
Codesign-Extended Applications
Brian Grattan 1, Greg Stitt 2, and Frank Vahid 2'3

1 Department of Electrical Engineering
2 Department of Computer Science and Engineenng

University of Califomia, Riverside
3 Also with the Center for Embedded Computer Systems at UC Irvine

{bgrattan] gstitt I vahid}@cs.ucr.edu, http://www.cs.ucr.edu/-vahid

ABSTRACT
We challenge the widespread assumption that an embedded
system's functionality can be captured in a single specification
and then partitioned among software and custom hardware
processors. The specification of some functions in software is
very different from the specification of the same function in
hardware - too different to conceive of automatically deriving one
from the other. We illustrate this concept using a digital camera
example. We introduce the idea of codesign-extended
applications to deal with the situation, wherein critical functions
are written in multiple versions, and integrated such that simple
compiler/synthesis flags instantiate a particular version along with
the necessary control and communication behavior. By capturing
a specification as a codesign-extended application, a designer
enables smooth migration among platforms with increasing
amounts of on-chip configurable logic.

Keywords
Hardware/software partitioning, hardware/software
cospecification, configurable logic, system-on-a-chip, platform-
based design.

1. INTRODUCTION
Hardware/software partitioning has been shown to provide
excellent performance as well as power and/or energy
improvements compared to software-only implementations in
embedded computing systems [4][7][9][11][15][16][18][25]
[28][29]. Making such partitioning even more attractive is the
appearance of single-chip platforms, some of which are intended
for consumer products, that include both a microprocessor and
configurable logic [1][3][13][23][27][30].

Most approaches to hardware/software codesign assume that a
designer initially describes the behavior of an embedded system
using one (or possible more than one) executable language.
Languages proposed for such purposes include C [10], C++ and
Java [14], as well as Statecharts [12], Esterel [8], SpecC [24][31],
and SystemC [26]. Most hardware/software partitioning
approaches assume in particular that the main functions of the
system are each described once in the specification. Those
partitioning approaches then consider the tradeoffs between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without l~e provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES'02. May 6-8, 2002, Estes Park, Colorado, USA.
Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

compiling each function to software versus synthesizing to a
custom hardware processor. The goal of such partitioning is to
make best use of existing hardware to improve the performance
and/or energy of the system.

In our investigations of the performance and energy advantages of
partitioning for single-chip platforms, we have found that the
assumption that each function can be described using one
algorithm in a specification, from which software or hardware
implementations can be derived, does not apply to many
functions. In some cases, the algorithm we would use to
implement the function in software is very different from the
algorithm we would use for a hardware implementation.

To cope with this situation, we propose the idea of codesign-
extended applications. In short, a designer finds the most
frequently executed functions, and then writes two versions of
those functions, one for software, the other for hardware. An
automated partitioning tool then chooses between the versions.

In this paper, we illustrate the different specifications of some
functions in software and hardware by using a digital camera
example. We then describe the concept of a codesign-extended
application and highlight our particular implementation of the
concept. We show how using codesign-extended applications can
enable smooth migration from all-software implementations to
hardware/software implementations using evolving single-chip
platforms.

2. DIFFERENT A L G O R I T H M S IN
SOFTWARE AND H A R D W A R E
A system's specification typically consists of a set o f functions,
where each function's granularity is that of perhaps tens or
hundreds of lines of sequential program statements, corresponding
roughly to an algorithm. Hardware/software partitioning seeks to
map each function to either software executing on a
microprocessor, or to a custom hardware processor. Most
approaches seek to keep as many functions in software, due to
software's low cost and flexibility, while gaining as much
speedup as possible by mapping certain functions to hardware,
subject to hardware size constraints.

Some fi.mctions give good speedups in hardware, due perhaps to
more concurrency, more efficient bit-level processing, and/or less
instruction fetch and decode overhead. A good hardware synthesis
tool will maximally exploit existing hardware by transforming a
function's algorithm to expose parallelism. Such transformations
may include loop unrolling, subroutine inlining, subroutine
cloning, and even process extraction. Thus, the resulting hardware
algorithm may look very different from the original algorithm in

Figure 1: Digital Camera Functions on an SOC.

