
Automatic Generation of Equivalent Architecture Model
from Functional Specification

Samar Abdi
Center for Embedded Computer Systems

UC Irvine, CA 92697

sabdi@cecs.uci.edu

Daniel Gajski
Center for Embedded Computer Systems

UC Irvine, CA 92697

gajski@uci.edu

ABSTRACT
This paper presents an algorithm for automatic generation
of an architecture model from a functional specification, and
proves its correctness. The architecture model is generated
by distributing the intended system functionality over vari-
ous components in the platform architecture. We then define
simple transformations that preserve the execution seman-
tics of system level models. Finally, the model generation
algorithm is proved correct using our transformations. As a
result, we have an automated path from a functional model
of the system to an architectural one and we need to debug
and verify only the functional specification model, which is
smaller and simpler than the architecture model. Our exper-
imental results show significant savings in both the modeling
and the validation effort.

Categories and Subject Descriptors
C.5.4 [Computer System Implementation]: VLSI Sys-
tems

General Terms
Algorithms, Design, Languages, Theory, Verification

Keywords
System level design, Formal verification, Model Refinement

1. INTRODUCTION
With rising complexity of design, modeling has been pushed

to system level of abstraction. These models represent de-
sign decisions that must be evaluated for exploring the de-
sign space. The first critical design decision is to distribute
the functionality in the specification onto components in
the target architecture, thereby requiring an architecture
model to reflect that decision. We also need to ensure func-
tional equivalence of the specification and architecture mod-
els written in system level design languages (SLDL).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

One approach is to manually write both models and ver-
ify them for equivalence by checking for similar properties
using techniques like bounded model checking [4]. How-
ever, this would require manual effort in model rewriting as
well as re-verifying every time the architecture is modified.
Another approach, as presented in this paper, would be to
verify the smaller and simpler functional specification first
and then automatically refine it to an equivalent architec-
ture model. To enable generation of an equivalent model,
we require formalisms to represent the system level models
and proof for correctness of the refinement step. Formalisms
grouped under process algebra like CSP [6] and CCS [8] have
been extensively researched and have well defined execution
semantics. We build on top of these formalisms and use ex-
isting notions of hierarchy, behaviors and channels, available
in SLDLs like SpecC [5] and SystemC 2.0 [1].

Correct by construction techniques have been widely ap-
plied at RT Level to prove the correctness of high level syn-
thesis steps [9] [3]. A complete methodology for correct dig-
ital design has been proposed in [7], but they only consider
synchronous models which are insufficient at system level.
More recently, such techniques have been employed in syn-
thesis of OS drivers for embedded devices [10].

b3b2 c
v1

b1

b4
v3

v2

q1

q2

PE1 PE3PE2
Model

Generation
Algorithm

Functional Spec. Model Architecture Model

Mapping Table

PE1

PE2

b1

b4
b3
b2

PE3

Figure 1: Architecture refinement in system design

Figure 1 shows how a specification model is refined to an
architecture level model with communicating components
in a parallel composition. Each task in the specification is
mapped to a unique component in the architecture. The
model generation algorithm, presented and proved in this
paper, takes the functional specification and the mapping
decision as its input. The output model carries behavior in-
side each of the components, that can be either compiled to
assembly code (for a SW component) or synthesized to RTL
(for a HW component). The rest of the paper is organized
as follows. Section 2 will cover system level modeling con-
structs. Section 3 will present the architecture refinement
algorithm. Section 4 will present notions of equivalence and

functionality preserving model transformations followed by
the proof of correctness for architecture refinement. Exper-
imental results are shown in section 5. We will finally wind
up with conclusions and future work.

b2b1 c
v1

s1

t 1

a1

s2

t 2

b4

b3

a2

v3

v2
q1

q'1

q
2

q
3

q'
3

q'
2

b2b1 c
v

b

bbb1 2 n

q1 q2
qn

b

b1 b2
q1 q2

(a)

(b)

(c)

(d) (e)

b

b1 b2
q1 q2

ms

Figure 2: Modeling constructs and an example func-
tional specification model ms

2. SYSTEM LEVEL MODELING
Formally, a model is a set of objects and composition rules

defined on the objects [2]. A system level model would have
objects like behaviors for computation and channels for com-
munication. The behaviors can be composed as per their
ordering . The composition creates hierarchical behaviors
that can be further composed. Interfaces between behav-
iors and channels or amongst behaviors themselves can be
visualized as relations.

