
A Formalism for Functionality Preserving System Level Transformations

Samar Abdi Daniel Gajski

Center for Embedded Computer Systems Center for Embedded Computer Systems
UC Irvine UC Irvine

Irvine, CA 92697 Irvine, CA 92697
Tel: 949-824-8059 Tel: 949-824-4155
Fax: 949-824-8919 Fax: 949-824-4155

e-mail: sabdi@cecs.uci.edu e-mail gajski@uci.edu

Abstract— With the rise in complexity of modern

systems, designers are spending a significant time on

modeling at the system level of abstraction. This

paper introduces Model Algebra, a formalism built

on top of system level design languages, that can be

used for implementing functionality preserving trans-

formations on system level models. Such transforma-

tions enable us to implement high level design deci-

sions without having to write new models for each

design decision. Moreover, since these transforma-

tions preserve functionality, the transformed models

do not need to be re-verified. We present the defi-

nition of Model Algebra and show how system level

models can be represented as expressions in this for-

malism. The laws of Model Algebra are use to de-

fine correct model transformations. We show a system

level design scenario, where design decisions gradually

refine the functional model of the system to an archi-

tectural model with components and communication

structure. The refinement can be performed using the

correct model transformations in our formalism.

I. Introduction

Due to the complexity of modern systems, designers
have to describe them at a high level of abstraction us-
ing system level design languages (SLDLs).However, in-
dependently written models in SLDLs have little corre-
lation between them which makes it intractable to com-
pare them for equivalence. A possible solution is to derive
the detailed system level models from the specification by
a series of functionality preserving transformations. The
specification is captured using an executable model, which
is a purely functional description of the design. As design
decisions are made during system synthesis, the designer
refines the functional specification model to a more de-
tailed model representing the target architecture. Such a
design methodology requires formalisms to represent the
system level models and notions for their correctness re-
finement. In this paper, we introduce Model Algebra

(MA), which is one such formalism.
Significant research has been done in the past for devel-

oping modeling formalisms for system level design. Pro-
cess algebras, such as CSP [4] and CCS [8] have been used

for verifying distributed software, but have limitations
in modeling. For example, CSP allows only rendezvous
communication between parallel processes. StateCharts
[3] provide for hierarchy, synchronization and exceptions,
but have unclear execution semantics, which have led to
several variants. Colored Petri Nets are widely used for
analysis and modeling of concurrent systems, and verifi-
cation techniques have been developed to check for their
equivalence [5]. Formal methods, developed for hardware
verification, have been applied to embedded systems like
bounded model checking [2] and theorem proving [9]. The
problem with most state based approaches, as above, is
that their complexity increases exponentially with design
size. Our goal is to correctly derive detailed system level
models, so that we can leave the functional verification
task for only the specification model. Correct by con-
struction techniques have been widely applied at RT Level
to prove the correctness of high level synthesis steps [9]
[1]. A complete methodology for correct digital design has
been proposed in [7], but they only consider synchronous
models which are insufficient at system level.

The rest of the paper is organized as follows. Section
II gives the definition of MA. In Section III we demon-
strate how to represent hierarchical system level models
in MA. In Section IV we present the formal execution se-
mantics and notions for functional equivalence of models
in MA. Section V presents functionality preserving trans-
formations on models and in Section VI we show how
these transformations may enable useful refinements dur-
ing system level design.

II. Model Algebra

The objects of MA can be defined as the tuple
< B, C, I,V >, where
B is the set of behaviors
C is the set of channels
I is the behavior interface
V is the set of variables

We also define a subset BI of B representing the set of
identity behaviors. Identity behaviors are those behaviors
that, upon execution, produce an output that is identical
to their input. We define the subset Q to be the set of all

 139

2B-1

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

boolean functions on V .

A. Ports

Each behavior has an associated object called its inter-
face. The interface carries the data ports of the behavior.
In the case of a hierarchical behavior, the ports are identi-
fied by association of a variable to the interface. Hence, to
sub-behaviors of a hierarchical behavior, the port is seen
as I < p >, where p ∈ V . The port is treated like any
other local variable except that we allow only one kind of
i/o operation on it. Local behaviors can either write to
a port, in which case it is known as the out-port, or they
may read from the port, in which case it is called the in-

port. When the same port p is accessed from outside the
behavior, it is identified by its association to the behavior.
For example, in our case, port p of behavior b would be
written as b < p >, as seen by external behaviors.

