
Constraint-Driven Bus Matrix Synthesis for MPSoC

Sudeep Pasricha†, Nikil Dutt†, Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California, Irvine, CA Newport Beach, CA
 {sudeep, dutt}@cecs.uci.edu m.benromdhane@conexant.com

Abstract – Modern multi-processor system-on-chip (MPSoC)
designs have high bandwidth constraints which must be satisfied
by the underlying communication architecture. Bus matrix based
communication architectures consist of several parallel busses
which provide a suitable backbone to support high bandwidth
systems, but suffer from high cost overhead due to extensive bus
wiring inside the matrix. Manual traversal of the vast exploration
space to synthesize a minimal cost bus matrix that also satisfies
performance constraints is practically infeasible. In this paper, we
address this problem by proposing an automated approach for
synthesizing a bus matrix communication architecture which
satisfies all performance constraints in the design and minimizes
wire congestion in the matrix. To validate our approach, we
consider several industrial strength applications from the
networking domain and show that our approach results in up to
9 × component savings when compared to a full bus matrix and
up to 3.2 × savings when compared to a maximally connected
reduced bus matrix.

I. Introduction

Multi-processor system-on-chip (MPSoC) designs are
increasingly being used in today’s high performance embedded
systems. These systems are characterized by a high level of
parallelism, due to the presence of multiple processors, and
large bandwidth requirements, due to the massive scale of
component integration. The choice of communication
architecture in such systems is of vital importance because it
supports the entire inter-component data traffic and has a
significant impact on the overall system performance.

Traditionally used hierarchical shared bus communication
architectures such as those proposed by AMBA [1],
CoreConnect [2] and STbus [3] can cost effectively connect
few tens of cores but are not scalable to cope with the demands
of very high performance systems. Point-to-point
communication connection between cores is practical for even
fewer components. Network-on-Chip (NoC) based
communication architectures [5] have recently emerged as a
promising alternative to handle communication needs for the
next generation of high performance designs. However,
although basic concepts have been proposed, research on NoCs
is still in its infancy, and few concrete implementations of
complex NoCs exist to date [6].

In this paper we look at bus matrix (sometimes also called
crossbar switch) based communication architectures [7] which
are currently being considered by designers to meet the high
bandwidth requirements of modern MPSoC systems. Fig. 1
shows an example of a three-master seven-slave AMBA bus
matrix architecture for a dual ARM processor based
networking subsystem application. A bus matrix consists of
several busses in parallel which can support concurrent high
bandwidth data streams. The Input stage is used to handle

interrupted data bursts, and to register and hold incoming
transfers if receiving slaves cannot accept them immediately.
The Decode stage generates select signal for appropriate
slaves. Unlike in traditional shared bus architectures,
arbitration in a bus matrix is not centralized, but rather
distributed so that every slave has its own arbitration.

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matrix

masters
Decode

Input
stage

Decode

Input
stage

Decode

Fig. 1. Full bus matrix architecture

One drawback of the full bus matrix structure shown in Fig.
1 is that it connects every master to every slave in the system,
resulting in a prohibitively large number of busses. The
excessive wire congestion can make it practically impossible
to route and achieve timing closure for the design [14]. To
overcome this shortcoming, designers tailor a full matrix
structure to the particular application at hand, creating a partial
bus matrix, as shown in Fig. 2. This structure has fewer busses
and consequently uses fewer components (arbiters, decoders,
buffers), has a smaller area and also utilizes less power.

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matrix

Fig. 2. Partial bus matrix architecture

The problem of synthesizing a minimal cost (i.e. having the
least number of busses) bus matrix for a particular application
is complicated by the large number of combinations of
possible matrix topologies and bus architecture parameters
such as bus widths, clock speeds, out-of-order (OO) buffer
sizes and shared slave arbitration schemes. Previous research
in the area of bus matrix/crossbar synthesis (discussed in the
next section) has been inadequate in addressing the entire
problem, and instead has been limited to exploring a small
subset of the synthesis problem (such as topology synthesis
[8]). Very often, designers end up evaluating the bus matrix
design space by creating simulation models annotated with
detail based on experience, and manually iterating through

different combinations of topology and communication
architecture parameters. Such an effort remains time
consuming and produces bus matrix architectures which are
generally overdesigned for the application at hand.

