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Abstract – Modern multi-processor system-on-chip (MPSoC) 
designs have high bandwidth constraints which must be satisfied 
by the underlying communication architecture. Bus matrix based 
communication architectures consist of several parallel busses 
which provide a suitable backbone to support high bandwidth 
systems, but suffer from high cost overhead due to extensive bus 
wiring inside the matrix. Manual traversal of the vast exploration 
space to synthesize a minimal cost bus matrix that also satisfies 
performance constraints is practically infeasible. In this paper, we 
address this problem by proposing an automated approach for 
synthesizing a bus matrix communication architecture which 
satisfies all performance constraints in the design and minimizes 
wire congestion in the matrix. To validate our approach, we 
consider several industrial strength applications from the 
networking domain and show that our approach results in up to 
9 ×  component savings when compared to a full bus matrix and 
up to 3.2 ×  savings when compared to a maximally connected 
reduced bus matrix. 
 

I. Introduction 
 

Multi-processor system-on-chip (MPSoC) designs are 
increasingly being used in today’s high performance embedded 
systems. These systems are characterized by a high level of 
parallelism, due to the presence of multiple processors, and 
large bandwidth requirements, due to the massive scale of 
component integration. The choice of communication 
architecture in such systems is of vital importance because it 
supports the entire inter-component data traffic and has a 
significant impact on the overall system performance.  

Traditionally used hierarchical shared bus communication 
architectures such as those proposed by AMBA [1], 
CoreConnect [2] and STbus [3] can cost effectively connect 
few tens of cores but are not scalable to cope with the demands 
of very high performance systems. Point-to-point 
communication connection between cores is practical for even 
fewer components. Network-on-Chip (NoC) based 
communication architectures [5] have recently emerged as a 
promising alternative to handle communication needs for the 
next generation of high performance designs. However, 
although basic concepts have been proposed, research on NoCs 
is still in its infancy, and few concrete implementations of 
complex NoCs exist to date [6].  

In this paper we look at bus matrix (sometimes also called 
crossbar switch) based communication architectures [7] which 
are currently being considered by designers to meet the high 
bandwidth requirements of modern MPSoC systems. Fig. 1 
shows an example of a three-master seven-slave AMBA bus 
matrix architecture for a dual ARM processor based 
networking subsystem application. A bus matrix consists of 
several busses in parallel which can support concurrent high 
bandwidth data streams. The Input stage is used to handle 

interrupted data bursts, and to register and hold incoming 
transfers if receiving slaves cannot accept them immediately. 
The Decode stage generates select signal for appropriate 
slaves. Unlike in traditional shared bus architectures, 
arbitration in a bus matrix is not centralized, but rather 
distributed so that every slave has its own arbitration. 
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Fig. 1. Full bus matrix architecture 
 

One drawback of the full bus matrix structure shown in Fig. 
1 is that it connects every master to every slave in the system, 
resulting in a prohibitively large number of busses. The 
excessive wire congestion can make it practically impossible 
to route and achieve timing closure for the design [14]. To 
overcome this shortcoming, designers tailor a full matrix 
structure to the particular application at hand, creating a partial 
bus matrix, as shown in Fig. 2. This structure has fewer busses 
and consequently uses fewer components (arbiters, decoders, 
buffers), has a smaller area and also utilizes less power.  
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Fig. 2. Partial bus matrix architecture 
 

The problem of synthesizing a minimal cost (i.e. having the 
least number of busses) bus matrix for a particular application 
is complicated by the large number of combinations of 
possible matrix topologies and bus architecture parameters 
such as bus widths, clock speeds, out-of-order (OO) buffer 
sizes and shared slave arbitration schemes. Previous research 
in the area of bus matrix/crossbar synthesis (discussed in the 
next section) has been inadequate in addressing the entire 
problem, and instead has been limited to exploring a small 
subset of the synthesis problem (such as topology synthesis 
[8]). Very often, designers end up evaluating the bus matrix 
design space by creating simulation models annotated with 
detail based on experience, and manually iterating through 



different combinations of topology and communication 
architecture parameters. Such an effort remains time 
consuming and produces bus matrix architectures which are 
generally overdesigned for the application at hand. 

