
A Novel Approach for Partitioning Iteration Spaces
with Variable Densities

Arun Kejariwal† Alexandru Nicolau† Utpal Banerjee‡ Constantine D. Polychronopoulos§

†Center for Embedded Computer Systems ‡Intel Corporation §Center for Supercomputing Research and Development
University of California at Irvine University of Illinois at Urbana-Champaign

Irvine, CA, USA Santa Clara, CA, USA Urbana, IL, USA

ABSTRACT
Efficient partitioning of parallel loops plays a critical role
in high performance and efficient use of multiprocessor sys-
tems. Although a significant amount of work has been done
in partitioning and scheduling of loops with rectangular itera-
tion spaces, the problem of partitioning non-rectangular iter-
ation spaces — e.g., triangular, trapezoidal iteration spaces
— with variable densities has not been addressed so far to the
best of our knowledge. In this paper, we present a mathemat-
ical model for partitioning N-dimensional non-rectangular
iteration spaces with variable densities. We present a uni-
modular loop transformation and a geometric approach for
partitioning an iteration space along an axis corresponding
to the outermost loop across a given number of processors
to achieve near-optimal performance, i.e., to achieve near-
optimal load balance across different processors. We present
a case study to illustrate the effectiveness of our approach.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—parallel pro-
gramming; loop transformation

General Terms
Performance, Algorithms

Keywords
Parallel Loops, Iteration Space, Partitioning, Unimodular
Transformation

1. INTRODUCTION
Nested parallel loops form the core of most numerical and

scientific programs. Efficient execution of these programs
on parallel machines requires partitioning of the iteration
spaces of these nested loops, so that different sets of the par-
tition can be mapped on to the different processors. Though
partitioning of loop nests with rectangular iteration spaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05,June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

has received a lot of attention [1, 2], the problem of parti-
tioning nested loops with non-rectangular iteration spaces
has not been given enough attention so far, except in [3, 4]
(in this paper, we deal with loop nests in which the lower
and upper bounds of each loop are affine functions of the
outer loop indices; such loops have non-rectangular itera-
tion spaces). However, [3, 4] do not partition the iteration
space uniformly across different processors and have several
limitations, such as trade-off between parallelism and data
locality, as discussed in Section 10. Furthermore, these ap-
proaches do not address the problem of partitioning iteration
spaces with variable densities, i.e., loops with non-constant
strides.

In this paper, we address the problem of partitioning par-
allel loop nests with N-dimensional non-rectangular itera-
tion spaces with variable densities. Naturally, our technique
can also handle rectangular loop nests. We follow a two step
approach for iteration space partitioning -

❏ First, we derive the necessary and sufficient conditions
for the existence of an invariant iterator in a non-
uniform iteration space.

❏ Second, if there exists an invariant iterator, we present
an integrated technique based on unimodular transfor-
mations, linearization and loop reordering for uniform
partitioning of a loop nest. Else, we present a geomet-
ric approach for partitioning the iteration space for
minimizing execution time on parallel processor sys-
tems.

We partition an iteration space along an axis correspond-
ing to the outermost loop and achieve a near-optimal par-
tition. The partition thus obtained consists of contiguous
sets, unlike [4], which facilitates exploitation of data local-
ity. Our approach provides a simple, practical and intuitive
solution to the problem of iteration space partitioning. In
this paper, we only consider loop nests with no loop carried
dependences.

The rest of the paper is organized as follows - Section 2
presents the terminology used in the rest of the paper. The
general approach is discussed in Section 3. In Section 4
we present a formal description of the problem. Next, we
present our approach for detecting invariant iterators and
for transforming the iteration space. In Section 6 we present
our linearization-based approach for maximizing processor
utilization. Section 7 presents a weight-based 1 approach for

1The weight of an iteration space (with variable densities)
represents an estimate of the number of index points in the
iteration space.

