
Introduction of Local Memory Elements
in Instruction Set Extensions

Partha Biswas†∗ Vinay Choudhary§ Kubilay Atasu§ Laura Pozzi§
partha@cecs.uci.edu vinchr@cse.iitk.ac.in atasu@cmpe.boun.edu.tr laura.pozzi@epfl.ch

Paolo Ienne§ Nikil Dutt†∗
paolo.ienne@epfl.ch dutt@cecs.uci.edu

†Center for Embedded Computer Systems §Processor Architecture Laboratory
School of Information and Computer Science Swiss Federal Institute of Technology

University of California, Irvine, CA, USA Lausanne, Switzerland

ABSTRACT
Automatic generation of Instruction Set Extensions (ISEs),
to be executed on a custom processing unit or a coprocessor
is an important step towards processor customization. A
typical goal of a manual designer is to combine a large num-
ber of atomic instructions into an ISE satisfying microarchi-
tectural constraints. However, memory operations pose a
challenge for previous ISE approaches by limiting the size of
the resulting instruction. In this paper, we introduce mem-
ory elements into custom units which result in ISEs closer
to those sought after by the designers. We consider two
kinds of memory elements for mapping to the specialized
hardware: small hardware tables and architecturally-visible
state registers. We devised a genetic algorithm to specifi-
cally exploit opportunities of introducing memory elements
during ISE generation. Finally, we demonstrate the effec-
tiveness of our approach by a detailed study of the varia-
tion in performance, area and energy in the presence of the
generated ISEs, on a number of MediaBench, EEMBC and
cryptographic applications. With the introduction of mem-
ory, the average speedup varied from 2.7X to 5X depending
on the architectural configuration with a nominal area over-
head. Moreover, we obtained an average energy reduction
of 26% with respect to a 32-KB cache.

Categories and Subject Descriptors: C.1.3 [Processor
Architectures]: Other Architecture Styles

General Terms: Algorithm, Design, Performance.

Keywords: Customizable processors, ASIPs, Instruction
Set Extensions, Ad-hoc Functional Units, Coprocessors, Ge-
netic Algorithm.

∗This work was partially supported by NSF grants CCR-
0203813 and CCR-0205712

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

1. INTRODUCTION
In the era of high-performance, low-power and cost-effecti-

ve systems, automatic customization to the application re-
quirement is the key to achieve fast turn-around time in a
competitive market. Ad-hoc Functional Units (AFUs), cou-
pled with standard microprocessors, represent the hardware
realizations of the critical sections of an application. In or-
der to utilize these specialized AFUs, the instruction set of
the base architecture is augmented with the corresponding
application-specific Instruction Set Extensions (ISEs).

State of the art in automatic ISE generation typically is
limited to complex instructions that exclude memory ac-
cesses [1, 2, 3]. Including generic memory accesses in ISEs
creates a twofold problem. First, the resulting instruction
has a non-deterministic latency, an undesirable characteris-
tic especially in compile-time scheduled machines. Next, the
architectural design of AFUs becomes significantly compli-
cated requiring necessary synchronisation to memory. Hence,
AFUs are typically designed without a dedicated access to
memory, adhering to the register-to-register RISC philoso-
phy. However, a method that can include state in the AFUs
has the benefit of increasing the scope of ISE; and reducing
memory and register-file accesses from the main processor.

The aim of this paper is to present a method for including
architectural state in the AFUs, without adding a dedicated
access to memory from the AFU itself. Our observations
show that in the kernel of many embedded applications some
memory accesses correspond to fixed tables such as logarith-
mic or cryptographic tables. Embedding these inside AFUs
can lead to several advantages — (1) Speedup: memory
access to a small memory, now within the AFU, is faster.
(2) Energy reduction: access to smaller and tagless memo-
ries saves considerable energy. (3) Lowered cache pollution:
the tables are accessed solely within the AFUs reducing the
chances of evicting the highly-accessed cache lines. We also
observed that some values are accumulated within a loop,
opening possibilities for inserting internal registers within
the AFUs and thereby lowering the input/output needs of
the resulting instruction. If the problem of including mem-
ory state such as in the cases described above can be cor-
rectly formulated and solved, the scope of ISE can be tan-
gibly increased leading to higher performance.