/ / / /
-

/ / /
/ /cco /co~=,~n / /

lllllllllllllllllllilllilllllllll

the specification. Nevertheless, the algorithms are fundamentally
the same, achieved through a straightforward series of
transformations.

We have observed that human designers, however, often use
fundamentally different algorithms when describing the same
function for software versus hardware. As a simple example,
consider a function that sorts an array of integers, perhaps
forming part o f a portable electronic phone book system. If a
designer knows that the sorting function will be implemented in
software, the designer may describe the function using the
Quicksort algorithm [5]. On the other hand, if the designer knows
the function will be implemented in hardware, the designer may
describe the function using Mergesort, since it can be parallelized
very nicely and forms the basis o f many hardware-based sorting
approaches [5][17][19]. Quicksort and Mergesort are
fundamentally different algorithms that can't be derived from one
another. Even if we implemented Quicksort in hardware, we
would use a non-recursive version, whereas the software version
is usually recursive. Thus, this initial example illustrates that a
single algorithm for a function is not always sufficient as input to
hardware/software partitioning--two versions (or even more)
might be more appropriate.

As a second example, consider a digital camera chip, whose main
functions are illustrated in Figure 1. The complete functionality
could be described in a single sofftware specification, with the
following functions. The CCD pre-processor reads the charge
coupled device and communicates data to the controller. The DCT
component performs a discrete cosine transform. The Huffman
Encoder performs Huffrnan encoding. The Controller is the main
controller of the system. The Communication transmits and
receives data to and from other devices. To take a picture, the
controller would signal the CCD pre-processor to gather data
from the CCD, signal the DCT unit to transform the data, signal
the encoder to encode the data, and then store the data. At a later
time, the controller may upload or download data with other
devices, like a personal computer. We assume the
communication method could be RS-232, USB, wireless, or some
other method, but that the methods may use a CRC (Cyclic
Redundancy Check [21]) for error checking.

The CRC performed during communication is a time-consuming
function and thus is a good candidate for hardware
implementation. If hardware is not available, the CRC can be
done in software. However, the standard algorithm for a software
CRC is radically different from that for a hardware CRC.

Figure 2: Software CRC algorithm.

unsigned short icrcl(unsigned short crc, unsigned char onech)
{

int i; unsigned short ans=(crc ^ onech << 8);
for (i=0;i<8;i++) {

if (ans& 0x8000) {arts =(ans <<= 1) ^ 4129;}
else {arts <<= 1;}

}
return ans;

}
typedef unsigned char uchar;
#define LOBY'I'E(x) ((uchar)((x) & 0xFF))
#define HIBYTE(x) ((uchar)((x) >> 8))
unsigned short icrc(unsigned short crc, unsigned char *bufptr.

unsigned long len, short jinit, int jrev)
{

unsigned short icrcl(unsigned short crc, unsigned char
onech);

static unsigned short icrctb[256],init=0;
static uchar rchr[256];
unsigned short j,cword=crc;
static uchar it[16]={0,8.4,12,2,10,6,14,1,9,5,13,3,11,7,15};
if (!init) {

init=l;
for (j=0;j<=255;j÷+) {

icrcctb[j]=icrcl(j << 8,(uchar)0);
rchr[j]=(uchar)(it[j & 0xF] << 4 I it[j >> 4]);

}
}
if (jinit >= 0) cword=((uchar) jinit) I (((uchar) jinit) << 8);
else if (jrev < 0)

cword=rchr[HIBYTE(cword)] Irchr[LOBY-rE(cword)] << 8;
for (j= 1 ;j<=len;j++)
cword=icrctb[0rev < 0 ? rchr[bufptr[j]] :

bufptr0]) ^ HIB'Y-I'E(cword)] ^ LOBYTE(cword) <<
8;

return (jrev >= 0 ? cword :
rchr[HIBYTE(cword)] I rchr[LOBY'T'E(cword)] << 8);

}

A standard software CRC, taken from [21], is shown in Figure 2.
This code uses the first function (icrcl) to create a table of the
CRC of 256 characters. It then uses this table to calculate the
CRC of an array of characters passed to icrc. This relies heavily
on looking into arrays--a task easy to do in software, but not
efficient in hardware.

