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Process variations are becoming influential at the device level
in deep sub-micron and sub-wavelength design regimes, whereas
they used to be a few generations away only influential at circuit
level. Process variations cause device performance parameters, such
as current or output resistance, to acquire a probability distribu-
tion. Estimation of these distributions has been accomplished us-
ing Monte Carlo techniques so far. The large number of samples
needed by Monte Carlo methods adversely affects the possibility
of integrating probabilistic device performance at the circuit level
due to run-time inefficiency. In this paper, we introduce a novel
technique called Forward Discrete Probability Propagation (FDPP).
This method discretizes the probability distributions and effectively
propagates these probabilities across a device formula hierarchy,
such as the one present in the SPICE3v3 model. Consequently,
probability distributions for process parameters are propagated to
the device level. It is shown in the paper that with far fewer num-
ber of samples, comparable accuracy to a Monte Carlo method is
achieved.

I. INTRODUCTION

Estimation of the effects of process variations on device perfor-
mance has long been a concern. The computational complexity
of current simulators precludes incorporation of process varia-
tions to device performance. This can be attributed to the lack
of accurate methods and models for process variations. Design-
ers have been trying to cope with this absence through worst-
case analysis, Monte Carlo techniques or through the invocation
of Gaussian distribution assumptions. But these approaches can
no longer be counted upon to provide sufficiently accurate and
fast results, as deep sub-micron silicon technologies rapidly push
manufacturers to device parameter characterizations of increased
accuracy in order to obviate the increasing number of design iter-
ations.

The effects of process variations on device parameters further
indicate that the relationships between factors causing process
variations and device parameters are deviating from a linear ap-
proximation even for a small input domain. This implies that
the Gaussian distribution assumption attributed to device perfor-
mance parameters is no longer accurate. Therefore, a more accu-
rate methodology is necessary to estimate the effects of mismatch
on high-level parameters.

The paper presents a methodology to deterministically es-
timate the results of process variations on device parameters
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using connectivity graphs. The proposal consists of an alge-
braically tractable method, leading to the possibility of manual
or simulator-guided implementations. In contrast to the Monte
Carlo approach, there does not exist any non-determinism in the
system. In contrast to Gaussian-based methods, the system is
not restricted to Gaussian distributions, thus providing accurate
device characterization. The method can also outperform the ac-
curacy and run-time of a Monte Carlo-based approach in certain
applications or conditions as indicated in the paper. With no re-
liance on a random method, it can nonetheless take advantage of
analytical fabrication and device models already present in the
literature and present the probabilistic device parameters formed
as a result of process variations.

The paper proceeds by presenting the motivation and the pre-
vious work. The discussion is followed up by the introduction
of a mathematical basis for discretization of probability distribu-
tion functions, introducing formalism through new operators and
domains, followed by experimental data comparing Monte Carlo
methods and FDPP.

II. MOTIVATION

Monte Carlo methods are frequently used in engineering ap-
plications [1] [2], though they exhibit a number of shortcomings.
A foremost one consists of the dependence of Monte Carlo tech-
niques on a random number generator, signifying Monte Carlo
as a non-deterministic method. Most computational packages
only provide random number generators for a limited set of well-
known distributions such as Gaussian or uniform. As a result,
the users of Monte Carlo methods are limited in assigning dis-
tributions to low level parameters, such as process parameters in
device characterization. Though a number of remedies have been
suggested, such as importance sampling [18], these modifications
usually necessitate an increased number of samples for sufficient
accuracy. An approach for accurate consideration of arbitrary
distributions may be of utmost importance for certain engineering
applications where Gaussian or other distribution assumptions for
low level parameters may cause large error build-up during the
computation of the distributions of high level parameters.

Another shortcoming is that Monte Carlo, due to its random
sampling mechanism, may require an increasingly high number
of samples to reduce the error for regions of the probability distri-
bution that have a reduced occurrence probability. This last bot-
tleneck may cause certain regions in a distribution to be missed
by the method altogether when computational effectiveness is-
sues limit the number of samples, causing an under-estimation
of the probability. Similarly, fewer than the adequate number of
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samples may cause an over-estimation at certain regions. This
over-estimation may be the result of choosing a point at a low
probability region and not being able to normalize with an ade-
quate number of drawn samples. Increasing the number of sam-
ples to prevent these bottlenecks, on the other hand, may result
in an unmanageable run-time complexity. In most engineering
applications, reducing this complexity without an accuracy com-
promise is nevertheless of utmost interest.

