
Scalable Modeling and Optimization of Mode Transitions
Based on Decoupled Power Management Architecture

Dexin Li, Qiang Xie and Pai H. Chou
Center for Embedded Computer Systems

University of California, Irvine, CA 92697-2625 USA
{dexinl,qxie,phchou}@uci.edu

ABSTRACT
To save energy, many power management policies rely on issuing
mode-change commands to the components of the system. Efforts
to date have focused on how these policies interact with the external
workload. However, the energy savings are ultimately limited by
the set of power-saving modes available to the power manager. This
paper exposes new power-saving opportunities to existing system-
level power managers by handling each desired mode change in
terms of an optimal sequence of mode transitions involving mul-
tiple components. We employ algorithms to optimize these tran-
sition sequences in polynomial time, making them applicable to
static and dynamic policies. The decoupling between policies and
mechanisms also makes this approach modular and scalable to de-
vices with complex modes and intricate dependencies on other de-
vices in the system. Experimental results show significant energy
savings due to these sequentialized mode-change opportunities that
would otherwise be difficult to discover manually even by experi-
enced designers.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based System]: Real-time
and embedded systems; D.2.11 [Software Architectures]: Domain-
specific architectures

General Terms
Algorithms, Design

Keywords
power management, power model, component mode, mode transi-
tion, mode change, compex system

1. INTRODUCTION
As embedded systems grow in complexity, designers must re-

think power management in the context of complex components.
With the advent of systems-on-chip (SoC), today’s system will be-
come tomorrow’s component, and individual components will con-
tain their own local power managers. It will no longer be viable for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

a system-level power manager to continue controlling power the
way it is done today. Today’s power management approaches re-
spond to a variable stream of events by selecting a new power mode
for each component. If the overhead for this mode change cannot
be amortized over the break-even time, then the power manager
will not make the mode change. Such an approach is adequate for
relatively simple systems such as laptop computers with hard disks
and displays. The power manageable components operate mostly
independently of each other. As a result, power managers today
need only to model the available modes and some workload profile
without concerns for the inter-component interactions.

For the next generation embedded systems, where the compo-
nents appear more like nodes in a distributed multiprocessor sys-
tem, power management must be done very differently. Not all
mode transitions are available at all times due to the inter-component
dependency. Even if all mode transitions are available at all times,
deciding when or whether they should be taken is fast becoming
a non-trivial task. This is because a mode change request for one
component will trigger a chain of mode transitions for its subcom-
ponents, and even across multiple components. If these dependen-
cies are not considered, attempts to save power by locally greedy
mode changes will often result in globally higher energy consump-
tion or even missing deadline [5].

We believe that a new power management architecture will be re-
quired in order to manage power correctly and effectively for a new
generation of complex embedded systems. Current power manage-
ment in embedded systems and computer systems is performed by
a power manager, most likely residing in the operating system. The
power manager monitors the device status, makes decisions on the
changes of power modes, and sends commands to device drivers to
actuate the changes. However as the systems become complicated
and the applications have to satisfy multi-dimensional constraints,
the power manager may be overwhelmed by details of the large
number of power-manageable devices. For example, a software-
defined radio system might consist of more than ten power manage-
able components and mode changes of two devices may be depen-
dent upon each other because of the application constraints. The
traditional power manager can handle this system in theory, but
in practice it may have difficulty in making correct decisions in a
time-efficient and energy-efficient manner. In the operating sys-
tem, power management itself could become a heavy duty task and
a large source of bus traffic simply because it has to monitor work-
ing states of and send mode transition commands to a large number
of devices, and satisfy all system constraints as well.

In this paper, we purpose a new power management architecture
for large and complicated embedded systems. We model power
modes with inter-component dependencies. We modularize the
system power manager by separating the power manager core and

9.1

119

PM/OS kernel

ACPI Driver

ACPI

Hardware
Platform

ACPI Policy Handler

C1 C2 Cn

Device Driver

C1 C2 Cn

Hardware Platform

Mode
Transition

Graph

Mode
Dependency

Model

DPMA

Component
Software

Model
Component

Manager

Figure 1: System architectural model: ACPI vs. DPMA (our
model).

a special unit (called Component Manager) handling component-
level details. The advantage of modularization is that the power
manager does not have to consider component details when mak-
ing high-level policies. A light-weight simulation engine provides
detailed mode change information to the power manager so that it
does not have to incorporate all component-level details. The pur-
pose of this work is to demonstrate power mode modeling and sim-
ulation aspects of power management architecture. We use a fairly
simple DPM technique in comparing power management with our
model and without our model. Experimental results show we can
obtain feasible sequences of mode transitions and optimized system
total energy.