2.1 Modeling constructs
The various modeling constructs are shown in figures 2(a)

through 2(d). Figure 2(a) shows data transaction between
two parallel behaviors being realized through a channel. The
channel implements two way blocking semantics, where both
the sender and receiver wait until the transaction is com-
pleted. Data transfer between sequential behaviors is real-
ized through ports. Figure 2(b) shows an ordered relation
between behaviors. During execution, behavior bi, 1 ≤ i ≤ n
may start executing after b has completed and condition qi is
TRUE. Similarly, in figure 2(c) behavior b may start execut-
ing if either b1 is complete and q1 is TRUE or b2 is complete
and q2 is TRUE. In figure 2(d), the 4 construct blocks the
execution of b until both b1 and b2 have completed and both
q1 and q2 evaluate to TRUE.

Behaviors are either leaf-level(atomic) or hierarchical. Hi-
erarchy is created either by parallel composition, like behav-
ior a1 in figure 2(e), or ordered composition like behavior a2.
The parallel execution semantics ensure that a1 completes
execution when both b1 and b2 are complete. The ordered
composition indicates that a2 starts with start behavior s2

and completes when terminate behavior t2 has completed.
Child behaviors in ordered composition have arbitrary con-
trol amongst them like conditions and loops. Further, we
introduce the notion of identity behaviors. An identity be-
havior is a leaf level behavior that does not perform any

computation, and therefore its output is the same as its in-
put. Such behaviors may be used for synchronization or
retransmission of data. The start and terminate behaviors
in ordered compositions are identity behaviors.

2.2 Notations
In order to express system models succinctly, we will use

some simple notations. Hierarchical behaviors are expressed
as functions of child behaviors. For instance, the paral-
lel composition representing a1 in figure 2(e) is written as
a1 : ρ(b1, b2). The ordered composition for behavior a2 is
written as a2 : o(s2, b3, b4, t2). Control relations representing
conditional execution of behaviors are written as q.b1 ; b2,
suggesting that b2 may start after b1 is complete and q is
TRUE. If the execution order is unconditional, that is b2

always executes after b1, we write it simply as b1 ; b2.
Data transfer through ports is written as v.b1 → b2, sug-
gesting b2 reads the data item v written by b1. Transac-
tions over channels are expressed with a pair of relations as
{v.b1 → c, v.c → b2}, meaning that data v is sent from b1

to b2 over channel c. For the scope of this paper, we will
use b and e for non-identity and identity behaviors respec-
tively. Symbols q, v and c with suffix will be used for control
conditions, data variables and channels respectively.

Using the above notation and the basic concepts of hierar-
chy, control and data flow, a system model m may be written
as a three-tuple : m :< H(m),C(m), D(m) >, where H(m)
is the expression for the hierarchical composition of behav-
iors in m, C(m) is the set of control relations in m and D(m)
is the set of data flow relations in m. The functional model
ms in figure 2(e) is thus written as follows.

H(ms) = o(s1, a1 : ρ(b1, b2), a2 : o(s2, b3, b4, t2), t1)

C(ms) = {s1 ; a1, a1 ; a2, q1.a2 ; a1,

q′1.a2 ; t1, s2 ; b3, q2 : b3 ; b4,

q′2.b3 ; t2, q3.b4 ; b4, q
′
3.b4 ; t2}

D(ms) = {v1.b1 → c1, v1.c1 → b2, v2.b2 → b3, v3.b2 → b4}

3. DERIVING ARCHITECTURE MODEL
The goal is to generate a model that represents the map-

ping of system functionality to architecture components.
The specification model is an arbitrary hierarchy of behav-
iors representing the system functionality. Model refinement
would distribute the behaviors onto components that run
concurrently in the system. It must be noted that refine-
ment does not in any way influence the mapping decision.
The designer is free to choose any mapping of behaviors to
components and refinement would produce a model that rep-
resents it. However, each leaf behavior in the specification
model must be mapped to only one component.

