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ABSTRACT 
We challenge the widespread assumption that an embedded 
system's functionality can be captured in a single specification 
and then partitioned among software and custom hardware 
processors. The specification of  some functions in software is 
very different from the specification of  the same function in 
hardware - too different to conceive of  automatically deriving one 
from the other. We illustrate this concept using a digital camera 
example. We introduce the idea of  codesign-extended 
applications to deal with the situation, wherein critical functions 
are written in multiple versions, and integrated such that simple 
compiler/synthesis flags instantiate a particular version along with 
the necessary control and communication behavior. By capturing 
a specification as a codesign-extended application, a designer 
enables smooth migration among platforms with increasing 
amounts of  on-chip configurable logic. 

Keywords 
Hardware/software partitioning, hardware/software 
cospecification, configurable logic, system-on-a-chip, platform- 
based design. 

1. INTRODUCTION 
Hardware/software partitioning has been shown to provide 
excellent performance as well as power and/or energy 
improvements compared to software-only implementations in 
embedded computing systems [4][7][9][11][15][16][18][25] 
[28][29]. Making such partitioning even more attractive is the 
appearance of  single-chip platforms, some of  which are intended 
for consumer products, that include both a microprocessor and 
configurable logic [1][3][13][23][27][30]. 

Most approaches to hardware/software codesign assume that a 
designer initially describes the behavior of  an embedded system 
using one (or possible more than one) executable language. 
Languages proposed for such purposes include C [10], C++ and 
Java [14], as well as Statecharts [12], Esterel [8], SpecC [24][31], 
and SystemC [26]. Most hardware/software partitioning 
approaches assume in particular that the main functions of  the 
system are each described once in the specification. Those 
partitioning approaches then consider the tradeoffs between 
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compiling each function to software versus synthesizing to a 
custom hardware processor. The goal of  such partitioning is to 
make best use of  existing hardware to improve the performance 
and/or energy of  the system. 

In our investigations of  the performance and energy advantages of  
partitioning for single-chip platforms, we have found that the 
assumption that each function can be described using one 
algorithm in a specification, from which software or hardware 
implementations can be derived, does not apply to many 
functions. In some cases, the algorithm we would use to 
implement the function in software is very different from the 
algorithm we would use for a hardware implementation. 

To cope with this situation, we propose the idea of  codesign- 
extended applications. In short, a designer finds the most 
frequently executed functions, and then writes two versions of  
those functions, one for software, the other for hardware. An 
automated partitioning tool then chooses between the versions. 

In this paper, we illustrate the different specifications of  some 
functions in software and hardware by using a digital camera 
example. We then describe the concept of  a codesign-extended 
application and highlight our particular implementation of  the 
concept. We show how using codesign-extended applications can 
enable smooth migration from all-software implementations to 
hardware/software implementations using evolving single-chip 
platforms. 

2. DIFFERENT A L G O R I T H M S  IN 
SOFTWARE AND H A R D W A R E  
A system's specification typically consists of  a set o f  functions, 
where each function's granularity is that of  perhaps tens or 
hundreds of  lines of sequential program statements, corresponding 
roughly to an algorithm. Hardware/software partitioning seeks to 
map each function to either software executing on a 
microprocessor, or to a custom hardware processor. Most 
approaches seek to keep as many functions in software, due to 
software's low cost and flexibility, while gaining as much 
speedup as possible by mapping certain functions to hardware, 
subject to hardware size constraints. 

Some fi.mctions give good speedups in hardware, due perhaps to 
more concurrency, more efficient bit-level processing, and/or less 
instruction fetch and decode overhead. A good hardware synthesis 
tool will maximally exploit existing hardware by transforming a 
function's algorithm to expose parallelism. Such transformations 
may include loop unrolling, subroutine inlining, subroutine 
cloning, and even process extraction. Thus, the resulting hardware 
algorithm may look very different from the original algorithm in 



Figure 1: Digital Camera Functions on an SOC. 
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the specification. Nevertheless, the algorithms are fundamentally 
the same, achieved through a straightforward series of  
transformations. 