B. Addressing

Behaviors executing concurrently use synchronized
data transactions amongst themselves for communication.
Channels serve as the media for such transactions. Each
transaction uses an address to identify the sender and the
receiver behaviors. The transactions can, thus, be visual-
ized to take place over virtual links, that are labeled by
distinct addresses. Each of the links is associated with a
channel. Hence, such a link may be identified as c < a >,
where the link uses channel c and has the address a. Two
transactions on a channel cannot share a link if they might
take place simultaneously. In other words, all transactions
on a single link must be totally ordered in time.

C. Composition Rules

Composition rules on the above objects are defined as
relations in MA. Each composition creates a term in MA.

1. Control flow: A control flow composition
(Rc)determines the execution order of be-
haviors during model simulation. We write
the relation as q : b1&b2&...&bn ; b, where
∀i, 1 ≤ i ≤ nb, bi ∈ B ∪ I, q ∈ Q. The composition
rule implies that b executes after all the behaviors b1

through bn, called predecessors in the relation, have
completed and q evaluates to TRUE. Rc is said to
lead to b under the condition q, implying that b must
wait for all predecessors.

2. Non-blocking write: This composition rule (Rnw) is
used to indicate that a behavior writes to a variable
or an out-port of its parent behavior. In the case
of a write to a data variable, we use the expression
b < p >→ v, where b < p > is the out-port of the
writing behavior and v indicates the memory into
which the data is written. In its other manifestation,
this composition rule can be used to create a port
connection, written as b < p >→ I < p′ >, In this
case, the composition rule indicates an out-port-map.

3. Non-blocking read: This composition rule (Rnr) is
used to indicate that a behavior reads data from a
variable or through an in-port of its parent behavior.
In the case of a read from a data variable, we use
the expression v → b < p >, where b < p > is the
in-port of the reading behavior and v indicates the
memory from which the data is read. In its other
manifestation, this composition rule can be used to
create a port connection, written as I < p′ >→ b <

p >, In this case, the composition rule indicates an
in-port-map.

4. Channel transaction: This composition rule (Rt) in-
dicates a data transfer link from the sender behavior
to one or more receiver behavior(s) over a channel.
The semantics of the composition rule ensure a ren-
dezvous communication mechanism. We write this
relation as c < a >: b < p >7→ b1 < p1 > &b2 <

p2 > ...&bn < pn >, where b < p > is the out-
port of the sending behavior and b1 < p1 > through
bn < pn > are the in-ports of the receiving behaviors.
The transaction takes place over channel c and uses
the link addressed by c < a >. Also, any two trans-
actions over the same channel are mutually exclusive
in time.

5. Blocking write: This composition rule (Rbw) is used
to indicate the port connection for the sender part
of a transaction. The sender behavior writes to the
out-port of its parent behavior through one of its own
out-ports. We represent a blocking write by the ex-
pression b < p >7→ I < p′ >, where b < p > is the
out-port of the writing behavior and I < p′ > is an
out-port on the parent of b.

6. Blocking read: This composition rule (Rbr) is used to
indicate the port connection for the receiver part of
a transaction link. The receiving behavior(s) read(s)
from the in-port of their parent behavior through one
of their own in-ports. We represent a blocking read
by the expression < a >: I < p′ >7→ b1 < p1 >

&b2 < p2 > ...&bn < pn >, where b1 < p1 > through
bn < pn > are the in-port(s) of the receiving behav-
ior(s) and I < p′ > is an in-port on the parent of b.
The address of the virtual link (< a >) will be used
for binding this port.

7. Grouping: This composition rule (Rg)is used to indi-
cate a collection of compositions. Essentially, group-
ing is used to create hierarchy of behaviors, by col-
lecting the various compositions of sub-behaviors, lo-
cal channels and local variables. This commutative
relation is written as r1.r2....rn, where ∀i, 1 ≤ i ≤ n

and ri ∈
⋃
{Rc, Rnw, Rnr, Rt, Rbw, Rbr, Rg}.