In order to derive an architecture model ma from a spec-
ification model ms, we use the designer decision of behav-
ior mapping . The mapping can be written as a group-
ing of non-identity leaf behaviors in ms. Let {b1, b2, ...bn}
be the non-identity leaf behaviors of ms. We can write
H(ms) = fs(b1, b2, ...bn), where fs is some function using
the parallel and ordered composition rules. Let the system
architecture consist of k components. Let compi be the set
of leaf behaviors mapped to ith component. The construc-
tion of architectural model ma for a given mapping is shown
in the following algorithm.

An intuitive explanation of the refinement process is as fol-

Algorithm 1 Generate Architecture Model

1: H(ma) = ρ(pe1, pe2, ..., pek)
2: C(ma) = {}
3: D(ma) = D(ms)
4: for i = 1 TO k do
5: for j = 1 TO n do
6: if bj ∈ compi then
7: bji = o(sji, bj , zji, tji)
8: zji = ρ(ej1, ej2, ..., eji−1, eji+1, ..., ejk)
9: C(ma) = C(ma) ∪ {sji ; bj , bj ; zji, zji ; tji}

10: else
11: bji = ρ(e′ji)
12: D(ma) = D(ma) ∪ {0.eji → cji, 0.cji → e′ji}
13: end if
14: end for
15: for all q.x ; y ∈ C(ms) do
16: C(ma) = C(ma) ∪ {q.xi ; yi}
17: end for
18: pei = f(b1i, b2i, ..., bni)
19: end for
20: for all v.bi → bj ∈ D(ms), bi ∈ compl, bj ∈ compr do
21: if l 6= r then
22: D(ma) = D(ma)− {v.bi → bj}
23: D(ma) = D(ma) ∪ {v.bi → eir, v.eir → cv , v.cv →

e′ir, v.e′ir → bj}
24: end if
25: end for

b j

q'3

e'jr

b jr
b ji

per

pei

ej1 ejke jr cjr
q'3

e'j1

bj1

pe1

cj1 q'3

e'jk

b jk

pek

c jk

b j mapped to pei

1

1

1

v jr

vj1

vj1

v jr v jk

vjk

s ji

t ji

Figure 3: Architecture refinement applied to a single
behavior

lows. We start by copying the behavior hierarchy of ms onto
behaviors pe1 through pek, that represent the processing el-
ements executing in parallel. Rename the sub-behaviors un-
der each PE to reflect the mapping. For instance, b1 copied
under pe2 is renamed as b12. In order to realize the behavior
mapping and to preserve the original control flow, we mod-
ify leaf behaviors under each PE as follows. If bj is mapped
to compi, then in the hierarchy under pei, replace bj by a
sequential composition bji = o(sji, bj , zji, tji), where zji is
a parallel composition of k − 1 identity behaviors as shown
in figure 3. Each of these identity behaviors is responsi-
ble for sending a message to other components that bj has
completed execution. For remaining components, replace
bj in the respective hierarchy by an identity behavior that
receives the message for bj ’s completion. Finally, all data
transfers across components are routed through the identity
behaviors used for synchronization. Intra-component data
transfers are preserved as is.

The architecture model for the example in figure 2(e), as

s22

t 22

a22

v2

q
2

q
3

q'
2

b12

s12

t12

a12

q
1

q'
1

pe2

e'
12

e41

s42

b
4

b42

q'
3

s21

t 21

a21
v2

v2

q
2

q
3

q'
3

q'
2

b21
b11

s11

t 11

a11

q
1

q'
1

pe1

e'
21

e12

b 1

e32

s31

b 3

b31

e'
41

b41

q'
3

b22

e21

b
2

e'
32

b32

v3

c

v
1

c31

c11

cv2
v2 v2

c42

ma

q
2

s11

s22

t 22
t11

t31

t42

Figure 4: Architecture model ma

derived by the refinement algorithm is shown in figure 4. In
this particular model, the designer choose two components
PE1 and PE2 for the system architecture. Behaviors b1 and
b3 are mapped to PE1, while b2 and b4 are mapped to PE2.