Our goal in this paper is to address this problem by 
presenting an automated approach for synthesizing a bus 
matrix communication architecture, which generates not only 
the matrix topology, but also communication parameter values 
for bus clock speeds, OO buffer sizes and arbitration strategies. 
Most importantly, our synthesis effort minimizes the number 
of busses in the matrix and satisfies all performance constraints 
in the design. To demonstrate the effectiveness of our approach 
we synthesize a bus matrix architecture for four industrial 
strength MPSoC case studies from the networking domain and 
show that our approach significantly reduces wire congestion 
in a matrix, resulting in up to 9 ×  component savings when 
compared to a full bus matrix and up to 3.2 ×  savings when 
compared to a maximally connected reduced bus matrix. 

 
II. Related Work 

 
The need for bus matrix (or crossbar switch) architectures 

has been emphasized in previous work in the area of 
communication architecture design. Lahtinen et al. [9] 
compared the shared bus and crossbar topologies to conclude 
that the crossbar is superior to a bus for high throughput 
systems. Ryu et al. [10] compared a full crossbar switch with 
other bus based topologies and found that the crossbar switch 
outperformed the other choices due to its superior parallel 
response. Loghi et al. [11] presented exploration studies with 
the AMBA and STBus shared bus, full crossbar and partial 
crossbar topologies, concluding that crossbar topologies are 
much better suited for high throughput systems requiring 
frequent parallel accesses. An interesting conclusion from their 
work is that partial crossbar schemes can perform just as well 
as the full crossbar scheme, if designed carefully. However, the 
emphasis of their work was not on the generation of such 
partial crossbar topologies.  

Although a lot of work has been done in the area of 
hierarchical shared bus architecture synthesis [12-14] and NoC 
architecture synthesis [15-16], few efforts have focused on bus 
matrix synthesis. Ogawa et al. [17] proposed a transaction 
based simulation environment which allows designers to 
explore and design a bus matrix. But the designer needs to 
manually specify the communication topology, arbitration 
scheme and memory mapping, which is too time consuming 
for the complex systems of today. The automated synthesis 
approach for STBus crossbars proposed by Murali et al. in [8] 
is the only work that comes closest to our goal of automated 
bus matrix synthesis. However, their work primarily deals with 
automated crossbar topology synthesis – the communication 
parameters (arbitration schemes, OO buffer sizes, bus widths 
and speeds) which have considerable influence on system 
performance [22-23] are not explored or synthesized. Our 
synthesis effort overcomes this shortcoming and synthesizes 
both the topology and communication architecture parameters 
for the bus matrix. Additionally, [8] assumes that critical data 
streams cannot overlap on the same bus, places a static limit on 
the maximum number of components that can be attached to a 
bus and also requires the designer to specify hard-to-determine 

threshold values of traffic overlap as an input, based on which 
components are allocated to separate busses. These are 
conservative approaches which lead to an overdesigned, sub-
optimal system. Our approach carefully selects appropriate 
arbitration schemes (e.g. TDMA based) that can allow multiple 
constraint streams to exist on the same bus, and also does not 
require the designer to specify data traffic threshold values or 
statically limit the number of components on a bus. 
Experimental comparison studies (described in Section IV) 
show that our scheme is more aggressive and obtains greater 
reduction in bus matrix connections, when compared to [8]. 

 
III. Bus Matrix Synthesis 

 
This section describes our approach for automated bus 

matrix synthesis. First we formulate the problem and present 
our assumptions. Next, we describe our simulation engine and 
elaborate on communication parameter constraints, which 
guide the matrix synthesis process. Finally, we present our 
automated bus matrix synthesis approach in detail.   
 