The rest of the paper is organized as follows. In Section 2,
we discuss related research work. Section 3 presents our mo-

tivations, while Section 4 defines the problem at hand. We
discuss our approach in Section 5. Section 6 presents a de-
tailed analysis of the experimental results. Finally, Section 7
concludes the paper.

2. RELATED WORK
The problem of ISE generation for application specific

processors has been studied for almost a decade. Loosely
stated, the problem is to identify legal subgraphs/clusters
of a set of Data Flow Graphs (DFGs) which are potential
sources of speedup. Recently, efforts have been directed to
automate the identification process by proposing heuristics
to practically solve this problem of exponential complexity
under microarchitectural constraints.

When the goal is speedup coupled with dynamic reuse,
as in [3, 5, 6], the resulting subgraphs in most cases are
generally small. On a similar note, the subgraphs generated
starting from an output node by adding predecessor nodes
resulting in a single-output ISEs [7] may result in limited
speedup. One of our goals is to generate large clusters with
higher potential for speedup.

All the related research work, such as [1, 2, 3], consider the
occurrence of memory instructions implicitly as a pruning
criterion in the clustering process, and thus exclude memory
elements. Our method and results show that some kind of
memory instructions, which act as stumbling blocks in the
growth of clusters, can be included in clustering.

Extensible processors have been primarily studied in the
light of performance in the context of both ASIPs [10] and
reconfigurable computing [4, 11, 12]. Instead of giving the
coprocessor access to the main memory, as in [4], we propose
to have a special memory inside the AFU. Energy consump-
tion along with performance was addressed for the first time
in a recent work [3]. In this paper, we show the merit of hav-
ing memory elements in AFUs in terms of performance and
energy reduction. In addition, we analyze the feasibility of
implementation in terms of area overhead.

The contributions presented in this paper bear some re-
semblance with a recent work on scratchpads [13]. We go
beyond the scratchpad approach by bringing special por-
tions of memories closer to the core — directly inside the
(application-specific) Functional Unit that is going to use
them. Our results on energy reduction closely match those
obtained by mapping the frequently accessed data to an
Application-Specific Memory instead of a cache [14].

3. MOTIVATING EXAMPLES
Consider the Advanced Encryption Standard (AES)

benchmark, a Rijndael block cipher with a block/key size of
16 bytes. The stages involved in AES encryption/decryption
of a 16-byte input are the following: (1) Shift Rows (S) as
per a fixed scheme. (2) Byte Substitution (B) where each
byte of the block is replaced by its substitute stored in a fixed
256-element array called Sbox[]. (3) Mix Columns (M)
where each column stored in a 4-byte block is multiplied
with a constant matrix under some special rules involving
multiply and XOR operations. (4) Add Round Key (A)
which also involves XOR operations.

The sequence of operations involved in the AES encryp-
tion is: A−(S−B−M−A)9−S−B−A, indicating that the
sequence S-B-M-A is executed in 9 rounds presenting itself
as a hot spot for optimizations. The basic stages of a round

Column Mixer Column Mixer Column Mixer Column Mixer

K[0] K[1] K[2] K[3]

S

B

M

A

OUT[]

IN[]

8

Sbox[]

Column 1 Column 2 Column 3 Column 4

R1 R1 R1 R1R2 R3 R4 R2 R3 R4 R2 R3 R4 R2 R3 R4

Memory
Loads

8−to−32

32−to−8

X X X X

Y Y Y Y

Figure 1: AES main kernel

as implemented in the benchmark are captured in Figure 1.
The input 16-byte block (conceptualized as a 4X4 matrix
with 1-byte entries) is realized as 4 blocks of unsigned inte-
ger (4 bytes each), which is shown as IN[] array in the figure.
Except for the B-stage, all other stages comprise scalar op-
erations that do not access memory. Unfortunately, contem-
porary techniques for ISE selection choose only the sections
having scalar operations. However, an experienced architect
on careful analysis of the B-stage would conclude that the
memory operations are simply reads from a small fixed ta-
ble (Sbox[] of size 256) and thus it makes sense to map the
table into the hardware. With a little overhead in area, this
introduction of a hardware table having short and deter-
ministic latency would generate a large performance gain.
It is important to note that these instances are common in
cryptographic benchmarks. The main goal of our work is to
steer the ISE design space exploration for generating results
close to those achieved manually by an architect.