Finally, sampling from correlated parameters may bring forth
a large inaccuracy. In a directed acyclic graph, if a node has more
than one outgoing edge, assigning the same sample to each of
the outgoing edges will over-estimate the variance of a high level
node that is a function of these nodes. A user directed sampling
mechanism can avoid this error, yet its implementation can be
quite cumbersome and error-prone for complex trees. Instead, a
probabilistic approach on a tree, on the other hand, may take ad-
vantage of Bayes rule [17]. Hence, ancestral nodes can be treated
as being conditionally independent while calculating the poste-
rior distribution of the descendant node.

III. PREVIOUS WORK

Monte Carlo based methods are predominantly used in device
parameter characterization [3] [4]. In [3], a Monte Carlo based
method has been used for the simulation of impact ionization
while in [4], a Schottky barrier is simulated with a Monte Carlo
method. Monte Carlo methods are used for the newest technolo-
gies as well [5]. [6] and [7] have pointed out the inaccuracy of
Monte Carlo methods and formulated it as a variance represent-
ing the deviation from estimated values.

Process variations can be attributed to physical parameters as
suggested in [8]. In [9], a technique is presented to estimate the
device characteristics using the sensitivities of device parameters
to physical parameters. Means and variances of device parame-
ters can be approximated in this method. This technique though
falls short of being sufficiently accurate in deep sub-micron and
sub-wavelength technologies due to the Gaussian distribution as-
sumption attributed to device parameters, as device parameters
are sharply deviating from Gaussian distributions with newer
technologies, as can be seen in [10], [11] and [12]. Inaccurate
information regarding the distribution of device parameters pro-
vided to the designers may cause a major bottleneck in the de-
sign cycle increasing or elongating iterations. The importance
of avoiding such worst-case approximations in deep sub-micron
designs has been identified in [13].

The effects of various steps in a semiconductor fabrication on
device parameters has been analytically modeled in a number of
papers in the literature [14] [15] [16]. However, a continuous
time probabilistic analysis is usually not provided when process
variations need to be accounted for. Powerful models have been
so far presented in the literature. These models should be incor-
porated into the design in an accurate manner as we progress to
newer technologies.

IV. PROBABILITY DISCRETIZATION THEORY

Accurate simulation of devices has exceeded computational
practicality thresholds. The computational cost of simulating
process variations introduces an additional exponential increase
to this already inordinately high computational time require-
ments. The necessity to accurately estimate device parameters

has become quite significant as a result of this. To close this gap,
we propose a methodology that provides a way for the estima-
tion of device parameters. This methodology is both manually
tractable and can be incorporated into a simulator.

In order to introduce the proposed technique, FDPP, a number
of definitions will be useful. Let � be a random variable. We
will denote the probability distribution of � as ���������
	 . ����������	
is assumed to be continuous. We propose to attain an approxima-
tion of this ����� by sampling the ����� at equidistant points of the
random variable � .

In reality, � may extend to positive or negative infinity for
certain distributions. In these situations, the tails of the ����� will
be terminated after a certain value of � , which corresponds to
band-pass filtering the ����� . This will define a boundary of the
form 
 ������� for � , where � and � are practical lower and upper
limits. The probability that � will ����� fall within this region is
given by:

�����
� � ����������	�� �� ! ���"���#��	%$'&(� �) ! ����������	 (1)

This difference should be chosen as small as possible to reduce
the filtering error.

The sampling can be done by dividing the band-pass filtered����������	 to bins and approximating the values that fall in any bin
by the value at the mid-point of the bin. Let *,+ be an enumeration
over the bins where &.-0/1-32 and 2 is the total number of bins.*4+ will be defined to be bounded by 
 �657�#/8�9&:	�;<���65=/>;?	 ,
where ; is the step-size defined by

 � !@ . We denote the sam-
pled ����������	 as A��#��	 or BC����������	 , and we introduce two do-
mains such that �������#��	 is in the p-domain and A��#��	 is in the
r-domain. D

The procedure of converting a ���"� to an B������ will be repre-
sented with the EGF operator:

A�����	8$HE @ �I����������	�	 (2)

