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Abstract

Reflection and automated introspection of a design in
system level design frameworks are seen as necessities for
the CAD tools to manipulate the designs within the tools.
These features are also useful for debuggers, class and
object browsers, design analyzers, composition validation,
type checking, compatibility checking, etc. However, the
central question is whether such features should be inte-
grated into the language, or if we should build frameworks
which feature these capabilities in a meta-layer, leaving the
system-level language intact. In our recent interactions with
designers, we have found differing opinions. Especially in
the context of SystemC, the temptation to integrate reflec-
tive APIs into the language is great, because C++ is ex-
pressive, and already has type introspective packages avail-
able. In this paper, we analyze this issue and show that
(i) it is a better EDA system architecture to implement re-
flection/introspection at a meta-layer in a design frame-
work (ii) there are relatively unexplored territories of de-
sign automation, such as behavioral typing of component
interfaces, corresponding type-theory, and their implication
in automating component composition, interface synthesis,
and validation, which can be better incorporated if the in-
trospection is implemented at a meta-layer.

1. Introduction

In the recent years system-level design methodologies
and languages have been proposed to raise the level of ab-
straction and promote reuse of intellectual property (IP) li-
braries. Various approaches to building system models from
existing IP components have been proposed, some using
programming languages like C++ [12] [15], and some with
architecture description languages [3] [1] based on C/C++.
SystemC falls in the first category, and rather than using
plain C++ for composing components, designers would
rather use component composition frameworks, which fea-
tures automation features such as appropriate component

selection, type matching, interface synthesis etc. However,
the design structure and behavioral information about the
components are often missing in the plain C++ IP blocks,
or are lost at the compilation stage: structures are flattened,
abstract data structures minimized, and it is not possible to
get the precise types of simple components like ports. In
other words, IP blocks compiled for fast simulation have
reduced design observability. Moreover, programming lan-
guages such as C++ are often not suitable to capture many
properties of a model, such as temporal behavior, concur-
rency structure, etc. Such information often needs to be
queried by the CAD tools and algorithms. A query about
a design object that can be automatically answered by the
system is called introspection [2]. Reflection is the archi-
tectural technique to allow a component to provide intro-
spective information without manual intervention.

Many HDL simulators implement reflection in entities
when they compile a HDL model into a simulatable for-
mat. The problem with C++ is that once the compiler builds
the executable, the program does not understand the object-
oriented structures used during the programming step. For
example, a module that displays the status of an object can-
not query the object to know its variables and their values.
The programmer has to do a customization step before com-
piling the program, to make sure that the object can display
itself. However, it is very cumbersome to manually cus-
tomize every object in an intellectual property (IP) repos-
itory to implement introspective capabilities. If using re-
flection, the display module could query the object to know
what variable it has, and then query the object for their val-
ues.

This paper addresses the issues of introspection in
system-level language frameworks. We first review the con-
cept of introspection, and how it is implemented in pro-
gramming languages such as Java. We then discuss var-
ious strategies for implementing introspection, which we
have tried in the context of the BALBOA [10] framework
for component composition. This leads us to our reasoning
as to why we converged on an implementation of introspec-
tion at a meta-layer over the IP library and implemented
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the introspective capabilities by a split-level interface. This
allows us to inspect, analyze and manipulate a compiled
model with a sophisticated type system. We discuss the
advantages and drawbacks of this approach, but more im-
portantly, we give brief insight into how this approach en-
ables composition verification, interface protocol synthesis
through reflection of behavioral types.

The contributions of this paper are (1) the proposition of
an introspection architecture that automate IP composition
by using sophisticated type information about the IP com-
ponents (2) a comparative study of other ways for automat-
ically collecting information about the types and behaviors,
and there by guiding the designers of CAD tools on im-
plementation of introspection by reflection. The BALBOA

component framework [10] is a component architecture for
system-level modeling with IP design modules built in C++.
It can use SystemC designs, as well as other simulation li-
braries. We describe the experiment in the context of the
BALBOA framework.

2. Definitions and Background

Introspection is the capability of a program to explic-
itly see, understand and modify its own structure [2]. For
instance, an introspective object-oriented language allows
querying an object for its attributes and methods, their types
and values. Introspection is enabled by areflection prop-
erty, meaning that the program structure is reflected to the
program itself. The kind of information describing the
structure of the program is calledmeta-informationand is
commonly used by tools such as debuggers, class browsers,
object inspectors, and interpreters.

A programming language is said to be reflective if it pro-
vides its programs with meta-information about themselves
and a reflection implementation is a software architecture
that separates the meta-information from the base program.
Among the popular programming languages, C++ carries
only very little type information through the virtual func-
tion mechanism for polymorphic objects and the supporting
run-time type identification (RTTI) mechanisms. In order
to have introspection in C++ [5], the following two capabil-
ities are required:

Reification : a data structure to capture the reflected meta-
information about the structure and the properties of
the program.