4. PROOF OF CORRECTNESS
In order to prove correctness of the above model refine-

ment algorithm, we must establish a notion of functional
equivalence. This requires a definition of model execution
semantics. Further, we present transformations that gener-
ate functionally equivalent models. The transformations are
then used to present a proof of correctness.

4.1 Model execution semantics
The execution of a model is best understood by unfolding

it as shown in figure 5(a). We construct a (possibly infi-
nite) directed acyclic graph (DAG) representing all possible
execution scenarios. Note that in this DAG, we have flat-
tened the model. As a result of this flattening, the parallel
composition (behavior a) is now modified to an equivalent
partial order (s3 ; b1, s3 ; b2). A synchronization node
is added to ensure that the execution of t3 does not pro-
ceed until both b1 and b2 are complete. The label on the
edges connecting behavior nodes are boolean variables or
boolean constants, representing conditions for a behavior to
execute. By default, the unlabeled edges represent a TRUE
path. The index of the conditions represents the particular
instance. A behavior node will execute if all its predecessors
in the DAG have executed and all the incoming condition arc
labels evaluate to TRUE. Input and output data associated
with behaviors is also shown with incoming and outgoing
variable arcs respectively.

s1

t3

b4

t2b4

b3

s2

b2b1

s3

t2 s3

b2

t3

b1

t1s3

t1

c
v1

v3v2

v2

v3

v3

c
v1

q2(1) q2'(1)

q3(1) q3'(1) q1(1) q1'(1)

q1(2) q1'(2)

v3v2

b1.rd(v2)

b2.wr(v5)

b2.ex()

b2.rd(v4)

b1.wr(v3)

b1.ex()
b2.rd(v1)

b1.wr(v1)

t3.ex()

s3.ex()

start

s1.ex()

s2.ex()

b3.rd(v2)

b3ex()

b4.rd(v3)

b4.ex()

b4.rd(v3)

b4.ex()

t2.ex()

t1.ex()

b1.rd(v2)

b2.wr(v5)

b2.ex()

b2.rd(v4)

b1.wr(v3)

b1.ex()
b2.rd(v1)

b1.wr(v1)

t3.ex()

s3.ex()

t2.ex()

t1.ex()s3.ex()

q2(1) q2'(1)

q1'(1)
q1(1)

q3(1) q3'(1)

q1(2)
q1'(2)

(a) (b)

Figure 5: (a)Unfolded execution graph and (b) Ac-
tion graph for specification model ms

4.1.1 Action graph
A behavior execution is further divided into three ordered

sets of actions. First, the behavior reads all the input data
(represented by b.rd(v)). Then the behavior executes its
main body (represented by b.ex()). Any data transactions
on the connected channels also take place interleaved with
b.ex(). Finally, the behavior writes to all its output vari-
ables (represented by b.wr(v)). Note that the channel write
and read actions are ordered as write followed by read, in
compliance with the blocking channel semantics. Hence, we
derive an action graph from the model execution graph as
shown in figure 5(b) for our example.

4.1.2 Partial order trace
A model execution instance is simply a valuation of the

conditional variables in the action graph. Given such a val-
uation, we can derive a partial order trace graph as shown
in figure 6. In this particular execution instance, we have
assumed a valuation to be {q2(1) = T, q′2(1) = F, q′3(1) =
T, q3(1) = F, q1(2) = T, q′1(2) = F, ...}. Note that this trace
contains only observable actions. Therefore all actions asso-
ciated with identity behaviors are removed.

