
Dynamic Conditional Branch Balancing during the High-Level

Synthesis of Control-Intensive Designs∗

Sumit Gupta† Nikil Dutt† Rajesh Gupta§ Alex Nicolau†

†Dept. of Information and Computer Science §Dept. of Computer Science and Engineering
University of California at Irvine University of California at San Diego

{sumitg, dutt, nicolau}@cecs.uci.edu gupta@cs.ucsd.edu
http://www.cecs.uci.edu/∼spark

Abstract

We present two novel strategies to increase the scope
for application of speculative code motions: (1) Adding
scheduling steps dynamically during scheduling to con-
ditional branches with fewer scheduling steps. This in-
creases the opportunities to apply code motions such as
conditional speculation that duplicate operations into
the branches of a conditional block. (2) Determin-
ing if an operation can be conditionally speculated into
multiple basic blocks either by using existing idle re-
sources or by creating new scheduling steps. These
strategies lead to balancing of the number of steps in
the conditional branches without increasing the longest
path through the conditional block. Algorithms for
these strategies have been implemented within the Spark
high-level synthesis framework that accepts a behav-
ioral description in ANSI-C as input and produces syn-
thesizable register-transfer level VHDL. Experiments
on two moderately complex industrial-strength appli-
cations, namely, MPEG-1 and the GIMP image pro-
cessing tool, demonstrate that conditional speculation
is ineffective without using these strategies.

1. Introduction

The ordering and placement of operations in high-
level behavioral descriptions is often governed by pro-
gramming ease and how the overall behavior is con-
ceptualized. Very often such control is not conducive
to or optimal for downstream high-level synthesis and
optimization tasks. This is particularly true of control-
intensive designs due to the presence of nested condi-
tionals and loops. An important aspect of our approach
to high-level synthesis is the application of paralleliz-
ing transformations that move operations across con-
ditionals and loops based on the time criticality of an
operation and in the process, expose the parallelism
available in the algorithm.

To this end, a set of speculative code motions have
been proposed to alleviate the effects of programming

∗This work is supported by the Semiconductor Research Cor-

poration: Task I.D. 781.001

styles and constructs on the quality of synthesis results.
These code motions enable the movement of operations
through, beyond, and into conditionals with the objec-
tive of maximizing performance [1, 2, 3]. However, this
means that the heuristics that guide these code mo-
tions have to carefully manage the resource utilization
across several basic blocks. This is especially true for
expensive code motions such as conditional speculation
that lead to operation duplication. This code motion
should only be enabled when the resource utilization
techniques are able to find idle resources in multiple
basic blocks in the conditional branches.

In this paper, we present algorithms for a set of
strategies that insert new scheduling steps, dynam-
ically during scheduling, in the shorter of the two
branches of a conditional block without increasing
the longest path through the conditional. These new
scheduling steps along with idle resources in the basic
blocks of the other conditional branch can be used to
schedule operations by conditional speculation. An-
other algorithm inspects the resource utilization of
multiple basic blocks in conditional branches before ap-
plying conditional speculation. When an idle resource
cannot be found in an already scheduled basic block,
new scheduling steps are inserted if the basic block is
part of a shorter conditional branch.

We have implemented these resource utilization im-
provement techniques, along with the speculative code
motions and scheduling heuristics that employ them,
in a high-level synthesis framework called Spark. We
demonstrate the utility of these techniques by present-
ing results for experiments performed on two large in-
dustrial strength designs derived from the multi-media
and image processing domains.

This paper builds upon our earlier presentations in
[2, 3] where we introduced the individual speculative
code motions that can be applied for improved resource
utilization. In this paper, we introduce the notion of
dynamic branch balancing and the heuristics to guide
the speculative code motions for improved quality of
synthesis results.

1 1530-1591/03 $17.00 2003 IEEE

FT

Conditional

Speculation
Reverse

If Node

Blocks

Across
Hierarchical

Speculation

Speculation

Figure 1. Various speculative code motions

The rest of this paper is organized as follows: the
next section reviews previous work, followed by an
overview of the speculative code motions. We present
the scheduling step insertion strategies in Sections 4
and 5, followed by our experimental setup and results.