For a hardware CRC, bit operations can be executed in parallel.
Thus, a hardware CRC consists of numerous bit-wise exclusive
OR operations. Figure 3 illustrates a hardware CRC in VHDL,
created automatically by the CRC generator tool in [6] (another
tool can be found at [1]). Notice how different the hardware CRC
algorithm is from the sofrware CRC algorithm, even though the
functions give the same result.

As another example of a function with different software and
hardware algorithms, consider the DCT function, which is one of
the most time consuming functions during picture taking. The
DCT is thus is a good candidate for acceleration using hardware.
It is also a popular hardware unit, and there are publicly available
cores [20]. A major part o f the DCT is the matrix multiplication
of an input matrix by a constant matrix. A simple implementation
of a DCT in C is shown in Figure 4. Some functions have been
left out in the interest o f brevity.

Figure 3: Hardware CRC algorithm.

-- Copyright (C) 1999 Easics NV. This source file may be used and
distributed without restriction provided that this copyright statement is
not removed from the file and that any derivative work contains the
original copyright notice and the associated disclaimer. THIS SOURCE
FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE.
package body PCK CRC16_D8 is

- polynomial: (0 5 12 16) data width: 8
- convention: the first serial data bit is D(7)
function nextCRC16 D8 (Data: std_logic_vector(7 downto

0);
CRC: std_logic_vector(15 downto

0))
return std_logic_vector is

variable D: std_logic vector(7 downto 0);
variable C: std_logic vector(15 downto 0);
variable NewCRC: std_logic vector(15 downto 0);

begin
D := Data; C := CRC;
NewCRC(0) := D(4) xor D(0) xor C(8) xor C(12);
NewCRC(1) := D(5) xor D(1) xor C(9) xor C(13);
NewCRC(2) := D(6) xor D(2) xor C(10) xor C(14);
NewCRC(3) := D(7) xor D(3) xor C(11) xor C(15);
NewCRC(4) := D(4) xor C(12);
NewCRC(5) := D(5) xor D(4) xor D(0) xor C(8) xor C(12)

xor C(13);
NewCRC(6) := D(6) xor D(5) xor D(1) xor C(9) xor C(13)

xor C(14);
NewCRC(7) := D(7) xor D(6) xor D(2) xor COO) xor C(14)

xor C(15);
NewCRC(8) := D(7) xor D(3) xor C(0) xor C(11) xor C(15);
NewCRC(9) := D(4) xor C(1) xor C(12);
NewCRC(10) := D(5) xor C(2) xor C(13);
NewCRC(11) := D(6) xor C(3) xor C(14);
NewCRC(12) := D(7) xor D(4) xor D(0) xor C(4) xor C(8)

xor C(12) xor C(15);
NewCRC(13) := D(5) xor D(1) xor C(5) xor C(9) xor C(13);
NewCRC(14) := D(6) xor D(2) xor C(6) xor C(10) xor C (1 4) ;

NewCRC(15) := D(7) xor D(3) xor C(7) xor C(11) xor C(15);
return NewCRC;

end nextCRC16D8;
end PCK CRC16_D8;

When implementing a DCT in hardware, a key change made to
the algorithm is to utilize an algorithm based on fixed point rather
than floating point numbers. Thus, some precision is typically
traded off for hardware efficiency. In addition, more than one
process could he used to control dataflow. We omit a hardware
description of the DCT for conciseness.

Again, the two functions are quite different from each other in
appearanceand execution. This time, the results will be different,
as the VHDL code will introduce quantization noise due to the
conversion to fixed-point arithmetic.