4.2 Equivalence of Models
We define functional equivalence of two models based on

the above execution semantics. Two models are equivalent
if they have the same
1. leaf level non-identity behaviors,
2. conditional variables, and
3. partial order trace for same valuation of conditions.
The equivalence of two models, say m1 and m2, by the above

b1.rd(v2)

b2.wr(v5)

b2.ex()

b2.rd(v4)

b1.wr(v3)

b1.ex()
b2.rd(v1)

b1.wr(v1)

start

b3.rd(v2)

b3ex()

b4.rd(v3)

b4.ex()

b1.rd(v2)

b2.wr(v5)

b2.ex()

b2.rd(v4)

b1.wr(v3)

b1.ex()
b2.rd(v1)

b1.wr(v1)

Figure 6: Partial order trace for an execution in-
stance

definition is written as m1 ↔ m2. Note that we define func-
tional equivalence which is relevant for asynchronous system
level models. Thus there is only a qualitative notion of time
instead of a quantitative one. As models are refined towards
greater detail, timing becomes more accurate and thus can-
not be used quantitatively as a factor for equivalence.

4.3 Functionality preserving transformations
Considering the definition of functional equivalence, it can

be seen that comparing two independent models for equiv-
alence is intractable due to the potentially infinite size of
the partial order traces. However, we can define some sim-
ple transformations on a model that produce functionally
equivalent models. New models derived by applying a se-
quence of these transformations would thus be equivalent to
the input model by induction. Figure 7 lists a set of model
transformations that preserve functionality.

We now provide some intuition into the soundness of these
transformations. Transformation T1 is sound by the seman-
tics of parallel composition. A parallel composition can be
turned into a partial ordered one by allowing all child be-
haviors to start together. Synchronization is then added to
ensure that execution of the hierarchical behavior does not
complete until all child behaviors are complete.

T2 replaces a control relation to a hierarchical ordered
behavior with a control relation to its start behavior. Sim-
ilarly, T3 replaces a control relation from a hierarchical or-
dered behavior with a control relation from its terminate
behavior. By definition, the start and terminate behaviors
are always the first and last, respectively, to be executed in
an ordered composition. Thus both T2 and T3 are sound.

b2b1

a

x

y

a

t

b1 b2

s

x

y

b1 b2
q1 q2

b1 b2
q1 q2b1 b2e

q1 q2

b1 b2

q1

q2

e1 e2

b1 b2
v

b1 b2e
v v

T1

a

t

sb
a

t

sb

a

t

sb
a

t

sb

a1

t1

b1
b2

t

s

s1

a

t1

b1
b2

t

s

s1

a

e1 e2c
0 0

e1 e2

v

e1 e2c
v v

T2

T3

T4

T5

T6

T7

T8

T9

Figure 7: Model transformations

Transformation T4 flattens the hierarchy by removing a sec-
ond level ordered composition that does not have any control
relations. Since a hierarchical behavior itself is not observ-
able in a partial order trace, it can be removed if it does not
influence execution of other behaviors.

The LHS of T5 implies that if both conditions q1 and
q2 are TRUE, then the behaviors b1, e, and b2 are executed
in that order. Since actions of identity behaviors are not
included in the partial order trace, it is same as the trace
for RHS, where y is executed after x if q1∧q2 is TRUE. The
LHS of T6 has two control relations, both leading from b1

to b2. If either of the condition variables q1 or q2 evaluate
to true, then b2 will be executed after b1 completes. This is
equivalent to a single control relation (q1 ∨ q2).x ; y in the
RHS.

According to blocking channel semantics, the RHS term in
T7 would ensure that e2 does not complete before e1 starts.
Since the actions of identity behaviors are not observed in
the partial order trace, e2 starting after e1 completes is
equivalent to e2 being blocked until e1 starts. The LHS in
T8 implies that action e1.wr(v) is followed by e2.rd(v) due
to the ordering of behaviors. For the RHS, the same order
of data transactions is maintained due to channel semantics.
Since the actions of identity behaviors are not included in
the partial order trace, the data transfer through the port
is equivalent to the same data transfer through a channel
transaction in this case. The soundness of T9 follows from
the same logic as above. Both the LHS and the RHS repre-
sent a partial order trace with action b1.wr(v) followed by
b2.rd(v).