2. Related Work

High-level synthesis has been a subject of research
for over two decades [4]. Recent work has presented
speculative code motions for mixed control-data flow
type of designs. CVLS [5] uses condition vectors to im-
prove resource sharing among mutually exclusive oper-
ations. Radivojevic et al. [6] present an exact symbolic
formulation which generates an ensemble schedule of
valid, scheduled traces. The “Waveschedule” approach
[7] incorporates speculative execution into high-level
synthesis to achieve its objective of minimizing the ex-
pected number of cycles. Recent work by Rim [8], San-
tos [1] and Kountouris [9] supports generalized specula-
tive code motions for scheduling in high-level synthesis.

A range of similar parallelizing code transformation
techniques have been previously developed for software
compilers (especially parallelizing compilers) [10, 11].
Although the basic transformations (e.g. dead code
elimination, copy propagation) can be used in syn-
thesis as well, other transformations need to be re-
instrumented for synthesis by taking into account hard-
ware cost models and mutual exclusivity of operations.

Compilers traditionally focus on minimizing the
compensation code overheads while applying code mo-
tion techniques that lead to operation duplication
[11, 12]. On the other hand, we will demonstrate that
in high-level synthesis we are willing to tolerate oper-
ation duplication as long as it does not increase the
cycles on the longest path through the design.

3. Speculative Code Motions

We have previously developed a set of code motion
transformations that re-order operations to minimize
the effects of syntactic variance in the input descrip-
tion. These beyond-basic-block code motion transfor-
mations are usually speculative in nature and attempt
to extract the inherent parallelism in designs and in-
crease resource utilization.

Generally, speculation refers to the unconditional
execution of operations that were originally supposed
to have executed conditionally. However, frequently

there are situations when there is a need to move op-
erations into conditionals [2, 3]. This may be done by
reverse speculation, where operations before condition-
als are moved into subsequent conditional blocks and
executed conditionally, or this may be done by condi-
tional speculation, wherein an operation from after the
conditional block is duplicated up into preceding con-
ditional branches and executed conditionally. Reverse
speculation can be coupled with early condition execu-
tion; here conditional checks are evaluated as soon as
possible, so that the operations in their branches do
not have to be speculated for scheduling [2].

The various speculative code motions are shown in
Figure 1. Also, shown is the movement of operations
across entire hierarchical blocks, such as if-then-else
blocks or loops. In the next few sections, we present
resource utilization management algorithms that in-
crease the scope of application of these code motions.

4. Inserting Scheduling Steps to Balance

Conditional Branches
Design descriptions often have instances where there

exist more operations in one branch of a conditional
block than the other. This situation is depicted by the
synthetic example shown in Figure 2(a). The exam-
ple in this figure is represented using the hierarchical
task graph (HTG) representation [13, 2]. HTGs model
the design as a set of hierarchical nodes that repre-
sent if-then-else blocks, for-loops, while-loops and so
on. These hierarchical nodes consist of basic blocks,
which encapsulate a sequence of scheduling steps with
no control flow between them. A scheduling step is an
aggregation of operations that execute concurrently.

While scheduling the design in Figure 2(a), our
scheduler schedules the true branch, i.e., basic block
BB2 first, followed by the false branch, i.e., BB3. So,
if the design in this example is allocated an adder and
a subtracter, then the resulting design after scheduling
is as shown in Figure 2(b).

