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Abstract
Data correlation is a well-known problem that causes
difficulty in VLSI testing.Basedonacorrelationmetric,
an efficient heuristicto selectBIST registershasbeen
proposedin the previous work. However, the compu-
tationof datacorrelation itself wasa computationalin-
tensiveprocessandbecamea bottleneckin theprevious
work. Thispaper presentsanefficient techniqueto com-
pute datacorrelation using Binary DecisionDiagrams
(BDDs). OnceaBDD is built, ouralgorithmstakelinear
timeto computethecorresponding datacorrelation. The
experimental resultsshow that this technique is much
fasterthantheprevious technique basedon simulation.
It enablestestingapproachesbasedondatacorrelationto
handle morepracticaldesigns.As oneof thesuccessful
applications,partialscanis demonstratedby integrating
ourcomputationresults.

I . INTRODUCTION

Reconvergent fanout is a fundamentalcauseof the
difficulty in testingfor sequential circuits.Thatis,signal
valuesarecorrelatedtoeachotherdueto theexistenceof
reconvergentfanouts. BothpartialscanandpartialBIST
are well researched topics in VLSI testingarena. Se-
quential loops areunderstoodto bean important factor
in selectingflip-flops in partialscan[1]. Paper[2] even
givesanalgorithm to computetheoptimumsolutionsfor
breaking loops. Later on, breaking loops methodwas
alsoadaptedto BIST [3].

Attackingtheproblemfromanotherangle,Zhangand
Harris [4] proposeda metricwhich is directly basedon
datacorrelations of a circuit. Their approachfirst char-
acterizesthecorrelationsandthenbreakscorrelationsby
choosing BIST registers in partial BIST. However, an
exhaustive simulationbasedtechnique wasusedto cal-
culatedatacorrelations. This limits the previous work�
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[4] to designswith a small number of inputsandflip-
flops. In order to extend the approach to larger de-
signs, heuristics were usedto constrainthe transitive
fanin conefrom growing too large but the accuracy of
theresultsarecompromisedthroughsuchheuristics.

In this paper, we presenta new technique for corre-
lation computationbasedon Binary DecisionDiagrams
(BDDs). It computesdatacorrelationsmuchfasterthan
previousapproachesandin anexactway. Thenew com-
putationtechniqueenablesthemethod of breaking cor-
relationpresented in [4] to handle largerdesignandbe
more useful in practice. Our technique can finish all
testcasesin the ISCAS89suite. Furthermore, experi-
mentsareconductedby applying our correlationresults
to guide the selectionof scanregistersin partial scan.
Applicationto partialBIST canbealsodone in asimilar
fashionasin [4] andis notshown in this paper.

The remainder of this paperis organizedasfollows.
SectionII reviews somebasicknowledgeof datacorre-
lationandBDDs. SectionIII introduceshow to compute
datacorrelation basedon BDDs. SectionIV provides
thealgorithmsto calculatecorrelationandgivesexperi-
mentresults.SectionV concludesthepaperanddiscuss
somefuture work.

I I . BACKGROUND

A. DataCorrelation

Let usbriefly review thedefinition of datacorrelation
presentedin [4]. Givena combinationalcircuit with �
inputsandonesingleoutput,let � beoneof theinputs
and � be the output. Therearetotal �	� combinations
of inputs, theoutput � takesvalue0 or 1 for eachinput
combination. The �
� combinationsaredivided into 4
groups according to their valuesof A andZ, shown in
tableI. Thenumber of combinationsfor eachgroup is
listed in the 3rd columnof the table. The value of �
is readas“the number of input combinations in which
the input � is 0 andoutput � is 0”. The valueof � is
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readin a similar fashion. Therefore,thedatacorrelation
between� and � canbecalculatedby Equation1.

input � output � # of comb.
0 0 �
0 1 �
�
�������
1 0 �
1 1 �����������

TABLE I

DISTRIBUTION OF INPUT AND OUTPUT COMBINATIONS.
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Data correlation is a binary value relationship be-
tweentwo signalsin a circuit. To have an intuitive un-
derstanding of datacorrelation, we can think of it as
the “controllability” betweena signalandits transitive
fanout signalin a combinationalcircuit. In a sequential
circuit, datacorrelationis computedbetweenflip-flops
andprimary I/Os which partition the circuit into com-
binational components. A detailedexplanationcanbe
found in [4].