A. Problem Formulation 
 

We are given an MPSoC design having several components 
(IPs) that need to communicate with each other. We assume 
that hardware/software partitioning has taken place and that the 
appropriate functionality has been mapped onto hardware and 
software IPs. These IPs are standard “black box” library 
components which cannot be modified during the synthesis 
process, except for the memory components. The target 
standard bus matrix communication architecture (e.g. AMBA 
bus matrix [1]) that determines the pins at the IP interface and 
for which the matrix must be synthesized, is also specified. 
Typically, all busses within a bus matrix have the same data 
bus width, which usually depends on the number of data 
interface pins of the IPs in the design. We assume that this 
matrix data bus width is specified by the designer, based on the 
knowledge of the IPs selected for the design.  
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Fig. 3. Communication Throughput Graph (CTG) 
 
Generally, MPSoC designs have performance constraints 

which are dependent on the nature of the application. The 
throughput of communication between components is a good 
measure of the performance of a system [12]. To represent 
performance constraints in our approach, we define a 
Communication Throughput Graph CTG = G(V,A) which is 
a directed graph, where each vertex v represents a component 
in the system, and an edge a connects components that need to 
communicate with each other. A Throughput Constraint 
Path (TCP) is a sub-graph of a CTG, consisting of a single 
master for which data throughput must be maintained and 
other masters, slaves and memories which are in the critical 



path that impacts the maintenance of the throughput. Fig. 3 
shows a CTG for a network subsystem, with a TCP involving 
the ARM2, MEM2, DMA and ‘Network I/F’ components, 
where the rate of data packets streaming out of the ‘Network 
I/F’ component must not fall below 1 Gbps.  
Problem Definition A bus B can be considered to be a 
partition of the set of components V in a CTG, where B ⊂  V. 
Then the problem is to determine an optimal component to bus 
assignment for a bus matrix architecture, such that the V is 
partitioned onto a minimal number of busses N, and satisfies 
all performance constraints in the design, represented by the 
TCPs in a CTG. 
 

B. Simulation Environment 
 

Since communication behavior in a system is characterized 
by unpredictability due to dynamic bus requests from cores, 
contention for shared resources, buffer overflows etc., a 
simulation based approach is necessary for accurate 
performance estimation. For the simulation part of our flow, 
we capture behavioral models of components and bus 
architectures in SystemC [18][24], and keep them in an IP 
library database. Since we were concerned about the speed of 
simulation, we chose a fast transaction-based, bus cycle 
accurate modeling abstraction, which averaged simulation 
speeds of 150–200 Kcycles/sec [19], while running embedded 
software applications on processor ISS models. The 
communication model in this abstraction is extremely detailed, 
capturing delays arising due to frequency and data width 
adapters, bridge overheads, interface buffering and all the 
static and dynamic delays associated with the standard bus 
architecture protocol being used. 

 

C. Communication Parameter Constraint Set 
 

In the interest of generating a practically realizable system, 
we allow a designer to specify a discrete set of valid values 
(constraint set) for communication parameters such as bus 
clock speeds, OO buffer sizes and arbitration schemes. We 
allow the specification of two types of constraint sets for 
components – a global constraint set (ΨG) and a local 
constraint set (ΨL). For instance, a designer might set the 
allowable bus clock speeds for a set of busses locally in a 
subsystem to multiples of 33 MHz, with a maximum speed of 
166 MHz, based on the operation frequency of the cores in the 
subsystem, while globally, the allowed bus clock speeds are 
multiples of 50 MHz, up to maximum of 400 MHz. The 
presence of a local constraint overrides the global constraint, 
while the absence of it results in the resource inheriting global 
constraints. This provides a convenient mechanism for the 
designer to bias the synthesis process based on knowledge of 
the design and the technology being targeted. Such knowledge 
about the design is not a prerequisite for using our synthesis 
framework, but informed decisions can help avoid the 
synthesis of unrealistic system configurations. 