The domain of this operator is a band-pass filtered ����� , and the
range of this operator is an B������ . The result of this operator on
the ����� of a random variable � , A��#��	 , is essentially a Riemann
sum of impulses and is given by:

A�����	%$KJ+ML D4NON @
��+QPR�#ST��U(+"	 (3)

where

� + $ � ! � +WV
! ��X + � DCY V ����������	C�ZS (4)

[ + $=�\5=�#/]�^&:	 ; _ (5)

In these equations, ��+ corresponds to the probability that a sam-
ple of the random variable � falls within the / ’th bin *`+ and [ +
denotes the approximation of values of samples of � within *`+ .a

This nomenclature has been motivated by the similarity of these domains to
the s-domain (Laplace domain), as some operations such as filtering and band-
passing can be depicted and formulated easily in the r-domain than in the p-
domain, just as some operations are easily applied in the s-domain than in the
time domain.
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[ + is the mid-point in the particular bin. Hence it is given as�\5 ��/��0&�	 V � .
Assume that we have a number of random variables given

as � D ,.., ��� , whose sampled ����� ’s are respectively given byA���� D 	 ,.., A��#���`	 . Let
�

be another random variable that is given
by a deterministic function � of the given random variables:� $ ����� D �����W�C� � 	 . Then A�� � 	 is given by the � operator as:

A�� � 	8$	� �QA���� D 	4�
���W� A���� � 	C	 (6)

which is defined as being equivalent to:A�� � 	8$ J��
���� NON � 
��
��� �
 � ��� ��� �
 � PR��� � ����U�� �
 � �
��� ��U�� �
 � 	C	 (7)

The domain of the � operator is at least one B������ and the range
is a single B������ . Hence this operator presents a many-to-one re-
lationship. The � operator essentially provides another sampled���"� , where the multiplication term � 
�� ��� � 
�� denotes the proba-
bility at the point ����U � �
 � �����W�CU � �
 � 	 . Here, B:+ corresponds to the
set of all samples belonging to the random variable �<+ . Since �
is any function, the samples may no longer be situated at fixed
distances. Elimination of the points that are practically infea-
sible can be attained through a subsequent band-pass filtering.
This step should be followed by another binning process on the
sampled probability distribution. Samples that fall in any par-
ticular bin will be approximated by a single impulse at the cen-
ter of the corresponding bin, with the height of this impulse be-
ing the sum of the impulses that fall in this bin. The re-binning
operation precludes the number of samples from reaching com-
putationally intractable numbers for each new random variable.
Notably, each new random variable is a function of random vari-
ables all of which have had their sampled probability distributions
computed. The band-pass and re-bin operators are applied once
for each new random variable that is acquired through the for-
ward operator. Also, binning of impulses makes interpolation of
the impulses possible; without the binning process, neighboring
impulses with largely differing sample probabilities would cause
a great amount of noise. The band-pass filtering, on the other
hand, restrains samples of impractically low occurrence proba-
bility, which would otherwise have caused ; to increase for the
same number of bins, thus resulting in an inaccurate binning of
the values of a random variable. The band-pass and re-bin opera-
tors are defined respectively as:

A��"���
	�$��! ��QA��#��	C	 (8)

A � � �#��	%$#" F � A��%$T	C	 (9)

The domain and range of the band-pass function can either be a���"� or an B����"� . The domain and range of the re-bin function is anB������ . The subscript & in the �  operator denotes the error-rate,
a parameter defined to eliminate least likely samples to ensure
computational time efficiency. The band-pass operation can also
be defined as �(' ! �  *) , directly providing lower and upper limits
[m,n]. A band-pass operation with margins over an B������ equals:

A��Q�#��	%$ J+,+ X�-�. L ' ! �  /) Y�0 X�-�. L X�1 X � Y�Y�Y
��+QPR�#ST��U(+"	 (10)

A band-pass operation with error-rate over an B������ equals:A��Q�#��	%$ J+2+ X43 .�5 �76�8 .:9 ;<.�=> Y:0 X43 . L X,1 X � Y�Y�Y
��+QPR��S<�
U(+ 	 (11)
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Fig. 1. The connectivity graph of a device.