Consider a second example: the ADPCM-decode bench-
mark from the MediaBench suites, which also exhibits reads
from two monodimensional arrays (viz., indexTable and step-
sizeTable of sizes 16 and 89 respectively) and therefore can
benefit from the introduction of hardware tables.

... = index

index = ...

... = index

... = index

index = ...

... = index

... = index

... = index

... = index

index = ...

... = index

... = index

... = index

index = ...

1

2

3

4

BB1

BB2

1

2

3

4

BB1

BB2

BB3

cptsr

(a) (b)

7

5

6

cpfsrBB3

7

5

6

Figure 2: ADPCM-decode example: (a) Original
DFG (b) State Register introduced into DFG

The ADPCM-decode benchmark presents another inter-
esting scenario as depicted in Figure 2. The dotted edges
show the control flow of the application. Figure 2 (a) shows
the different points in the DFG where a variable index is

read (in nodes 2, 3, 4, 6 and 7) and written (in nodes 1 and
5). An ISE generation algorithm applied to basic block BB2
will naturally consider edges 1-3/1-4 and 6-7 as one of the
external inputs and outputs respectively. However, we pro-
pose to introduce architecturally-visible state registers
into AFUs and the following two instructions into the core
instruction set:

❒ Copy To State Register (cptsr):
cptsr <state reg> <core reg> copies the core register
content <core reg> into the state register <state reg>.

❒ Copy From State Register (cpfsr):
cpfsr <core reg> <state reg> copies back the content
of state register <state reg> into the core register
<core reg>.

The uses of cptsr and cpfsr are illustrated in Figure 2 (b)
assuming that the data-flow shown in BB2 maps into an
AFU. In basic block BB1, the value of index is copied into a
state register using cptsr. The state register inside the AFU
gets updated in successive iterations of the loop executing
in the AFU. At the end of the loop, the cpfsr instruction
is used to retrieve the value back into a core register as
shown in BB3. With the introduction of state registers in
AFUs, the selected ISE needs one less input and one less
output corresponding to each state register. Our goal is
to exploit the presence of both kinds of memory elements:
hardware tables and architecturally visible state registers
through effective ISE generation for higher performance.

4. PROBLEM DEFINITION
We call G (V, E) the Directed Acyclic Graph (DAG) rep-

resenting the dataflow within each basic block; the nodes
V represent primitive operations and the edges E represent
data dependencies. Each graph G is associated to a graph
G+

�
V ∪ V +, E ∪ E+

�
which contains additional nodes V +

and edges E+. The additional nodes V + represent input and
output variables of the basic block. The additional edges E+

connect nodes V + to V , and nodes V to V +(Figure 3(a)).

We now define a cyclic graph G
′ �

V, E ∪ E
′�

(Figure 3(b)).

Graph G
′

contains the same nodes as graph G, and addi-

tional edges E
′
. The additional edges E

′
represent (loop-

carried) data dependencies across basic blocks between nodes

V . An edge in E
′
exists from a node u ∈ V to another node

v ∈ V if all the following conditions are true:

➤ graph G represents a basic block within a loop,
➤ v is connected to some v+ ∈ V + in graph G+,
➤ u is connected to some u+ ∈ V + in graph G+,
➤ nodes v+ and u+ represent the same variable as input

and output to G respectively, and
➤ this variable is neither read nor written in other basic

blocks within the same loop body.