 

D. Synthesis Approach 
 

We now describe our automated bus matrix synthesis 
approach. Fig. 4 gives a high level overview of the flow. The 

inputs to the flow include a Communication Throughput Graph 
(CTG), a library of behavioral IP models, a target bus matrix 
template (e.g. AMBA bus matrix [1]) and a communication 
parameter constraint set (Ψ) – which includes ΨG and ΨL. The 
general idea is to first perform a fast TLM level simulation of 
the system to get application-specific data traffic statistics. 
This information is used in a global optimization phase to 
reduce the full bus matrix architecture, by removing unused 
busses and local slave components from the matrix. We call 
the resulting matrix a maximally connected reduced matrix. 
The next step is to perform a static branch and bound based 
hierarchical clustering of slave components in the matrix 
which further reduces the number of busses in the matrix. We 
rank the results of the static clustering analysis, from the best 
case solution (least number of busses) to the worst (most 
number of busses) and save them in the database. We then use 
a fast bus cycle accurate simulation engine [19] to validate and 
select the best solution which meets all the performance 
constraints, determine slave arbitration schemes, optimize the 
design to minimize bus speeds and OO buffer sizes and then 
finally output the optimal synthesized bus matrix architecture.  
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Fig. 4. Automated bus matrix synthesis flow 
 

We now describe the synthesis flow in detail. In the first 
phase, the IP library is mapped onto a full bus matrix and 
simulated at the TLM level, with no arbitration contention 
overhead since there are no shared channels and also because 
we assume infinite ports at IP interfaces. We also set the OO 
buffer sizes to the maximum allowed in Ψ. The TLM 
simulation allows us to obtain application-specific data traffic 
statistics such as number of transactions on a bus, average 
transaction burst size on a bus and memory usage profiles. 
Knowing the bandwidth to be maintained on a channel from 
the Throughput Constraint Paths (TCPs) in the CTG, we can 
also estimate the minimum clock speed at which any bus in the 
matrix must operate, in order to meet its throughput constraint, 
as follows. The data throughput ( Γ TLM/B) from the TLM 
simulation, for any bus B in the matrix is given by 
 

Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / σ  
 

 

where numT is the number of data transactions on the bus, 
sizeT is the average size of these data transactions, width is the 
bus width, Ω  is the clock speed, and σ  is the total number of 
cycles of TLM simulation for the application. The values of 



numT, sizeT and σ  are obtained from the TLM simulation in 
phase 1. To meet the throughput constraint Γ TCP/B for bus B, 
 

Γ TLM/B ≥  Γ TCP/B 
 

∴   Ω B ≥  ( σ  × Γ TCP/B) / (numTB × sizeTB × widthB) 
 

The minimum bus speed thus found is used to create (or 
update) the local bus speed constraint set ΨL(speed) for the bus B. 

In the next phase (phase 2 in Fig. 4), we perform global 
optimization (global_optimize) on the matrix by using 
information gathered from the TLM simulation in phase 1. In 
this phase we first remove all the busses that have no data 
traffic on them, from the full bus matrix. Next, we analyze the 
memory usage profile from the simulation run and attempt to 
split those memory nodes for which different masters access 
non-overlapping regions. Finally we cluster dedicated slave 
and memory components with their corresponding masters by 
migrating them from the matrix to the local busses of the 
masters, to reduce congestion in the bus matrix. Note that we 
perform memory splitting before local node clustering because 
it allows us to generate local memories which can then be 
clustered with their corresponding masters. After the 
global_optimize phase, the matrix structure obtained is termed 
as a maximally connected reduced bus matrix.  

The next phase (phase 3 in Fig. 4) involves static analysis to 
determine the optimal reduced bus matrix for the given 
application. We make use of a branch and bound based 
hierarchical clustering algorithm to cluster slave components 
to reduce the number of busses in the matrix even further. Note 
that we do not consider merging masters because it adds two 
levels of contention (one at the master end and another at the 
slave end) in a data path, which can drastically degrade system 
performance. Before describing the algorithm, we present a 
few definitions. A slave cluster SC = {s1…sn} refers to an 
aggregation of slaves that share a common arbiter. Let MSC 
refer to the set of masters connected to a slave cluster SC. 
Next, let Π SC1/SC2 be a superset of sets of busses which are 
merged when slave clusters SC1 and SC2 are merged. Finally, 
for a merged bus set β = {b1…bn}, where β ⊂ Π SC1/SC2, let 