We have observed that human designers, however, often use 
fundamentally different algorithms when describing the same 
function for software versus hardware. As a simple example, 
consider a function that sorts an array of  integers, perhaps 
forming part o f  a portable electronic phone book system. If  a 
designer knows that the sorting function will be implemented in 
software, the designer may describe the function using the 
Quicksort algorithm [5]. On the other hand, if the designer knows 
the function will be implemented in hardware, the designer may 
describe the function using Mergesort, since it can be parallelized 
very nicely and forms the basis o f  many hardware-based sorting 
approaches [5][17][19]. Quicksort and Mergesort are 
fundamentally different algorithms that can't be derived from one 
another. Even if we implemented Quicksort in hardware, we 
would use a non-recursive version, whereas the software version 
is usually recursive. Thus, this initial example illustrates that a 
single algorithm for a function is not always sufficient as input to 
hardware/software partitioning--two versions (or even more) 
might be more appropriate. 

As a second example, consider a digital camera chip, whose main 
functions are illustrated in Figure 1. The complete functionality 
could be described in a single sofftware specification, with the 
following functions. The CCD pre-processor reads the charge 
coupled device and communicates data to the controller. The DCT 
component performs a discrete cosine transform. The Huffman 
Encoder performs Huffrnan encoding. The Controller is the main 
controller of  the system. The Communication transmits and 
receives data to and from other devices. To take a picture, the 
controller would signal the CCD pre-processor to gather data 
from the CCD, signal the DCT unit to transform the data, signal 
the encoder to encode the data, and then store the data. At a later 
time, the controller may upload or download data with other 
devices, like a personal computer. We assume the 
communication method could be RS-232, USB, wireless, or some 
other method, but that the methods may use a CRC (Cyclic 
Redundancy Check [21]) for error checking. 

The CRC performed during communication is a time-consuming 
function and thus is a good candidate for hardware 
implementation. If  hardware is not available, the CRC can be 
done in software. However, the standard algorithm for a software 
CRC is radically different from that for a hardware CRC. 

Figure 2: Software CRC algorithm. 

unsigned short icrcl(unsigned short crc, unsigned char onech) 
{ 

int i; unsigned short ans=(crc ^ onech << 8); 
for (i=0;i<8;i++) { 

if (ans& 0x8000) {arts =(ans <<= 1) ^ 4129;} 
else {arts <<= 1;} 

} 
return ans; 

} 
typedef unsigned char uchar; 
#define LOBY'I'E(x) ((uchar)((x) & 0xFF)) 
#define HIBYTE(x) ((uchar)((x) >> 8)) 
unsigned short icrc(unsigned short crc, unsigned char *bufptr. 

unsigned long len, short jinit, int jrev) 
{ 

unsigned short icrcl(unsigned short crc, unsigned char 
onech); 

static unsigned short icrctb[256],init=0; 
static uchar rchr[256]; 
unsigned short j,cword=crc; 
static uchar it[16]={0,8.4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 
if (!init) { 

init=l; 
for (j=0;j<=255;j÷+) { 

icrcctb[j]=icrcl(j << 8,(uchar)0); 
rchr[j]=(uchar)(it[j & 0xF] << 4 I it[j >> 4]); 

} 
} 
if (jinit >= 0) cword=((uchar) jinit) I (((uchar) jinit) << 8); 
else if (jrev < 0) 

cword=rchr[HIBYTE(cword)] Irchr[LOBY-rE(cword)] << 8; 
for (j= 1 ;j<=len;j++) 
cword=icrctb[0rev < 0 ? rchr[bufptr[j]] : 

bufptr0] ) ^ HIB'Y-I'E(cword)] ^ LOBYTE(cword) << 
8; 

return (jrev >= 0 ? cword : 
rchr[HIBYTE(cword)] I rchr[LOBY'T'E(cword)] << 8); 

} 

A standard software CRC, taken from [21], is shown in Figure 2. 
This code uses the first function (icrcl) to create a table of  the 
CRC of  256 characters. It then uses this table to calculate the 
CRC of  an array of  characters passed to icrc. This relies heavily 
on looking into arrays--a task easy to do in software, but not 
efficient in hardware. 