Introspection : the capability to query and modify the rei-
fied structures.

These concepts are illustrated in the reflection capabilities
of the Java programming language where it is possible to
query the Java virtual machine (JVM) to know the structure
of an object. To such a query, the JVM returns an object

that is an instance of a meta class namedClass that fully
describes the type of the object with structures for:

� Inheritance information: references to another object
of classClass that describe the base class.

� Attributes information: a set of objects of classField
that describes all attributes in the class. TheField
class carries the type information and methods to get
or set the value of an attribute.

� Methods information: a set of objects of classMethod
that capture the information of all methods in the class.
Such objects carry the type of a return value, parameter
description, and can be used to invoke the method.

The reflection API in Java also includes classes for ar-
rays, static variable or methods. Note that part of the virtual
machine is reified by aClassLoader class, that “loads
in” new classes from the package. This class can be queried
to know information about the package and the classes it
contains. Most of these methods are to be called at run-
time. Because the Java virtual machineunderstands the
structure of the program, it can be queried by a program to
know information about itself. In other words, a Java pro-
gram can understand its own structure at run-time because
the run-time infrastructure understands and reifies the struc-
ture. Note that there is a security layer to enable or block
introspection access to inheritance, attribute and method in-
formation, in case secrecy is an issue.

Introspection and reflection are often used in component-
based design frameworks. Generally, a component is a
stand-alone object with an interface that is not bound to any
program. Components are implemented by programmers
as units of reuse. They can be as small as a function, an
object, a library or as big as a complete program, as long
as they have well defined interfaces with explicit external
assumptions by the component from the environment.

Component-based architectures [13] consist of compo-
nents which are objects with a reflected interface, compo-
nents containers used in component assembly, and scripting
used by non-programmers to ”wire together” components.
System architects have used component frameworks to im-
plement multiple designs successfully. CORBA [7] also has
a reflective architecture for service discovery.

3. The Need for Introspection

In the system-level modeling context, various kinds of
important information may be reflected. The three main in-
formation categories are (i) design information (structural
and behavioral), (ii) run-time infrastructure information and
(iii) modeling dimension information. This information



when reflected can allow one to design CAD tools to navi-
gate, manipulate, compose and connect components, verify
the interface compatibilities and synthesize appropriate in-
terfaces.

Design information can be divided into two sub-
categories. (i)Structural design informationis an explicit
description of the structure of a design component. This in-
cludes the number of processes and their triggering condi-
tion, the number of ports and their connections, etc. (ii)Be-
havioral informationdescribes the computation and com-
munication. It includes state machines, the current state,
model of computation and the pattern of interaction with its
surrounding environment of a component.

Run-time infrastructure information: (i) Static sim-
ulation informationis the topology of an architecture, the
number of modules, the number of processes, testbenches,
etc. It also includes the description and ordering of simu-
lation steps in the simulation loop. (ii)Dynamic simulation
informationincludes the number and types of events in the
simulation queue, and in the delta events queue. (iii)Sim-
ulation callbacksis the possibility to add, query and mod-
ify callbacks from the simulation infrastructure to handlers
on specific conditions such as component instantiation and
deletion, beginning and end of simulation, value changes
for signals or attributes and assertions and conditions.

Modeling dimensions information: is used to capture
modeling semantics [9]. Information in this category is
what classes implement bit-level data types, ports, connec-
tors, signals, channels, processes, structure, and constructs
for compositions. Models of computations can also be
placed in this category.

4. Introspection Strategies

We consider models built with C++, and a design in-
stance executed by the simulation infrastructure. Figure 1
illustrates such a simple environment. The modeling con-
structs implement the semantics such as processes, ports
and signals through C++ classes. The simulation infrastruc-
ture simulates concurrency, bit values and hardware struc-
ture. In the ideal scenario, all modeling constructs are in-
trospective in the sense that they provide access to the in-
formation enumerated in section 3. However, such intro-
spection capabilities have been missing for a long time in
SystemC and other programming language-based model-
ing frameworks. Recently, a SystemC verification library
(SCV) specification [16] described an implementation for
data introspection and it usage in verification infrastruc-
ture. In this section, we describe the various alternative ap-
proaches we experimented within the BALBOA framework
to implement introspection on C++ simulation libraries like
SystemC.

