
Automatic Modeling and Validation of Pipeline Specifications driven by an
Architecture Description Language�

Prabhat Mishray Hiroyuki Tomiyamaz Ashok Halambiy Peter Gruny Nikil Dutty Alex Nicolauy

yCenter for Embedded Computer Systems zInst. of Systems & Information Tech.
University of California, Irvine, CA 92697 Fukuoka 814-0001, Japan

fpmishra, ahalambi, pgrun, dutt, nicolaug@cecs.uci.edu tomiyama@isit.or.jp

Abstract

Verification is one of the most complex and expensive tasks
in the current Systems-on-Chip (SOC) design process. Many
existing approaches employ a bottom-up approach to pipeline
validation, where the functionality of an existing pipelined
processor is, in essence, reverse-engineered from its RT-level
implementation. Our approach leverages the system archi-
tect’s knowledge about the behavior of the pipelined archi-
tecture, through Architecture Description Language (ADL)
constructs, and thus allows a powerful top-down approach
to pipeline validation. This paper addresses automatic vali-
dation of processor, memory, and co-processor pipelines de-
scribed in an ADL. We present a graph-based modeling of
architectures which captures both structure and behavior of
the architecture. Based on this model, we present formal
approaches for automatic validation of the architecture de-
scribed in the ADL. We applied our methodology to verify
several realistic architectures from different architectural do-
mains to demonstrate the usefulness of our approach.

1 Introduction

Verification is one of the most complex and expensive tasks
in the current System-On-Chip design process. In current
state-of-the-art verification methodology, the architect pre-
pares an informal specification in the form of an English docu-
ment. The logic designer implements the modules and verifies
them in an ad-hoc manner using simulation test vectors since
there is no golden reference model for validation. A key chal-
lenge in today’s design verification is to extract the informa-
tion from the RT level description and to perform equivalence
checking with the model extracted from the given specifica-
tion (written in English language). Many existing approaches
([5], [8]) employ a bottom-up approach to pipeline validation,
where the functionality of an existing pipelined processor is,
in essence, reverse-engineered from its RT-level implementa-
tion. Hauke et al. [5] compare extracted ISA level description
with the given ISA level specification. Ho et al. [3] extract

�This work was partially supported by grants from NSF (MIP-9708067),
DARPA (F33615-00-C-1632), Motorola Inc. and Hitachi Ltd.

controlled token nets from a logic design to perform efficient
model checking. Our verification technique is complimentary
to these bottom-up approaches. We leverage the system ar-
chitect’s knowledge about the behavior of the pipelined ar-
chitecture through ADL constructs, which allows a powerful
top-down approach to pipeline verification using behavioral
knowledge of the pipelined architecture. The ADL descrip-
tion also serves as a golden reference model. Furthermore,
ADL driven verification is a natural choice during rapid de-
sign space exploration(DSE) of System-on-Chip(SOC) archi-
tectures.

In this paper, we present an automatic validation frame-
work, driven by an ADL. A novel feature of our approach is
the ability to model the pipeline structure and behavior for
the processor, co-processor, as well as the memory subsystem
using a graph-based model. Based on this model we present
formal approaches for automatic validation of the architecture
described in an ADL. We applied our methodology to verify
several realistic architectures from different architectural do-
mains (RISC, DSP, VLIW, and Superscalar) to demonstrate
the usefulness of our approach.

The rest of the paper is organized as follows. Section 2
presents related work addressing ADL-driven validation ap-
proaches. Section 3 outlines our approach and the overall flow
of our environment. Section 4 presents a graph-based model-
ing of processor, memory, and co-processor pipelines. Sec-
tion 5 proposes several properties that must be satisfied for
valid pipeline specification. Section 6 illustrates validation of
pipeline specifications for several realistic architectures. Fi-
nally, Section 7 concludes the paper.