βΚ  refer to the set of allowed bus speeds for the newly created 
bus when the busses in set β  are merged, and is given by 
 

βΚ  = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … ∩ ΨL(speed)(bn) 
 

The branching algorithm starts out by clustering two slave 
clusters at a time, and evaluating the gain from this operation. 
Initially, each slave cluster has just one slave. The total 
number of clustering configurations possible for a bus matrix 
with n slaves is given by (n! ×  (n-1)!)/2(n-1). This creates an 
extremely large exploration space, which cannot be traversed 
in a reasonable amount of time. In order to consider only valid 
clustering configurations and arrive at an optimal solution 
quickly, we make us of a bounding function. Fig. 5 shows the 
pseudo code for our bounding function which is called after 
every clustering operation of any two slave clusters SC1 and 
SC2. In Step 1, we use a look up table to see if the clustering 
operation has already been considered previously, and if so, we 
discard the duplicate clustering. Otherwise we update the 
lookup table with the entry for the new clustering. In Step 2, 
we check to see if the clustering of SC1 and SC2 results in the 
merging of busses in the matrix, otherwise the clustering is not 

beneficial and the solution can be bounded. If the clustering 
results in bus mergers, we calculate the number of merged 
busses for the clustering and store the cumulative weight of the 
clustering operation in the branch solution node. In Step 3, we 
check to see if the allowed set of bus speeds for every merged 
bus is compatible or not. If the allowed speeds for any of the 
busses being merged are incompatible (i.e βΚ == φ  for any β ), 
the clustering is not possible and we bound the solution. 
Additionally, we also calculate if the throughput requirement 
of each of the merged busses can be theoretically supported by 
the new merged channel. If this is not the case, we bound the 
solution. The bounding function thus enables a conservative 
pruning process which quickly eliminates invalid solutions and 
allows us to rapidly converge on the optimal solution.  
 
   Step 1:  if (exists lookupTable(SC1,SC2))  then discard duplicate clustering 
 else  updatelookupTable(SC1, SC2) 
   Step 2:  if (MSC1 ∩  MSC2 == φ ) then bound clustering 
 else  cum_weight = cum_weight + | MSC1 ∩ MSC2| 
   Step 3: for each set β  ∈  Π SC1/SC2 do   

       if  (( βΚ == φ ) || ( ∑
=

||β

Γ
1i

TCP/i > (widthB ×  max_speedB))) then 

       bound clustering 
 
 

Fig. 5. bound function 
 

The solutions obtained from the static branch and bound 
clustering algorithm are ranked from best to worst and stored 
in a solution database. The next phase (phase 4 in Fig. 4) 
validates the solutions by simulation. We use a fast 
transaction-based bus cycle accurate simulation engine [19] to 
verify that the reduced matrix still satisfies all the constraints 
in the design. We perform arbitration strategy selection at this 
stage (from the allowed schemes in the constraint set Ψ). If a 
static priority based scheme for a shared slave (with priorities 
distributed among slave ports according to throughput 
requirements) results in TCP constraint violations, we make 
use of other arbitration schemes, in increasing order of 
implementation costs. So we would use a simpler arbitration 
scheme like round robin (RR) first, before resorting to the 
more elaborate TDMA/RR scheme like that used in [4]. It is 
possible that even after using these different arbitration conflict 
schemes, there are TCP constraint violations. In such a case we 
remove the solution from the solution database, and proceed to 
select the next best solution, continuing in this manner till we 
reach a solution which successfully passes the simulation 
based verification. This is the minimal cost solution, having 
the least number of busses in the matrix, while still satisfying 
all TCP constraints in the design. Once we arrive at such a 
solution, we call the minimize_design procedure (phase 5 in 
Fig. 4) where we attempt to minimize the bus clock speeds and 
prune OO buffer sizes. In this procedure, we iteratively select 
busses in the matrix and attempt to arrive at the lowest value of 
bus clock speeds (as allowed by Ψ) which does not violate any 
TCP constraint. We verify any changes made in bus speeds via 
simulation. After minimizing bus speeds, we prune the OO 
buffer sizes from the maximum values allowed to their peak 
traffic buffer count utilization values, obtained from 
simulation. Finally, we output the synthesized minimal cost 
bus matrix, with a well defined topology and parameter values. 