Design Instance Simulation Infrastructure

Model Source Modeling Constructs
uses

Compile Time

Run-Time

Figure 1. Simple programming language-
based modeling environment

The Observer Pattern in Design Components Design
components can be modified by adding functions to inspect
data structures, adding callbacks on certain events, etc. This
is often implemented using the observer design pattern [11].
This approach can be ad hoc and intrusive, and may often
break the conceptual structure of the library because the ob-
server pattern does not take into account delta event loops.
It is probable that many developers will implement their
own extensions to solve the same problem, each in different
formats, without communicating, resulting in incompatible
extensions, and simulation overheads. It also complicates
maintenance when new versions of the simulation infras-
tructure or of third party tools are released.

Sub-Typing of Modeling Constructs Specialized classes
can be derived from the modeling classes in the simula-
tion library to provide introspective methods and reifica-
tion. This scenario is illustrated in figure 2 where the
shaded boxes represent the sub-typed reflective modeling
constructs, and requires changes in the model source and
instance to use these classes.

Simulation Infrastructure

Sub-typed Modeling
Constructs

Modeling Constructsuses refinesModel Source

Compile Time

Design Instance

Run-Time

Figure 2. Sub-typing (deriving) modeling con-
structs to add introspective information

Let us illustrate this with a simplified example of an ex-
tension of SystemC input port class to provideaccess to the
precise type of the port, and also to the connection informa-
tion:



template<class T>
class my_sc_in: public sc_in<T> {
public:

my_sc_in(string exact_type, ...): ... {
/*store the exact type*/

};
sc_channel* bound_to() {

/* Find and return the
binding information */

};
TypeClass* get_exact_type() {

/* Return stored exact data type */
};

};

The my sc in uses the run-time infrastructure to find
the binding information, and returns the name of the chan-
nel or signal the port is bound to. It also stores the exact
type of the port into a variable, which can be queried by the
other modules if necessary. Since this approach requires the
usage of the specialized classes, they might not be interop-
erable with other tools because the object with introspective
class can have a different memory layout.

Composition Replication for Introspection This sce-
nario requires a separation of the architecture composi-
tion code from the component definition code in the model
source.

Modeling Constructs

Design Instance Simulation Infrastructure

Design Composition Database

uses

Definitions
Design Component 

Design Architecture
Composition

Compile Time

Run-Time

Figure 3. Replication of the composition
structure for introspection

Figure 3 illustrates the changes required to the system
setup in shaded boxes. A design database is added into the
run-time environment to reflect the reified structure to the
introspection. Secondly, in the model source, statements
are added to store component instantiations and connec-
tion bindings into the design database. This information
is a reification of the structural design information that is
implicit in the design database. This scenario does not re-
quire modifications in the IP component definitions nor in
the simulation infrastructure, but the addition of composi-
tion code of the architecture source.

Using a Declarative Meta-Language The replication of
the composition can be encoded in a meta-language like

XML instead of being programmed in C++. Component
properties can also be described in a meta-layer to reify
those properties in the run-time environment.

Simulation InfrastructureDesign Instance

Meta-Layer

Modeling ConstructsModel Source

Run-Time

Architecture and Component Description
Compile Time

uses

Figure 4. Using a meta-language to configure
reification structure with no dependency to
the design definition and instance

Figure 4 illustrates the purely descriptive architecture.
Design components and the design architecture are de-
scribed in the meta-language, independently of the model-
ing source and the reification structures are independently
with those descriptions. Using this scenario, no recompi-
lation is necessary to use the meta-layer. But, the XML
description has to be in-sync with the compiled descrip-
tion. To do this, a Perl script can be used to translate a C++
class into a XML component description, but it is more dif-
ficult to translate an architecture built with an ordered set
of C++ imperative statements into a XML description. This
approach can be combined with an architectural database
using modeling construct subtypes. With that, the design
database can generate a meta listing of its architecture to be
used by other tools, providing that all necessary information
is reified. SCV is a declarative integrated approach, using
C macros as a meta-language. Many implementations use
XML as the meta-language, as in some flavors of CORBA,
MoML [14], Colif [4] and in IP exchange frameworks [8].

5. The BALBOA Component Framework Ap-
proach

Figure 5 shows the introspection architecture imple-
mented in the BALBOA component framework environ-
ment. This approach does not require the usage of sub-
types. It uses composition replication thatrequiresthat the
component definition code be separated from the architec-
ture composition code. This means that components are
defined and compiled into IP libraries, as illustrated in the
compile-time part of the figure. In the BALBOA implemen-
tation, the reification is done through a design database and
a type system.

As in the composition replication scenario, the design
database captures and manipulates the implicit structure of
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Figure 5. Introspection in the BALBOA compo-
nent framework

a design. The type system is used to reify the full C++ type
information of a component, and its modeling semantics.
It captures structural and behavioral information, and non-
functional properties of components. It is like the meta-
layer in the meta-language scenario, but in the implementa-
tion it does active type management.