4.4 Correctness of architecture refinement
The proof for algorithm 1 is performed using the sound

model transformations discussed in section 4.3. The re-
fined model can be generated either through algorithm 1 or
through a series of transformations. Typically, the deriva-
tion through transformations is longer, and thus less effi-
cient, than the algorithmic step. Therefore, in the imple-
mentation of the refinement tool, we use the algorithm, more
so because the intermediate models from individual trans-
formations are not of interest. However, the transformations
are essential for deriving the proof.

To prove equivalence, we reduce both models to a flat
canonical form. The canonical representation of the archi-
tecture model is then simplified to optimize away redundant
identity behaviors and channels. After optimization, the
canonical form representation of the architecture model is
reduced that of the specification model.We present here an
intuitive version of the proof for lack of space.

The canonical form of a given model m is derived by con-
verting all parallel compositions in the behavior hierarchy
H(m) to ordered compositions using T1. All control re-
lations in C(m) are then reduced to control relations only
between leaf level behaviors by using T2 and T3. The hier-
archy is then flattened by optimizing away the hierarchical
sub-behaviors in H(m) using T4. We thus get an equivalent
model m′ in the canonical form.

We start with models ms and ma and derive their canon-
ical forms m′

s and m′
a respectively. So, we have m′

s ↔ ms

and m′
a ↔ ma. Now consider model m′

a. Given leaf level
behaviors bi, bj in m′

s such that q.bi ; bj ∈ C(m′
s)

Let bi ∈ compl, bj ∈ compr, l 6= r.
According to the refinement algorithm, we have
{bi ; zil, q.e

′
ir ; bj} ⊂ C(m′

a), 0.eir → e′ir ∈ D(m′
a)

Using T7 to replace the channel by the control condition,
we get {bi ; zil, eir ; e′ir, q.e

′
ir ; bj} ⊂ C(m′

a),
D(m′

a) = D(m′
a)− {0.eir → eir}

Now, flattening zil applying T5 twice gives us
{bi ; eir, eir ; e′ir, q.e

′
ir ; bj} ⊂ C(m′

a),
= {bi ; eir, q.eir ; bj}
= q.bi ; bj

Now for the case when both bi and bj are mapped to the
same component. Let bi, bj ∈ compl.
According to the refinement algorithm, we have
{bil ; bjl ⊂ C(m′

a)
Flattening by T4 gives us
{bi ; zil, zil ; til.q.til ; sjl.sjl ; bj ⊂ C(m′

a).
Finally, applying T5 and T6 gives us
{bi ; til, q.til ; sjl.sjl ; bj ⊂ C(m′

a).
= {q.bi ; sjl, sjl ; bj}
= q.bi ; bj

Using the above rules, we can reduce all conditional re-
lations and synchronization channels in m′

a to those in m′
s.

We now try to reduce the data flow relations across compo-
nents.

Given leaf level behaviors bi, bj in m′
s such that v.bi →

bj ∈ D(m′
s)

Let bi ∈ compl, bj ∈ compr, l 6= r. In our refinement
algorithm, data transfer across components was converted
to data transactions over channels. Since bi and bj were
mapped to different components, we have
{v.bi → eir, v.eir → cv, v.cv → e′ir, v.e′ir → bj} ⊂ D(m′

a)
Using T8, the transaction over channel can be reduced to
simple port transfer with control condition, giving us

Table 1: Experimental results for different system architectures
Model Lines of Modified Refinement Refinement Simulation Simulation

Design
Configuration Code LOC time (auto) time (manual) time Overhead

spec. 1932 - - - 0.322s -
Jpeg arch.(2 PEs) 2841 1112 0.164s 22.24 days 0.445s 38.2%

arch.(3 PEs) 4155 2306 0.259s 46.12 days 0.520s 61.5%
arch.(4 PEs) 4342 2884 0.285s 57.68 days 0.640s 98.8%

spec. 9787 - - - 1.651s -
Vocoder arch.(2 PEs) 12650 4618 0.746s 92.36 days 2.277s 37.9%

arch.(3 PEs) 14874 7009 2.156s 140.12 days 2.351s 42.4%
arch.(4 PEs) 18648 12665 10.679s 253.3 days 2.963s 79.5%