IV. Case Studies 
 

We applied our automated bus matrix synthesis approach on 
four MPSoC applications – VIPER, SIRIUS, ORION4 and 
HNET8 – from the networking domain. While VIPER and 
SIRIUS are variants of existing industrial strength 
applications, ORION4 and HNET8 are larger systems which 
have been derived from the next generation of MPSoC 
applications currently in development. Table 1 shows the 
number of components in each of these applications. Note that 
the Masters column includes the processors in the design. 
 

Table 1. Number of cores in MPSoC applications 
 

Applications Processors Masters Slaves 
VIPER 2 4 15 
SIRIUS 3 5 19 
ORION4 4 8 24 
HNET8 8 13 29 

 

Table 2. Throughput Constraint Paths (TCPs) 
 

IP cores in Throughput Constraint Path (TCP) TCP constraint 
ARM1, MEM1, DMA, SDRAM1 640 Mbps 
ARM1, MEM2, MEM6, DMA, Network I/F2 480 Mbps 
ARM2, Network I/F1, MEM3  5.2 Gbps 
ARM2, MEM4, DMA, Network I/F3 1.4 Gbps 
ASIC1, ARM3, SDRAM1, Acc1, MEM5, Network I/F2 240 Mbps 
ARM3, DMA , Network I/F3, MEM5 2.8 Gbps 
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Fig. 6. CTG for SIRIUS application 
 

Fig. 6 shows the CTG for the SIRIUS application. For 
clarity, the TCPs are presented separately in Table 2. ARM1 is 
a protocol processor (PP) while ARM2 and ARM3 are network 
processors (NP). The ARM1 PP is responsible for setting up 
and closing network connections, converting data from one 
protocol type to another, generating data frames for signaling, 
operating and maintenance and exchanging data with NP using 
shared memory. The ARM2 and ARM3 NPs directly interact 
with the network ports and are used for assembling incoming 
packets into frames for the network connections, network port 
packet/cell flow control, assembling incoming packets/cells 
into frames, segmenting outgoing frames into packets/cells, 
keeping track of errors and gathering statistics. The ASIC1 
block performs hardware cryptography acceleration for DES, 
3DES and AES. The DMA is used to handle fast memory to 
memory and network interface data transfers, freeing up the 
processors for more useful work. SIRIUS also has a number of 
memory blocks, network interfaces and peripherals such as 
interrupt controllers (ITC1, ITC2), timers (Watchdog, Timer1, 

Timer2), UART and a packet accelerator (Acc1). 
 

Table 3. Customizable Parameter Constraint Set 
 

Set Values 
bus speed 25, 50, 100, 200, 300, 400 
arbitration strategy static, RR, TDMA/RR 
OO buffer size 1 – 8  
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Fig. 7. Synthesized bus matrix for SIRIUS 
 

Table 3 shows the global customizable parameter set ΨG. For 
the synthesis we target an AMBA3 AXI [21] based bus matrix 
structure. Fig. 7 shows the matrix structure output by our 
synthesis flow, which satisfies all six throughput constraints in 
the design (Table 2). The data bus width used in the matrix is 
32 bits, and the slave-side arbitration strategies, operating 
speeds for the busses and OO buffer sizes (for components 
supporting OO transaction completion) are shown in the 
figure. While the full bus matrix used 95 busses, after the 
global optimization phase (Fig. 4) we were able to reduce this 
number to 34 for the maximally connected reduced matrix. The 
final synthesized matrix further reduces the number of busses 
to as few as 16 (this includes the local busses for the masters) 
which is almost a 6 ×  saving in the number of busses used 
when compared to the original full matrix. The entire synthesis 
process took just a few hours to complete instead of the several 
days or even weeks it would have taken for a manual effort.   