B. BinaryDecisionDiagram

To computedatacorrelation,we needto analyze the
logic function of a combinationalcircuit. A Binary De-
cision Diagram (BDD) [5] is a directedacyclic graph
with two terminal nodes,1 and0, representinglogical
function 1 and0, respectively. An internalnode asso-
ciatedto an input variable hasone or more incoming
edgesandexactly two outgoing edges,=?>�@<A
> and B>�@<A
> . = edgepoints to =DCFEHGJIK@ and B edgepoints toBDC,EHGJIL@ . A pathfrom root nodeto terminalnode 1 rep-
resentsa cubefor thelogic function thatevaluatesto 1;
that is, BDD is an intelligent way of encoding all the
cubes.Thegraphis levelizedandeachlevel is indexed
by asupport (input) variable. Suchgraphis reduced, or-
deredandhencecanonical for agivenlogic function. In
this paper, BDD means ReducedOrderedBinary Deci-
sionDiagram. Formal treatments onBDD canbefound
in [5]. Figure1 shows anexample circuit andits BDD
structure.
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Fig. 1. An example circuit andits BDD structure.

I I I . COMPUTATION OF DATA CORRELATION USING

BDDS

Thekey stepin calculating datacorrelation is to find
the value of � and � which definedin Table I. In the
context of a BDD representation,for a giveninput vari-
able, � is the number of combinationsfrom the root to
terminal0 via all the B edges of this variable,while �
is thenumberof combinationsfrom theroot to terminal
0 via all the = edgesof this variable. In thesequel,we
will show how to calculate� and � on a BDD structure.
Consideran example in Figure1a with its BDD struc-
tureshown in Figure1b,whereinput variables, M a, b, c,
d N , areshown on the left of thefigure. We defineeach
inputcombinationhasweightof 1, thentheweightof an
edgeis the number of input combinationsthat consists
of this edge.Theweightof anoutgoing edgeis exactly
half of the total weightof the incoming edges.The in-
comingedge of a root nodeis equal to 2 to the power
of thenumberof input variables.Startingfrom theroot
nodeto terminalnodes,we canmarkall theweight for
eachedge. For example in Figure2, the weight of the
incomingedgeof node 2 is �POQ"SRFT andtheweightof
eachits outgoingedge is 8.

Calculationof datacorrelation consistsof two steps.
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Thefirst stepis to compute �U-V� , i.e. total number of
combinationsfrom root to terminal 0. If we normalize�W-X� by dividing it by �
� , the result is the zero prob-
ability (ZP) of a root node. By traversinga BDD from
bottomup anditeratively applying Equation2, thezero
probability of a root nodecanbecalculated.Note that
thezeroprobability of aninternalnodeis thezeroproba-
bility of thesub-BDDrootedat this node. After thefirst
step,a BDD is updatedwith zeroprobability associated
to eachnode,for theaboveexample,asshown in Figure
2.

$% & �ZY\[]" R =Z> ��^ G_�2`�I	[�ZYaRb" [ =Z> ��^ G_�2`�IcR�ZY " [Hdfehgh�iYcj2-k[Pd eigl�ZYnmpo���qr> � �2`�I	� � @�>
(2)

where �iYnj and �ZYsm arethezeroprobability of = child
and B child of a node, respectively.
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Fig. 2. Updated BDD structurewith (1) weightoneachedge,(2) zero
probabilit y on eachnode.

Thesecondstepis to compute thedifference,���t� ,
for eachinput variable. Notethatall BDD nodeson the
samelevel are indexed by the sameinput variable. A
horizontal cut on a level consistsof nodesandbypass
edges.For example in Figure3a,a cut on level 2 con-
sistsof two nodes, 4 and 5, and a bypassedge,from
3 to 6. Figure3b shows thesameBDD with a dummy
nodereplacingthebypassedge.Sincebothof theoutgo-
ing edgesof thedummy node connectto thesamenode
(node 6 in the example), the dummy nodecontributes
the samevalueto � and � . It is easyto show that it is
safeto ignore all bypassedgesduring thecomputing of
(�u��� ).

