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Abstract

In embedded processors, instruction fetch and decode
can consume more than 40% of processor power. An in-
struction filter cache can be placed between the CPU core
and the instruction cache to service the instruction stream.
Power savings in instruction fetch result from accesses to a
small cache. In this paper, we introduce decode filter cache
to provide decoded instruction stream. On a hit in the de-
code filter cache, fetching from the instruction cache and the
subsequent decoding is eliminated, which results in power
savings in both instruction fetch and instruction decode.

We propose to classify instructions into cacheable or
uncacheable depending on the decoded width. Then sec-
tored cache design is used in the decode filter cache so that
cacheable and uncacheable instructions can coexist in a de-
code filter cache sector. Finally, a prediction mechanism
is presented to reduce the decode filter cache miss penalty.
Experimental results show average 34% processor power
reduction and less than 1% performance degradation.

1. Introduction

In embedded processors, often more than 50% area is
dedicated to on-chip caches to ensure performance and re-
duce the number of power expensive memory accesses. In-
struction fetch and decode are main consumers of processor
power. The power dissipation by different components of
StrongARM [5] is shown in Table 1. Instruction fetch and
decode together consume 45% processor power. Therefore,
they are good targets for power optimization.

It is well known that small auxiliary structures between
the instruction cache (I-cache) and the CPU core can reduce
instruction fetch power. Power savings result from accesses
to the small and power efficient structures. For example,
a line buffer [4] stores the most recently accessed cache
line. It utilizes spatial locality in the instruction stream.
An Instruction Filter Cache (IFC) [6] stores multiple in-

instruction cache 27%
instruction decode 18%

data cache 16%
clock 10%

execution 8%
other 21%

Table 1. Power dissipation in StrongARM.

struction cache lines. It utilizes both spatial and temporal
locality in the instruction stream.

In this paper, we introduce a Decode Filter Cache (DFC)
to provide decoded instructions to the CPU core. A hit in
the DFC eliminates one fetch from the I-cache and the sub-
sequent decode, which results in power savings. There is
one key difference between the DFC and the IFC. On an
IFC miss, the missing line can be filled into the IFC di-
rectly. Subsequent accesses to that line need only to access
the IFC. In contrast, on a DFC miss the missing line cannot
be filled into the DFC because the decoded instructions in
this line are not available. As a consequence, the DFC can-
not utilize the spatial locality in the missing line. To enable
instruction fetch power savings on DFC misses, we use a
line buffer in parallel with the DFC to utilize spatial locality
of instructions missing from the DFC.

There are several problems with the use of DFC, such
as variable width of decoded instructions and performance
degradation in case of DFC misses. To make efficient use
of cache space, we propose to classify instructions into
cacheable or uncacheable. Only instructions with small de-
code width are cacheable. Then sectored cache design is
used in the DFC so that cacheable and uncacheable instruc-
tions can coexist in a cache sector. Lastly, we propose an ac-
curate prediction mechanism to dynamic select line buffer,
DFC, or I-cache for the next fetch.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly describe related work on power savings
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in instruction fetch and decode. We present in Section 3
the design of DFC. The experimental results are given in
Section 4. The paper is concluded in Section 5.

2. Background and Related Work

Several approaches have been proposed to reduce in-
struction fetch power by using small structures, such as line
buffer and IFC, in front of the I-cache. One drawback of
IFC is high performance degradation because misses in the
IFC will generate pipeline bubbles. Pipeline fetching bub-
bles can be eliminated based on dynamic prediction. [2]
utilizes branch predictor and the IFC is accessed when fre-
quently accessed basic blocks are detected because the IFC
hit rate is high for frequently accessed basic blocks. [12]
predicts based on the distance between consecutive fetch
addresses. The assumption is that the IFC is useful for small
loops and the distance between consecutive addresses in a
small loop is small.

Instruction decode power reduction through the caching
of decoded instructions has also been investigated in previ-
ous research. [1] has presented a loop-cache for decoded
instructions. It targets DSP processors, which have fixed
decode width and tight loops. This approach has difficulties
dealing with branches inside loop body, which is common
in general purpose embedded processors.