This paper is organized as follows. Section 2 briefly introduces
our power model and reviews related work. Section 3 presents de-
tailed power modeling. We give our algorithm in Section 4 and
discuss the experimental results in Section 5.

2. RELATED WORK
Many existing techniques for system-level power management

assume single device schemes. In task scheduling, researchers have
paid most attention to a single processor with voltage/clock scal-
ing capability while power modes and power consumption on pe-
ripheral devices are not considered. The cost of mode changes on
the processor is often reasonably neglected [6, 9, 10]. In dynamic
power management techniques, researchers concentrated on sys-
tems of a single device without strong timing guarantees [2, 7, 11].
Tradeoffs are made between the power consumption and system
performance. In [8] the authors did model multiple servers and
relationships in the system. However, the modeled servers have
identical behaviors (handling incoming requests) with the only dif-
ference in server parameters (handling capacity, etc.). The modeled
relationships of synchronization and concurrency are actually the
relationships among services, rather than among the components
themselves. Complex systems with complicated inter-component
relationships were not the main focus of the research. On the other
hand, our power model encompasses multiple heterogeneous com-
ponents, their power modes, the costs of mode changes, and inter-
component dependencies.

ACPI[3] is a system interface in an operating system between
the power manager and the hardware devices. It enables universal
power management of plug-and-play devices from different man-
ufacturers. Similar to the concept of ACPI, our power model is
a middle layer between the system power manager and the de-
vice driver, supporting flexible and complicated system-level mode
changes. Our model is different from ACPI in several ways: first,
ACPI is at the level of the device driver layer whereas our model

0.5/100

0/0

0 1

25

13/10

20

13/100

10.5/100

10.5/5
22.5/1022.5/5

Figure 2: Mode transition graph for a power amplifier
in a software-defined radio system. Vertices: component
modes with power number(w); edges: mode transitions with
power(W) and timing(ms).

is above the device driver layer (see Fig. 1); second, the purpose of
ACPI is to bridge the operating system and the hardware while our
model emphasizes the support for the power manager by provid-
ing component-level knowledge; third, we incorporate application-
level knowledge by modeling the dependencies among components,
whereas the ACPI mainly models device details without application
knowledge. Furthermore, our component manager takes partial
responsibility from the power manager by generating the correct
sequence of mode transitions for a global mode change, whereas
ACPI itself is merely a common driver interface that does not have
any power management responsibility.

3. POWER MODELING
In this section we present our component power model and the

Decoupled Power Management Architecture (DPMA). We parti-
tion the functionality of a traditional power manager into two parts:
the policy handler and the component manager (see Fig. 1). The
policy handler deals with high-level policy-making while the com-
ponent manager handles component-level mode changes using the
Component Software Model. A light-weight simulation engine,
which can be either online or offline, keeps track of the details
of mode changes and informs the policy handler of the cost of the
mode changes. Our architecture is highly modular. The policy han-
dler can change power management policies without knowledge
about the components. The component manager can change its
core algorithm without modifying the Component Software Model.
The detailed model of a component can be easily updated without
changing the policy handler or the component manager.

3.1 Component Software Model
In the context of this paper we model components in terms of

their power modes. The component can be an individual device
or may consist of subcomponents. All power-manageable compo-
nents in a system form a set U . Each component has a set of modes
M = {mi|i = 1, . . . ,k}. We use Mu to denote the set of modes for
component u. A mode for the component u is represented as u.m
where u ∈U and m ∈Mu.