The " F is defined as:

A � � �#��	%$ J + � + PR�#ST��U + 	 (12)

where ��+ $@? 
BA �DC such that UECGF *4+ . 2 in the "?F operator
corresponds to the new number of bins, as the re-bin operator can
bin the samples into a different number of bins than the number
of bins present in the spdf which this operation is applied to.

V. EXPERIMENTAL RESULTS

In order to verify the proposed techniques, the connectivity
graph shown in Figure 1 is used. This connectivity graph is
structured according to the relationships of formulas that model
a transistor. A connectivity graph, originally presented in [10]
to model mismatch between transistors, essentially defines a re-
lationship between parameters according to underlying formu-
las. Nodes that have incoming edges are functions of nodes from
which these edges originate.

�
The values used for the parameters

are taken from a 0.13 H m TSMC process.
To verify the forward probability propagation method, Gaus-

sian distributions with 10% standard deviation have been as-
signed to the lowest level physical parameters. I

The validity of these sampled probability distributions has
been confirmed through a Monte Carlo sampling approach. Such
a comparison is given in Figure 2 for the current. Depending on
the band-pass filtering and re-binning processes and their related
parameters, such as error rate for the former and M and N for the
latter, a variation for FDPP results from the real distribution may
be observable. Since the calculation of real distributions is not
feasible or very complex in most cases, comparisons have been
made with the Monte Carlo method. It is observable that the re-
sults are quite close. The minor deviation can be attributed to
the fact that in a connectivity graph, whenever a node has more
than one outgoing edge, the Monte Carlo based method assigns
the same sample values to all of these nodes. As a result of this
correlation error, Monte Carlo methods result in an estimation er-
ror for the distribution of final parameters. This can be important
depending on the technology and its accompanying model.
J
The formulas used in this connectivity graph have been chosen to be well

known design functions instead of the more complex BSIM 3v3 formulas. This
choice has been made so as to obtain a better intuition of the proposed method-
ologies, as qualitative relationships between these formulas are known to the
designers.K

Notice that the lowest level parameters are assumed Gaussian in both FDPP
and Monte Carlo in this paper for a fair comparison.
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Fig. 2. Comparison of pdf of ��� : FDPP (solid line);
Monte Carlo method (dotted line)

Fig. 3. Comparison of FDPP (solid line) and Monte
Carlo (noisy line)

Fig. 4. Comparison of FDPP (solid line) and Monte
Carlo (noisy line)

When only a moderate number of samples are to be used,
Monte Carlo will generate highly inaccurate results. The relevant
experimental results are presented in Figures 3-4. In both figures,
FDPP has been applied with 100 samples each for

�
and 2 
����

to calculate the spdf of A	� . On the other hand, 1000 samples of
each have been used for the result shown in Figure 3 and 100000
samples of each have been used for the result in Figure 4 for the
Monte Carlo Method. It can be observed that in the former case,
even though more samples are employed, the result is highly in-
accurate for the Monte Carlo method. In the latter case, a large
number of samples produce a better but still much noisier result.
Due to its deterministic sampling, the FDPP method provides an
acceptable approximation with even a small number of samples.
This improvement can be of use in either of two ways. First,
a manual calculation can be used for estimation with FDPP due
to it necessitating a number of orders of magnitude fewer sam-
ples in comparison to a Monte Carlo method. Secondly, when
an iteration is needed that necessitates the fast estimation of de-
vice parameters, FDPP would result in more accurate results than
Monte Carlo if a low number of samples are to be used.

It can also be easily observed that device parameters such as
current deviate from a Gaussian distribution. For example, both
methods indicate a visual deviation from Gaussian distribution in
Figure 2.

VI. CONCLUSIONS

A technique called forward discrete probability propagation
has been presented. Distributions of device parameters as a re-
sult of process variations can be accurately estimated through this
method. Mathematical foundations for probability discretization
have been presented along with experimental comparisons with
Monte Carlo methods. FDPP can be considered to be an effi-
cient alternative to the Monte Carlo approach. The methodol-
ogy we propose is preferable to Monte Carlo methods when an
algebraic intuition is needed, the importance of low probability
samples is accentuated due to a limited number of samples, one-
to-many relationships in the formula hierarchy are present or ar-
bitrary distributions are needed for low level process parameters.
It can be envisioned that the proposed method will be prominent
in deep sub-micron and sub-wavelength technologies where ef-
fects of process variations need to be integrated into the design
cycle in a fast and accurate manner.
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