Micro-operation cache [10] also reduces decode power
by caching decoded instructions. It adds an extra stage to
the pipeline, which increases branch misprediction penalty.
The micro-operation cache fill and retrieval is basic block
based. This requires a branch predictor that is not necessar-
ily available in most embedded processors such as Stron-
gARM. In addition, the I-cache and the micro-operation
cache are probed in parallel. Hence the average per access
power is higher than that in our prediction based approach.

[11] goes one step further by saving decoded instruc-
tions in scheduled order in a trace cache. It targets high-
performance processors where instruction issue is both
complex and power consuming. This is overkill for embed-
ded processors where instruction issue is simple. Moreover,
the trace cache size is equal or larger than the I-cache. Its
high hardware cost is not suitable for embedded processors.

3. Design of Decode Filter Cache

In this section, we address the following problems re-
lated to the decode filter cache: (a) how to efficiently save
and retrieve decoded instructions with variable widths; (b)
how to select line buffer, DFC or I-cache for the next fetch.

3.1. Processor Pipeline

Figure 1 shows the processor pipeline we model in this
research. The pipeline is typical of embedded processors
such as StrongARM. There are five stages in the pipeline–
fetch, decode, execute, mem and writeback. There is no
external branch predictor. All branches are predicted “un-
taken”. There is two-cycle delay for “taken” branches.

Instructions can be delivered to the pipeline from one of
three sources: line buffer, I-cache and DFC. There are three
ways to determine where to fetch instructions:

� serial–sources are accessed one by one in fixed order;

� parallel–all the sources are accessed in parallel;

� predictive–the access order can be serial with flexible
order or parallel based on prediction.

Serial access results in minimal power because the most
power efficient source is always accessed first. But it also
results in the highest performance degradation because ev-
ery miss in the first accessed source will generate a bubble
in the pipeline. On the other hand, parallel access has no
performance degradation. But I-cache is always accessed
and there is no power savings in instruction fetch. Predic-
tive access, if accurate, can have both the power efficiency
of the serial access and the low performance degradation of
the parallel access. Therefore, it is adopted in our approach.

As shown in Figure 1, a predictor decides which source
to access first based on current fetch address. Another func-
tionality of the predictor is pipeline gating [8]. Suppose a
DFC hit is predicted for the next fetch at cycle N . The fetch
stage is disabled at cycle N �� and the decoded instruction
is sent from the DFC to latch 5. Then at cycle N � �, the
decode stage is disabled and the decoded instruction is sent
from latch 5 to latch 2.

If an instruction is fetched from the I-cache, the hit cache
line is also sent to the line buffer. The line buffer can pro-
vide instructions for subsequent fetches to the same line.

3.2. Instruction Classification

Decoded instructions may have different widths. If all
instructions are allowed to cache in the DFC, then cache line
size must be determined by the longest decode width. This
may result in cache space underutilization because many
embedded processors are designed in RISC style and most
instructions have short decode widths.

In order to efficiently utilize the cache space, we classify
instructions into cacheable and uncacheable. Only instruc-
tions with small decode widths can be cached in the DFC.
The classification is done through profiling. First, the exe-
cution frequencies of all instructions are obtained from a set
of benchmarks. Then execution frequencies of instructions

2
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Figure 1. Pipeline architecture

with the same decode width are summed up. Next, execu-
tion frequency table shown in Table 2 is built with increas-
ing order of decode width. Finally, the cacheable ratio, the
percentage of dynamic instructions that are cacheable, is se-
lected. This ratio is compared with column “acc exec freq”
to determine which widths are cacheable.

decode width exec freq. acc exec freq
w� f� f�
w� f� f� � f�
... ... ...
wi fi

Pi

k��
fk

... ... ...
wn fn

P
n

k��
fk

Table 2. Decode width frequency table.

3.3. Sectored Cache Organization

In conventional cache designs, one line can have several
instructions and the instructions share a tag. For a line of
instructions in the next level memory hierarchy, they are
either all in the cache, or none of them are in the cache. In
contrast, for a line of decoded instructions, some of them
may be in the DFC and the rest may be not in the DFC
because of cacheable classification. In order to share a tag
among these instructions, we use sectored cache design [9]
for the DFC.