Similar to graph G, each graph G
′

is associated to a

graph G
′+
�
V ∪ V

′+, E ∪ E
′ ∪ E

′+
�

which contains addi-

tional nodes V
′+ and edges E

′+. The additional nodes V
′+

represent input and output variables of the basic block (V +)
which have not undergone the conditions above. The addi-

tional edges E
′+ connect nodes V

′+ to V , and nodes V

to V
′+. Vload ⊂ V and Vstore ⊂ V in G

′
(and G) rep-

resent memory-load and memory-store instructions respec-
tively. For a node vl ∈ Vload, memloc[vl] represents locations

that vl can read from. Similarly, a node vs ∈ Vstore can
write into locations, memloc[vs]. Let Vstores be the union
of all Vstore in the application. A memory-load instruction,
vl ∈ Vload is a read-only access to memory if ∀vs ∈ Vstores,
memloc[vl]

�
memloc[vs] = φ.

ext1

ext1

G

ext2

ext3 ext4

(a)

G’

(b)

ext4ext3

ext2G+ G’+

Figure 3: An example of the graphs described:

(a)Graphs G and G+(b)Graphs G
′
and G

′+. Note
that the two nodes of V +corresponding to variable

‘ext1’ do not belong anymore to G
′+, while new

edges in G
′+ have appeared.

A cut S is a subgraph of G
′
(S ⊆ G

′
) representing a po-

tential ISE. There are 2|V | possible cuts, where |V | is the

number of nodes in G
′
. A function M (S) measures the

merit of a cut S as an estimation of the speedup achievable
by implementing S as a special instruction.

We call IN (S) the number of predecessor nodes of those

edges which enter the cut S from the rest of the graph G
′+.

They represent the number of input values used by the oper-
ations in S. Similarly, OUT(S) is the number of predecessor
nodes in S of edges exiting the cut S. They represent the
number of values produced by S and used by other opera-

tions, either in G
′

or in other basic blocks. We call the cut
S convex if there exists no path containing forward edges
from a node u ∈ S to another node v ∈ S which involves a
node w /∈ S. If a cut is not convex, the input operands of
the ISE respresented by the cut will not be available at the
time of issue. We now define the problem as follows:

Problem 1. Given graphs G
′
and G

′+, find the cut S in

G
′
which maximises M (S) under the following constraints:

1. IN (S) ≤ Nin,
2. OUT(S) ≤ Nout,
3. S is convex,
4. A node v ∈ Vload can be part of S if v is a read-only

access to memory.

The user-defined values Nin and Nout refer to the num-
ber of register-file read and write ports respectively, which
can be used by the cut S in the form of an ISE. The merit
function M (S) should be a simple function estimating the
speedup achievable by implementing S as an ISE. The above
formulation of the problem is a modified version of the one
presented in [1]. The modifications are aimed at including
architectural state in the AFUs in two ways: (1) The addi-

tional edges E
′

of G
′

represent back-edges of a loop. The
variables associated with these edges can be kept inside the
AFU and do not need to be read from or written back into
the register file at every iteration of the loop. Therefore, if

a cut S contains one or more of these edges, one or more
state registers can be inserted in the AFU in order to hold
the corresponding values. (2) Read-only memories can now
be included inside an AFU using constraint 4. The read-
only values of such memories can be loaded into the AFU
either at fabrication time or at load time, depending on the
technology used. Note that the envisioned architecture still
does not require the AFU to address main memory directly.

5. ISE GENERATION ALGORITHM
The optimal algorithms for ISE generation [1] no longer

applies to graph G
′

because in the presence of back-edges,
the node numbers are not monotonic in the topological or-
dering. We use a genetic algorithm (originally proposed by
Holland [8]) for ISE exploration and profitably introducing
small read-only memories and architecturally-visible state
registers in AFUs. The genetic algorithm has the advan-
tage of searching multiple areas in solution space in parallel
to find a globally-optimal solution. The genetic algorithm
(depicted in Figure 4) starts with a population of possible
solutions (subgraphs in our case) and evolves into a set of
solutions that maximize a fitness function. A selection mech-
anism based on the fitness values decides which individuals
will survive to the next generation. Genetic recombination
operators are applied to the surviving individuals to pro-
duce offsprings for the next generation. Repeated selections
and recombinations between generations result in a contin-
uous evolution of the population till a termination criterion
is satisfied.