To quantitatively observe the difference between software and
hardware algorithms, we examined the CRC further. The results
of translating the CRC from the software description to a
hardware description are found in Figure 5. Only the main
process is shown to give a general idea of how it could be done.
This segment of code illustrates how the body of the loop from
icrc is translated into a hardware process that reads the arrays
(which would have to be initialized in advance) from memory and

Figure 4: Software DCT algorithm.

static const short code COS_TABLE[8][8] = {

{32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392]
{32768, 27245, 12539, -6392,-23170,-32138,-30273,-18204
{32768, 18204,-12539,-32138,-23170, 6392, 30273, 27245'
{32768, 6392,-30273,-18204, 23170, 27245,-12539,-32138
{32768,-6392,-30273, 18204, 23170,-27245,-12539, 32138
{32768,-18204,-12539, 32138,-23170, -6392, 30273,-27245
{32768,-27245, 12539, 6392,-23170, 32138,-30273, 18204'
{32768,-32138, 30273,-27245, 23170,-18204, 12539, -6392'

};
static const short ONE OVER SQRT_TWO = 23170;
static short xclata inBu'ffer[8][8~ static short xdata outBuffer[8][8];
static int idx;
static float Y(int a, int b) {

return COS_TABLE[a][b] / 32768.0;
}
static float C(int h) {

return h ? 1.0 : ONE_OVER_SQRT_T'WO / 32768.0;
)
static int F(int u, int v, short img[8][8]) {

float s[8], r = 0; unsigned short x;
for(x=0; x<8; x++) {

s[x]=
img[x][0] * Y(0, v) + img[x][1] ° Y(1, v) +
img[x][2] * Y(2, v) + img[x][3] "Y(3, v) +
img[x][4] "Y(4, v) + img[x][5] ° Y(5, v) +
img[x][6] ° Y(6, v) + img[x][7] * Y(7, v);

}
for(x=0; x<8; x++) {

r *= s[x]" Y(x, u);
}
return (short)(r * .25" C(u)" C(v));

)
void CodecDoFdct(void) {

unsigned short x, y;
for(x=0; x<8; x++) {

for(y=0; y<8; y++) {
outBuffer[x][y] = F(x, y, inBuffer);

}
}
idx = 0;

outputs the resulting CRC. This preserves the sequential
execution from the software algorithm. The VHDL version of the
software algorithm uses an external memory that must be loaded
with the arrays that are stored in icrctb and rchr in the C version.
I f these were implemented directly in the hardware, they would
represent 768 bytes of memory that would take even more area.
We assume a best-case scenario, where memory can be read from
in one cycle.

Table 1 summarizes the results o f implementing the hardware
version and the version translated from software. FPGA
Compiler from Synopsys was used with the default synthesis flags
set and targeting the Triscend E5 family. There is a 3 times speed
up by using the hardware version. There is also a significant
savings in area. Clearly, it would be a mistake to go straight from
a C description to a VHDL description without considering how
the algorithm could be changed to take advantage of the
hardware.

Going the other direction, from a hardware description to
software, gives poor results also. In order to mimic the hardware

Figure 5: Portion of VHDL code translated from C for the
software CRC algorithm.

if(clk'event and clk = '1') then
case exe_state is

when GETENABLE =>
if (enable = '1') then

exe state <= GET RCHR;
else

exe_state <= GETENABLE;
end if;

when GE'I'~RCHR =>
addr := rchr_addr + ("000000000000000000000000" &

bufptr j) ;
START_RD_RAM(addr);
exe state <= GET_ICRCTB;

when-GET ICRCTB =>
addr := icrctb addr + ram_in data;
START RD_-RAM(addr);
exe state <= DO_CALC;

when DO CALC =>
ternp := std_logic_vector(rarn_in_data(15 downto 0))

x o r

("00000000" & cword (7 downto 0));
ternp2 := temp(7 downto 0) & "00000000";
cword <= ternp2;
output <= temp2;
exe state <= GETENABLE;

when others => null;
end case;

description in software, we need to execute numerous bit-wise
operations for each character processed. This becomes extremely
inefficient because each command is executed sequentially. The
results for running roughly 200 characters through each example
are found in Table 2. In order to get these results, LCC was used
with the default compiler flags in order to compile for a MIPS.