A sectored cache consists of several sectors and each
sector is made up of several lines. The sector format is
shown in Figure 2. All the lines in a sector share one tag
and each line has its own valid bit. One disadvantage of
sectored cache design is possible cache underutilization be-
cause lines corresponding to uncacheable instructions are

tag

valid

lines

Figure 2. Sector format

not used for power savings. A high cacheable ratio can im-
prove cache utilization.

3.4. Prediction Mechanism

next_fetch_src

last_decode_addr

cur_sector_valid

next fetch

prediction table

fetch_addr

decode_addr cacheable

……

partial_tag
sector_valid

last_table_entry

Figure 3. Predictor

Figure 3 shows major components of the predictor for
next fetch source prediction. To predict when to access
the DFC, we use a next fetch prediction table (NFPT),
which is an extension of the approach proposed in [12]
with support for sectored cache. The number of entries in
the NFPT is equal to the number of sectors in the DFC.

3
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Each entry has two fields– partial tag and sector valid.
Partial tag is updated using the lowest 4 bits of the tag
part of decode addr. The bit in the sector valid that is
mapped by decode addr is set to cacheable.

The entry to update in the NFPT is pointed by
last table entry. If last decode addr and decode addr

map to different lines in the DFC, last table entry is up-
dated using last decode addr. Then last decode addr

is set to decode addr. Essentially, prediction fields
partial tag and sector valid for current line starting at
address cur line addr is filled into the entry indexed by
the starting address prev line addr of the previous line.
From previous research in branch prediction [14], we know
that most branches favor one direction and the same control
path may be taken again. Next time when prev line addr

is accessed, the most likely line to be accessed next is
cur line addr. Therefore, fetch for a line and prediction
of the next fetch source for the next line can be done in par-
allel using the same address prev line addr.

For current fetch address fetch addr, the most likely
next fetch address is fetch addr � �. If fetch addr and
fetch addr� � map to the same cache line, previous fetch
source may be reused using the following rules:

1. If next fetch src is line buffer, then the next fetch
will access the line buffer.

2. If next fetch src is DFC and the corresponding valid
bit for fetch addr � � in cur sector valid is 1, then
the next fetch will access the DFC. Otherwise, the next
fetch will access the I-cache.

If fetch addr and fetch addr � � map to different
cache lines, partial tag in the NFPT entry indexed by
fetch addr is compared with the lowest 4 bits of the tag
part of fetch addr. There are two scenarios:

� Equal–Field sector valid of the corresponding en-
try is sent to cur sector valid. The next fetch src

is updated as DFC. If the valid bit corresponding to
fetch addr�� is 1, then the next fetch source is DFC.
Otherwise the next fetch source is I-cache.

� Not equal–The predicted next fetch source is I-cache.
However, next fetch src is updated as line buffer as
the line in the I-cache will be forwarded to line buffer.

Mispredictions occur in the following two scenarios:

� Conflict access–Fields partial tag and sector valid

in the NFPT have been replaced by conflicting sectors.

� Taken branch–If a taken branch is not at the end of a
sector, the prediction for the target address is not avail-
able. Otherwise the first valid bit in the sector valid

is used in the prediction. However, the target address
may be not at the start of a sector and the valid bit for
it may be different than the first bit.

4. Experimental Results

4.1. Experimental Setup

Parameter Value

Instr. size 4B
Line buffer 16B

DFC direct-mapped, 16 sectors,
4 decoded instr. per sector,

8B per decoded instr.
L1 I-cache 16KB, 4-way, 32B line,

1-cycle latency
L1 D-cache 8KB, 4-way, 32B line,

1-cycle lat.
Memory 30-cycle lat.

IFC direct-mapped, 32 lines,
line size 16B

Table 3. Memory hierarchy parameters.

Name Description

721 dec Voice decompression
721 enc Voice compress

cjg Image compression
djg Image decompression
gst Ghostscript interpreter

mpg dec MPEG decoding
mpg enc MPEG encoding

rasta Speech recognition
adpcm c Speech compression
adpcm d Speech decompression

epic Data compression
unepic Data decompression
pwdec Public key decryption
pwenc Public key encryption

Table 4. Benchmark description.

