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Abstract. Simultaneous MultiThreading (SMT) achieves better system
resource utilization and higher performance because it exploits Thread-
Level Parallelism (TLP) in addition to “conventional” Instruction-Level
Parallelism (ILP). Theoretically, system resources in every pipeline stage
of an SMT microarchitecture can be dynamically shared. However, in
commercial applications, all the major queues are statically partitioned.
From an implementation point of view, static partitioning of resources is
easier to implement and has a lower hardware overhead and power con-
sumption. In this paper, we strive to quantitatively determine the trade-
off between static partitioning and dynamic sharing. We find that static
partitioning of either the instruction fetch queue (IFQ) or the reorder
buffer (ROB) is not sufficient if implemented alone (3% and 9% perfor-
mance decrease respectively in the worst case comparing with dynamic
sharing), while statically partitioning both the IFQ and the ROB could
achieve an average performance gain of 9% at least, and even reach 148%
when running with floating-point benchmarks, when compared with dy-
namic sharing. We varied the number of functional units in our efforts
to isolate the reason for this performance improvement. We found that
static partitioning both queues outperformed all the other partitioning
mechanisms under the same system configuration. This demonstrates
that the performance gain has been achieved by moving from dynamic
sharing to static partitioning of the system resources.

1 Introduction

Simultaneous MultiThreading (SMT) has been a hot research area for more
than one decade [14,15,16,17,18,19,20,21]. From the embryonic implementation
in the CDC 6600 [22], the HEP [9], the TERA [8], the HORIZON [12], and
the APRIL [13] architectures, in which there exists some concept of multi-
threading or Simultaneous MultiThreading, to the actual commercial imple-
mentation of SMT in the latest Pentium 4 [10] and XEON [5] processor fami-
lies with HyperThreading (HT) technology, all demonstrates the power of SMT
(another commercial design of SMT, the COMPAQ EV8 [11], was abandoned
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even before reaching the manufacturing stage). Because of the limitations of
Instruction-Level Parallelism (ILP), the performance gain that traditional su-
perscalar processors could achieve is diminishing even with an increase in the
number of execution units. On the other hand, through issuing and executing
instructions from multiple threads at every clock cycle, SMT can achieve maxi-
mum system resource utilization and higher performance.

However, when it comes to the problem of how to allocate the system re-
sources to the multiple threads, there are different opinions. Sometimes the dy-
namic sharing method is applied on system resources at every pipeline stage in
the SMT microarchitectures [16,17,18] (which means threads can compete for
the resources and there is no quota on the resources that one single thread could
utilize), could be as low as 0%, or could be 100%. In other cases, all the major
queues are statically partitioned [4,5], so that each thread has its own portion
of the resources and there is no overlap.

From the implementation point view, static partitioning of resources is easier
to implement with lower hardware overhead and less power consumption, which
matches exactly with INTEL’s implementation goal of hyperthreading – smallest
hardware overhead and high enough performance gain [5]. On the other hand,
dynamic sharing is normally assumed to be able to maximize the utilization of
the system resources and corresponding performance, even though it would come
at a higher hardware cost and more power consumption.

The goal of this paper is thus to quantify the impact of static partitioning vs.
dynamic sharing on the overall performance of the system. We study the effect
of different partitioning mechanisms (static partitioning vs dynamic sharing) on
the different system resources (instruction fetch queue and reorder buffer, for
example), and their impact on overall system performance.

Prior to our proposed work, we review related work of different partitioning
methods on the system resources in Section 2. Section 3 describes our exper-
iment approach. Our simulated work is discussed in more detail in Section 4.
Conclusions are presented in Section 5.

2 Related Work

Marr et al. [5] presented a commercial implementation of a 2-thread SMT ar-
chitecture in INTEL’s XEON processor family. In their implementation, almost
all the queues are statically divided into two, one for each thread. However, the
scheduler queues are shared by both threads so that the schedulers can dispatch
instructions to the execution engine regardless of which thread they come from,
so as to insure timely execution and maintain a high throughput. However, there
is still a cap on the number of instructions one thread could have in scheduler
queues.

An investigation of the impact of different system resource partitioning mech-
anisms on SMT processors was performed by Raasch et al. in [1]. In this paper,
various system resources, like instruction queue, reorder buffer, issue bandwidth,
and commit bandwidth are studied under different partitioning mechanisms. The
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authors conclude that the true power of SMT lies in its ability to issue instruc-
tions from different threads in one clock cycle. Hence, the issue bandwidth has
to be shared all the time. While different partitioning mechanisms on other sys-
tem resources like storage queues will result in very little impact on the system
performances. However, their work is mainly focused on the back-end of the
pipeline, e.g., execution and retirement part, did not affect any of the front-end
of the pipeline, e.g., the fetch part. We extended their work by studying the
different partitioning techniques on the front-end instruction fetch queue and
the back-end reorder buffer, as well as the impact on the overall performance
caused by the interaction between them.