III. Model Construction with MA

In this section, we look at how to construct hierarchical
system models as expressions in MA. A given hierarchi-
cal behavior b has a unique virtual starting point(VSP)

 140

and the virtual terminating point(VTP). The VSP is the
identity behavior vspb that is the first to execute inside b.
Other sub-behaviors of b are executed after vspb, depend-
ing on outgoing control relations from vspb. Due to its
nature, a VSP behavior would only have outgoing control
edges to other sub-behaviors of b. Similarly, the identity
behavior vtpb is the last behavior to execute inside b. In
other words, the completion of b is indicated by the exe-
cution of vtpb. Due to its nature, the VTP behavior will
only have incoming edges from other sub-behaviors of b.

b
1
 b
2

b
1

b
2

q
2

q'
2

q'
1

(a)
 (b)

par
b
 fsm
b

q
1

b
vsp

par

b

vtp

par

b
vsp

fsm

b
vtp

fsm

Fig. 1. (a)Parallel and (b)FSM style compositions of behaviors

A. Parallel and Conditional Execution

Most SLDLs provide for special language constructs to
create different types of behavioral hierarchies. The com-
mon ones are parallel composition and fsm-style compo-
sition. A sequential composition is simply a degenerate
form of the fsm-composition. In MA, we can realize both
these types of composition by using control relations.

Figure 1(a) shows a parallel composition of behaviors
b1 and b2. A typical SLDL may allow construction of a
parallel composition using a statement like
par {run b1; run b2}.
Let the resulting behavior be called bpar. The execution
of bpar indicates that both b1 and b2 are ready to exe-
cute. The execution of bpar completes when both b1 and
b2 have completed. In the corresponding MA expression,
vspbpar

and vtpbpar
serve as the starting and terminating

points, respectively, of the hierarchical behavior bpar. We
can see, that inside bpar, b1 and b2 are allowed to start
simultaneously. This is ensured by the control relations
vspbpar

; b1.vspbpar
; b2

Hence, the parallelism is realized by orthogonality of the
execution of behaviors b1 and b2. The control relation
at the end (b1&b2 ; vtpbpar

) ensures that both b1 and
b2 must complete their execution before vtpbpar

executes.
The execution of vtpbpar

indicates the completion of the
hierarchical behavior bpar.

A typical FSM style composition of behaviors is shown
in Figure 1(b). The control flow between behaviors is
typically expressed using switch-case or goto constructs in
SLDLs. A simple pseudo code example for a hierarchical
behavior bfsm is as follows
l1: run b1; if q1 == 1 goto l2 else break;

l2: run b2; if q2 == 1 goto l1 else break;
The control relations of bfsm can be written as follows
vspbfsm

; b1.q1 : b1 ; b2.q
′

1
: b1 ; vtpbfsm

.

q2 : b2 ; b1.q
′

2
: b2 ; vtpbfsm

b
 b
1

b
2

v2

v1
hier
b

in

out

p1

p2

Fig. 2. Using ports for non-blocking data flow

B. Variable Access via Ports

In MA, as in most SLDLs, a variable is directly vis-
ible only to the behaviors that are at the same level of
hierarchy as the variable itself. Therefore, in order to ac-
cess variables at higher levels of hierarchy, data ports are
used. As shown in Figure 2, behavior b1 reads variable v1

present in bhier via the port “in” of its parent b. Hence,
to realized this port connection, we use the non-blocking
relation v1 → b < in >. At the level of b, we create a port
connection from the interface of b to b1 using the term
I < in >→ b1 < p1 >. The dual of read port connec-
tion is the write port connection as shown by the access
of variable v2 from behavior b2 in figure 2. In this case,
the port “out” of b is used to realize the variable access.
The term at the level of bhier is b < out >→ v2, while the
term at the level of b is b2 < p2 >→ I < out >.

1
b
 p1

c

a

b'
1
 p1'

2
b

p2

a
 b'
2

p2'
a

a

Fig. 3. Blocking data flow bound to channel

C. Channel Access via Ports

As in the case of non-blocking reads and write, MA
provides mechanism for blocking reads and writes via
ports. For instance, in Figure 3, we see a channel trans-
action from b1 to b2 over c. After zooming into the hi-
erarchy of b1 and b2, we see that the transaction is tak-
ing place from b′

1
to b′

2
. The port p1 of b1 makes the

channel c visible to b′
1
. Therefore, using the relation

< a >: b′
1

< p′
1

>7→ I < p1 > behavior b′
1

can ac-
cess channel c. However, this requires p1 to be bound
to the virtual link addressed by a. Similarly, on the other
side, sub-behavior b′

2
inside b2, uses the blocking relation

< a >: I < p2 >7→ b′
2

< p′
2

> to access the read method
of c via port p2. In this case, port p2 makes the channel c

visible to b′
2
. As before, p2 must be bound to the virtual

link addressed by a.