We use the SimpleScalar toolset [3] to model a single in-
order issue processor similar to StrongArm [5]. The mem-
ory hierarchy parameters are shown in Table 3. Note that
the DFC and the IFC have approximately same hardware
cost. We have simulated a set of benchmarks from the Me-
diaBench suite [7]. The description of the benchmarks is
shown in Table 4. All the power parameters are obtained
using Cacti [13], a tool that can estimate cache power dis-
sipation based on cache parameters such as size, line size,
associativity, etc.
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line DFC cacheable IFC predictor
buffer ratio

DF 0.9
p p

0.9
p

DF 0.8
p p

0.8
p

DF 0.7
p p

0.7
p

DF 0.6
p p

0.6
p

DF NO
p p

0.9
IF

p

Table 5. Filter cache configurations.

The actual width of decoded instructions is highly ma-
chine dependent and is not modeled in SimpleScalar. In-
stead of assigning arbitrary decode width to each instruction
and determining the optimal cacheable ratio for a particular
processor, we vary the cacheable ratio. Then whether an
instruction is cacheable is determined at run-time to satisfy
the constraints of the cacheable ratio. In this way, we can
evaluate the impact of cacheable ratio on performance and
power savings. We have investigated the DFC and IFC con-
figurations shown in Table 5.

4.2. Results
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Figure 4. % reduction in I-cache fetches.

Figure 4 shows percentage reduction in I-cache fetches.
IF has the highest reduction rate. The reduction rate in
DF NO is lower because some instructions are uncacheable,
which forces instruction fetch from the I-cache. The reduc-
tion rate decreases further in DF 0.9. Even if an instruction
is cached in the DFC, the I-cache may still be accessed due
to mispredictions. The average reduction for IF, DF NO
and DF 0.9 is 91.4%, 83% and 81.9% respectively. Most
fetches to the I-cache are avoided.

Figure 5 shows the percentage reduction in instruction
decodes. The reduction rate in DF 0.9 is lower than that
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Figure 5. % reduction in instruction decodes.

in DF NO due to mispredictions. But the reduction rate
by both is very close because the misprediction rate is low.
The reduction rate ranges from 56% in rasta to 89% in
adpcm c and the average rate is 75%. A majority of in-
struction decodes are eliminated.
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Figure 6. Prediction hit rate in DF 0.9.

Figure 6 shows prediction hit rate in DF 0.9. The mini-
mal rate is 95.3% in ��� dec and the average rate is 97.7%.
This proves that the prediction is highly accurate.

Figure 7 shows normalized delay. The delay increases
with the number of DFC/IFC misses. Due to accurate pre-
diction, the number of misses in DF 0.9 is the smallest.
Hence the average delay in DF 0.9 is 1.003 and is the low-
est. The number of misses in DF NO is larger than that in
IF because of uncacheable instructions. Therefore, the de-
lay in DF NO is the highest.

Figure 8 shows percentage reduction in processor power.
The reduction in DF 0.6 is almost equal to that in IF. The
reduction increases with cacheable rate as more number of
I-cache fetches and instruction decodes can be eliminated.
The average reduction in IF, DF 0.6, DF 0.7, DF 0.8 and
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Figure 7. Normalized delay.
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Figure 8. % reduction in processor power.

DF 0.9 is 23.4%, 23.9%, 27.5%, 31.2% and 34.4% respec-
tively. DF 0.9 is the most power efficient and results in
roughly 50% more power savings than IF does.

5. Conclusion

In this paper, we have proposed a decode filter cache,
which results in 50% more power savings than an instruc-
tion filter cache and the average reduction in processor
power is 34%. At the same time, the performance degra-
dation is less than 1% due to an accurate prediction mecha-
nism. Comparing to other decoded instruction caching tech-
niques, our approach is simple and the hardware cost is low,
which makes it attractive for embedded processors. We are
currently extending the decode filter cache design to support
multiple-issue processors.
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