Generally, another current difference between software and
hardware descriptions has to do with the input level of the
compilation and synthesis tools in common use. While compilers
operate on algorithmic level code, the vast majority of synthesis
tools operate on register-transfer level code. This represents
another practical difference between software and hardware
descriptions of functions.

3. CODESIGN-EXTENDED
APPLICATIONS
We define a codesign-extended application as a software
description of an application, extended with additional versions of
key functions using hardware algorithms, and using macros (or
some other means) to enable existing compiler and synthesis tools
to automatically generate a complete working implementation of
the system using any of the function versions.

In order to facilitate a codesign-extended application, we need a
way to implement certain functions in software or in hardware.
To do this, we have developed a standard method for different
partitioning schemes to be compiled/synthesized by only choosing
different compiler flags and synthesis flags. This gives the
designer an efficient way to test his or her codesign-extended
application with several different configurations, and then on
chips that have varying amounts of programmable logic available

Table 1: Results of implementing the software CRC algorithm
versus the hardware CRC algorithm in configurable logic.

Hardware Size Delay (clock
Implementation (Blocks) cycles/character)

Hardware CRC 19 1
algorithm

Software CRC 44 3
algorithm

Table 2: Results of implementing the software CRC algorithm
versus the hardware CRC algorithm on a MIPS processor.

Implemented in Size (Assembly Clock Cycles
Software Lines)

Software CRC 1061 180,000
Algorithm

Hardware CRC 1298 814,000
Algorithm

and different microprocessor cores so that cost/performance trade-
offs between chips can quickly be determined.

This method consists of putting macros around sections of code
that can be implemented in hardware. After these macros are in
place, a section of code is added that implements a handshaking
routine to signal the hardware section to run. The complements
of the macros that were placed around the original code are placed
around the handshaking routine. For example, a designer could
place #ifdefs around the original code, and place #ifndefs around
the handshaking routine. The handshaking routine could be as
simple as setting a bit and then waiting on a different bit to be set
by the hardware, or it could set a bit and put the microprocessor
into a sleep or idle state and wait for an interrupt to be asserted by

Figure 6: CRC Code Modified for Codesign Extended
Application (updates bolded).

xdata crc_start_flag = O;
xdata crc done_flag;

...other functions...

unsigned short icrc(unsigned short crc, unsigned char *bufptr,
unsigned long len, short jinit, int jrev)
(
#ifdef hw_crc
crc_start flag = '1';
while (!crc done flag)
#endif
#ifndef hw_crc

unsigned short icrcl(unsigned short crc, unsigned char onech);

...function code for crc...

return (jrev >= 0 ? cword : rchr[HIBYTE(cword)]
rchr[LOBYTE(cword)] << 8);
#endif

}

Table 3: Results for different partitions run on an example
program.

Partitioning
Multiply Sum

SW SW
SW SW
SW H W
HW SW
SW HW
HW SW
H W H W
H W H W

Bit-Share
Energy (Joules)

SW 12.4
HW 8.6
SW 8.8
SW 8.O
HW 4.8
HW Does not Route
SW Does not Route
HW Does not Route

the hardware. This can be seen in Figure 6 using the CRC as an
example.

The VHDL that would be written would have to be aware of the
address of the external data variables "crc start flag" and
"crc_done flag." It would then use the "start flag" as an enable
and notify the processor of its completion using the "done flag."

Using this methodology, we have implemented a simple
codesign-extended application on two different platforms. The
first platform was a two-chip solution consisting of a standard
8051 and a Xilinx FPGA. The second implementation was a
Triscend system on a chip---the TE520. This chip contains a
"turbo" 8051 and an array ofconfigurable system logic.

Our codesign-extended application was a signal processing
example containing three functions that were described for both
software and hardware. The VHDL files were written separately,
but with a simple tool, we were able to merge the files and
associate the different functions with different enable signals.
This way, we could compile the C program with a certain set o f
compile-time macros set and then choose the VHDL file that
complimented the functions that were left out of the software, and
synthesize that VHDL file. For example, to compile the program
with the matrix multiply function in the configurable logic, the
command used would be: c51 three.c -df(hw_matrix_multiply).