We now present two sets of experiments to prove the 
effectiveness of our approach - the first compares our synthesis 
results with previous work in the area of bus matrix synthesis, 
while the second compares the results of our synthesis 
approach for four MPSoC applications of varying complexity. 
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Fig. 8. Comparison with threshold based approach for SIRIUS 
 

To compare the quality of our synthesis results, we chose the 
closest existing piece of work that deals with automated matrix 
synthesis with the aim of minimizing number of busses [8]. 
Since their approach only generates matrix topology (while we 
generate both topology and parameter values), we restricted 
our comparison to the number of busses in the final 



synthesized design. The threshold based approach proposed in 
[8] requires the designer to statically specify (i) the maximum 
number of slaves per cluster and (ii) the traffic overlap 
threshold, which if exceeded prevents two slaves from being 
assigned to the same bus cluster. The results of our comparison 
study, performed on the SIRIUS application, are shown in Fig. 
8. BMSYN is our bus matrix synthesis approach while the 
other comparison points are obtained from [8]. S(x), for x = 10, 
20, 30, 40, represents the threshold based approach where no 
two slaves having a traffic overlap of greater than x% can be 
assigned to the same bus, and the X-axis in Fig. 8 varies the 
maximum number of slaves allowed in a bus cluster for these 
comparison points. The values of 10 – 40% for traffic overlap 
are chosen as per recommendations from [8]. It is clear from 
Fig. 8 that our synthesis approach produces a lower cost 
system (having lesser number of busses) than approaches 
which force the designer to statically approximate application 
characteristics. 
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Fig. 9. Comparison of number of busses for MPSoC applications 
  
The number of busses in a full bus matrix, a maximally 

connected reduced matrix and the final synthesized bus matrix 
using our approach, for the four applications we considered, 
are compared in Fig. 9. More detailed experimental results can 
be found in our technical report [20]. It can be seen that our 
bus matrix synthesis approach results in significant matrix 
component savings, ranging from 2.1 ×  to 3.2 ×  when 
compared to a maximally connected bus matrix, and from 
4.6 ×  to 9 ×  when compared with a full bus matrix. 

In the present and near future, we believe that the bus matrix 
communication architecture can efficiently support MPSoC 
systems with tens to hundreds of cores with several data 
throughput constraints in the multiple gigabits per second 
range. However, for very large MPSoC systems in the future, 
bus-based communication systems will suffer from 
unpredictable wire cross-coupling effects, significant clock 
skews on longer wires and serious routability issues for 
multiple wires crossing the chip in a non-regular manner. 
Network-on-chip (NoC) based communication architectures, 
with a regular wire layout and having all links of the same 
length, offer a predictable model for wire cross-talk and delay. 
This predictability will permit aggressive clock rates and 
support much larger data throughputs. Therefore we believe 
that for very large MPSoC systems in the future having several 
hundreds of cores, a packet-switched NoC communication 
backbone would be a more suitable choice. 
 

V. Conclusion 
 

In this paper, we presented an approach for the automated 
synthesis of a bus matrix communication architecture for 
MPSoC designs with high bandwidth requirements. Our 

synthesis approach satisfies all throughput performance 
constraints in the design, while generating an optimal bus 
matrix topology having a minimal number of busses, as well as 
values for parameters such as bus speeds, OO buffer sizes and 
arbitration strategies. Results from the synthesis of an AMBA3 
AXI [21] based bus matrix for four MPSoC applications from 
the networking domain show a significant reduction in bus 
count in the synthesized matrix when compared with a full bus 
matrix (up to 9 × ) and a maximally connected reduced matrix 
(up to 3.2 × ). Our approach is not restricted to an AMBA3 [21] 
matrix based architecture and can be easily extended to 
synthesize CoreConnect [2] and STBus [3] crossbars as well. 
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