For a hardware CRC, bit operations can be executed in parallel. 
Thus, a hardware CRC consists of  numerous bit-wise exclusive 
OR operations. Figure 3 illustrates a hardware CRC in VHDL, 
created automatically by the CRC generator tool in [6] (another 
tool can be found at [1]). Notice how different the hardware CRC 
algorithm is from the sofrware CRC algorithm, even though the 
functions give the same result. 

As another example of  a function with different software and 
hardware algorithms, consider the DCT function, which is one of  
the most time consuming functions during picture taking. The 
DCT is thus is a good candidate for acceleration using hardware. 
It is also a popular hardware unit, and there are publicly available 
cores [20]. A major part o f  the DCT is the matrix multiplication 
of  an input matrix by a constant matrix. A simple implementation 
of  a DCT in C is shown in Figure 4. Some functions have been 
left out in the interest o f  brevity. 



Figure 3: Hardware CRC algorithm. 

-- Copyright (C) 1999 Easics NV. This source file may be used and 
distributed without restriction provided that this copyright statement is 
not removed from the file and that any derivative work contains the 
original copyright notice and the associated disclaimer. THIS SOURCE 
FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE 
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 
A PARTICULAR PURPOSE. 
package body PCK CRC16_D8 is 

- polynomial: (0 5 12 16) data width: 8 
- convention: the first serial data bit is D(7) 
function nextCRC16 D8 ( Data: std_logic_vector(7 downto 

0); 
CRC: std_logic_vector( 15 downto 

0))  
return std_logic_vector is 

variable D: std_logic vector(7 downto 0); 
variable C: std_logic vector(15 downto 0); 
variable NewCRC: std_logic vector(15 downto 0); 

begin 
D := Data; C := CRC; 
NewCRC(0) := D(4) xor D(0) xor C(8) xor C(12); 
NewCRC(1) := D(5) xor D(1) xor C(9) xor C(13); 
NewCRC(2) := D(6) xor D(2) xor C(10) xor C(14); 
NewCRC(3) := D(7) xor D(3) xor C(11) xor C(15); 
NewCRC(4) := D(4) xor C(12); 
NewCRC(5) := D(5) xor D(4) xor D(0) xor C(8) xor C(12) 

xor C(13); 
NewCRC(6) := D(6) xor D(5) xor D(1) xor C(9) xor C(13) 

xor C(14); 
NewCRC(7) := D(7) xor D(6) xor D(2) xor COO) xor C(14) 

xor C(15); 
NewCRC(8) := D(7) xor D(3) xor C(0) xor C(11 ) xor C(15); 
NewCRC(9) := D(4) xor C(1) xor C(12); 
NewCRC(10) := D(5) xor C(2) xor C(13); 
NewCRC(11) := D(6) xor C(3) xor C(14); 
NewCRC(12) := D(7) xor D(4) xor D(0) xor C(4) xor C(8) 

xor C(12) xor C(15); 
NewCRC(13) := D(5) xor D(1) xor C(5) xor C(9) xor C(13); 
NewCRC(14) := D(6) xor D(2) xor C(6) xor C(10) xor C ( 1 4 ) ;  

NewCRC(15) := D(7) xor D(3) xor C(7) xor C(11) xor C(15); 
return NewCRC; 

end nextCRC16D8;  
end PCK CRC16_D8; 

When implementing a DCT in hardware, a key change made to 
the algorithm is to utilize an algorithm based on fixed point rather 
than floating point numbers. Thus, some precision is typically 
traded off for hardware efficiency. In addition, more than one 
process could he used to control dataflow. We omit a hardware 
description of  the DCT for conciseness. 

Again, the two functions are quite different from each other in 
appearanceand execution. This time, the results will be different, 
as the VHDL code will introduce quantization noise due to the 
conversion to fixed-point arithmetic. 