Our goal in this paper is to address this problem by
presenting an automated approach for synthesizing a bus
matrix communication architecture, which generates not only
the matrix topology, but also communication parameter values
for bus clock speeds, OO buffer sizes and arbitration strategies.
Most importantly, our synthesis effort minimizes the number
of busses in the matrix and satisfies all performance constraints
in the design. To demonstrate the effectiveness of our approach
we synthesize a bus matrix architecture for four industrial
strength MPSoC case studies from the networking domain and
show that our approach significantly reduces wire congestion
in a matrix, resulting in up to 9 × component savings when
compared to a full bus matrix and up to 3.2 × savings when
compared to a maximally connected reduced bus matrix.

II. Related Work

The need for bus matrix (or crossbar switch) architectures

has been emphasized in previous work in the area of
communication architecture design. Lahtinen et al. [9]
compared the shared bus and crossbar topologies to conclude
that the crossbar is superior to a bus for high throughput
systems. Ryu et al. [10] compared a full crossbar switch with
other bus based topologies and found that the crossbar switch
outperformed the other choices due to its superior parallel
response. Loghi et al. [11] presented exploration studies with
the AMBA and STBus shared bus, full crossbar and partial
crossbar topologies, concluding that crossbar topologies are
much better suited for high throughput systems requiring
frequent parallel accesses. An interesting conclusion from their
work is that partial crossbar schemes can perform just as well
as the full crossbar scheme, if designed carefully. However, the
emphasis of their work was not on the generation of such
partial crossbar topologies.

Although a lot of work has been done in the area of
hierarchical shared bus architecture synthesis [12-14] and NoC
architecture synthesis [15-16], few efforts have focused on bus
matrix synthesis. Ogawa et al. [17] proposed a transaction
based simulation environment which allows designers to
explore and design a bus matrix. But the designer needs to
manually specify the communication topology, arbitration
scheme and memory mapping, which is too time consuming
for the complex systems of today. The automated synthesis
approach for STBus crossbars proposed by Murali et al. in [8]
is the only work that comes closest to our goal of automated
bus matrix synthesis. However, their work primarily deals with
automated crossbar topology synthesis – the communication
parameters (arbitration schemes, OO buffer sizes, bus widths
and speeds) which have considerable influence on system
performance [22-23] are not explored or synthesized. Our
synthesis effort overcomes this shortcoming and synthesizes
both the topology and communication architecture parameters
for the bus matrix. Additionally, [8] assumes that critical data
streams cannot overlap on the same bus, places a static limit on
the maximum number of components that can be attached to a
bus and also requires the designer to specify hard-to-determine

threshold values of traffic overlap as an input, based on which
components are allocated to separate busses. These are
conservative approaches which lead to an overdesigned, sub-
optimal system. Our approach carefully selects appropriate
arbitration schemes (e.g. TDMA based) that can allow multiple
constraint streams to exist on the same bus, and also does not
require the designer to specify data traffic threshold values or
statically limit the number of components on a bus.
Experimental comparison studies (described in Section IV)
show that our scheme is more aggressive and obtains greater
reduction in bus matrix connections, when compared to [8].

III. Bus Matrix Synthesis

This section describes our approach for automated bus

matrix synthesis. First we formulate the problem and present
our assumptions. Next, we describe our simulation engine and
elaborate on communication parameter constraints, which
guide the matrix synthesis process. Finally, we present our
automated bus matrix synthesis approach in detail.