3 Our Approach

There are many system resources in a pipeline which could be under different par-
titioning mechanisms, for example, the instruction fetch queue, the instruction
decode queue, the instruction issue queue (sometimes called instruction queue),
the reorder buffer, the load/store queue, etc. In our proposed work, we selected
two resources from above, the front-end instruction fetch queue (IFQ) and the
back-end reorder buffer (ROB), and applied different partitioning mechanisms
on them separately. Then, we compared the performance of each configuration
to find out the impact of different partitioning mechanisms on the overall system
performance, which is measured in terms of Instruction per Cycle (IPC). This
comparison would lead us to get the optimum configuration. Here we listed all
four combinations of architectures to simulate a 2-thread Simultaneous Multi-
Threading architecture:

– SMT: Both the front-end instruction fetch queue and the back-end reorder
buffer are in the dynamic sharing mode, just like other system resources.

– SIFQ: Only the front-end instruction fetch queue is divided into two, one for
each thread, and other system resources are in the dynamic sharing mode.

– SROB: Only the back-end reorder buffer is divided into two, one for each
thread, while other system resources are in the dynamic sharing mode.

– STOUS: Both the front-end instruction fetch queue and the back-end reorder
buffer are divided into two, one for each thread, and other system resources
are in the dynamic sharing mode.

In each configuration, we perform extensive simulations to obtain the average
system performance.

4 Simulation

To properly evaluate the effects of the proposed partitioning mechanism, we de-
signed an execution-driven simulator, based on an SMT simulator developed by
Kang et al. [7], which is itself derived from SimpleScalar [3], through modifying
the sim-outorder simulator to implement an SMT processor model. Following
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the structure of sim-outorder, the architectural model contains seven pipeline
stages: fetch, decode, dispatch, issue, execute, complete, and commit. Several
resources, such as program counter (PC), integer and floating-point register files,
and branch predictor, are replicated to allow multiple thread contexts. The sim-
ulator uses the 64-bit PISA instruction set.

4.1 Experiment Setup

The major simulator parameters are listed in Table 1. The fetch policy employed
is Instruction Count (I-Count). The simulator is configured to issue as many
instructions as the total number of functional units at each clock cycle according
to the priority set by the I-Count policy.

The simulator has been modified to accommodate the changes of the corre-
sponding sharing policy for IFQ and ROB. In Table 2, we listed the correspond-
ing instruction fetch queue size and the reorder buffer size for each configuration.

The benchmarks used are all from SPEC CPU2000 benchmark suite [6]. The
ten benchmarks used (7 integer and 3 floating-point benchmarks) are listed in
Table 3.

Since there are 10 sets of benchmark, 4 sets of simulator configuration for
the 2-thread input, we run each benchmark with all the benchmarks (including

Table 1. Simulation parameters

Parameter Value

Instruction Fetch Rate 8
Instruction Decode Rate 8
Instruction Retire Rate 8
L1 Instruction Cache 64Kbytes (256:64:4:LRU)
L1 Data Cache 64Kbytes (512:32:4:LRU)
L2 Cache 1Mbytes (2048:128:4:LRU)
Memory Access Bus Width 32 bytes
Instruction TLB 512Kbytes (32:4096:4:LRU)
Data TLB 1Mbytes (64:4096:4:LRU)
Instruction Issue Queue Size 64
LQ/SQ Size 64/64
INT Units 8
FP Units 4

Table 2. Simulation setup

Configuration Name Instruction Fetch Queue Size Reorder Buffer Size

SMT one 256 one 256
SIFQ two 128 one 256
SROB one 256 two 128
STOUS two 128 two 128
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Table 3. SPEC2000 CPU Benchmark used in the simulation

Benchmark Type Language Category

164.gzip INT C Compression
175.vpr INT C FPGA Circuit Placement and Routing
176.gcc INT C C Programming Language Compiler
179.art FP C Image Recognition / Neural Networks
181.mcf INT C Combinatorial Optimization
183.equake FP C Seismic Wave Propagation Simulation
188.ammp FP C Computational Chemistry
197.parser INT C Word Processing
256.bzip2 INT C Compression
300.twolf INT C Place and Route Simulator

itself). Hence altogether we run 4×10×10 iterations of simulation to get all the
results. Each iteration of simulation is composed of 1 billion instructions, after
fast forwarding through the first 300 million instructions from each thread to skip
the initialization part of the benchmark. Then the results (IPC) are averaged
to get the average performance for each benchmark under each partitioning
configuration.