This figure shows that, after scheduling, the false
branch of the if-then-else HTG node has fewer schedul-
ing steps than the true branch. This is known as
an if-HTG with unbalanced conditional branches. In
such unbalanced if-HTGs, it is possible to insert a new
scheduling step in the branch with fewer scheduling
steps – in this example, basic block BB3 – without af-
fecting the longest path through the if-HTG. This new
step and the presence of a corresponding idle resource
in the other branch (BB2) of the if-HTG node, enables
the conditional speculation of operation “e”, as oper-
ations “e1” and “e2” in basic blocks BB2 and BB3

respectively, as shown in Figure 2(c).
If we had not inserted this new scheduling step, we

would not have been able to conditionally speculate
operation e. The state assignments, S0, S1 and S2,
as also shown by dashed lines in the designs in Figure
2(a), (b) and (c). Clearly, inserting the new schedul-
ing step and the subsequent conditional speculation of

e

a

b

c d

T F

e

a

b

c

1e

d
e2

T F

da

b
c

S0

S1
S2

S3

S0

S1

S2

S0

S1

S2

BB 2 BB 3

BB 4
BB 4

BB 2 BB 3 BB 2 BB 3

BB 4

If Node If Node If Node condcondcond

...BB 5 BB 5 BB 5

FT

(a) (b) (c)

BB 1 BB 1 BB 1

Figure 2. (a) HTG representation of an example, (b) After scheduling basic block BB2, (c) Insertion
of a new scheduling step in basic block BB3 enables conditional speculation of operation e.

operation e reduces the states required to schedule the
design (and in case the schedule length). Also, since
the longest path through the if-HTG is unaltered, this
technique can never lead to an increase in longest path
length through the design.

The next section presents an algorithm that employs
this concept to dynamically insert new scheduling steps
into conditional branches during scheduling.

4.1. Incorporating Conditional Branch Balancing
into High-Level Synthesis

The scheduling heuristic in our system schedules the
design by traversing the HTG of the design in a top-
down manner, starting from the first basic block in the
design and terminating at the last basic block. The
scheduler calls the algorithm outlined in Figure 3 to get
the steps to schedule in the design. The scheduling step
insertion technique is incorporated into this algorithm
as shown by the boxed section.

The algorithm in this figure starts by determining
the current basic block, currentBB, that the current
scheduling step, step, is in. If this is the first call to
the algorithm (i.e. step is φ), then the currentBB is
assigned as the first basic block in the top level HTG of
the design. The next scheduling step is the scheduling
step after the current step in currentBB, starting with
the first step in the basic block (line 6 in the algorithm).

Next, the algorithm checks if nextStep is empty,
i.e., the last scheduling step in currentBB has been
reached. The algorithm should then get the next basic
block to schedule, however, it is at this point that the
algorithm inserts a new scheduling step if the current
basic block is in the shorter branch of an unbalanced
conditional block (lines 7 to 12 in algorithm).

Hence, as shown in line 8, the algorithm first de-
termines if the currentBB has a complementary ba-
sic block, complementBB. A complementBB exists
if currentBB is in a if-HTG node; if the currentBB
is in the true branch, then its complementBB is the
false branch and vice versa. If a complementBB ex-
ists and if it has already been scheduled and it has
more scheduling steps than currentBB, then the al-
gorithm creates a new scheduling step in currentBB
(lines 9 through 11). Note that, if profiling information
is available, we can instead insert scheduling steps to
basic blocks in branches that are less likely to be taken.

Algorithm 1: Get Next Scheduling Step
Inputs: HTG of design, Current Scheduling “step”
Output: Next Scheduling Step “nextStep”

1: if (Scheduling step step = φ) then
2: currentBB = getFirstBasicBlock(HTG)
3: else
4: currentBB = getBasicBlockOf(step)
5: endif
6: nextStep = Scheduling step after step in currentBB

7: if (nextStep = φ) then
8: complementBB = getComplement(currentBB)
9: if (complementBB 6= φ and is scheduled) then
10: if (numOfStepsInBB(currentBB) <

numOfStepsInBB(complementBB)) then
11: nextStep = createNewStepInBB(currentBB)
12: endif /* Balance Conditional Branches */

13: if (nextStep = φ) then
14: nextBB = getNextBasicBlock(currentBB)
15: if (nextBB 6= φ) then
16: nextStep = First schduling step in nextBB
17: endif
18: return nextStep

Figure 3. The algorithm to get the next step to
schedule. The boxed section adds new schedul-
ing steps in shorter conditional branches

If a new scheduling step is not created in the
currentBB and the nextStep is still empty (line 13),
then the algorithm proceeds to get the next basic block
in the HTG by calling the getNextBasicBlock func-
tion. This function (not shown here) traverses first the
“true” control path from the current basic block, then
the “false” control path. False control paths exist only
for basic blocks that contain a conditional check. If
a new basic block is found by this function, its first
scheduling step is assigned to nextStep (line 16).