Initialize
Population

Term.

Evaluate
Operators Offsprings

Populate w/Apply GenSelect
Fitness

Finish
10

Criterion?

Individuals

Figure 4: Genetic Algorithm

We adopted a natural encoding of solutions as bitstrings.
A bitstring is of length |V |, with each node v ∈ V assigned a

bit position based on its fixed topological order in G
′
. The

1 or 0 value of a bit indicates the presence or absence of the
corresponding node in the subgraph respectively. The ini-
tial population is built using MaxMISO algorithm [7] which
extracts all the disjoint maximal-input single-output sub-

graphs from G
′
. Our strategy is similar to that of messy ge-

netic algorithms [9]: we explicitly search for low-order high-
fitness solutions as building blocks in the initial stages and
then combine them in the later stages using recombination.

A population here consists of subgraphs of G
′
, (1) obeying

convexity constraints and (2) having any node v ∈ Vload as
read-only. The fitness function measuring the fitness of an
individual (i.e., cut S) in the population is defined as follows:

F (S) = FI(S) · FP (S) · FM (S),

FI(S) = (1 − α · ((IN(S) − Nin) + (OUT (S) − Nout))),

FP (S) = min(M(S), Mbest),

where Mbest = the best merit value among the existing fea-
sible solutions,

FM (S) = β ·
�

v∈Vb(S)

γEQ(v,S,G′) · |out adj[v][S]|
|out adj[v][G′]| , where

EQ(v, S, G′) =

�
1, if |out adj[v][S]| equals |out adj[v][G′]|,
0, otherwise

and Vb(S) is the set of all vertices in S that are sources
of back-edges in S, out adj[v][S] are the nodes in S that
are in the adjacency list of v w.r.t. the outgoing edges and

similarly out adj[v][G′] are the corresponding nodes in G
′
.

The multipliers FI , FP and FM respectively capture I/O
constraints, performance metric and architecturally visible
state considerations. If IN(S) > Nin or OUT (S) > Nout,
the I/O constraints are violated and so we penalize the sub-
graph heavily so that the evolution process will eventually
discard it. The value of penalty parameter α has been empir-
ically determined to be 0.05. The factor FP ensures that the
best merit value is always owned by a feasible solution and
associates scaled merit values with infeasible solutions. The
fitness contribution from FM rewards inclusion of backedges
in S with the help of positive parameters β (=5.00) and
γ (=6.00). The parameter β gives a positive merit to the
presence of some back-edges and γ gives more weight to
the inclusion of all the back-edges (i.e., when |out adj[v][G′]
equals |out adj[v][S]). This scheme ensures that the algo-
rithm eventually converges into a feasible solution (if any)
including all the back-edges. The solutions including read-
only loads in S are implicitly favored because of the corre-
sponding increase in M(S).

The fitness values for all individuals in the population
are calculated and a roulette wheel selection technique [8]
is employed to select fit individuals for recombination. The
genetic operators used for recombination are mutation and
crossover. Mutation causes random alterations of the bits in
the bitstring representation at a rate called mutation rate.
The crossover operator chooses random pairs of selected sub-
graphs (or bitstrings) and exchanges nodes (or bits) with
the aim of producing better subgraphs. The probability
with which the crossover operation is performed is called
crossover rate. The offsprings produced by mutation and
crossover are tested for convexity constraints and violating
individuals are discarded. In the acceptable set of individu-
als, any memory-load that is not read-only is removed (with-
out violating the convexity constraints) resulting in a valid
population for the next generation. The termination cri-
terion has been chosen as obtaining the best fitness value
for last 20 generations. Our experiments produced best re-
sults with the following parameters: population size = 400,
crossover rate = 0.95, mutation rate = 0.001.