A. Problem Formulation

We are given an MPSoC design having several components
(IPs) that need to communicate with each other. We assume
that hardware/software partitioning has taken place and that the
appropriate functionality has been mapped onto hardware and
software IPs. These IPs are standard “black box” library
components which cannot be modified during the synthesis
process, except for the memory components. The target
standard bus matrix communication architecture (e.g. AMBA
bus matrix [1]) that determines the pins at the IP interface and
for which the matrix must be synthesized, is also specified.
Typically, all busses within a bus matrix have the same data
bus width, which usually depends on the number of data
interface pins of the IPs in the design. We assume that this
matrix data bus width is specified by the designer, based on the
knowledge of the IPs selected for the design.

ARM1

ARM2

ITC

MEM1

ROM
MEM2

Timer

Network I/F

MEM3

DMA

1 Gbps

Fig. 3. Communication Throughput Graph (CTG)

Generally, MPSoC designs have performance constraints

which are dependent on the nature of the application. The
throughput of communication between components is a good
measure of the performance of a system [12]. To represent
performance constraints in our approach, we define a
Communication Throughput Graph CTG = G(V,A) which is
a directed graph, where each vertex v represents a component
in the system, and an edge a connects components that need to
communicate with each other. A Throughput Constraint
Path (TCP) is a sub-graph of a CTG, consisting of a single
master for which data throughput must be maintained and
other masters, slaves and memories which are in the critical

path that impacts the maintenance of the throughput. Fig. 3
shows a CTG for a network subsystem, with a TCP involving
the ARM2, MEM2, DMA and ‘Network I/F’ components,
where the rate of data packets streaming out of the ‘Network
I/F’ component must not fall below 1 Gbps.
Problem Definition A bus B can be considered to be a
partition of the set of components V in a CTG, where B ⊂ V.
Then the problem is to determine an optimal component to bus
assignment for a bus matrix architecture, such that the V is
partitioned onto a minimal number of busses N, and satisfies
all performance constraints in the design, represented by the
TCPs in a CTG.

B. Simulation Environment

Since communication behavior in a system is characterized
by unpredictability due to dynamic bus requests from cores,
contention for shared resources, buffer overflows etc., a
simulation based approach is necessary for accurate
performance estimation. For the simulation part of our flow,
we capture behavioral models of components and bus
architectures in SystemC [18][24], and keep them in an IP
library database. Since we were concerned about the speed of
simulation, we chose a fast transaction-based, bus cycle
accurate modeling abstraction, which averaged simulation
speeds of 150–200 Kcycles/sec [19], while running embedded
software applications on processor ISS models. The
communication model in this abstraction is extremely detailed,
capturing delays arising due to frequency and data width
adapters, bridge overheads, interface buffering and all the
static and dynamic delays associated with the standard bus
architecture protocol being used.

C. Communication Parameter Constraint Set

In the interest of generating a practically realizable system,
we allow a designer to specify a discrete set of valid values
(constraint set) for communication parameters such as bus
clock speeds, OO buffer sizes and arbitration schemes. We
allow the specification of two types of constraint sets for
components – a global constraint set (ΨG) and a local
constraint set (ΨL). For instance, a designer might set the
allowable bus clock speeds for a set of busses locally in a
subsystem to multiples of 33 MHz, with a maximum speed of
166 MHz, based on the operation frequency of the cores in the
subsystem, while globally, the allowed bus clock speeds are
multiples of 50 MHz, up to maximum of 400 MHz. The
presence of a local constraint overrides the global constraint,
while the absence of it results in the resource inheriting global
constraints. This provides a convenient mechanism for the
designer to bias the synthesis process based on knowledge of
the design and the technology being targeted. Such knowledge
about the design is not a prerequisite for using our synthesis
framework, but informed decisions can help avoid the
synthesis of unrealistic system configurations.