By “mode transition”, we mean a direct switch from one com-
ponent mode to another. By “mode change” we mean alternating
a component from its current mode to a target mode, which may
be either a direct mode transition or a sequence of mode transi-
tions. Mode transitions of a component are modeled as a Mode
Transition Graph (MTG) (see Fig. 2), similar to the model in [1].
An MTG G = (M,E,P,H) is a directed graph, where M is a set of
vertices representing a set of component modes, and E is a set of di-
rected edges representing all possible mode transitions. The power
function P : M→ R maps a component mode to a power number.
The overhead function H : M×M→ R×R maps a mode transition

120

Command
Interpreter

Core
Algorithm

Global
Command

Device
Driver

Simulation
Engine

Component Manager

Figure 3: The component manager diagram.

to a power number and a timing number. If two vertices v and v′

are not directly connected, they have to go through a sequence of
mode transitions π = 〈v0,v1,v2, . . . ,vk〉 such that v0 = v, v′ = vk
and (vi−1,vi) ∈ E for i = 1,2, . . . ,k to accomplish a mode change,
if possible.

A mode dependency between two components is represented as
“u.m 7→ v.n” where u,v ∈U , m ∈Mu and n ∈ Mv (Mu and Mv are
mode sets of components u and v, respectively). The dependency
follows an “only-if” interpretation: the component u is in mode m
only if the component v is in mode n. In other words, if the com-
ponent v is not in mode n, the component u cannot be in mode
m. All the dependencies for a set of components U form a set
D⊆

S

i∈U Mi×
S

j∈U M j . We call “u.m” (the left side of the arrow)
the key and “v.n” the value of the dependency. We use the symbol
≺
7→ and

�
7→ to denote the temporal relationships between the key and

the value. The former represents the key starting its mode change
before the value finishes its mode change, while the latter repre-
sents the key starting its mode change after the value finishes its
mode change.

The “only-if” interpretation suggests a necessary dependent re-
lationship between two components. We use it to identify and elim-
inate illegal modes that violate the constraints. Meanwhile, it does
not make unnecessary restrictions, allowing full opportunities for
design space exploration and system optimization. The definition
of the temporal relationships enables us to model the partial order-
ing in a sequence of mode transitions.

3.2 System Model
Our system model consists of a policy handler, a component

manager, component software models, the device driver, and the
hardware platform. A separate simulation engine can be integrated
with our system model to obtain the cost information of a mode
change. The policy handler makes high-level power management
decisions and issues global commands for system-level mode changes.
A global command can be either an action that causes a mode
change or a query to the simulation engine for information about
the cost of a mode change, when necessary. The component man-
ager handles component-level details of the mode changes. The
Component Software Models, which are described in the previ-
ous subsection, capture the details of component modes. The de-
vice driver is an interface between the component manager and the
Hardware platform.

The component manager consists of the command interpreter
and the core algorithm (see Fig. 3). A global command from the
policy handler may contain system-level semantics that the com-
ponents may not understand. The command interpreter translates
a global command γ ∈ Γ into a set of local commands Λγ. A local
command λi = u.m ∈ Λ is to set the component u to the mode m
where Λ is the set of all local commands. The role of the com-
mand interpreter can be represented by the function F : Γ→ Λ∗
where Λ∗ is the transitive closure of Λ. For example, the com-
mand interpreter may translate the global command “set to system

C
on

tr
ol

le
r

M
on

ito
r

Simulation Engine

off stb on
f1

off stb on

off stb on

f2

fn

From
Core Algorithm

TO
Policy

Handler

Figure 4: Simulation engine diagram.

ready” into “component A to standby” and “component B to on”
(Λ′ = {A.standby,B.on}). The core algorithm takes the set of local
commands Λ′ ∈ Λ∗ as an input and determines a feasible sequence
of mode transitions σ = 〈v0,v1,v2, . . . ,vs〉 where vi = u.m,u ∈U
and m ∈Um for i = 0,1, . . . ,s is a component mode. Note that even
if a global command may ask for a mode change on one specific
component, modes on multiple components might be changed due
to the mode dependencies. The algorithm also tries to optimize
the sequence to reduce the energy consumption during the mode
change. The output sequence is either sent to the device driver or
fed into the simulation engine.

3.3 Mode Simulation
The simulation engine takes σ as an input, simulates the entire of

the mode change and obtains the timing cost and the energy cost of
a mode change which will be used by the policy handler. When the
simulation is performed online, it is able to handle variable costs
of mode changes at runtime. For example, when plugging in a new
component, the costs of mode changes on other components might
be changed due to the mode dependencies; the power-up cost of a
component in a cold environment may be a function of the ambient
temperature.