To quantitatively observe the difference between software and 
hardware algorithms, we examined the CRC further. The results 
of  translating the CRC from the software description to a 
hardware description are found in Figure 5. Only the main 
process is shown to give a general idea of  how it could be done. 
This segment of  code illustrates how the body of  the loop from 
icrc is translated into a hardware process that reads the arrays 
(which would have to be initialized in advance) from memory and 

Figure 4: Software DCT algorithm. 

static const short code COS_TABLE[8][8] = { 

{32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392] 
{32768, 27245, 12539, -6392,-23170,-32138,-30273,-18204 
{32768, 18204,-12539,-32138,-23170, 6392, 30273, 27245' 
{32768, 6392,-30273,-18204, 23170, 27245,-12539,-32138 
{32768,-6392,-30273, 18204, 23170,-27245,-12539, 32138 
{32768,-18204,-12539, 32138,-23170, -6392, 30273,-27245 
{32768,-27245, 12539, 6392,-23170, 32138,-30273, 18204' 
{32768,-32138, 30273,-27245, 23170,-18204, 12539, -6392' 

}; 
static const short ONE OVER SQRT_TWO = 23170; 
static short xclata inBu'ffer[8][8~ static short xdata outBuffer[8][8]; 
static int idx; 
static float Y(int a, int b) { 

return COS_TABLE[a][b] / 32768.0; 
} 
static float C(int h) { 

return h ? 1.0 : ONE_OVER_SQRT_T'WO / 32768.0; 
) 
static int F(int u, int v, short img[8][8]) { 

float s[8], r = 0; unsigned short x; 
for(x=0; x<8; x++) { 

s[x]= 
img[x][0] * Y(0, v) + img[x][1] ° Y(1, v) + 
img[x][2] * Y(2, v) + img[x][3] "Y(3, v) + 
img[x][4] "Y(4, v) + img[x][5] ° Y(5, v) + 
img[x][6] ° Y(6, v) + img[x][7] * Y(7, v); 

} 
for(x=0; x<8; x++) { 

r *= s[x]"  Y(x, u); 
} 
return (short)(r * .25" C(u)"  C(v)); 

) 
void CodecDoFdct(void) { 

unsigned short x, y; 
for(x=0; x<8; x++) { 

for(y=0; y<8; y++) { 
outBuffer[x][y] = F(x, y, inBuffer); 

} 
} 
idx = 0; 

outputs the resulting CRC. This preserves the sequential 
execution from the software algorithm. The VHDL version of  the 
software algorithm uses an external memory that must be loaded 
with the arrays that are stored in icrctb and rchr in the C version. 
I f  these were implemented directly in the hardware, they would 
represent 768 bytes of  memory that would take even more area. 
We assume a best-case scenario, where memory can be read from 
in one cycle. 

Table 1 summarizes the results o f  implementing the hardware 
version and the version translated from software. FPGA 
Compiler from Synopsys was used with the default synthesis flags 
set and targeting the Triscend E5 family. There is a 3 times speed 
up by using the hardware version. There is also a significant 
savings in area. Clearly, it would be a mistake to go straight from 
a C description to a VHDL description without considering how 
the algorithm could be changed to take advantage of the 
hardware. 

Going the other direction, from a hardware description to 
software, gives poor results also. In order to mimic the hardware 



Figure 5: Portion of VHDL code translated from C for the 
software CRC algorithm. 

if( clk'event and clk = '1' ) then 
case exe_state is 

when GETENABLE => 
if (enable = '1') then 

exe state <= GET RCHR; 
else 

exe_state <= GETENABLE;  
end if; 

when GE'I'~RCHR => 
addr := rchr_addr + ("000000000000000000000000" & 

bufptr j ) ;  
START_RD_RAM(addr); 
exe state <= GET_ICRCTB; 

when-GET ICRCTB => 
addr := icrctb addr + ram_in data; 
START RD_-RAM(addr); 
exe state <= DO_CALC; 

when DO CALC => 
ternp := std_logic_vector(rarn_in_data(15 downto 0)) 

x o r  

("00000000" & cword (7 downto 0)); 
ternp2 := temp(7 downto 0) & "00000000"; 
cword <= ternp2; 
output <= temp2; 
exe state <= GETENABLE;  

when others => null; 
end case; 

description in software, we need to execute numerous bit-wise 
operations for each character processed. This becomes extremely 
inefficient because each command is executed sequentially. The 
results for running roughly 200 characters through each example 
are found in Table 2. In order to get these results, LCC was used 
with the default compiler flags in order to compile for a MIPS. 

Generally, another current difference between software and 
hardware descriptions has to do with the input level of the 
compilation and synthesis tools in common use. While compilers 
operate on algorithmic level code, the vast majority of synthesis 
tools operate on register-transfer level code. This represents 
another practical difference between software and hardware 
descriptions of functions. 