D. Synthesis Approach

We now describe our automated bus matrix synthesis
approach. Fig. 4 gives a high level overview of the flow. The

inputs to the flow include a Communication Throughput Graph
(CTG), a library of behavioral IP models, a target bus matrix
template (e.g. AMBA bus matrix [1]) and a communication
parameter constraint set (Ψ) – which includes ΨG and ΨL. The
general idea is to first perform a fast TLM level simulation of
the system to get application-specific data traffic statistics.
This information is used in a global optimization phase to
reduce the full bus matrix architecture, by removing unused
busses and local slave components from the matrix. We call
the resulting matrix a maximally connected reduced matrix.
The next step is to perform a static branch and bound based
hierarchical clustering of slave components in the matrix
which further reduces the number of busses in the matrix. We
rank the results of the static clustering analysis, from the best
case solution (least number of busses) to the worst (most
number of busses) and save them in the database. We then use
a fast bus cycle accurate simulation engine [19] to validate and
select the best solution which meets all the performance
constraints, determine slave arbitration schemes, optimize the
design to minimize bus speeds and OO buffer sizes and then
finally output the optimal synthesized bus matrix architecture.

CTGCTG

IP
library

IP
library

matrix
template
matrix

template

TLM simulationTLM simulation constraint
set (Ψ)

constraint
set (Ψ)

all TCPs
met?

all TCPs
met?

output synthesized
matrix architecture
output synthesized
matrix architecture

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked solution
database

ranked solution
database

Select arbitration &
verify by simulation
Select arbitration &
verify by simulation

yes

no

global_optimizeglobal_optimize

max. connected
reduced matrix

max. connected
reduced matrix

1

2

3

4

minimize_designminimize_design
5

Fig. 4. Automated bus matrix synthesis flow

We now describe the synthesis flow in detail. In the first
phase, the IP library is mapped onto a full bus matrix and
simulated at the TLM level, with no arbitration contention
overhead since there are no shared channels and also because
we assume infinite ports at IP interfaces. We also set the OO
buffer sizes to the maximum allowed in Ψ. The TLM
simulation allows us to obtain application-specific data traffic
statistics such as number of transactions on a bus, average
transaction burst size on a bus and memory usage profiles.
Knowing the bandwidth to be maintained on a channel from
the Throughput Constraint Paths (TCPs) in the CTG, we can
also estimate the minimum clock speed at which any bus in the
matrix must operate, in order to meet its throughput constraint,
as follows. The data throughput (Γ TLM/B) from the TLM
simulation, for any bus B in the matrix is given by

Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / σ

where numT is the number of data transactions on the bus,
sizeT is the average size of these data transactions, width is the
bus width, Ω is the clock speed, and σ is the total number of
cycles of TLM simulation for the application. The values of

numT, sizeT and σ are obtained from the TLM simulation in
phase 1. To meet the throughput constraint Γ TCP/B for bus B,

Γ TLM/B ≥ Γ TCP/B

∴ Ω B ≥ (σ × Γ TCP/B) / (numTB × sizeTB × widthB)

The minimum bus speed thus found is used to create (or
update) the local bus speed constraint set ΨL(speed) for the bus B.

In the next phase (phase 2 in Fig. 4), we perform global
optimization (global_optimize) on the matrix by using
information gathered from the TLM simulation in phase 1. In
this phase we first remove all the busses that have no data
traffic on them, from the full bus matrix. Next, we analyze the
memory usage profile from the simulation run and attempt to
split those memory nodes for which different masters access
non-overlapping regions. Finally we cluster dedicated slave
and memory components with their corresponding masters by
migrating them from the matrix to the local busses of the
masters, to reduce congestion in the bus matrix. Note that we
perform memory splitting before local node clustering because
it allows us to generate local memories which can then be
clustered with their corresponding masters. After the
global_optimize phase, the matrix structure obtained is termed
as a maximally connected reduced bus matrix.