The function getNextBasicBlock visits each basic
block in the design once. Hence, the algorithm in Fig-
ure 3 visits each step, including the newly added steps,
in each basic block in the HTG of the design once.
Since while capturing the initial description by HTGs,
we create a scheduling step for each operation in the
design, hence, the complexity of this algorithm is in
the order of O(NOps), where NOps is the number of
operations in the HTG.

F

a

b

c

d
e

a

b d

c e
f f21

condIf Node condIf NodeBB 1
BB 2 BB 3

BB 4

S0

S1

S0

BB 1
BB 2 BB 3

BB 4

S1
S2

T T F

f f

(a) (b)
BB 5 S2BB 5

S3

Figure 4. (a) An example HTG (b) After schedul-
ing basic blocks BB2 and BB3, it becomes pos-
sible to conditionally speculate operation ”e”

To understand the reason complementBB is
checked for being scheduled, consider the example in
Figure 4(a). In this example, if this check is not done,
then a new scheduling step will be added while schedul-
ing basic block BB2, since it has one less scheduling
step than its complementary basic block, BB3. How-
ever, after scheduling both basic blocks, the number of
scheduling steps is the same in both branches of the
if-HTG, as shown in Figure 4(b). However, in effect,
this check means that new scheduling steps are only
added to the false branch by this technique. In the next
section, we present a technique that inserts scheduling
steps in both conditional branches.

5. Utilizing Idle Resources in Already

Scheduled Basic Blocks

An operation can be conditionally speculated only
if there are idle resources in the basic blocks that com-
prise the conditional branches of a if-HTG. However,
if there are no idle resources, it may be possible to
insert new scheduling steps if the if-HTG has unbal-
anced conditional branches. Also, the checks required
to determine if conditional speculation is possible can
be performed accurately only while scheduling the last
(false) branch of the conditional block. It is only then
that the actual resource utilization and the empty re-
source slots of all the basic blocks in both the condi-
tional branches are known.

This can be demonstrated by the example in Fig-
ure 4(a). In this example, when the basic block BB2

is being scheduled, the scheduling heuristic can condi-
tionally speculate operation “f” into scheduling step
S1 in BB2. However, in basic block BB3, operation
“f” depends on operation “e” and in the initial de-
scription in Figure 4(a), operation “e” is placed in the
scheduling step S2. Hence, the heuristic will determine
that it is not possible to accommodate the copy of op-
eration “f” in basic block BB3, since it will lead to the
addition of a new scheduling step in the already larger
conditional branch (BB3).

However, the above decision is made too early. After
the heuristic has finished scheduling basic block BB3, it
actually turns out that the operation “e” can be sched-
uled earlier in scheduling step S0 in basic block BB3,
as shown in Figure 4(b). This means that operation f

Algorithm 2: Allow Conditional Speculation of op ?
Inputs: Operation op, Scheduling step in BBstep,

Basic block List BBList to which op will be
duplicated if it is scheduled at step

Output: Whether to conditionally speculated op
1: foreach (Basic block bb in BBList) do
2: if (isThereIdleResourceInBB(bb, op) == false)
3: needNewSchedingStep = true
4: if (stepsIn(bb) ≥ stepsIn(BBstep)) then
5: if (needNewSchedingStep == true) or
6: (isBBScheduled(bb) == false)
7: return from function with false result
8: endforeach
9: return from function with true result

Figure 5. Algorithm to determine whether to
conditionally speculate an operation op into
scheduling step in basic block BBstep

can actually be conditionally speculated into the idle
slots in scheduling step S1 in both basic blocks, BB2

and BB3. This is shown by the shaded operations, f1

and f2, in Figure 4(b).