2 Related Work

Recent work on language-driven Design Space Exploration
(DSE) ([1], [2], [4], [12]), uses Architectural Description Lan-
guages (ADL) to capture the processor and memory archi-
tecture, generate automatically a software toolkit (including
compiler, simulator, assembler) for that architecture, and pro-
vide feedback to the designer on the quality of the architec-
ture. It is necessary to verify that the ADL description of
the architecture is well-formed prior to generating software

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

toolkits. The process of any specification is error-prone and
validation techniques can be used to check for correctness of
the specification. Moreover, changes made to the architecture
during design space exploration may result in incorrect exe-
cution of the system and validation techniques can be used to
ensure correctness of the architecture.

The work of Tomiyama et al. [9, 10] is a step in this di-
rection. They defined certain properties that need to be veri-
fied to ensure that the architecture description is well-formed.
However, the properties they proposed are applicable to sim-
ple processor models. Moreover, they do not demonstrate how
these properties can be applied in SOC verification during de-
sign space exploration. Mishra et al. [11] presented a graph
based validation of processor cores and is closest to our ap-
proach. Our work extends this technique to validate pipeline
specifications of coprocessors and memory subsystem along
with processor cores.

3 Our Approach

Figure 1 shows the flow in our approach. In our ADL
driven design space exploration scenario, the designer starts
by describing the programmable architecture in an ADL. The
graph model of the architecture can be generated automati-
cally from this ADL description. Several properties are ap-
plied automatically to ensure that the architecture is well-
formed. To enable rapid DSE the software toolkit can be gen-
erated from this golden reference model and the feedback can
be used to modify the ADL description of the architecture.
This golden reference model can also be used to verify the
implementation by performing equivalence checking with the
reverse-engineered description of the implementation..

SPECIFICATION
 SPECIFICATION

English Document
ADL

Manual

Graph Model

Engineering

Description

Property
Checking

RT Design

Eqivalence
Checking

Reverse

Verification

A
utom

atic

High Level

Property
Checking

Compiler Simulator
Appl Obj

F
eed

ba
ck

F
eed

ba
ck

Figure 1. ADL-driven validation flow

4 Architecture Pipeline Modeling

We develop a graph-based modeling of architecture
pipelines which captures both the structure and the behav-
ior. The graph model presented here can be derived from
a pipeline specification of the architecture described in an

ADL e.g., EXPRESSION [1]. This graph model can cap-
ture processor, memory, and co-processor pipelines for wide
variety of architectures viz., RISC, DSP, VLIW, Superscalar,
and Hybrid architectures. Note that it is important to capture
the memory pipeline along with processor pipeline, since any
memory operation exercises both the processor and memory
pipeline structures [13]. In this section we briefly describe
how we model the structure, behavior and the mapping func-
tions between them. The detailed description of the modeling
can be found in [7].

4.1 Structure

The structure of an architecture pipeline is modeled as a
graph GS GS = (VS ; ES): (1)

VS denotes a set of components in the architecture. VS con-
sists of four types of components

VS = Vunit [Vstore [Vport [Vconn (2)

where Vunit is a set of units (e.g., ALUs), Vstore a set of
storages (e.g., register files, caches), Vport a set of ports, and
Vconn a set of connections (e.g., buses). ES consists of two
types of edges

ES = Edata trans [Epipeline (3)

whereEdata trans is a set of data-transfer edges andEpipeline

is a set of pipeline edges.

Edata trans � Vunit � Vport [Vstore � Vport

[Vport � Vconn [Vconn � Vport

[Vport � Vunit [Vport � Vstore (4)

Epipeline � Vunit � Vunit (5)

A data-transfer edge (v1; v2) 2 Edata trans indicates connec-
tivity of the two components. Through data-transfer edges,
data is transfered from components to components. A pipeline
edge specifies the ordering of units comprising the pipeline
stages (or simply pipe-stages). Intuitively, operations flow
from pipe-stages to pipe-stages through pipeline edges. Both
pipeline edges and data-transfer edges are uni-directional. Bi-
directional data-transfers are modeled using two edges of dif-
ferent directions.