The next phase (phase 3 in Fig. 4) involves static analysis to
determine the optimal reduced bus matrix for the given
application. We make use of a branch and bound based
hierarchical clustering algorithm to cluster slave components
to reduce the number of busses in the matrix even further. Note
that we do not consider merging masters because it adds two
levels of contention (one at the master end and another at the
slave end) in a data path, which can drastically degrade system
performance. Before describing the algorithm, we present a
few definitions. A slave cluster SC = {s1…sn} refers to an
aggregation of slaves that share a common arbiter. Let MSC
refer to the set of masters connected to a slave cluster SC.
Next, let Π SC1/SC2 be a superset of sets of busses which are
merged when slave clusters SC1 and SC2 are merged. Finally,
for a merged bus set β = {b1…bn}, where β ⊂ Π SC1/SC2, let

βΚ refer to the set of allowed bus speeds for the newly created
bus when the busses in set β are merged, and is given by

βΚ = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … ∩ ΨL(speed)(bn)

The branching algorithm starts out by clustering two slave
clusters at a time, and evaluating the gain from this operation.
Initially, each slave cluster has just one slave. The total
number of clustering configurations possible for a bus matrix
with n slaves is given by (n! × (n-1)!)/2(n-1). This creates an
extremely large exploration space, which cannot be traversed
in a reasonable amount of time. In order to consider only valid
clustering configurations and arrive at an optimal solution
quickly, we make us of a bounding function. Fig. 5 shows the
pseudo code for our bounding function which is called after
every clustering operation of any two slave clusters SC1 and
SC2. In Step 1, we use a look up table to see if the clustering
operation has already been considered previously, and if so, we
discard the duplicate clustering. Otherwise we update the
lookup table with the entry for the new clustering. In Step 2,
we check to see if the clustering of SC1 and SC2 results in the
merging of busses in the matrix, otherwise the clustering is not

beneficial and the solution can be bounded. If the clustering
results in bus mergers, we calculate the number of merged
busses for the clustering and store the cumulative weight of the
clustering operation in the branch solution node. In Step 3, we
check to see if the allowed set of bus speeds for every merged
bus is compatible or not. If the allowed speeds for any of the
busses being merged are incompatible (i.e βΚ == φ for any β),
the clustering is not possible and we bound the solution.
Additionally, we also calculate if the throughput requirement
of each of the merged busses can be theoretically supported by
the new merged channel. If this is not the case, we bound the
solution. The bounding function thus enables a conservative
pruning process which quickly eliminates invalid solutions and
allows us to rapidly converge on the optimal solution.

 Step 1: if (exists lookupTable(SC1,SC2)) then discard duplicate clustering
 else updatelookupTable(SC1, SC2)
 Step 2: if (MSC1 ∩ MSC2 == φ) then bound clustering
 else cum_weight = cum_weight + | MSC1 ∩ MSC2|
 Step 3: for each set β ∈ Π SC1/SC2 do

 if ((βΚ == φ) || (∑
=

||β

Γ
1i

TCP/i > (widthB × max_speedB))) then

 bound clustering

Fig. 5. bound function

The solutions obtained from the static branch and bound
clustering algorithm are ranked from best to worst and stored
in a solution database. The next phase (phase 4 in Fig. 4)
validates the solutions by simulation. We use a fast
transaction-based bus cycle accurate simulation engine [19] to
verify that the reduced matrix still satisfies all the constraints
in the design. We perform arbitration strategy selection at this
stage (from the allowed schemes in the constraint set Ψ). If a
static priority based scheme for a shared slave (with priorities
distributed among slave ports according to throughput
requirements) results in TCP constraint violations, we make
use of other arbitration schemes, in increasing order of
implementation costs. So we would use a simpler arbitration
scheme like round robin (RR) first, before resorting to the
more elaborate TDMA/RR scheme like that used in [4]. It is
possible that even after using these different arbitration conflict
schemes, there are TCP constraint violations. In such a case we
remove the solution from the solution database, and proceed to
select the next best solution, continuing in this manner till we
reach a solution which successfully passes the simulation
based verification. This is the minimal cost solution, having
the least number of busses in the matrix, while still satisfying
all TCP constraints in the design. Once we arrive at such a
solution, we call the minimize_design procedure (phase 5 in
Fig. 4) where we attempt to minimize the bus clock speeds and
prune OO buffer sizes. In this procedure, we iteratively select
busses in the matrix and attempt to arrive at the lowest value of
bus clock speeds (as allowed by Ψ) which does not violate any
TCP constraint. We verify any changes made in bus speeds via
simulation. After minimizing bus speeds, we prune the OO
buffer sizes from the maximum values allowed to their peak
traffic buffer count utilization values, obtained from
simulation. Finally, we output the synthesized minimal cost
bus matrix, with a well defined topology and parameter values.