3. CODESIGN-EXTENDED 
APPLICATIONS 
We define a codesign-extended application as a software 
description of an application, extended with additional versions of 
key functions using hardware algorithms, and using macros (or 
some other means) to enable existing compiler and synthesis tools 
to automatically generate a complete working implementation of 
the system using any of the function versions. 

In order to facilitate a codesign-extended application, we need a 
way to implement certain functions in software or in hardware. 
To do this, we have developed a standard method for different 
partitioning schemes to be compiled/synthesized by only choosing 
different compiler flags and synthesis flags. This gives the 
designer an efficient way to test his or her codesign-extended 
application with several different configurations, and then on 
chips that have varying amounts of programmable logic available 

Table 1: Results of implementing the software CRC algorithm 
versus the hardware CRC algorithm in configurable logic. 

Hardware Size Delay (clock 
Implementation (Blocks) cycles/character) 

Hardware CRC 19 1 
algorithm 

Software CRC 44 3 
algorithm 

Table 2: Results of implementing the software CRC algorithm 
versus the hardware CRC algorithm on a MIPS processor. 

Implemented in Size (Assembly Clock Cycles 
Software Lines) 

Software CRC 1061 180,000 
Algorithm 

Hardware CRC 1298 814,000 
Algorithm 

and different microprocessor cores so that cost/performance trade- 
offs between chips can quickly be determined. 

This method consists of putting macros around sections of code 
that can be implemented in hardware. After these macros are in 
place, a section of code is added that implements a handshaking 
routine to signal the hardware section to run. The complements 
of the macros that were placed around the original code are placed 
around the handshaking routine. For example, a designer could 
place #ifdefs around the original code, and place #ifndefs around 
the handshaking routine. The handshaking routine could be as 
simple as setting a bit and then waiting on a different bit to be set 
by the hardware, or it could set a bit and put the microprocessor 
into a sleep or idle state and wait for an interrupt to be asserted by 

Figure 6: CRC Code Modified for Codesign Extended 
Application (updates bolded). 

xdata crc_start_flag = O; 
xdata crc done_flag; 

...other functions... 

unsigned short icrc(unsigned short crc, unsigned char *bufptr, 
unsigned long len, short jinit, int jrev) 
( 
#ifdef hw_crc 
crc_start flag = '1'; 
while (!crc done flag) 
#endif  
#ifndef hw_crc 

unsigned short icrcl(unsigned short crc, unsigned char onech); 

...function code for crc... 

return (jrev >= 0 ? cword : rchr[HIBYTE(cword)] 
rchr[LOBYTE(cword)] << 8); 
#endif  

} 



Table 3: Results for different partitions run on an example 
program. 

Partitioning 
Multiply Sum 

SW SW 
SW SW 
SW H W  
HW SW 
SW HW 
HW SW 
H W  H W  
H W  H W  

Bit-Share 
Energy (Joules) 

SW 12.4 
HW 8.6 
SW 8.8 
SW 8.O 
HW 4.8 
HW Does not Route 
SW Does not Route 
HW Does not Route 

the hardware. This can be seen in Figure 6 using the CRC as an 
example. 

The VHDL that would be written would have to be aware of  the 
address of  the external data variables "crc start flag" and 
"crc_done flag." It would then use the "start flag" as an enable 
and notify the processor of  its completion using the "done flag." 

Using this methodology, we have implemented a simple 
codesign-extended application on two different platforms. The 
first platform was a two-chip solution consisting of  a standard 
8051 and a Xilinx FPGA. The second implementation was a 
Triscend system on a chip---the TE520. This chip contains a 
"turbo" 8051 and an array ofconfigurable system logic. 

Our codesign-extended application was a signal processing 
example containing three functions that were described for both 
software and hardware. The VHDL files were written separately, 
but with a simple tool, we were able to merge the files and 
associate the different functions with different enable signals. 
This way, we could compile the C program with a certain set o f  
compile-time macros set and then choose the VHDL file that 
complimented the functions that were left out of the software, and 
synthesize that VHDL file. For example, to compile the program 
with the matrix multiply function in the configurable logic, the 
command used would be: c51 three.c -df(hw_matrix_multiply). 