Depending on the design, and the tools used, the synthesis and
place and route could take anywhere from a few minutes to
several hours. Some of the combinations were not able to be
placed and routed onto the TE520 chip. This is to be expected,
and gives motivation to experiment with higher capacity chips to
determine how much performance could be increased for a given
increase in price. The metric we used to rate the different
implementations was energy consumption. The energy savings
are shown in Table 3. Energy was determined by using a digital
multimeter that communicated with the workstation and having
the workstation time the execution of the given programs.
Therefore, the workstation could calculate the energy, knowing
the voltage, current, and time.

4. CODESIGN-EXTENDED APPLICATION
METHOLOGY
A design methodology incorporating codesign-extended
applications requires more designer effort up front, but that effort
may pay off in the long run. A designer can start by writing an all
software version of the application -- something typically done

today anyway. The designer can then determine the most critical
functions of the application, either through his/her own estimation
(in many cases, the critical functions are well known), or through
profiling of the application with expected input vectors. For each
critical function, the designer can determine if a unique hardware
algorithm is necessary, in which case the designer can write
hardware-suited code for that algorithm.

Although earlier we mentioned that the hardware-suited code
might be captured in a hardware description language, like VHDL
or Vefilog, this is not absolutely necessary. I f the language used
for the all software version can be compiled to either software or
hardware, then the hardware-suited code can simply be written in
the same language. For example, if the designer is using a
hardware/software capable environment based on C, such as
Proceler's environment [22] or SystemC [26], then the hardware-
suited algorithm can still be written in C.

Notice that the codesign-extended application idea can be
extended to support more than two versions of the same function.
Likewise, if two functions were to both be implemented in
hardware, the idea can be extended to allow a special combined
version o f those two functions that might perform better than the
two hardware versions of those functions. Of course, extensions
like these can quickly cause codesign-extended applications to
become unwieldy, so must be used sparingly.

Notice that we could write a hardware version of a function even
if the algorithm is the same as the software version -- the
advantage being that no automated hardware/software partitioning
tool would be necessary. Partitioning could simply be carried out
by a script that sets compiler/synthesis flags and then executes the
application.

The benefits of the additional up-front designer effort in creating
two versions of critical functions can be illustrated by a simple
example. Consider the digital camera example of this paper. A
designer may initially create an all software version of the
application, and then create a codesign-extended application
wherein the CRC and DCT functions also have hardware-suited
versions. Such a task takes extra effort (although in this case not
much because those functions have fairly standard hardware
versions readily available), not only because of the initial coding
effort, but also in the functional verification of the different
combinations. The payoff for this extra effort comes during
design exploration. Without any software or hardware recoding,
the designer can explore the suitability of different computing
platforms, such as a processor only, or processor platforms with
varying amounts of on-chip logic, choosing the platform that
gives best performance/energy for a given cost. Furthermore, a
designer can try new platforms months or years later (as they are
evolving quickly and their costs are changing) -- without having
to rewrite the application.

5. CONCLUSIONS
The basic assumption that hardware and software can be derived
from the same specification is an assumption that does not apply
in some cases. In some cases, the hardware algorithm is very
different from the software algorithm for the same function. We
propose the concept o f codesign-extended applications to deal
with this situation. A designer determines the most critical
functions, and implements two versions of t h e m - one for
software, one for hardware. The designer uses a standard

modeling approach to enable a compiler and synthesis tool to
automatically include or exclude versions, thus generating unique
hardware/software partitions without requiting code rewriting or a
sophisticated partitioner that can parse the software and hardware
languages. Codesign-extended applications enable graceful
evolution of an application onto evolving platforms that include
faster processors and/or additional on-chip configurable logic. In
the future, we plan to generalize the concept of codesign-extended
application to include more than two versions of a function, with
multiple software and hardware versions that support tradeoff
performance, size and power.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation (CCR-9876006) and NEC C&C Research Labs.

7. REFERENCES
[1] Altera Corporation, ARM-Based Embedded Processor

PLDs, August, 2001

[2] Actel Corporation, Cyclic Redundancy Code Generator
Macro v4.0, Actel Corporation, January, 2002.