The simulation encompasses every detail of a mode change. A
mode transition in one component may cause mode transitions in
other components. A transition in one component may be required
to happen before or after a mode transition in another component.
As the simulation of a mode change is completed, the information
about both timing and energy becomes available. In the context
of this paper we assume that the component manager can continu-
ously send mode transition commands without delay if there is no
dependency among the involved components.

The simulation engine contains a controller, the component state
machines, and a monitor, as shown in Fig. 4. A component is im-
plemented as a state machine, and a state in the state machine repre-
sents one of the component modes. A controller reads a sequence of
mode transitions from the Component Manager and dispatches it to
the correspondent components. Commands are dispatched in par-
allel unless dependencies among components prevent doing this.
Because of the dependencies, some component may enable a mode
change on another component by sending out a control signal. A
global clock is used to synchronize all the components. The mon-
itor is used to check the status of the components and track the
power and timing information of each component. As the simula-
tion is completed, it generates the power and timing information of
the mode change.

4. ALGORITHMS
To generate feasible sequences of mode transitions that satisfy

all mode dependencies, we have developed a polynomial-time core
algorithm for the component manager. It optimizes the energy cost

121

LOCALSEQGEN(G, u, i, j)
1 # Input: an MTG G, current mode u.i, target mode u. j
2 # Output: a sequence of mode transitions σ
3 σ← /0
4 π← ShortestPath(G, i, j)
5 for each u.m in π
6 if u.m not in D.keys()
7 σ.append(u.m)
8 else
9 v.n← D[u.m]
10 i←getCurrentMode(v)
11 if u.m.type() == ’≺’
12 σ.append(u.m)
13 σ.append(LOCALSEQGEN(G, v, i, n))
14 else
15 σ.append(LOCALSEQGEN(G, v, i, n))
16 σ.append(u.m)
17 return σ

Figure 5: Generating mode transitions for a local command.

for a mode change by reordering the mode transitions under depen-
dency constraints such that the larger power consumers are pow-
ered up as late as possible. In this section we first give the problem
statement, followed by the algorithm details.

4.1 Problem Statement
As we mentioned earlier, for a component u in a mode m, a lo-

cal command λ = u.n is to set u to a target mode n. Because of
the mode dependencies, modes on multiple components might be
changed. Therefore, the entire sequence of mode transitions for λ
is σ = 〈v0,v1,v2, . . . ,vs〉 where vi is a component mode. A feasi-
ble sequence of σ is the one that all mode transitions satisfy the
dependency set D.

The time cost and the energy cost of mode transitions for πλ are:

tλ = ∑
u∈U ′

∑
(mi,mi+1)∈πu

Ht(mi,mi+1) (1)

eλ = ∑
u∈U ′

∑
(mi,mi+1)∈πu

Ht(mi,mi+1)Hp(mi,mi+1)

+ ∑
v∈U ′−{u}

(

∑
(mi,mi+1)∈πv

Ht(mi,mi+1)

)

×Pv(m)

+ ∑
w∈U−U ′

tλPw(m) (2)

respectively, where Ht and Hp are the projections of the cost func-
tion H on time and power, respectively, and Pv(m) is the power
number of the component v in mode m (current mode). The first
term in (2) represents the energy cost for mode transitions on the
relevant components. The second term represents the energy cost
for relevant components during non-transition time periods. The
third term represents the energy cost for components without mode
transitions.

Given a set of local commands Λγ ⊆ Λ that implement a global
command γ, the total time and energy costs are:

tγ = ∑
λ∈Λ

tλ (3)

eγ = ∑
λ∈Λ

eλ (4)

COMPLETESEQGEN(Λ, D, G)
1 # Input: Λ: a set of local commands
2 # D: a set of mode dependencies
2 # G: an MTG
2 # Output: a sequence of mode transitions σ
3 topo sort(Λ, D) # by power of target modes
4 σ← /0
5 for each λ in Λ
6 u← λ.getComponent()
7 i←getCurrentMode(u)
7 j← λ.getTargetMode()
8 temp← LOCALSEQGEN(G, u, i, j)
8 σ.append(temp)
9 UpdateComponentStatus() # obtain component modes.
10 return σ

Figure 6: Generating mode transitions for a set of local com-
mands.

respectively. The two equations above assume all mode transitions
are serialized. The simulation engine uses the same cost functions
except that it also explores opportunities where mode transitions
may be parallelized. Our problem is to generate σ, a sequence of
mode transitions, that is: 1) feasible and 2) with minimum cost eγ.