5.1. Determining whether to allow Conditional
Speculation

An algorithm that determines if operation op should
be conditionally speculated based on available idle re-
sources, is outlined in Figure 5. This algorithm starts
with the list of basic blocks (BBList) into which an
operation op will have to be duplicated, if it were to be
scheduled on the scheduling step, step, in basic block
BBstep. BBList may be greater than one when the
branches of the conditional block under consideration
have other nested if-HTGs in them. Nested ifs are
fairly common in the type of control-intensive designs
targeted by this work.

For each basic block bb in the BBList, the algorithm
checks if there is an idle resource to schedule operation
op on, as shown in line 2 in Figure 5. The algorithm
for this check is presented in the next section. If there
is no idle resource in bb, then a flag is set that signifies
that a new scheduling step will have to be created in
the basic block bb to accommodate operation op.

Next, as shown in lines 4 to 7 in Figure 5, the al-
gorithm does not allow conditional speculation, if, (a)
the current basic block bb already has as many or more
steps than BBstep and, (b) a new step will have to
be created in bb to accommodate op or (c) if bb is un-
scheduled. The restriction on the new scheduling step
is to prevent bb from becoming the longer of the two
branches in the conditional block and the last restric-
tion prevents incorrect decisions made without schedul-
ing both the branches of the conditional block.

This algorithm is used by the scheduler to determine
only whether conditional speculation is possible or not.
Once the decision to conditionally speculate an opera-
tion has been made, a similar algorithm is used by the
scheduler to identify idle resources. If no idle resource
is found, the algorithm inserts a new scheduling step.

Algorithm 3: Is There Idle Resource in Basic Block
Inputs: Operation op, Basic Block bb
Output: Whether there is idle resource for op in bb

1: matchingResList = findResourcesForOp(op)
2: currStep = stepInBBAfterDataDependencies(bb, op)
3: while (currStep 6= φ) do
4: foreach (res in matchingResList) do
5: if (isResourceIdleInStep(step, res) == true)
6: numSteps = numOfCyclesTakenByRes(res) - 1
7: prevSteps = getPrevSteps(step, numSteps)
8: succSteps = getSuccSteps(step, numSteps)
9: if (res not used in prevSteps and succSteps)
10: return true
11: endforeach
12: currStep = next step after currStep in bb
13: endwhile
14: return false

Figure 6. Determining if there is an idle resource
in basic block bb for scheduling operation op

Also, this algorithm is capable of adding new schedul-
ing steps in both branches of a conditional block. For
example, in the design in Figure 4, if basic block BB2

had only one scheduling step, this algorithm would
have added a new step and still conditionally specu-
lated operation “f”.

5.2. Finding an Idle Resource in a Basic Block
The algorithm to find an idle slot for an opera-

tion op in a basic block bb is outlined in Figure 6.
This algorithm starts by determining the list of re-
sources (matchingResList) on which the operation
op can be scheduled. It then finds the first schedul-
ing step in bb that does not have an operation with
a data dependency with op by calling the function
stepInBBAfterDataDependencies (not shown here).

Using this scheduling step (currStep) as a starting
point, the algorithm determines if there is an idle re-
source in this step or any of its successor steps in basic
block bb (shown by while loop in Figure 6). Each re-
source res in matchingResList in currStep is checked
to see if it is idle, i.e., there is no operation scheduled on
it and hence, it is potentially available for scheduling
the operation op (line 5 in the algorithm).

However, the current resource (res) being checked
may be a multi-cycle resource. Hence, the schedul-
ing steps before and after the current step have to
be checked to make sure that the resource is idle in
them for the duration of its execution time starting in
currStep. First, the number of steps that need to be
checked is calculated (numSteps); this is one less than
the execution cycles of the resource.

The algorithm then gets numSteps predecessor
steps and numSteps successor steps (lines 6 to 8 in
Figure 6). Note that these predecessor and successor
steps can, and frequently are, in other basic blocks and
hence, the resource utilization of the resource res has
to be checked beyond the current basic block.