6. EXPERIMENTS
We chose benchmarks mostly in the telecommunication

domain from EEMBC (autcor, viterbi and bezier) and Me-
diaBench (adpcm coder and adpcm decoder) suites. In ad-
dition, we chose a cryptographic application viz. AES. We

Avg. Speedup and Avg. Area Overhead (in MAC-equiv.)
 (Orig. Vs Both)

0

1

2

3

4

5

6

7

2--1 3--1 4--1 4--2 6--3 8--4

Orig_speedup
Both_speedup
Orig_area_inc
Both_area_inc

Figure 5: Comparison of Average Speedup and Area
Overhead

Speedup (2-1)

0

1

2

3

4

5

6

adpcm
_code

r

adpcm
_deco

der AES autco
r

viterb
i

bezier

Original
AVState
ReadOnlyTab
Both

Speedup (4-2)

0

1

2

3

4

5

6

7

adpcm
_code

r

adpcm
_deco

der AES autco
r viterb

i bezier

Original
AVState
ReadOnlyTab
Both

Figure 6: Comparison of Speedup (Left: Nin = 2, Nout = 1; Right :Nin = 4, Nout = 2)

integrated our algorithm in the MachSUIF framework [15].
The read-only tables are generally implemented as global
arrays in the applications; any load or store into a global
array is represented through a special instruction in SUIF
[16]. We used this feature to find the read-only accesses to
the tables. We manually verified that there were no mali-
cious accesses to the global arrays using pointers in the given
applications. This could have been done automatically using
any well-known technique of pointer disambiguation [17].

The performance metric for a cut S, M(S) estimates the
speedup achievable by executing the cut as an ISE in an
AFU, which is expressed as: M(S) = λsw(S)/λhw(S). The
software latency λsw(S) is estimated as the execution time
on a single-issue processor. This is calculated as the accu-
mulated latencies of the nodes in S. The hardware latency
λhw(S) is the ceiling of the sum of hardware latencies of
instructions in the critical path of S. The hardware laten-
cies for each instruction is obtained by synthesizing the con-
stituent arithmetic and logic operators on a common 0.18µm
CMOS technology and then normalized to the delay of a
32-bit multiply-accumulate (MAC). The area occupied by
an AFU is measured by adding the area contributions from
the hardware realizations of the constituent instructions and
normalizing to the area of a MAC. We will refer to a unit
area as a MAC-equivalent.

The base configuration for our experiments is an archi-
tecture having a core processor but no AFU. The AFUs
added to the architecture are of the following kinds — (1)
Original: No memory elements inside, (2) AV State: Hav-
ing state registers only, (3) ReadOnlyMem: Having hard-
ware tables only and (4) Both: Having both kinds of mem-
ory elements. We compare architectures having different
kinds of AFUs with different constraints on the number of
register file input-output (Nin −Nout) ports. Figure 6 plots
the speedups obtained over the base configuration for 2-1
and 4-2 as I/O constraints. In all the plots, the speedup
meteric is evaluated for the whole kernel. Unless otherwise
stated, the maximum number of AFUs allowed is chosen as
8 and I/O constraints as 4-2. The benchmark, autcor ex-
hibits an instance of AV State while bezier and AES present
cases of ReadOnlyTab; all other benchmarks incorporate
both kinds of memory elements. It is interesting to note
that in adpcm coder and adpcm decoder, the multiplied ef-
fect of AV State and ReadOnlyTab results in a speedup of
the order of 5X for 2-1 and 6X for 4-2 respectively.

We show a plot of speedup and area overhead averaged
over all the applications for different I/O constraints in
Figure 5. The metrics are shown for Original and Both
configurations. As expected, the worst case area overhead
(� 5.5MAC−equivalents) is obtained for an 8-4 AFU with
a maximum average speedup of 5X. Note that in general
the area overhead is very reasonable: even clusters includ-

ing hundreds of nodes, as in the case of AES, result in AFUs
with a limited area overhead (� 2MAC − equivalents).