4.2 Core Algorithm
Our core algorithms consists of two parts: LOCALSEQGEN gen-

erates a sequence of mode transitions for a local command while
COMPLETESEQGEN generates a complete sequence of mode tran-
sitions that implement a global mode change.

For a local command λ = u.n, if the current mode of u is m 6= n,
then we apply a single-source-shortest-path algorithm (the BELL-
MAN-FORD algorithm [4]) in LOCALSEQGEN to obtain a sequence
of mode transitions from m to n with the minimum delay. To
avoid repetitive calls to BELLMAN-FORD when the costs of mode
changes are all static, an alternative all-source-shortest-path algo-
rithm (the FLOYD-WARSHALL algorithm [4]) can be used to gener-
ate a table that contains the shortest paths for all the mode changes
in an MTG. In case other components have mode dependencies
with u, LOCALSEQGEN changes modes for the dependent compo-
nents, and generates a combined sequence of mode transitions as
the output.

COMPLETESEQGEN (in Fig. 6) generates a sequence of mode
transitions for a set of local commands. We apply a version of
topological sort over the target modes of local commands based on
the partial ordering defined by the mode dependencies. The sorting
reorders the local commands by power consumption of the target
modes under all dependency constraints. When a component is
to be powered up, or to be set to a higher power mode, we try to
postpone its mode change (under dependency constraints) because
once its mode is changed, it will keep consuming high power to the
end of the global mode change.

5. EXPERIMENTAL RESULTS
We applied our modeling to two examples. One is a power am-

plifier in a software-defined radio system, and the other is a com-
plete software-defined radio channel. We are able to characterize
component modes at both levels of system hierarchy using our sys-
tem model. We model the inter-component mode dependencies de-
rived from application requirements. Our algorithm optimizes the

122

off stb

tx

rx

0.5/100

0/0

0 1

25

13/10

20

13/100

10.5/100

10.5/5

22.5/1022.5/5

LB

off rx
1/100

0/0

0 2LS

off stb

tx

rx

0.5/100

0/0

0 1

25

13/10

20

13/100

10.5/100

10.5/5
22.5/1022.5/5

HB

off rx
1/100

0/0

0 2HS

Figure 7: Mode transition graphs for the power amplifier.

Global Mode Local Mode
1-2GHz send HB.tx

1-2GHz receive HB.rv
0.2-1GHz send LB.tx

0.2-1GHz receive LB.rv
bypass HB.off, LB.off

off HB.off,LB.off
HS.off,LS.off

(a)

HB.stb
�
7→LB.off

HB.tx
�
7→LB.off

HB.rx
�
7→LB.off

LB.stb �7→HB.off

LB.tx �7→HB.off

LB.rx �7→HB.off
HS.off7→ HB.off
LS.off7→ LB.off

(b)

Table 1: (a) Mode mapping for the power amplifier. (b) Mode
dependencies for the power amplifier.

sequences of mode transitions and achieves significant energy sav-
ings even with the simplest power management policy. Since our
model is orthogonal to the power management policy, we expect
more energy savings when using advanced policies with our model.

5.1 Power Amplifier Example
The power amplifier (PA) consists of four components: a low-

band amplifier (LB), a low-band temperature sensor (LS), a high-
band amplifier (HB) and a high-band temperature sensor (HS). The
amplifiers have four modes each(off, standby(stb), transmit(tx)
and receive(rx)) and the sensors have two modes each (off and on)
(see Fig. 7). The PA has six global modes, mapped to a combina-
tion of component modes, as shown in Table 1(a). The application
requires that at most one amplifier can be in a non-off (stb, tx or
rx) mode at any time. The sensor must be on if the amplifier of the
same band is on. The mode dependencies are listed in Table 1(b).