IV. Case Studies

We applied our automated bus matrix synthesis approach on
four MPSoC applications – VIPER, SIRIUS, ORION4 and
HNET8 – from the networking domain. While VIPER and
SIRIUS are variants of existing industrial strength
applications, ORION4 and HNET8 are larger systems which
have been derived from the next generation of MPSoC
applications currently in development. Table 1 shows the
number of components in each of these applications. Note that
the Masters column includes the processors in the design.

Table 1. Number of cores in MPSoC applications

Applications Processors Masters Slaves
VIPER 2 4 15
SIRIUS 3 5 19
ORION4 4 8 24
HNET8 8 13 29

Table 2. Throughput Constraint Paths (TCPs)

IP cores in Throughput Constraint Path (TCP) TCP constraint
ARM1, MEM1, DMA, SDRAM1 640 Mbps
ARM1, MEM2, MEM6, DMA, Network I/F2 480 Mbps
ARM2, Network I/F1, MEM3 5.2 Gbps
ARM2, MEM4, DMA, Network I/F3 1.4 Gbps
ASIC1, ARM3, SDRAM1, Acc1, MEM5, Network I/F2 240 Mbps
ARM3, DMA , Network I/F3, MEM5 2.8 Gbps

ARM1

ARM2

ARM3

DMA

ASIC1

Watchdog

UART

ITC1

ITC2

ROM1

ROM2

Timer1

Timer2

MEM1

MEM2

MEM3

MEM4

MEM5

Network I/F1

Network I/F2

Network I/F3

MEM6

SDRAM1

Acc1

Fig. 6. CTG for SIRIUS application

Fig. 6 shows the CTG for the SIRIUS application. For
clarity, the TCPs are presented separately in Table 2. ARM1 is
a protocol processor (PP) while ARM2 and ARM3 are network
processors (NP). The ARM1 PP is responsible for setting up
and closing network connections, converting data from one
protocol type to another, generating data frames for signaling,
operating and maintenance and exchanging data with NP using
shared memory. The ARM2 and ARM3 NPs directly interact
with the network ports and are used for assembling incoming
packets into frames for the network connections, network port
packet/cell flow control, assembling incoming packets/cells
into frames, segmenting outgoing frames into packets/cells,
keeping track of errors and gathering statistics. The ASIC1
block performs hardware cryptography acceleration for DES,
3DES and AES. The DMA is used to handle fast memory to
memory and network interface data transfers, freeing up the
processors for more useful work. SIRIUS also has a number of
memory blocks, network interfaces and peripherals such as
interrupt controllers (ITC1, ITC2), timers (Watchdog, Timer1,

Timer2), UART and a packet accelerator (Acc1).

Table 3. Customizable Parameter Constraint Set

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8

ARM1

ARM2

ARM3

DMA

ASIC1

Watchdog

UART

ITC1

ROM1

ROM2

Timer1

Acc1

ITC2

Timer2

MEM2

MEM4

SDRAM1

MEM1

MEM6

MEM5

Network I/F2

Network I/F3

static

TDMA/RR

TDMA/RR

MEM3

Network I/F1

TDMA/RR

100

100

200

400

100

100

200

100

100

100

200

200

50

400

200

100

AXI Matrix (32 bit)
- bus speed

OO(6)

OO(2)

OO(4)