 141

b1

b2

1

1

q1

q1'

a

v

p1

p11

p12

p21
p22

p2

b
hier
 b
hier

vsp

b
hier

vtp

Fig. 4. A hierarchical behavior with local objects and relations

D. Internal and Interface Terms

Figure 4 shows a hierarchical behavior bhier. The ex-
pression for the hierarchical behavior is written using
compositions involving local objects and the interface.
The grouping of relations between local objects will be re-
ferred to as the internal terms of a hierarchical behavior.
Similarly, the grouping of relations involving the interface
will be referred to as the interface terms of the hierarchi-
cal behavior. We can write the hierarchical behavior as a
grouping of all its internal and interface terms, along with
the internal terms of its sub-behaviors. The grouping of
internal terms for a given behavior b is represented as [b].
Thus, we can write
[bhier] = [vspbhier

].[b1].[b2].[vtpbhier
].vspbhier

; b1.

q1 : b1 ; b2.q
′

1
: b1 ; vtpbhier

.b2 ; vtpbhier
.

b1 < p12 >→ v.v → b2 < p21 >

The interface terms of bhier is represented by |bhier|. From
figure 4, we can see that
|bhier | =< a >: I < p1 >7→ b1 < p11 > .

b2 < p22 >→ I < p2 >

Finally, we write the hierarchical behavior as a grouping
of its internal and interface terms. Therefore, we get
bhier = ([bhier].|bhier|)

IV. Execution Semantics and Equivalence

Before we attempt to establish equivalence notions for
models expressed in MA, we must clearly define the exe-
cution semantics of such models. The control dependen-
cies in the model are captured using the Behavior Control

Graph (BCG), which is similar to the popular computa-
tion model of Kahn process network (KPN) [6]. The chan-
nels in the model are abstracted away and replaced by
corresponding control dependencies, resulting from their
rendezvous semantics.

A. Behavior Control Graph

The BCG is a directed graph (N,E) with two
types of nodes, namely behavior nodes(NB) and control

nodes(NQ). The behavior nodes, as the name suggests,

q1

qm

q1'

qn'

b1_queue
 b
1
_
q
1
'
_
q
u
e
u
e

b
1
_
q
n
'
_
q
u
e
u
e

b
1

b
k

b
k
_
q
n
_
q
u
e
u
e

Fig. 5. The firing semantics of BCG nodes

indicate behavior execution, while the control nodes eval-
uate control conditions that lead to further behavior exe-
cutions. Directed edges are allowed from behavior nodes
to control nodes and vice versa. Also, a control node can
have one, and only one, out going edge.

The execution of a behavior node, and similarly, eval-
uation in a control node, will be referred to as a firing.
Node firings are facilitated by tokens that circulate in the
queues of the BCG as shown in Figure 5. Each behavior
node (shown by rounded edged box) in the BCG has one
queue, for instance b1 queue for behavior node b1. All
incoming edges to a behavior node represent the various
writers to the queue. A behavior node blocks on an empty
queue and fires if there is at least one token in its queue.
Upon firing, one token is dequeued from the node’s queue.
The control node (shown by circular node), on the other
hand, has as many queues as the number of incoming
edges. For instance qn has k queues, one each for edges
from b1 through bk. A control node, sequentially checks
all its queues and blocks on empty queues. If the queue is
not empty, it dequeues a token from the queue and pro-
ceeds to check the next queue. The node fires after it has
dequeued one token from each of its queues.

After firing, a behavior node generates as many tokens
as its out-degree, and each token is written to the corre-
sponding queue of the destination control node in a non-
blocking fashion. Upon firing, the control node evaluates
its condition. If the condition evaluates to TRUE, then a
token is generated and written to the queue of the desti-
nation behavior node.