[3] Atmel FPSLIC,
http://www.atmel.com/atrnel/products/prod39.htm.

[4] A. Balboni, W. Fomaciafi and D. Sciuto. Partitioning and
Exploration in the TOSCA Co-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69, 1996.

[5] T. Cormen, C. Leiserson, R. Rivest. Introduction to
Algorithms. McGraw-Hill Book Company, 1997.

[6] Easics Corporation, http://www.easics.com/webtools/crctool.

[7] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System
Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, vo12, no 1, pp. 5-32, Jan 1997.

[8] Esterel Synchronous Language Web Main page,
http://www.esterel.org.

[9] D.D. Gajski and F. Vahid and S. Narayan and J. Gong.
SpecS~,n: An Environment Supporting the Specify-Explore-
Refine Paradigm for Hardware/Software System Design.
IEEE Transactions on VLSI Systems, Vol. 6, No. I, pp. 84-
100, 1998.

[10] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid
RISC/FPGA architectures. IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM '98.

[11] J. Grode, P. Knudsen, J. Madsen. "Hardware Resource
Allocation for Hardware/Software Partitioning in the
LYCOS System." Proc. of the 1998 Design Automation and
Test in Europe.

[12] D. Hard. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231-274,
1987.

[13] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs for
Custom Computing Machines, pages 12-21, Napa Valley,
CA, April 1997.

[14] R. Helaihel and K. Olukotun, "Java asa Specification
Language for Hardware-Software Systems," Proc. ICCAD
"97, pp. 690-697, 1997.

[15] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth International Workshop on
Hardware/Software Codesign, March 1998, pp. 23-27.

[16] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. Proceedings of
the 36th ACM/IEEE conference on Design automation
conference, pp. 122- 127,1999.

[17] C.Y. Huang, G.J. Yu and B.D. Liu. A Hardware Design
Approach for Merge-Sorting Network. IEEE International
Symposium on Circuits and Systems, 2001, pp.534-537.

[18] K. Kucukcakar. An ASIP Design Methodology for
Embedded Systems. International Symposium on
Hardware/Software Codesign, May 1999.

[19] S. Olarlu, M.C. Pinotti and SQ. Zheng. An Optimal
Hardware-Algorithm for Sorting using a Fixed-Size Parallel
Sorting Device. IEEE Transactions on Computers, vol.49,
(no.12), Dec. 2000, pp. 1310-1324.

[20] Opencores Web-Site, http://www.opencores.org/

[21] Press, William H. et al., Numerical Recipes in C: The Art of
Scientific Computing, Cambridge University Press, 1992.

[22] Proceler. http://www.proceler.com.

[23] C. Snyder. FPGA Processors Ready for Takeoff.
Microprocessor Report, Novemeber 2000, pp. 25-29.

[24] SpecC Technology Open Consortium Web Page,
http://www.specc.gr.jp/eng/index.htm.

[25] G. Stitt, B. Grattan, J. Villarreal, F. Vahid. Using On-Chip
Configurable Logic to Reduce Embedded System Software
Energy. IEEE Symposium on Field-Programmable Custom
Computing Machines. April 2002.

[26] SystemC Homepage, http://www.systemc.org/

[27] Tnsccnd Corporation, hnp://www.triscend.com, 2002.

[28] G. Vanmeerbeeck, P. Schaumont, S. Vemalde, M. Engels
and I. Bolsens. Hardware/Software Partitioning of Embedded
System in OCAPI-xl. International Symposium on
Hardware/Software Codesign, pp. 30-35, 2001.

[29] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey. An energy
conscious methodology for early design exploration of
heterogeneous DSPs. Proceedings of the IEEE 1998 Custom
Integrated Circuits Conference, p. 111-117, Santa Clara, May
1998.

[30] Xilinx Corporation, Virtex-ll Pro Platform FPGA Handbook,
January 31, 2002

[31] J. Zhu, R. Domer, and D. D. Gajski. Syntax and Semantics
of the SpecC Language. In Proceedings of the SASIMI
Workshop, pages 75 -- 82, 1997.

6