Table 1: Percentage energy saving using hardware
tables instead of data caches

BMs NA NC % Energy Saving

adpcm coder 295188 443892 31.75
adpcm decoder 295188 591412 26.47

AES 16408 21859 34.09
viterbi 2160000 72183000 2.38
bezier 48004004 61208005 34.94

Our technique is also effective in reducing the energy con-
sumption because of two primary reasons: (1) A significant
number of data-cache accesses are redirected to small tag-
less AFU-resident memory. (2) The number of fetches is
reduced as a result of compaction of a large number of in-
structions into an ISE. We show the energy reduction taking
only the first feature into account. We consider a 32-KB
direct-mapped data-cache (with 2048 lines of 16-bytes each)
as used in typical implementations of ARM for energy effi-
ciency. If the constituent instructions in an ISE are executed
in software, we conservatively assume that all memory op-
erations map into the data cache.

After mapping the ISEs to AFUs, let the number of ac-
cesses to AFU-resident memory be NA and the number of
loads/stores directed to the cache be NC . So, the number
of accesses to cache when there are no AFUs or for an AFU
that does not contain hardware tables is (NA + NC). If we
represent the energy per access for the AFU memory and
cache as EA and EC respectively, the energy saving due to
AFU memory can be expressed as:

(NA + NC) · EC − (NA · EA + NC · EC)

(NA + NC) · EC

We characterized both the cache and the AFU-resident
memory using Artisan UMC 0.18µm technology and found

Column i

S

B

M

A

8−to−32

>> >> >> &

& &

ld ld ld ld

<< << << <<

 | |

 |

>> >><< <<

 |

 ^

>> >> >> &

& &

ld ld ld ld

<< << << <<

 | |

 |

>> >><< <<

 |

 ^

S0 S1 S2 S3 S1 S2 S3 S0

Column j

Memory
Loads

Figure 7: Clustering in AES

AES (Different I/O Constraints)

0

5

10

15

20

25

2--1 3--1 4--1 4--2 6--3 8--4

Speedup
Area (MAC-equiv.)

AES (Different number of AFUs)

0

5

10

15

20

25

2 4 8 16

Speedup
Area (MAC-equiv.)

Figure 8: Impact of variation in the I/O constraints and the maximum number of AFUs for AES

the ratio (EC − EA)/EC to be 0.795 for the maximum size
(1 KB) of the hardware tables in the chosen applications.

Hence, the above expression simplifies into: 0.795·NA
NA+NC

. We

present NA, NC and percentage energy saving due to redi-
rection of the data cache accesses to AFU memory in Ta-
ble 1.

Because the above calculations are done under a number
of conservative assumptions, we can safely say that the aver-
age energy reduction in cache due to AFU-resident memory
is at least 26%. Since the cache is a significant contributor of
system energy, using hardware tables in AFUs would result
in a perceptible overall system energy reduction.

Among the chosen benchmarks, AES is the one having the
largest number of nodes in identified ISEs (of the order of
150). We study ISE generation for AES in greater detail by
varying the number of I/O ports and the number of AFUs
chosen. We show the effect of increasing the number of
ports on speedup and area overhead in Figure 8. Figure 8
also shows the effect of increasing the number of maximum
AFUs allowed. It is interesting to note that increasing the
number of I/O ports to 8-4 gains higher speedup (� 10X)
than increasing the number of AFUs to 16 with almost equal
area overhead in both cases.

In order to study the efficacy of our clustering, we show a
part of the data-flow graph in Figure 7, essentially covering
two of the columns of Figure 1. One of the cuts (or ISEs)
selected by our algorithm under 4-2 constraints is shown in
the figure. If the memory loads (as shown in the figures)
are not considered in AFUs, the largest cut generated has
around 60 nodes. However, in the presence of AFU-resident
memory, the number of atomic instructions included in this
cut rises to the order of 150. Since these instructions mostly
represent very simple bitwise operations, the resulting ISE
(critical-path) latency has been found to be as little as the
delay of 2 MAC operations. In general, we envision long-
latency ISEs to be run as multi-cycle operations causing
processor stalls but not affecting the processor cycle time.
With the worst-case implicit register addressing, it is pos-
sible to fit the generated ISEs in the instruction encoding
space.