Table 2 shows the sequences of mode transitions (the second
column) generated for three consecutive local commands (LB.tx,
HB.rx, and HB.off) and the sequences optimized (the third col-
umn) for energy savings. The command LB.tx is to set the LB
from off to tx. Our algorithm determines a shortest transition path
(off→stb→tx) for it. Because of the mode dependency, the mode
of the LS must be changed as well. Since the LB has a higher

Local Generated Tims Energy Optimized Time Energy
Cmd. Sequence (ms) (J) Sequence (ms) (J)
LB.tx LB: off,stb,tx 210 2.975 LS: off,on 210 0.475

LS: off,on LB:off,stb,tx
HB.rx LB:tx,stb,off 305 3.878 LB:tx,stb,off 305 1.878

LS: on,off LS:on,off
HB:off,stb,rx HS:off,on

HS:off,on HB:off,stb,rx
HB.off HB:rx,stb,off 100 1.1 HB:rx,stb,off 100 1.1

Table 2: Generating sequences of mode transitions: a power
amplifier example. Initial component modes are all off.

working power consumption than the LS, our algorithms choose
to turn on the LS first and the LB second to reduce the on time
for the LB during the mode change. The command HB.rx is to
set the HB from off to rx. It actually changes modes of all four
components. The LB is changed from tx to off before the HB is
changed to stb because the application requires at most one com-
ponent can be on (stb/tx/rx), which is correctly characterized by
our dependency model. The LS is changed from off to on as the
HB is set to stb. Note that when the LB is turned off, the LS is not
turned off because there is no such dependency specified. This is
compatible with the application scenario that the sensor is kept on
even if the power amplifier is turned off just in case the amplifier is
overheated. For the optimized sequences for command LB.tx and
HB.rx, while the time costs remain the same, the energy costs are
reduced down to less than 50% because we choose to power up a
high power device (an amplifier) after powering up a lower power
one (a sensor), which reduces the total amount of energy consumed
during the mode change.

5.2 Software-Defined Radio Channel
A software-defined radio (SDR) system supports multiple com-

munication protocols on multiple transmission bandwidths for mul-
tiple domains of applications which could possibly update and re-
configure itself through software at runtime. Therefore it has a
highly flexible and dynamic behavior that incurs a large number
of mode changes. Moreover, the cost of a global mode change
is non-negligible and must be considered seriously. For example,
waveform reconfiguration may take minutes or more in time. Op-
timizing the cost of mode changes in such systems will contribute
significantly to the system energy reduction.

The SDR channel consists of an antenna, a power amplifier, a
transceiver, a modem, an unprotected processor, an unprotected I/O
interface, an unprotected power supply, a protected processor, a
protected I/O interface, a protected power supply, an encryption
unit, a domain controller, and a system power supply, for a total
of 13 power-manageable components. The input to the protected
processor is from the unprotected processor encrypted through the
encryption unit. Each component has a number of power modes.
A mode change is associated with costs in terms of both time and
power. The whole system has five global modes: off, standby,
ready, protected on and unprotected on. Each global mode is
mapped to a combination of component modes.

This system is rich in mode dependencies that are derived from
application requirements. The protected processor is on only if
the unprotected processor is on. The protected/unprotected power
supply is off only if the protected/unprotected processor is off. The
encryption unit is on only if the protected processor is on. The
unprotected/protected I/O is on only if the unprotected/protected
processor is on.

The system handles incoming requests both from the antenna and
from I/O interfaces. The Policy Handler makes decisions to change
(or not to change) global power modes before and after each re-
quested service. We assume that the arrival rate and the service
time of an incoming request follow Poisson and exponential distri-
butions, respectively. We fix the arrival rate to 5000/sec and vary
the average service time. The time costs of mode transitions in the
system range from 1ms to 103ms. An incoming request is queued if
the previous requests are not completed, and we assume the queue
is long enough to avoid overflow.

We illustrate the benefits of our power modeling by comparing
four cases, all using a fixed time-out policy except Case 1. Case
1 assumes all the components are on at all times, and this is the
actual case in the real system due to the lack of an appropriate

123

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

Average service time vs. energy

Average Service Time (ms)

E
ne

rg
y

(J
)

Case 1
Case 2
Case 3
Case 4

Figure 8: Average service time vs. energy consumption.

AST(ms) 10 100 1000 10000 30000
Case 1 49754.0 53579.1 61023.5 88382.3 315779.1
Case 2 71822.8 76237.2 85656.5 104185.3 331273.7
Case 3 49754.3 54136.1 61080.4 97779.7 329243.0
Case 4 49754.2 54092.0 61036.5 99747.7 327463.2

Table 3: Total execution time for the simulated requests (in ms):
AST= average service time.

power model that handles system dependencies. Case 2 assumes
two global modes: on and off. Case 3 has five global modes: off,
standby, ready, protected on and unprotected on. The costs of
mode changes in Case 2 and 3 are conservatively estimated by seri-
alizing every mode transition due to the lack of detailed component
information. Case 4 assumes the same global modes as in Case 3,
but uses our power model and the simulation engine to determine
the precise costs on mode changes.