B. Channel Semantics

e1
 e2
c

a
 a

b2
b1

q1
 q2

e1
 e2

b2
b1

q1
 q2

Fig. 6. Resolution of channels into control dependencies

The rendezvous property of a channel would ensure
that any behavior following the sender behavior would
not execute until the receiver behavior has executed and

 142

any behavior following the receiver behavior would not
execute until the sender behavior has executed. If we
were to optimize away the channel to extract only the
control dependencies, the result will be as shown in figure
6. As per the above premises, behavior b1 following
sender e1 cannot start until e2 has completed. This is
guaranteed by including the term q1 : e1&e2 ; b1

In the dual of the above case, b2 following e2 is blocked
until the sender e1 has executed. This premise is ensured
by the term q2 : e2&e1 ; b2

C. Notion of Functional Equivalence

Our notion of functional equivalence is based on the
trace of values that the variables hold during model ex-
ecution. In particular, we are interested in the variables
that are written to by non-identity behaviors. We will
refer to such variables as observed variables. The rea-
soning is that variables that are connected to the output
ports of identity behaviors are simply a copy of another
variable. Informally speaking, we consider two models to
be functionally equivalent, if they have identical observed
variables and the trace of values assumed by those vari-
ables during model execution is identical, given the same
initial assignment.Formally, Given model M , let I(M) be
the initial assignment of observed variables in M .
∀v, ∃wr(v) ∈ NB(BCG(M))
Let di, i > 0 be the value written to v after the ith execu-
tion of wr(v). Let d0 be the initial assignment value of v.
We define the ordered set
τ(v, M, I(M)) = {d0, d1, d2, ...}
We claim that two models M and M ′ are equivalent iff
∀v, I(M) = I(M ′) ⇒ τ(v, M, I(M)) = τ(v, M ′, I(M ′))

V. Functionality Preserving Transformations

In this section, we present some laws of MA that allow
us to define functionality preserving model transforma-
tions.

A. Behavior Flattening Laws

Hierarchy is only a modeling artifact, without any influ-
ence on functionality. Hence, it may be optimized away.
By the semantics of the VSP, any control relation leading
to bhier is effectively leading to vspbhier

. Similarly, in any
control relation where bhier is a predecessor, it may be
replaced by vtpbhier

. Thus, we have

L 1 q : x ; b = q : x ; vspb

L 2 q : b ; x = q : vtpb ; x

We also have the following laws for port optimization dur-
ing behavior flattening.

L 3 (...y → I < p > ...) < p >→ x = y → x

L 4 x → (...I < p >→ y...) < p >= x → y >

L 5 c < a >: x 7→ (... < a >: I < p >7→ y...) < p >= c <

a >: x 7→ y >

L 6 c < a >: (... < a >: y 7→ I < p > ...) < p >7→ x =
c < a >: y 7→ x >

B. Identity Elimination Laws

The identity behavior does not modify any variable, so
it may be optimized away using appropriate transforma-
tions to control and data flow relations in a model.

L 7 q1 : x ; e.q2 : e ; y = q1 ∧ q2 : x ; y

L 8 x < p >→ v1.v1 → e < in > .e < out >→ v2 = x <

p >→ v2

L 9 c < a >: e1 < out >7→ e2 < in > .e2 < out >→ v =
e1 < out >→ v

L 10 c < a >: e1 < out >7→ e2 < in > .c′ < a′ >: e2 <

out >7→ e3 < in >= c < a >: e1 < out >7→ e3 < in >

C. Control Relaxation Laws

Control dependencies between two behaviors, say x and
y do not influence the functionality of the model if there
is no data dependence between x and y. Thus a control
dependence q : x ; y may be removed if 6 ∃v such that
x < p >→ v.v → y < p′ > or q depends on v. Under
these conditions, we can say

L 11 R.q : x ; y = R

L 12 R.q : x1&x2&...&x ; y = R.q : x1&x2&... ; y

VI. System Level Design and Verification

Methodology

In our system level design methodology, the following
design steps are encountered as we start from a functional
specification model and produce a scheduled bus transac-
tion level model.

1. Behavior partitioning: During behavior partitioning,
we choose the number of PEs that will be needed to
implement the design and the mapping of leaf behav-
iors in the specification to those PEs. The output
is a parallel composition of hierarchical PE behav-
iors. Each PE behavior is composed from the leaf
level behaviors that were mapped to it. Hence, the
transformation produces a rearrangement of behav-
iors. Additional channels are added for synchroniza-
tion amongst behaviors to preserve the original order
of execution of the leaf behaviors. The data flow rela-
tions are modified to reflect the locality of memory in
each PE. The original data transfers between leaf be-
haviors, mapped to different PEs, will now go across
PEs, and needs to be routed via identity behaviors
using channels. The transformations to derive the
output partitioned model use the identity elimina-
tion and flattening laws (in either direction).