If the resource res is not used in any of these pre-
decessor and successor steps, then an idle resource slot
has been found in the current step and the algorithm
terminates with a true result. However, if it is used
in any of these steps, then the next resource in the
matchingResList is checked and so on. This is done
for all the steps following currStep in the given basic
block bb, until either an idle resource slot is found or
no more steps are left in bb.

In this way, in the worst case, the two algorithms
presented in Figures 5 and 6 visit each matching re-
source in each step in each of the basic blocks that the
operation will be duplicated into. However, some of
the information calculated by these functions can be
cached to be used by later calls to the same function.

6. Experimental Setup and Results
The dynamic conditional branch balancing algo-

rithms presented in this paper have been implemented
in a high-level synthesis research framework called
Spark [2]. This synthesis framework takes a behavioral
description in ANSI-C as input and generates synthe-
sizable register-transfer level VHDL. Besides the spec-
ulative code motions, several standard compiler trans-
formations such as CSE, copy and constant propaga-
tion and dead code elimination are also implemented
in the Spark framework.

For our experiments, we have chosen two functions
from the Prediction block of the MPEG-1 application
[14], namely, pred0 1 and pred2, and the tile func-
tion (with the scale function inlined) derived from the
“tiler” transform1 in the GIMP image processing tool
[15]. The run time of our system for these designs is less
than 5 user seconds on a 1.6 Ghz PC running Linux.

For all the experiments we have used a priority-
based list scheduler [16]. The scheduling results for
these three functions are presented in Table 1, in terms
of the number of states in the finite state machine con-
troller and the cycles on the longest path through the
design. The longest path through a conditional is the
longer of the two branches and for loops, its the length
of the loop body multiplied by loop iterations. The ta-
bles also give the number of operations, non-empty ba-
sic blocks, If blocks, and the resources used for schedul-
ing; +− does add and subtract, == is a comparator,
∗ a multiplier, / a divider, [] an array address decoder
and << is a shifter. All resources are single cycle ex-
cept the multiplier (2 cycles) and the divider (4 cycles).

The first row in Table 1 lists the results for the base-
line case, i.e., when all the code motions from Figure
1 are enabled except conditional speculation. The sec-
ond row has conditional speculation (CS) enabled along
with the rest of the code motions. The percentage re-
duction over baseline case is given in parentheses. In
the third row, all the code motions including CS are

1Note that this floating point function has been arbitrarily

converted to an integer function here. This does not affect the

nature of the control flow, but only the way the data is handled.

pred2(217 Ops,45 BBs,11 IFs) pred0 1(101 Ops,26 BBs,4 IFs) tiler(145 Ops,35 BBs, 11 IFs)
Strategy

2 + −, 1∗, 2 <<, 2 ==, 2[] 2 + −, 1∗, 2 <<, 2 ==, 2[] 3 + −, 1∗, 1/, 2 <<, 2 ==, 2[]
Applied

States Long Path # States Long Path # States Long Path
Baseline 157 7220 175 3254 74 6731
+Allow CS 152(-3.2 %) 7215(-0.1 %) 168(-4 %) 3249(-0.1 %) 59(20.3 %) 5131(-23.8 %)
CS+Add Steps 125(-17.8 %) 5613(-22.2 %) 140(-16.7 %) 2838(-12.7 %) 55(-6.8 %) 4731(-7.8 %)
CS+CS Algo 119(-21.7 %) 4718(-34.6 %) 134(-20.2 %) 2576(-20.7 %) 53(-10.2 %) 4631(-9.7 %)
CS+Both Algo 112(-26.3 %) 4270(-40.8 %) 127(-24.4 %) 2249(-30.8 %) 52(-11.9 %) 4431(-11.7 %)
Total Reduct. -28.7 % -40.9 % -27.4 % -30.9 % -29.7 % -34.2 %

Table 1. Scheduling results after applying the various resource utilization strategies for pred2 and
pred0 1 from the MPEG-1 Prediction block and tiler from the GIMP image processing tool

enabled along with the algorithm that adds scheduling
steps (Algorithm 1 in Figure 3). In the fourth row, all
the code motions along with the algorithms that con-
trol CS are enabled (Algorithms 2 and 3 in Figures 5
and 6). The fifth row has all the algorithms enabled
along with all the code motions. The percentage reduc-
tions of the 3rd, 4th and 5th row over the 2nd row (with
none of the algorithms enabled) are given in parenthe-
ses. The last row gives the total reduction of the 5th
row over the baseline case.