Fig. 7. Synthesized bus matrix for SIRIUS

Table 3 shows the global customizable parameter set ΨG. For
the synthesis we target an AMBA3 AXI [21] based bus matrix
structure. Fig. 7 shows the matrix structure output by our
synthesis flow, which satisfies all six throughput constraints in
the design (Table 2). The data bus width used in the matrix is
32 bits, and the slave-side arbitration strategies, operating
speeds for the busses and OO buffer sizes (for components
supporting OO transaction completion) are shown in the
figure. While the full bus matrix used 95 busses, after the
global optimization phase (Fig. 4) we were able to reduce this
number to 34 for the maximally connected reduced matrix. The
final synthesized matrix further reduces the number of busses
to as few as 16 (this includes the local busses for the masters)
which is almost a 6 × saving in the number of busses used
when compared to the original full matrix. The entire synthesis
process took just a few hours to complete instead of the several
days or even weeks it would have taken for a manual effort.

We now present two sets of experiments to prove the
effectiveness of our approach - the first compares our synthesis
results with previous work in the area of bus matrix synthesis,
while the second compares the results of our synthesis
approach for four MPSoC applications of varying complexity.

0
5

10
15
20
25
30
35
40

1 2 3 4 5

max. no. of slaves/cluster

no
. o

f b
us

se
s BMSYN

S(10)
S(20)
S(30)
S(40)

Fig. 8. Comparison with threshold based approach for SIRIUS

To compare the quality of our synthesis results, we chose the
closest existing piece of work that deals with automated matrix
synthesis with the aim of minimizing number of busses [8].
Since their approach only generates matrix topology (while we
generate both topology and parameter values), we restricted
our comparison to the number of busses in the final

synthesized design. The threshold based approach proposed in
[8] requires the designer to statically specify (i) the maximum
number of slaves per cluster and (ii) the traffic overlap
threshold, which if exceeded prevents two slaves from being
assigned to the same bus cluster. The results of our comparison
study, performed on the SIRIUS application, are shown in Fig.
8. BMSYN is our bus matrix synthesis approach while the
other comparison points are obtained from [8]. S(x), for x = 10,
20, 30, 40, represents the threshold based approach where no
two slaves having a traffic overlap of greater than x% can be
assigned to the same bus, and the X-axis in Fig. 8 varies the
maximum number of slaves allowed in a bus cluster for these
comparison points. The values of 10 – 40% for traffic overlap
are chosen as per recommendations from [8]. It is clear from
Fig. 8 that our synthesis approach produces a lower cost
system (having lesser number of busses) than approaches
which force the designer to statically approximate application
characteristics.

60
95

192

377

29 34

80
114

13 16 25 42

0
50

100
150
200
250
300
350
400

VIPER SIRIUS ORION4 HNET8

N
um

be
r o

f B
us

se
s full

max conn.
final synth.

Fig. 9. Comparison of number of busses for MPSoC applications

The number of busses in a full bus matrix, a maximally

connected reduced matrix and the final synthesized bus matrix
using our approach, for the four applications we considered,
are compared in Fig. 9. More detailed experimental results can
be found in our technical report [20]. It can be seen that our
bus matrix synthesis approach results in significant matrix
component savings, ranging from 2.1 × to 3.2 × when
compared to a maximally connected bus matrix, and from
4.6 × to 9 × when compared with a full bus matrix.

In the present and near future, we believe that the bus matrix
communication architecture can efficiently support MPSoC
systems with tens to hundreds of cores with several data
throughput constraints in the multiple gigabits per second
range. However, for very large MPSoC systems in the future,
bus-based communication systems will suffer from
unpredictable wire cross-coupling effects, significant clock
skews on longer wires and serious routability issues for
multiple wires crossing the chip in a non-regular manner.
Network-on-chip (NoC) based communication architectures,
with a regular wire layout and having all links of the same
length, offer a predictable model for wire cross-talk and delay.
This predictability will permit aggressive clock rates and
support much larger data throughputs. Therefore we believe
that for very large MPSoC systems in the future having several
hundreds of cores, a packet-switched NoC communication
backbone would be a more suitable choice.