For illustration, we use a simple multi-issue architecture
containing one co-processor and a memory subsystem. Fig-
ure 2 shows the graph-based model of this architecture that
can issue up to three operations (an ALU operation, a mem-
ory access operation and one coprocessor operation) per cy-
cle. In the figure, normal boxes denote units, dotted boxes
are storages, small circles are ports, shaded boxes are con-
nections, bold edges are pipeline edges, and dotted edges are
data-transfer edges. For ease of illustration, we have shown
only few ports and connections. Each component has several
attributes. The figure shows only two of them viz., capac-
ity and timing for some of the nodes. The capacity denotes
the maximum number of operations which the component can

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

DecodeO

O O L1

O
L1

Data

L2
Unified

EMIF_2

CP_1

EMIF_1

CP_2

CoProc

Memory
Main

Local
Memory

c4

p1

p5 p6

p8

2,1

Write
Back

p4

3,1

1,2

Fetch

DMA

Inst.

c1

ALU1

1,1

1,1

Register
File

p2

Op3

O

c2

ALU2

1,1

1,1

AddrCalc

O
p7

1,1

2,1

4,1

3,1 3,2

c3

1,10

1,1

1,1

1,1

1,1

MemCntrl

Unit

Storage

O Port

Pipeline edge

Data-transfer edge

Connection

O

Figure 2. A structure graph of a simple architecture

handle in a cycle, while the timing denotes the number of cy-
cles taken by the component to execute them. A path from
a root node (e.g., fetch unit) to an final node (e.g, WriteBack
unit) consisting of units and pipeline edges is called a pipeline
path. Intuitively, a pipeline path denotes an execution flow in
the pipeline taken by an operation. For example, one of the
pipeline path is fFetch, Decode, ALU1, ALU2, WriteBackg.
A path from an unit to main memory or register file consisting
of storages and data-transfer edges is called a data-transfer
path. For example, fMemCntrl, L1, L2, MainMemoryg is a
data-transfer path. A memory operation traverses different
data-transfer paths depending on where it gets the data in the
memory. For example, a load operation which is hit in L2 will
traverse the path (includes pipeline and data-transfer paths)
fFetch, Decode, AddrCalc, MemCntrl, L1, L2(hit), L1, Mem-
Cntrl, WriteBackg. Similarly, a co-processor operation will
traverse the path fFetch, Decode, CP 1, EMIF 1, CoProc,
CP 2, EMIF 2g. However, in this path we have not shown dif-
ferent data transfers. For example, EMIF 1 sends read request
to DMA and DMA writes data in coprocessor local memory
which coprocessor uses during computation and writes the re-
sult back and finally EMIF 2 requests DMA to write the result
back to main memory.

4.2 Behavior

The behavior of an architecture is a set of operations that
can be executed on it. Each operation in turn consists of a set
of fields (e.g. opcode, arguments) that specify, at an abstract
level, the execution semantics of the operation. We model the
behavior as a graph GB, consisting of nodes VB and edges
EB.

GB = (VB ; EB) (6)

The nodes represent the fields of each operation, while the
edges represent orderings between the fields. The behavior
graphGB is a set of disjointed sub-graphs, and each sub-graph
is called an operation graph (or simply an operation). Figure 3
describes a portion of the behavior (consisting of two opera-
tion graphs) for the example processor in Figure 2. Nodes

ADD ADD_SRC1 ADD_SRC2 ADD_DST

Operation edge
Execution edge

LD LD_SRC1 LD_SRC_MEM LD_DST

Figure 3. A fragment of the behavior graph

are of two types: Vopc is a set of opcode nodes that represent
the opcode (i.e. mnemonic), and Varg is a set of argument
nodes that represent argument fields (i.e., source and destina-
tion arguments). Each operation graph must have one opcode
node. In Figure 3, the ADD and LD nodes are opcode nodes,
while the others are argument nodes.

VB = Vopc [Varg (7)

EB = Eoper [Eexec (8)

Edges between the nodes are also of two types. Both types
of edges are uni-directional. Eoper is a set of operation edges
that link the fields of the operation and also specify the syntac-
tical ordering between them. For each operation graph, oper-
ation edges must construct a path containing an opcode node.
On the other hand, Eexec is a set of execution edges that spec-
ify the execution ordering between the argument nodes.