These results demonstrate that the algorithms pre-
sented in this paper have to enabled to make condi-
tional speculation (CS) truly effective. This is espe-
cially evident for the MPEG functions; with CS alone,
the improvements are less than 4 %. With these algo-
rithms enabled, the improvements for both metrics for
all three designs range from 6 % to 34 %, as seen from
the results in the 3rd and 4th rows. Also, we find that
the algorithms that determine whether to condition-
ally speculate (4th row) lead to larger improvements
in both the metrics than the first algorithm (3rd row).

The improvements by applying both the algorithms
(5th row) over only enabling CS (2nd row) can range
between 11 to 26 % in the number of states and 11 to
40 % for the longest path cycles. Furthermore, the re-
sults in the 3rd to 5th rows indicate that to some extent
these algorithms are complementary. The total reduc-
tions (last row) with both algorithms enabled over the
baseline case are between 27 to 29 % for controller size
and 30 to 40 % for performance.

7. Conclusions and Future Work
We presented a set of strategies that insert schedul-

ing steps in the shorter of the two branches of a con-
ditional block without increasing the cycles on the
longest path through the design. These strategies are
critical to effectively and judiciously use code motions
such as conditional speculation that duplicate opera-
tions into multiple basic blocks. Also, if profiling in-
formation is available, these algorithms can easily be
modified to add scheduling steps only in the branches
that are less likely to be taken. Results for two real-
life multimedia and image processing applications show
improvements of up to 40 % in cycles on the longest
path and 29 % in controller size when the dynamic
conditional branch balancing strategies are enabled.

References
[1] L.C.V. dos Santos and J.A.G. Jess. A reorder-

ing technique for efficient code motion. In Design
Automation Conference, 1999.

[2] S. Gupta et al. Speculation techniques for high
level synthesis of control intensive designs. In De-
sign Automation Conference, 2001.

[3] S. Gupta et al. Conditional speculation and its
effects on performance and area for high-level syn-
thesis. In Intl. Symp. on System Synthesis, 2001.

[4] D.D.Gajski et al. High-Level Synthesis: Introduc-
tion to Chip and System Design. Kluwer, 1992.

[5] K. Wakabayashi and H. Tanaka. Global scheduling
independent of control dependencies based on con-
dition vectors. Design Automation Conf., 1992.

[6] I. Radivojevic and F. Brewer. A new symbolic
technique for control-dependent scheduling. IEEE
Transactions on CAD, January 1996.

[7] G. Lakshminarayana et al. Incorporating spec-
ulative execution into scheduling of control-flow
intensive behavioral descriptions. DAC, 1998.

[8] M. Rim, Y. Fann, and R. Jain. Global scheduling
with code-motions for high-level synthesis applica-
tions. IEEE Trans. on VLSI Systems, Sept. 1995.

[9] A.A. Kountouris and C. Wolinski. Efficient
scheduling of conditional behaviors for high-level
synthesis. TODAES, July 2002.

[10] J. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Trans. on Comput-
ers, July 1981.

[11] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[12] L.C.V. dos Santos. A method to control compen-
sation code during global scheduling. In Workshop
on Circuits, Systems and Signal Processing, 1997.

[13] M. Girkar and C.D. Polychronopoulos. Automatic
extraction of functional parallelism from ordinary
programs. IEEE Trans. on PDS, Mar. 1992.

[14] Spark Synthesis Benchmarks FTP site.
ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[15] GNU Image Manipulation Program.
http://www.gimp.org.

[16] S. Gupta et al. SPARK: A high-level synthe-
sis framework for applying parallelizing compiler
transformations. Intl. Conf. on VLSI Design,2003.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