Given an input variable v , assumethe number of
nodesindexed by v is wQx , we cancompute the differ-
ence(���/� ) for variable v by Equation3, where �ZY��j
is thezeroprobability of the = child of node � , yS�j is
theweightof the = edgeof node � , �iYU�m and yz�m have
similar interpretationsexceptfor the B edgeor child.

� �Q���< x " {c|} �
� � � ��� �  

" {c|} �
� �iY �m gly �m �~�ZY �j gly �j  (3)

In orderto beconsistentwith thesum(��-~� ) derived
in thefirst step,thedifference(�U�k� ) is normalizedby
dividing ��� . Finally, thedatacorrelationis computedby
plugging the valuesof the sumandthe differenceinto
Equation1. In theabove example, correlationbetween
input C andoutput � canbecalculatedasfollows.

�u���� � " R\���\��[a���!-k[Pd e�������[.���R�T "X[Hd �HR���e
�������
� C����� �"1[Pd �PR���e���[Pd �����
ei"�[Pdf�
R,�

IV. EXPERIMENTS

A. Implementation of algorithms

We useVIS [6] asthefront endto reada benchmark
in blif format andtheCUDD [7] packageto build BDDs.
In order to minimizetheimpactof possibleBDD blow-
up, the transitivefanin coneis computed for eachpri-
mary output or registerinput so that only a single-root
BDD exists in a BDD manager. Furthermore,dynamic
reordering with sifting methodis turnedon if needed.

Algorithm 1 is to calculatethe zeroprobability of a
BDD structure corresponding to step1 in sectionIII.
Algorithm 2 is to calculatethedatacorrelation for each
inputvariablewith respectto aoutput, correspondingto
step2. Algorithm1 isabottomupprocessandalgorithm
2 is a top down process.Thecomputationalcomplexity
of bothalgorithms arelinear in termsof thenumber of
BDD nodes.

B. ExperimentalResults

Given a sequentialcircuit, pairs of datacorrelation
betweeninputsandoutputs (or registerinputs)arecal-
culated. Table II shows the CPU time of computing
suchdatacorrelationsontheISCAS89benchmarks.The
overall performanceis much fastercomparing to the
simulationbasedtechniquesusedin [4], in which only



4

4

d

c

variable

a

5
Cut

3

6

57

3

6

4

(a) (b)

Fig. 3. (a) BDD with a bypassedgefrom 3 to 6. (b) BDD with a redundant nodeon thebypassedge.

Algorithm 1 CalculateZeroProbability
Readcircuit
for eachprimaryoutput or latchinputdo

Computeits support set
Build BDD for thesubcircuit
ClassifyBDD nodesinto levels
for eachBDD node from level � to level 0 do

if � � @�> is constant0 then�ZY � � � @�>� �"zR
else if � � @�> is constant1 then�ZY � � � @�>� �"�[
else�ZY � � � @�>� �"�[Pd e��V�ZY � =DC,EPG_IL@� h-�[Pd e���ZY � BVC,EPGJIK@� 
end if

end for
end for

smallnumber of benchmarkscanbefinished.Ourcom-
putationapproachcanfinishall butonetestcase,s38417,
within 20 secondson a PIII-850M linux machine with
512MB memory. The computation of s38417takes
muchlonger but is ableto finish in about 5000 seconds.
Thecomputationof datacorrelationfor eachbenchmark
is only neededto perform once andthe resultscanbe
savedfor different applications.

TableIII shows an application of datacorrelationto
partial scan.After computationof datacorrelation,we
selectflip-flops by using the samealgorithm in [4] to
breakall matchedreconvergent fanouts in an S-graph.
ThentestpatternsaregeneratedusingHITEC [8]. Test
vectors lengthandATPGtimesareshown ascolumn 4
andcolumn6 in thetable. Thenumber of selectedFFs
is lessthan that of breaking loops method [1] and the