Eexec � Varg � Varg (9)

There must be no cycles consisting of execution edges. In Fig-
ure 3, the solid edges represent operation edges while the dot-
ted edges represent execution edges. For the ADD operation,
the operation edges specify that the syntactical ordering is op-
code followed by ADD SRC1, ADD SRC2 and ADD DST
arguments (in that order) and the execution edges specify that
the ADD SRC1 and ADD SRC2 arguments are executed (i.e.,
read) before the ADD DST argument is written.

4.3 Mapping Between Structure and Behavior

Another component of our graph model is a set of functions
that correlate the abstract, high-level behavioral model of the
processor to the structural model. Below, we define a set of
useful mapping functions that map nodes in the structure to
nodes in the behavior (or vice-versa).

The units-to-opcodes (opcodes-to-units) mapping is a bi-
directional function that maps unit nodes in the structure to
opcode nodes in the behavior. It defines, for each functional
unit, the set of operations supported by that unit (and vice
versa).

funit�opcode : Vunit ! Vopc (10)

fopcode�unit : Vopc ! Vunit (11)

For the example processor in Figure 2, the funit�opcode map-
pings include mappings from Fetch to ADD, Fetch to LD,
ALU to ADD, AddrCalc to LD, etc.

The arguments-to-storages (storages-to-arguments) map-
ping is a bi-directional function that maps argument nodes in
the behavior to storage nodes in the structure. It defines, for
each argument of an operation, the storage location that the
argument resides in.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

farg�storage : Varg ! Vstore (12)

fstorage�arg : Vstore ! Varg (13)

The farg�storage mappings for the LD operation are map-
pings from LD SRC1 to RegisterFile, from LD SRC MEM
to L1(Data Memory), and from LD DST to RegisterFile.

We can generate a graph-model of the architecture from
an ADL description that has information regarding architec-
ture’s structure, behavior, and the mapping between them.
We have chosen the EXPRESSION ADL [1] since it captures
all the necessary information. We generate automatically the
graph model of the architecture pipeline consisting of struc-
ture graph, behavior graph and mapping between them using
the modeling techniques described above. For details on how
the graph-model is generated automatically from the ADL de-
scription of the wide variety of architectures, refer to [7].

5 Architecture Pipeline Verification

Based on the graph model presented in the previous sec-
tion, specification of architecture pipelines written in an ADL
can be validated. In this section, we describe some of the
properties used in our framework for validating pipeline spec-
ification of the architecture. We also briefly describe the algo-
rithms for verifying some of the properties used in our frame-
work. The detailed algorithm for verifying each of these prop-
erties can be found in [7].

5.1 Connectedness Property

Each component must be connected to other component(s).
As pipeline and data-transfer paths are connected regions of
the architecture, this property holds if each component be-
longs to at least one pipeline or data-transfer path.

8vcomp 2 VS ; (9GPP 2GPP; s:t: vcomp 2 GPP)

_(9GDP 2GDP; s:t: vcomp 2 GDP) (14)

where GPP is a set of pipeline paths and GDP is a set of
data-transfer paths.

The algorithm for applying this property on the graph
model is simple. Prepare the list, L (say), of units, storages,
ports, connections etc. from the ADL description. Traverse
the graph, starting at the root node (e.g., Fetch), using pipeline
and data-transfer paths. When a node (unit, port, storage, con-
nection) is visited during graph traversal mark it in the list L.
Finally, traverse the list L to determine the components that
violate connectedness property (not marked).