4.2 Simulation Results

In Fig. 1, we present the average performance in term of IPC for each benchmark
under different partitioning architectures. Obviously, the STOUS architecture
outperforms other partitioning approaches. We derived the following formulas
to compute the performance gain:

Gain1 =
IPCSIFQ − IPCSMT

IPCSMT
(1)

Gain2 =
IPCSROB − IPCSMT

IPCSMT
(2)

Average Performance
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Fig. 1. Average performance gain for different partitioning architectures
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Table 4. Performance Gain Comparison

Gain1(%) Gain2(%) Gain3(%)

Overall average performance gain: 19.69 -6.94 148.25
Average performance gain (excluding
benchmark 188)

-0.10 -7.66 23.67

Average performance gain (excluding
benchmark 179 and 188)

-3.35 -8.66 8.99

Gain3 =
IPCSTOUS − IPCSMT

IPCSMT
(3)

When we examine the results more carefully under the light of the above
formulas, we observe that when Benchmark 179 and 188 run together with other
benchmarks, they could achieve such a huge performance gain (up to 7 or 8 fold),
that they may exaggerate the performance gain achieved from other benchmarks.
Therefore, in Table 4, we list the average performance gain in three different
situations:

– Overall average performance gain, which is computed using the results of
running all 10 benchmarks.

– Average performance gain excluding Benchmark 188, which is computing
using only the results from running the remaining nine benchmarks.

– Average performance gain excluding Benchmark 179 and 188, which is com-
puted using only the results from running the remaining eight benchmarks.

The reason why we want to compare the performance under these three dif-
ferent situations is because we want to examine the performance gain excluding
the interference from those two benchmarks (179 and 188), to see how other
benchmarks react to the different system partitioning architectures. From the
table, we can see that the STOUS architecture keeps yielding positive perfor-
mance gain, while other architectures could result in a loss of performance.

4.3 Impact of Functional Units

In order to isolate the reason why Benchmark 188 and 179 could achieve such
huge performance gain, we redo the simulation by varying the number of INT and
FP functional units as listed in Table 5. We also increased the size of instruction
issue queue, load queue/store queue from 64 entries to 128 entries.

Table 5. Functional units configuration

Configuration I II III

INT units 4 8 8
FP units 4 4 8
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Fig. 2. Average IPC for 4 INT / 4 FP functional units configuration
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Fig. 3. Average IPC for 8 INT / 4 FP functional units configuration
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In Fig. 2, 3, 4, we can see the average IPC for each partitioning mechanism
with different functional unit configuration.

From the graph, we can see that with different variations in the number of
functional units, the STOUS architecture keeps outperforming the SMT, SIFQ
and SROB architectures in term of IPC. This demonstrates that the performance
gain is achieved from the difference between static partitioning and dynamic
sharing of the system resources, not because of the number of functional units
in favor of any of the architectures.

5 Conclusions

From the above tables and graphs, several conclusions can be drawn:

1. Statically partitioning either the IFQ or the ROB solely can only lead to a
negative performance gain.

2. Statically partitioning both the IFQ and ROB together could achieve
marginal performance gain (even in the worst scenario when running integer
benchmarks solely, the STOUS architecture could still achieve 9% perfor-
mance gain over the SMT architecture).

We feel the reason for this is that static partitioning both the IFQ and ROB
is like forcing the input and output of the pipeline to evenly execute the two
input threads. Hence we can avoid the situation where one of the threads grabs
more resources it could use and clogs the pipeline, while the other thread could
not get enough resources and under-executed. Statically partitioning either one
of them could not achieve such results because it only controls one end of the
pipeline while there is no control over the other end.

The huge performance gain from running Benchmark 188 and 179 results
from better system resource utilization with one integer and one floating-point
input. Because now in stead of competing with each other for the same type of
functional units, the instructions from different threads are running on different
types of functional units. Hence the competition for those resources is minimized,
the throughput is maximized, which shows the original power of SMT.

Through the static partitioning of the instruction fetch queue and the reorder
buffer, we are able to achieve better performance (in terms of IPC) than dynamic
sharing. Also, at the same time, static partitioning would require less hardware
overhead, and also achieve less power consumption.

Since static partitioning of both IFQ and ROB could bring us this opportu-
nity to achieve better performance with a less complicated mechanism, then the
next step is to try different partitioning mechanisms on other system resources,
to study the inter-relationship among them, and in the end to find an optimum
way to sharing system resources to achieve the best performance with the least
hardware overhead and power consumption for the SMT microarchitecture.

Acknowledgment. We would like to thank Dongsoo Kang for his support in
our use of his SMT simulator.
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