5.1. Layered Implementation

Layer

Architecture

Component
Definition
Layer

Definition

C++ Object
Compiled

BIDL

Interface
Split-Level

CIL

Run-Time Structure

Description Compiler
BIDL

Interpreter

Languages

GCC

Layer

Interface/Type
GCC

Component

Information
Type

Description

Introspection

Reflection

Figure 6. Language and run-time structure
layering in the BALBOA component environ-
ment

Figure 6 shows an illustration of the language and run-
time layers in the BALBOA component framework. Lan-
guages as well as the run-time structure are layered, on the
left and right side of the figure respectively.

Component Description The BALBOA interface descrip-
tion language (BIDL) is used to describe components to the
type system. It was inspired by the CORBA IDL, but it has
been extended to support constructs for information listed
in section 3. This language is declarative, and is used to
specify structural information such as attributes, methods,
values, and behavioral types such as state machines and in-
terface automaton. The BIDL is used to generate the reified
information as a set of C++ constructs that get compiled
into new type system extension structures specific to an IP
component.

Architecture Description The Component Integration
Language (CIL) is an imperative language used to assem-
ble the components into a design architecture. Basically,
that means component instantiation and component connec-
tions. This language is based on Object Tcl extensions, thus
it is interpreted and loose on typing: components can be
partially specified and the CIL interpreter will figure out a
way to select a component implementation in C++ that can
execute the simulation.

The CIL has introspective capabilities to query its own
structure. A subset of the CIL language defines constructs
for type manipulation. This subset is used to configure and
specify type parameter in components and to assemble new
components types by component type composition.

The Split-Level Interface The gray box on figure 6 is
the split-level interface (SLI) that manages the link between
the interpreted CIL and the compiled C++. The SLI is the
run-time structure that controls the component. It serves as
a proxy for instantiation, access and behavior invocation.
The SLI is the implementation of a part of the type system,
specific for a component type. It is also part of the meta-
layer that contains the reified information for the component
type.

Introspection Through Layering The separation of con-
cerns through between the layers reduces coupling among
the reflection mechanisms and the rest of the environment.
The type information is declared through the BIDL, and a
custom SLI is build for every C++ component class. The
introspection is implemented between the CIL and the SLI.
The reflection is implemented between the SLI and the com-
piled C++ object.

5.2 Type Inference and Behavioral Types

In the BALBOA composition framework, one of our main
goals is to automate component composition, to construct
system models which are correct by construction. The type
system was basically implemented for reification. However
it created the opportunity for automatic type inference for



component selection. Data type matching has been the first
step towards automated component selection and matching
it is not enough to ensure correctness. Behaviors of the in-
terfaces may not match (such as communication protocols
and model of computation). We need to reflect such be-
havioral information in the type system, and we do that by
capturing behaviors at the interfaces with a behavioral au-
tomaton. We use an assume-guarantee [6] type system for
type inference and type justification of composition of com-
ponents. In case the behavioral types do not match, protocol
adapters need to be synthesized and we are currently inves-
tigating methods to synthesize such adapters.

Such behavioral information is difficult to capture in the
components themselves because it often is a meta-property.
In the languages based on C++, not only because this would
add to the possibility of errors and bugs in the components,
but also the expression of such temporal behaviors are cum-
bersome in C++ and often hidden behind interfaces. As a
result in order to be able to automate the behavioral type in-
ference for the interface matching and verification, as well
as synthesis of adapters, we use the meta-layer and BIDL to
reflect these augmented types.

6. Discussion and Conclusion

After experimenting will all the alternatives, the compo-
sition environment evolved into the implementation of the
component approach by evolution of the environment. This
is justified because this approach minimizes the modifica-
tions to the IP modules and the run-time infrastructure, be-
cause of the separated reification structure and the expres-
siveness of the languages to manipulate this structure. This
approach is the most promising to reflect all design, run-
time and simulation information because the type-system
reifies all modeling aspects of components in the environ-
ment plus their programming implementations. In other
words, the type systemis essentialto have exact type reifi-
cation of the programming constructs, which are the mod-
eling dimensions.

However, this approach has the following disadvantages.
The integrity of the information in the meta-layer can be dif-
ficult to maintain if there are no callbacks. The interpreter
cannot keep track of value changes or event progressions
by polling. In other words, if the simulation infrastructure
does not provide hooks for callbacks to the type system and
the interpreter, it will not be possible to precisely check for
certain conditions or assertions without modifying the run-
time infrastructure. There is also a performance overhead in
terms of execution times because of run-time type checking,
and in terms of memory size, because the reified structure
can potentially double memory usage.

But the key is to capture the semantics and explore ar-
chitecture at high-levels of abstraction and thus not let sim-

ulation performance dominate the design. In that direction,
flexibility is increased because of the separation between
the type description, the code generation, the type inference
and the base level.
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