{v.bi → eir, v.eir → cv, v.cv → e′ir, v.e′ir → bj}
= {v.bi → eir, v.eir → e′ir, v.e′ir → bj}
since eir ; e′ir ∈ C(m′

a)
Finally, applying T9 twice, we have
{v.bi → eir, v.eir → e′ir, v.e′ir → bj}
= {v.bi → e′ir, v.e′ir → bj}
= {v.bi → bj}

Since data transactions between behaviors mapped to the
same component are preserved in the architecture model,
we can reduce all data flow relations in m′

a to those in m′
s.

We thus have m′
a ↔ m′

s. Using the equivalence result of the
canonical form , we get ma ↔ ms.

5. EXPERIMENTAL RESULTS
In order to evaluate our claims about savings in model

rewriting and validation effort, a model refinement tool was
written in C++ based on the algorithm in section 3. Models
were written in the SpecC language [5] and the tool was used
to automatically create models for different architecture con-
figurations. Tests were done with Jpeg encoder specifica-
tion and a voice codec application based on the ETSI GSM
Vocoder standard. Table 1 shows results for the tested con-
figurations. The savings in model rewriting can be seen by
comparing the effort in manual refinement versus automatic
refinement. Using an optimistic metric of 50 correctly mod-
ified lines of code per person-day, manual refinement may
take days or even months. In contrast, automatic refine-
ment produces resulting model in seconds.

The models were simulated on a 2 GHz Linux machine us-
ing bitmap pictures for jpeg encoding and 3.7 second speech
samples for the vocoder. Average simulation times per pic-
ture/voice sample are given in Table 1. Simulation overhead
is calculated as the extra time for simulating architecture
models over functional specifications. It can be seen that
as the architecture becomes more complex, the simulation
overhead increases. Moreover, the architecture model be-
comes difficult to debug due to several concurrent threads
resulting from independently running components.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a method for generating an ar-

chitecture level model from a functional specification model
and proved its correctness. We established a notion of func-
tional equivalence in the form of partial order traces and
functionality preserving transformations were defined on sys-
tem level models. Finally, the refinement algorithm was
proven to be correct using these transformations. The gen-
erated architecture model can be used in several ways. The

resulting data transaction channels at the top-level can pro-
vide estimates of communication traffic. This information
can be used in building an optimal communication architec-
ture. Also, the generated code for each of the components
can be used as reference code either for software genera-
tion on processors or HDL code generation on HW compo-
nents. In the future, we would like to enhance our scheme
by extending the modeling constructs and the set of sound
transformations to prove correctness of more design steps.

7. REFERENCES
[1] SystemC, OSCI[online]. Available:

http://www.systemc.org/.

[2] S. Abdi and D. Gajski. System Debugging and
Verification: A New Challenge. Technical Report
ICS-TR-03-31, University of California, Irvine,
October 2003.

[3] R. Camposano. Behavior-preserving transformations
for high-level synthesis. In Proceedings of the
Mathematical Sciences Institute workshop on
Hardware specification, verification and synthesis:
mathematical aspects, pages 106–128. Springer-Verlag
New York, Inc., 1990.

[4] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe.
Case studies of model checking for embedded system
designs. In Third International Conference on
Application of Concurrency to System Design, pages
20–28, June 2003.

[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, January
2000.

[6] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[7] Middlehoek. A methodology for the design of
guaranteed correct and efficient digital systems. In
IEEE International High Level Design Validation and
Test Workshop, November 1996.

[8] R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

[9] S. Rajan. Correctness of transformations in high level
synthesis. In International Conference on Computer
Hardware Description Languages and their
Applications, pages 597–603, June 1995.

[10] S. Wang and S. Malik. Synthesizing operating system
based device drivers in embedded systems. In
Proceedings of the International Symposium on System
Synthesis, pages 37–44, September 2003.