We vary the average service time from 1ms to 106ms and sim-
ulate for 100 requests. The results are shown in Fig. 8 and Table
3. Case 1 has the worst power consumption while the total mis-
sion time is the shortest. Case 2 saves some energy by applying
the time-out policy, but its execution time is the longest because it
assumes two global modes with the largest costs associated with
the mode changes. Case 3 avoids the large costs of Case 2 by uti-
lizing multiple power modes whose mode changes bring relatively
smaller costs. Our modeling and simulation approach in Case 4
achieves the best result. We avoid overestimating the cost of mode
changes by determining the shortest path for mode transitions, by
optimizing the sequence of mode transitions, and by parallelizing
some mode transitions while still satisfying all dependencies. The
curves in Fig. 8 show that our approach in Case 4 always saves en-
ergy. When the average service time is comparable to the time cost
of a mode transition, our approach achieves more than 80% energy
savings over Case 1 and about 50% energy savings over Case 3.
When the average service time becomes larger, the energy saving
becomes smaller. However, even when the average service time is
1000 times larger than the maximum cost of a mode transition, we
still have more than 20% energy savings over Case 3. This means
that our savings do not rely on large costs of mode changes but
is truly achieved by exploring multiple components and complex
system dependencies.

6. CONCLUSION
This paper presents a power modeling technique based on a de-

couple power management architecture. The cost of mode changes
in a large system may be both complex and expensive. A global
mode change may involve multiple components and over a sequence
of mode transitions. A traditional power manager that closely cou-
ples the policy-making and component-level details will be over-
whelmed by the large scale of the system and the complex be-
havior. Our model handles complex systems consisting of multi-
ple component with inter-component dependencies by decoupling
the component-level details from system-level power management
policies. This way the system power manager is able to concentrate
on making high-level policies without considering component de-
tails. Our Component Manager generates sequences of mode tran-
sitions in polynomial time, and our light-weight simulation engine
provides the system-level power manager with time and power in-
formation of mode changes. Future work includes enhancements
to the core algorithm and the simulation engine to handle more
complex application scenarios (e.g., mode change preemptions). In
addition, we will develop appropriate power management policies
that work best with our model for system-wide energy optimiza-
tion.

Acknowledgement
This research was sponsored in part by DARPA under contract
F33615-00-1-1719 and in part by Natinal Science Foundation un-
der grant CCR-0205712. The authors gratefully acknowledge Pro-
fessor Nader Bagherzadeh, Dr. David Jensen, and his technical
staff at Rockwell Collins for their technical discussion and assis-
tance. We would also like to thank Professor Daniel Gajski for
providing the SpecC license used in the study.

7. REFERENCES
[1] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design

techniques for system-level dynamic power management. IEEE
Trans. on VLSI Systems, 8(3):299–316, June 2000.

[2] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli. Policy
optimization for dynamic power management. IEEE Trans.
Computer-Aided Design, 18:813–833, June 1999.

[3] Compaq, Intel, Microsoft, Phoenix, and Toshiba. Advanced
configuration and power interface. In
http://www.acpi.info/index.html.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts, 1990.

[5] D. Li, P. Chou, and N. Bagherzadeh. Mode selection and
mode-dependency modeling for power-aware embedded systems. In
Proc. of Asia and South Pacific Design Automation Conference,
pages 697–704, 2002.

[6] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed
real-time embedded systems. In Proc. of DAC, pages 444–449, 2001.

[7] Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a
power-managed system construction and optimization. In Proc. 1999
International Symposium on Low Power Electronics and Design,
pages 194–199, August 1999.

[8] Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management of
complex systems using Generalized Stochastic Petri Nets. In Proc. of
DAC, pages 352–356, 2000.

[9] G. Quan and X. S. Hu. Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors. In Proc. of DAC,
pages 828–833, 2001.

[10] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time
embedded systems on variable speed processors. In Proc. of ICCAD,
pages 365–368, 2000.

[11] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli.
Dynamic voltage scaling and power management for portable
systems. In Proc. of DAC, pages 524–529, June 2001.

124