V. Conclusion

In this paper, we presented an approach for the automated
synthesis of a bus matrix communication architecture for
MPSoC designs with high bandwidth requirements. Our

synthesis approach satisfies all throughput performance
constraints in the design, while generating an optimal bus
matrix topology having a minimal number of busses, as well as
values for parameters such as bus speeds, OO buffer sizes and
arbitration strategies. Results from the synthesis of an AMBA3
AXI [21] based bus matrix for four MPSoC applications from
the networking domain show a significant reduction in bus
count in the synthesized matrix when compared with a full bus
matrix (up to 9 ×) and a maximally connected reduced matrix
(up to 3.2 ×). Our approach is not restricted to an AMBA3 [21]
matrix based architecture and can be easily extended to
synthesize CoreConnect [2] and STBus [3] crossbars as well.

Acknowledgements

This research was partially supported by grants from SRC
Contract 1330, Conexant Systems, CPCC fellowship and UC
Micro (03-029).

References

[1] ARM AMBA Specification (rev2.0), www.arm.com, 2001
[2] "IBM On-chip CoreConnect Bus Architecture", www.chips.ibm.com
[3] “STBus Communication System: Concepts and Definitions”, Reference

Guide, STMicroelectronics, May 2003
[4] "Sonics Integration Architecture, Sonics Inc", www.sonicsinc.com
[5] L.Benini, G.D.Micheli, “Networks on Chips: A New SoC Paradigm”,

IEEE Computers, pp. 70-78, Jan. 2002
[6] J. Henkel, et al, “On-chip networks: A scalable, communication-centric

embedded system design paradigm”, VLSI Design, 2004
[7] M. Nakajima et al. “A 400MHz 32b embedded microprocessor core

AM34-1 with 4.0GB/s cross-bar bus switch for SoC”, ISSCC 2002
[8] S. Murali, G. De Micheli, “An Application-Specific Design

Methodology for STbus Crossbar Generation”, DATE 2005
[9] V. Lahtinen, et al, “Comparison of synthesized bus and crossbar

interconnection architectures”, ISCAS 2003
[10] K.K Ryu, E. Shin, V.J. Mooney, “A Comparison of Five Different

Multiprocessor SoC Bus Architectures”, DSS 2001
[11] M. Loghi, et al “Analyzing On-Chip Communication in a MPSoC

Environment”, DATE 2004
[12] M. Gasteier, M. Glesner “Bus-based communication synthesis on system

level”, ACM TODAES, January 1999
[13] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Automated Throughput-

driven Synthesis of Bus-based Communication Architectures", In Proc of
ASPDAC 2005

[14] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane, "Floorplan-
aware Automated Synthesis of Bus-based Communication
Architectures", In Proc. of DAC 2005

[15] K. Srinivasan, et al, “Linear Programming based Techniques for
Synthesis of Network-on-Chip Architectures”, ICCD 2004

[16] D. Bertozzi et al. “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip”, IEEE TPDS, Feb 2005

[17] O. Ogawa et al, “A Practical Approach for Bus Architecture
Optimization at Transaction Level”, DATE 2003

[18] SystemC initiative. www.systemc.org
[19] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Fast Exploration of Bus-based

On-chip Communication Architectures”, In Proc. of CODES+ISSS 2004
[20] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Bus Matrix Communication

Architecture Synthesis”, CECS Technical Report 05-17, October 2005
[21] ARM AMBA AXI Specification www.arm.com/armtech/AXI
[22] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Extending the Transaction

Level Modeling Approach for Fast Communication Architecture
Exploration", In Proc. of DAC 2004

[23] K. Lahiri et al, “Efficient exploration of the SoC communication
architecture design space”, ICCAD 2000

[24] S. Pasricha, "Transaction Level Modeling of SoC with SystemC 2.0"
Synopsys User Group Conference (SNUG 2002), Bangalore, May 2002