5.2 False Pipeline Paths

According to the definition of pipeline paths, there may
exist pipeline paths that are never activated by any operation.
Such pipeline paths are said to be false. For example, let us
use another example architecture shown in Figure 4 which
executes two operations: ALU-shift (ALUS) and multiply-
accumulate (MAC). This processor has units-to-opcodes map-
pings between ALU and ALUS, between SFT and ALUS, be-
tween MUL and MAC, and between ACC and MAC. Also,

there are units-to-opcodes mappings between each of fIFD,
RD1, RD2, WBg and ALUS, and each of fIFD, RD1, RD2,
WBg and MAC. This processor has four pipeline paths: fIFD,
RD1, ALU, RD2, SFT, WBg, fIFD, RD1, MUL, RD2, ACC,
WBg, fIFD, RD1, ALU, RD2, ACC, WBg, and fIFD, RD1,
MUL, RD2, SFT, WBg. However, the last two pipeline paths
cannot be activated by any operation. Therefore, they are false
pipeline paths. Since these false pipeline paths may become
false paths depending on the detailed structure of RD2, they
should be detected at a higher level of abstraction to ease the
later design phases. From the view point of SOC architec-
ture DSE, we can view the false pipeline paths as indicating
potential behaviors which are not explicitly defined in the be-
havior part of the ADL description. This means that further
cost/performance/power optimization may be possible if we
add new instructions that activate the false pipeline paths.

O

O

O

O

O

O Register
File

WB

ACCSFT

RD2

MUL

RD1

IFD

ALU

2,1

2,1

1,1 1,1

1,1 1,1

2,1

2,1

Figure 4. An example processor with false pipeline paths

Formally speaking, a pipeline path GPP (VPP ; EPP) is
false if intersection of opcodes supported by the units in the
pipeline path is empty.\

vunit2VPP

funit�opcode(vunit) = � (15)

To verify this property on the graph-model, the algorithm
needs two operations viz., union and intersection of two sets
containing opcodes. Each unit in the graph model has a list
of supported opcodes (derived using unit-to-opcode mapping
function). An outline of the algorithm follows. The root node
(e.g, Fetch) sends a copy of its list of supported opcodes to all
its children units (units connected to it via one pipeline edge).
Each unit node performs the union of all the incoming lists
and generate incomingList. Each unit node performs intersec-
tion between incomingList and its supported opcode list, and
sends the result, outgoingList(say), to its children units. If the
result of the intersection becomes NULL then that particular
pipeline path is said to be false.

5.3 Completeness Property

All operations must be executable. A operation op is ex-
ecutable if there exists a pipeline path GPP (VPP ; EPP) on
which op is executable. A operation op is executable on a

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

pipeline path GPP (VPP ; EPP) if both conditions (a) and (b)
below hold.

(a) All units in VPP support the opcode of op. More for-
mally, the following condition holds where vopc is the
opcode of the operation op.

8vunit 2 VPP ; vopc 2 funit�opcode(vunit): (16)

(b) There is no conflicting partial ordering of operation argu-
ments and unit ports. Let V be a set of argument nodes of
op. There is no conflicting partial ordering of operation
arguments and unit ports if, for any two nodes v1; v2 2 V

such that (v1; v2) 2 Eexec, all conditions below hold:

* There exists a data-transfer path from a storage
farg�storage(v1) to a unit vu1 in VPP through a port
farg�port(v1).

* There exists a data-transfer path from a unit vu2
in VPP to a storage farg�storage(v2) through a port
farg�port(v2).

* vu1 and vu2 are the same unit or there is a path consist-
ing of pipeline edges from vu1 to vu2.

For example, let us consider the ADD operation for the pro-
cessor described in Figure 2 and Figure 3. To satisfy the con-
dition (a), Fetch, Decode, ALU1, ALU2, and WriteBack units
must have mappings to the ADD opcode. On the other hand,
the condition (b) is satisfied because the structure has data-
transfer paths from RegisterFile to Decode and from Write-
Back to RegisterFile, and there is a pipeline path from Decode
to WriteBack.

This algorithm has two parts. We can use the outgoingList
for the final nodes (e.g., WriteBack, EMIF 2 etc.) computed
for false pipeline path property for the first part viz., to deter-
mine which opcodes are not supported by any pipeline path.
We can perform union of all the outgoingLists for the final
nodes of the graph. These are the opcodes supported by at
least one of the pipeline paths. Now the opcodes which are
not present in the resulting list violates the completeness prop-
erty. To verify the second part of the property, the list of
supported opcodes for each pipeline path is determined. This
pipeline path should have read and write ports to specific stor-
ages (matching the number and type the operands for each
opcode supported in that pipeline path) to make each of these
operations executable.

