A- 1 instructions, which in practice is
well beyond the total number of instructions typically encountered in
embedded application loops.

The existence of a number of basic blocks from the loop code, ex-
ecuted extremely infrequently, is to be commonly expected. The con-
tribution of such basic blocks to the total power consumption is quite
low and applying the low-power encoding technique on them and allo-
cating entries from the TT might not be worthwhile. Such basic blocks
can be easily accommodated by our hardware architecture, by simply
allocating only a single entry in the TT for all of them. An identity
transformation, with no encoding utilized, would be selected and the
original code would be processed as in normal execution mode. The
E field in this entry would be set and its CT value would be set to the
number of instructions in this basic block.

mmul sor ej fft tri lu

#TR 14.0 3.3 113.4 0.2 8.1 63.8
4-block 7.9 1.8 61.8 0.15 3.9 43.0

Reduction(%) 44.0 44.3 45.5 20.6 51.6 32.7
5-block 8.6 2.3 69.4 0.1 5.0 48.8

Reduction(%) 39.2 30.5 38.8 17.5 37.8 23.6
6-block 10.3 2.1 69.6 0.2 5.6 51.6

Reduction(%) 26.7 35.3 38.7 13.4 31.1 19.1
7-block 10.1 2.6 87.3 0.2 6.1 57.8

Reduction(%) 28.5 20.1 23.1 0.0 24.4 9.4

Figure 6: Transition reduction results

8. EXPERIMENTAL RESULTS
In our experimental studies, we have measured the effectiveness of

the proposed approach by observing the reduction of the transitions on
the data bus to the instruction memory. We have assumed a baseline
architecture of a typical embedded processor front-end, which fetches
and executes instructions in order and one at a time. The instructions
are fetched from an instruction storage, possibly an instruction cache
or memory; the type of storage bears no impact on the bit transition
reductions we attain. We have utilized six benchmarks from the do-
main of DSP and numerical computations, frequently encountered in
many embedded products and capable of exhibiting the strength of
the suggested technique due to their inclusion of frequently executed
loops: Matrix multiplication (mmul) of matrices with size 100x100;
successive over-relaxation (sor) [8] on a matrix with size 256x256;
extrapolated Jacobi-iterative method (ej) [9] on a 128x128 grid; fast
fourier transform (fft) with block size of 256 samples; tridiagonal sys-
tem solver (tri) with matrix size of 128x128; and lu-decomposition
(lu) algorithm on a matrix of size 128x128.

We have utilized the SimpleScalar toolset [10], which utilizes a
MIPS-like instruction set architecture. We have modified the simu-
lation tool, so that we can evaluate the number of transitions on all the
bus-lines of the instruction bus for the baseline architecture and for
an architecture utilizing the proposed low-power encoding methodol-
ogy with a transformation table containing up to 16 entries. All the
low-power codes, presented in this paper, with block sizes from four
to seven, were evaluated and the results shown in Figure 6. The first
row from the table, denoted by TR, shows the total number of the tran-
sitions in millions for the baseline architecture. The subsequent two
rows, show the number of bit transitions for a code with block size of
four and their corresponding percentage reduction compared to the bit
transitions in the original bit sequence. The next three pairs of rows
represent the same information for code sizes of 5, 6, and 7.

The results show that the achieved improvement is higher for codes
with shorter block sizes. This is consistent with the reduction num-
bers expected as we have presented in the theoretical analysis of these
codes. The improvements for the fft benchmark are significantly worse
compared to the rest of the benchmarks, as a number of very short ba-
sic blocks exist within the major loop with significant contribution to
the bit transition numbers.

The improvements in bit transitions range from 10% to 52% with
average improvements around 35%-40% for codes with block sizes
of four and five bits. As expected, the improvements for codes with
larger block sizes are smaller and for codes with six and seven bit
blocks the reductions range around 20%-25% on average. Figure 7
depicts graphically the percentage reduction for all the benchmarks
and power codes.

9. CONCLUSION
In this paper we have presented a methodology for low-power en-

coding on data busses from instruction memories. The technique uti-

�
�
�

�
�

�
�
�

�� �
� �
� �

�
�

0

10

20

30

40

50

60

mmul sor ej fft tri lu

4-block�
5-block
6-block
7-block

Figure 7: Percentage reduction comparison

lizes application-specific information with regards to the program to
be executed and exploits the associated properties through statically
identified power-minimizing transformations upon the application code.
The instruction code of the major application loops is analyzed and ef-
ficient power codes are assigned to the bit sequences on the bus-lines.

Low-power instruction code transformations have been proposed
and formally analyzed. The transformations presented in this paper
achieve significant bit transition reductions, while utilizing only an
extremely small and a fixed set of binary transformations with various
block sizes. The same extremely small set of transformations has been
shown to achieve globally optimal results on all practical block sizes.
This fundamental property enables an extremely efficient hardware
support for the proposed transformations in the form of a few logic
gates selected by compact control signals. The inherent reprogramma-
bility of the proposed hardware support enables the application of the
proposed scheme in a post-manufacturing fashion. By efficiently uti-
lizing the application-driven low-power code transformations in a re-
programmable manner, the proposed technique can be applied to a
large class of embedded processor platforms and numerous modern
applications with stringent power requirements.

10. REFERENCES
[1] S. Ramprasad and N. R. Shanbhag, “A coding framework for

low-power address and data busses”, IEEE TVLSI, vol. 7, n. 2,
pp. 212–221, June 1999.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto and C. Silvano,
“Asymptotic zero-transition activity encoding for address busses
in low-power microprocessor-based systems”, in 7th GLS, pp.
77–82, March 1997.

[3] Y. Aghaghiri, F. Fallah and M. Pedram, “Irredundant address bus
encoding for low-power”, in ISLPED, pp. 182–187, 2001.

[4] M. Mamidipaka, D. Hirschberg and N. Dutt, “Low power ad-
dress encoding using self-organizing lists”, in ISLPED, pp. 188–
193, 2001.

[5] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power
I/O”, IEEE TVLSI, vol. 3, n. 1, pp. 49–58, March 1995.

[6] L. Benini, G. De Micheli, A. Macii, E. Macii and M. Poncino,
“Reducing power consumption of dedicated processors through
instruction set encoding”, in 8th GLS, pp. 8–12, February 1998.

[7] H. Lekatsas, J. Henkel and W. Wolf, “Code compression for low
power embedded system design”, in DAC, pp. 294–299, 2000.

[8] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algo-
rithm”, in PLDI, pp. 30–44, June 1991.

[9] S. Nakamura, Applied Numerical Methods with Software,
Prentice-Hall, Englewood Cliffs, N.J., 1991.

[10] T. Austin, E. Larson and D. Ernst, “SimpleScalar: An infrastruc-
ture for computer system modeling”, IEEE Computer, vol. 35,
n. 2, pp. 59–67, February 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