7. CONCLUSIONS
Three main contributions were presented in this paper.

Firstly, we introduced local memory (or state) into Ad-hoc
Functional Units (AFUs) in the form of hardware tables and
architecturally-visible state registers. Secondly, we guided a
genetic algorithm to exploit the presence of memory ele-
ments in AFUs. Finally, we studied in detail the impact on
performance, area and energy consumption, clearly demon-
strating the advantages of including state into AFUs. For
the cryptographic application AES, we obtained a speedup
of the order of 10X in the best case with a maximum area

overhead of only 2 MAC-equivalents for the largest cut. We
also indirectly showed that speedup and energy are not con-
flicting goals in ISE generation by obtaining a maximum
average speedup of 5X as well as 26% average reduction in
cache energy.

We believe that automation of ISE generation is of utmost
importance, and our contributions further bridge the gap
between automatic solutions and those manually designed
by expert engineers. In particular, the problem formulation
and the proposed algorithm resulted in very large clusters in
the order of 150 nodes and at the same time having limited
area and delay overhead — a highly desirable and novel
result in the state of the art.

8. REFERENCES
[1] K. Atasu, L. Pozzi and P. Ienne. Automatic

Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints. In Proc. of DAC, 2003.

[2] N. Clark, H. Zhong and S. Mahlke. Processor Acceleration
through Automated Instruction Set Customization. In Proc. of
MICRO, 2003.

[3] F. Sun, S. Ravi, A. Raghunathan and N.K. Jha. Synthesis of
Custom Processors based on Extensible Platforms. In Proc. of
ICCAD, 2002.

[4] T. Callahan and J. Wawrzynek. Instruction-Level Parallelism
for Reconfigurable Computing. In Proc. of FPL, 1998.

[5] M. Arnold and H. Corporaal. Designing Domain-specific
Processors. In Proc. of CODES, 2001.

[6] H. Choi, I.C. Park, S.H. Hwang and C.M. Kyung. Synthesis of
Application Specific Instructions for Embedded DSP Software.
IEEE TC, 1999.

[7] C. Alippi et. Al. A DAG based Design Approach for
Reconfigurable VLIW Processors. In Proc. of DATE, 1999.

[8] J.H. Holland. Adaptation in Natural and Artificial Systems. U.
Mich. Press, 1975.

[9] D.E. Goldberg, B. Korb and K. Deb. Messy Genetic
Algorithm: Motivation, Analysis and First Results. Complex
Systems, 1989.

[10] A. Wang, E. Killian, D. Maydan and C. Rowen.
Hardware/Software Instruction Set Configurability for
System-on-chip Processors. In Proc. of DAC, 2001.

[11] R. Razdan and M.D. Smith. A High-performance
Microarchitecture with Hardware-programmable Functional
Units. In Proc. of MICRO, 1994.

[12] Z.A. Ye, A. Moshovos, S. Hauck and P. Banerjee. CHIMAERA:
A High-performance Architecture with a Tightly-coupled
Reconfigurable Functional Unit. In Proc. of ISCA, 2000.

[13] S. Steinke, L. Wehmeyer, B.S. Lee and P. Marwedel. Assigning
Program and Data Objects to Scratchpad for Energy
Reduction. In Proc. of DATE 2002.

[14] L. Benini, A. Macii, E. Macii, M. Poncino. Synthesis of
Application-Specific Memory for Power Optimization in
Embedded Systems. In Proc. of DAC, 2000.

[15] Machine SUIF.
http://www.eecs.harvard.edu/hube/software/software.html.

[16] R.P. Wilson et. al. SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers. SIGPLAN Notices,
1994.

[17] R.P. Wilson and M. Lam. Efficient Context-sensitive Pointer
Analysis for C programs. SIGPLAN, 1995.