5.4 Well-formedness Property

The architecture must be well formed. To verify the va-
lidity of this property we need to verify several architectural
properties, e.g., i) the number of operations processed per cy-
cle by an unit can not be smaller than the total number of oper-
ations sent by its parents if the unit does not have any reserva-
tion station, ii) there should be a path from an execution unit
supporting branch opcodes to PC/Fetch unit, iii) instruction
template should match available pipeline bandwidth, iv) there

must be a path from load/store unit (e.g., MemCntrl) to main
memory via storage components (e.g., caches), v) the address
space used by the processor must be equal to the union of ad-
dress spaces covered by memory subsystem (SRAM, cache
hierarchies etc.).

5.5 Finiteness Property

Termination of the pipeline must be guaranteed. The termi-
nation is guaranteed if all pipeline paths except false pipeline
paths have finite length and all units on the pipeline paths have
finite timing. The length of a pipeline path is defined as the
number of stages required to reach the final nodes from the
root node of the graph.

9K; s:t: 8GPP 2GPP; num stages(GPP) < K (17)

num stages is a function that, given a pipeline path, returns
the number of stages (i.e. clock cycles) required to execute
it. In the presence of cycles in the pipeline path, this function
cannot be determined from the structural graph model alone.
However, if there are no cycles in the pipeline paths, the ter-
mination property is satisfied if the number of nodes in VS is
finite, and each multi-cycle component has finite timing.

6 Experiments

In order to demonstrate the applicability and usefulness of
our validation approach, we described a wide range of ar-
chitectures using the EXPRESSION ADL: MIPS R10K, TI
C6x, PowerPC, DLX [6], and ARM that represent RISC, DSP,
VLIW, and Superscalar architectures. We generated the graph
model of each of the architecture pipeline automatically from
the ADL description. We implemented each property as a
function which operates on this graph. Finally, we applied
these properties on the graph model to verify that the speci-
fied architecture is well-formed. The complete validation of
each architecture specification took less than a second on a
295 MHz Sun Ultra 60 with 1024M RAM.

As expected, we encountered two kinds of errors viz., in-
complete specification errors and incorrect specification er-
rors. An example of incomplete specification error we un-
covered is that the opcode assignment is not done for the 5th
stage of the multiplier pipeline in DLX. Similarly, an exam-
ple of the incorrect specification error we found is that only
load/store opcodes were mapped for the memory stage of the
DLX architecture. Since all the opcodes pass through memory
stage in DLX, it is necessary to map all the opcodes here.

During design space exploration (DSE) of the architec-
tures we detected many incorrect specification errors. Here
we briefly mention some of the errors captured using our ap-
proach.

We modified the MIPS R10K ADL description to include
another load/store unit that supports only store operations.
Well-formedness property was violated since there was a write
connection from load/store unit to floating-point register file
which will never be used.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

We modified the PowerPC ADL description to have sepa-
rate L2 cache for instruction and data. Validation determined
that there are no paths from L2 instruction cache to main
memory. The connection between L2 instruction cache and
unified L3 cache is missing.

We modified the C6x data memory by adding two SRAM
modules with the existing cache hierarchy. The property val-
idation fails due to the fact that the address ranges specified
in the SRAMs and cache hierarchy are not disjoint, moreover
union of these address ranges does not cover the physical ad-
dress space specified by the processor description.

We added a coprocessor pipeline in the MIPS R10K which
supports vector integer multiplication. This path is reported
as false pipeline path since this opcode was not added in all
the units in the path correctly. It also violated completeness
property since the read/write connections to integer register
file was missing from the coprocessor pipeline.

In the R10K architecture we decided to use a coproces-
sor local memory instead of integer register file for reading
operands. We removed the read connections to the integer
register file and added local memory, DMA controller and
connections to main memory. The connectedness property
is violated for two ports in integer register file. These ports
were used by the coprocessor earlier whose connections were
deleted but not the ports.