Algorithm 2 ComputeDataCorrelation�iY �L��� q�� � q9 s"X�ZY �K�.�Q������� q9 
if �ZY �K��� q�� � q9 �;�[Pd e then�ZY �K��� q�� � q9 s"�Rh�k�iY �L��� q�� � q9 
end if
for eachnodein BDD doy�>�G�A
EPq � � � @�>� s"1[
end fory�>FG�AHEHq �K����� q9 �"zR�d [
for eachvariable G from level 0 to level � do� Gr���2�ZY�"1[

for eachnodein level G doy�>�GLAHEPq � =�CFEHGJIK@� �-D"X[Hdfe���y�>�G�A
EPq � � � @�>� y�>�GLAHEPq � B�C,EHGJIL@� �-�"X[Hdfe.��y�>�G�A
EPq � � � @�>� � Gr���2�iY - " [Pd e���y�>FG�AHEHq � � � @�>� ��� �ZY � BVC,EPGJIK@� n�~�ZY � =�C,EPG_IL@� 5 
end for�������
� G�� ��� q�� � q9 �" � Gr���2�iYZ�F�iY �L��� q�� � q9 

end for

testlengthandATPGtimesarecompatiblewith break-
ing loopsmethod. If we combine both methodsin the
selection,we may get betterresultsbecause datacor-
relationand loopsare the main causesof difficulty in
ATPG.ThisexperimentwasconductedonaSunUltra-5
workstation(270MHz).

V. CONCLUSIONS AND FUTURE WORK

Thispaperpresentsanefficient techniqueto compute
datacorrelations usingBDDs. Oncea BDD is built, it
takeslineartime (in termsof BDD size)to computethe
correspondingcorrelations.In orderto minimizetheim-
pactof BDD blow-up problem, we apply (1) dynamic
reordering, (2) building only transitive faninconefor a
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test tot. FFs sel. FFs test length coverage ATPG time (sec)
s298 14 4 149 1.0 0.03
s344 15 2 140 0.99 4.4
s400 21 5 191 1.0 1.3
s526 21 4 322 0.73 361
s641 19 5 137 1.0 0.7
s713 19 5 145 1.0 3.4
s820 5 4 399 1.0 0.7
s953 29 5 288 1.0 0.47

s1196 18 2 403 1.0 1.4
s1238 18 2 420 1.0 2.8
s5378 179 13 3493 0.96 512
s9234 228 1 6 0.99 3.3

s13207 669 49 927 0.74 6150

TABLE III

PARTIAL SCAN FLIP-FLOPS SELECTION RESULTS BASED ON BREAKING CORRELATION.

test cpu time test cpu time
(sec) (sec)

s208 0.03 s832 0.13
s298 0.05 s838 0.14
s344 0.08 s953 0.15
s349 0.06 s1196 0.23
s382 0.07 s1238 0.21
s386 0.05 s1423 0.51
s400 0.09 s1488 0.23
s420 0.07 s1494 0.17
s444 0.08 s5378 1.21
s510 0.06 s9234 3.17
s526 0.05 s13207 4.82
s641 0.18 s15850 10.83
s713 0.16 s35932 15.53
s820 0.10 s38417 5130.54

s38584 19.21

TABLE II

CPU TIME OF COMPUTING DATA CORRELATIONS ON ISCAS89

BENCHMARKS.

single output, during the construction of a BDD. The
computationis muchfasterthanthosein previouswork
asshown by theexperimentalresults.Anothersetof ex-
periments are conductedby applying our computation
resultsto partial scan. It demonstratesa successfulap-
plicationwith ourcomputationtechnique.

However, the proposedtechnique might still suffer
from thememory blow-up problem,which is an inher-

entdrawbackof any BDD-basedapproach.We suggest
to usepartitioned-ROBDDs[9] to alleviatetheproblem,
in thefuture work, if aglobalBDD cannotbebuilt.

Besidesapplications to partialscanor BIST, datacor-
relationbasedheuristicscanbeappliedto variousalgo-
rithmson gate-level circuits,suchasATPGandSatisfi-
ability solving. In anATPGor Satisfiabilityalgorithm,
decisionheuristicsareneededtochoosethenext branch-
ing variable. This variableshouldhold someproper-
ties,for example satisfyingthecurrent objectiveandre-
ducingthe chanceof conflictingduring the subsequent
searching.We believe thatdatacorrelationcarriessome
usefulinformationon evaluationof suchproperties. In
the future work we will investigate how our technique
of computing datacorrelation canbecombined into an
ATPGor Satisfiabilityalgorithm.
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