Depending on the design, and the tools used, the synthesis and 
place and route could take anywhere from a few minutes to 
several hours. Some of  the combinations were not able to be 
placed and routed onto the TE520 chip. This is to be expected, 
and gives motivation to experiment with higher capacity chips to 
determine how much performance could be increased for a given 
increase in price. The metric we used to rate the different 
implementations was energy consumption. The energy savings 
are shown in Table 3. Energy was determined by using a digital 
multimeter that communicated with the workstation and having 
the workstation time the execution of  the given programs. 
Therefore, the workstation could calculate the energy, knowing 
the voltage, current, and time. 

4. CODESIGN-EXTENDED APPLICATION 
METHOLOGY 
A design methodology incorporating codesign-extended 
applications requires more designer effort up front, but that effort 
may pay off in the long run. A designer can start by writing an all 
software version of  the application -- something typically done 

today anyway. The designer can then determine the most critical 
functions of  the application, either through his/her own estimation 
(in many cases, the critical functions are well known), or through 
profiling of  the application with expected input vectors. For each 
critical function, the designer can determine if a unique hardware 
algorithm is necessary, in which case the designer can write 
hardware-suited code for that algorithm. 

Although earlier we mentioned that the hardware-suited code 
might be captured in a hardware description language, like VHDL 
or Vefilog, this is not absolutely necessary. I f  the language used 
for the all software version can be compiled to either software or 
hardware, then the hardware-suited code can simply be written in 
the same language. For example, if the designer is using a 
hardware/software capable environment based on C, such as 
Proceler's environment [22] or SystemC [26], then the hardware- 
suited algorithm can still be written in C. 

Notice that the codesign-extended application idea can be 
extended to support more than two versions of  the same function. 
Likewise, if two functions were to both be implemented in 
hardware, the idea can be extended to allow a special combined 
version o f  those two functions that might perform better than the 
two hardware versions of  those functions. Of  course, extensions 
like these can quickly cause codesign-extended applications to 
become unwieldy, so must be used sparingly. 

Notice that we could write a hardware version of  a function even 
if the algorithm is the same as the software version -- the 
advantage being that no automated hardware/software partitioning 
tool would be necessary. Partitioning could simply be carried out 
by a script that sets compiler/synthesis flags and then executes the 
application. 

The benefits of  the additional up-front designer effort in creating 
two versions of  critical functions can be illustrated by a simple 
example. Consider the digital camera example of  this paper. A 
designer may initially create an all software version of  the 
application, and then create a codesign-extended application 
wherein the CRC and DCT functions also have hardware-suited 
versions. Such a task takes extra effort (although in this case not 
much because those functions have fairly standard hardware 
versions readily available), not only because of  the initial coding 
effort, but also in the functional verification of  the different 
combinations. The payoff for this extra effort comes during 
design exploration. Without any software or hardware recoding, 
the designer can explore the suitability of  different computing 
platforms, such as a processor only, or processor platforms with 
varying amounts of  on-chip logic, choosing the platform that 
gives best performance/energy for a given cost. Furthermore, a 
designer can try new platforms months or years later (as they are 
evolving quickly and their costs are changing) -- without having 
to rewrite the application. 

5. CONCLUSIONS 
The basic assumption that hardware and software can be derived 
from the same specification is an assumption that does not apply 
in some cases. In some cases, the hardware algorithm is very 
different from the software algorithm for the same function. We 
propose the concept o f  codesign-extended applications to deal 
with this situation. A designer determines the most critical 
functions, and implements two versions of  t h e m -  one for 
software, one for hardware. The designer uses a standard 



modeling approach to enable a compiler and synthesis tool to 
automatically include or exclude versions, thus generating unique 
hardware/software partitions without requiting code rewriting or a 
sophisticated partitioner that can parse the software and hardware 
languages. Codesign-extended applications enable graceful 
evolution of an application onto evolving platforms that include 
faster processors and/or additional on-chip configurable logic. In 
the future, we plan to generalize the concept of codesign-extended 
application to include more than two versions of a function, with 
multiple software and hardware versions that support tradeoff 
performance, size and power. 
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