We modified the PowerPC ADL description by reducing
the instruction buffer size from 16 to 4. This generated the
violation of well-formedness. The fetch unit fetches 8 instruc-
tions per cycle and decode unit decodes 3 instructions per cy-
cle, hence there is a potential for instruction loss.

Table 1 summarizes the errors captured during design
space exploration of architectures. Each column represents
one architecture and each row represents one property. An
entry in the table presents the number of violations of that
property for the corresponding architecture1. The number in
brackets next to each architecture represents the number of de-
sign space exploration done for that architecture. Each class
of problem is counted only once. For example, the DLX error
mentioned above where one of the unit has incorrect specifica-
tion of the supported opcodes that led to false pipeline path for
most of the opcodes, we count that error once instead of us-
ing the number of opcodes which violated the property. Our
experiments have demonstrated the utility of our validation
approach across a wide range of realistic architectures.

7 Summary

ADL-based codesign that supports automatic software
toolkit generation is a promising approach to efficient de-
sign space exploration (DSE) of SOC architectures. The pro-
grammable portion of SOCs often includes pipelined proces-
sor, memory, and co-processor cores, whose pipeline struc-

1Note that the error numbers will change depending on the number of
design space exploration and type of modifications done each time.

Table 1. Summary of property violations

ARM DLX C6x R10K PowerPC
(1) (2) (2) (3) (2)

Connectedness 0 0 1 2 1
False Pipeline Path 2 5 3 4 2

Completeness 1 2 3 3 2
Well-formedness 2 4 5 12 6

Finiteness 0 0 0 1 1

ture and behavior are described in the ADL. During architec-
tural design space exploration, each instance of the architec-
ture must be validated to ensure that it is well-formed. More-
over, validation of the specification is essential to ensure that
the reference model is golden so that it can be used to uncover
bugs in the design.

In this paper we presented a graph-based modeling of ar-
chitectures that captures both the structure and the behavior
of the processor, memory and co-processor pipelines. Based
on the model, we proposed several properties that need to be
satisfied to ensure that the architecture is well-formed. We ap-
plied these properties on the graph model of the MIPS R10K,
TI C6x, ARM, DLX, and PowerPC architectures to demon-
strate the usefulness of our approach. Our ongoing work tar-
gets the use of this ADL description as a golden reference
model in architecture validation flow.

References

[1] A. Halambi et al. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. DATE,
1999.

[2] G. Hadjiyiannis et al. ISDL: An instruction set description lan-
guage for retargetability. In Proc. DAC, 1997.

[3] P. Ho et al. Formal verification of pipeline control using con-
trolled token nets and abstract interpretation. In ICCAD, 1998.

[4] M. Freericks. The nML machine description formalism. Tech-
nical Report SM-IMP/DIST/08, TU Berlin., 1993.

[5] J. Hauke and J. Hayes. Microprocessor design verification using
reverse engineering. In HLDVT, 1999.

[6] J. Hennessy and D. Patterson. Computer Architecture: A quan-
titative approach. Morgan Kaufmann Publishers Inc, CA, 1990.

[7] P. Mishra et al. Architecture description language driven val-
idation of processor, memory, and co-processor pipelines. TR
UCI-ICS 01-52.

[8] R. Ho et al. Architecture validation for processors. ISCA, 1995.

[9] H. Tomiyama et al. Modeling and verification of processor
pipelines in soc design exploration. HLDVT, 1999.

[10] H. Tomiyama, T. Yoshino, and N. Dutt. Verification of in-order
execution in pipelined processors. In HLDVT, 2000.

[11] P. Mishra, N. Dutt, and A. Nicolau. Automatic Validation of
Pipeline Specifications. In HLDVT, 2001.

[12] http://www.trimaran.org. The MDES User Manual, 1997.

[13] P. Mishra et al. Processor-memory co-exploration driven by an
architectural description language. VLSI Design 2001.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