 143

2. Static scheduling: Static scheduling is performed in
system level models either due to resource constraints
or timing optimization. Behaviors mapped to HW
are typically targeted for implementation with a sin-
gle controller. As a result, any parallelism in the HW
PEs must be serialized statically. Reordering of be-
haviors can also take place as a result of communica-
tion scheduling. Essentially, we can use the transfor-
mations allowed by control relaxation laws (in either
direction) to create a new schedule statically.

3. RTOS insertion: PEs that implement software may
provide for dynamic scheduling. In this case, the non-
determinism of concurrency is resolved at execution
time. The ordering of parallel behaviors is performed
by a scheduler that is part of the PE’s operating sys-
tem. In a SLDL implementation, the scheduler is
another behavior that models the Real Time Oper-
ating System (RTOS).Therefore, for functionally cor-
rect implementation of dynamic scheduling, we need
to ensure that the scheduler behavior, and hence the
scheduling policy, satisfies the same properties as the
scheduler of the SLDL simulator. This can be veri-
fied using a property verification tool. If the property
verification is successful, the scheduler behavior can
be abstracted away from the model. The MA ex-
pression during this SLDL transformation can, thus,
remain unchanged if the dynamic scheduler of the
RTOS follows the simulator’s properties.

4. Bus protocol insertion: After behavior partitioning
and scheduling, the system model consists of con-
current behaviors communicating with several chan-
nels. Although, the model shows the computation
structure correctly, the communication structure still
needs to be implemented. In a bus-based SoC com-
munication scheme, the various PEs are connected to
system busses. The communication model can thus
be represented using channels for busses. All virtual
links in the input model are shared over the new bus

channels. The design decision in this case is choosing
the number of bus channels and mapping the virtual
links to the bus channels. Also, the ordering of trans-
actions on the bus may be done using an arbitration
policy. Transactions on a channel are mutually exclu-
sive and the new arbiter must satisfy this property.
For a correct implementation of arbitration policy,
we have the same scenario as that in RTOS inser-
tion. We can use property checking to verify that
the arbitration policy preserves the functionality of
the model. If we can prove that the arbiter behav-
ior will never cause a deadlock and will eventually
schedule a transaction request then we can abstract
it away.

VII. Conclusions

In this paper, we introduced a formalism called Model
Algebra, which is employed in deriving detailed system

level models from more abstract ones using correct trans-
formations. We established a notion of functional equiv-
alence and refinement using partial order traces. The ax-
ioms and rewriting rules of MA were then shown to be
sound, which led us to defining functionality preserving
model transformations. Finally, we presented a system
synthesis scenario and showed how our formalism can be
used in a system design methodology. The complexity of
modern systems stresses upon the need for such a formal
approach, so as to avoid the overhead of verifying and
debugging all models during design space exploration.

References

[1] R. Camposano. Behavior-preserving transformations
for high-level synthesis. In Proceedings of the Mathe-

matical Sciences Institute workshop on Hardware spec-

ification, verification and synthesis: mathematical as-

pects, pages 106–128. Springer-Verlag New York, Inc.,
1990.

[2] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Case
studies of model checking for embedded system de-
signs. In Third International Conference on Applica-

tion of Concurrency to System Design, pages 20–28,
June 2003.

[3] D. Harel. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[4] C. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[5] J. Jorgensen and L. Kristensen. Verification of colored
petri nets using state spaces with equivalence classes.
In Proceedings of the Workshop on Petri Nets in Sys-

tem Engineering, pages 20–31, September 1997.

[6] G. Kahn. The semantics of a simple language for par-
allel programming. In Info. Proc., pages 471–475, Au-
gust 1974.

[7] Middlehoek. A methodology for the design of guar-
anteed correct and efficient digital systems. In IEEE

International High Level Design Validation and Test

Workshop, November 1996.

[8] R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

[9] S. Rajan. Correctness of transformations in high level
synthesis. In International Conference on Computer

Hardware Description Languages and their Applica-

tions, pages 597–603, June 1995.

 144