120

), u2(i1

 = ln

), s2

(i1 , i2 (i 1 , i 2(i 1), sn , ... , in−1) , ... , in−1, i 2

H(i)

end doall

end doall

end doall

doall i1

doall i2

doall in

 = 1, N, 1

(i1) = l2(i1

 , ... , i n−1 n), u

Figure 1: Our Loop Model

partitioning an iteration space in absence of invariant itera-
tors. In Section 9, we present a case study to illustrate our
technique for iteration space partitioning. Next, we present
previous work in Section 10. Finally, we conclude with di-
rections for future work.

2. TERMINOLOGY
Our loop model consists of a perfectly nested DOALL loop

[5], as shown in Figure 1. Such loop nests are commonly
found in various applications such as 3-d graphics (mesh
collapsing, volume rendering [6], geometric modeling of non-
homogeneous 3-d objects), aircraft simulations, cosmological
and N-body simulations [7] et cetera. Without loss of any
generality, we assume that the outermost loop is normalized
from 1 to N with s1 = 1. The index variables of the indi-
vidual loops are i1, i2, . . . , in and they constitute an index
vector i = 〈i1, i2, . . . , in〉.2 An iteration is an instance of
the index vector i. The set of iterations of a loop nest L is an
iteration space Γ = {i}. We model an iteration space as a
convex polytope in Nn, where N is a set of natural numbers.

The lower and upper bounds of an index variable are as-
sumed to be affine functions of the outer loop indices. We
assume that lj ≤ uj for 2 ≤ j ≤ n. The set of hyper-
planes defined by i1 = 1, i1 = N, ir = lr and ir = ur for
2 ≤ r ≤ n, determine the geometry of the iteration space.
For example, if lr = ar and ur = br where ar, br ∈ N (i.e.,
constant bounds) for 2 ≤ r ≤ n, then the geometry of Γ is a
rectangular parallelepiped. Unlike previous work [4, 8], our
loop model also captures non-uniform iteration spaces, i.e.,
our model supports non-constant loop strides along each di-
mension. Each lk, uk and sk can be expressed as a linear
combination of i1, i2, . . . , ik−1, as shown below:

`k = `k0 + `k1i1 + . . . + `k(k−1)ik−1

uk = uk0 + uk1i1 + . . . + uk(k−1)ik−1

sk = sk0 + sk1i1 + . . . + sk(k−1)ik−1

where `kq, ukq, skq ∈ N, for 2 ≤ k ≤ n, 0 ≤ q ≤ k − 1.
The lower bound, upper bound and the loop stride of L

can be expressed in matrix form as follows:

2An index variable of a loop is also referred to as an
iterator.

LI ≥ `0

UI ≤ u0 (1)

s = s0 + SI

where L, U, S are n× n lower triangular matrices, given by:

L =



1 0 0 0 · · · 0

−`21 1 0 0 · · · 0

−`31 −`32 1 0 · · · 0
...

. . .
...

−`n1 −`n2 −`n3 −`n4 · · · 1



U =



1 0 0 0 · · · 0

−u21 1 0 0 · · · 0

−u31 −u32 1 0 · · · 0
...

. . .
...

−un1 −un2 −un3 −un4 · · · 1



S =



0 0 0 0 · · · 0

s21 0 0 0 · · · 0

s31 s32 0 0 · · · 0
...

. . .
...

sn1 sn2 sn3 sn4 · · · 0


with |L| = |U| = 1, and `0, υ0, s and s0 are n × 1 vectors
given by:

`0 = [`10, `20, . . . , `n0]
T

u0 = [u10, u20, . . . , un0]
T

s = [s1, s2, . . . , sn]T

s0 = [s10, s20, . . . , sn0]
T

I = [i1, i2, . . . , in]T

where `10 = 1, u10 = N, and s10 = 1. Next, we present
definitions of some other terms used in the rest of the paper.

121

1i

2i

 = 1, Nfor i1
 = 1, Nfor i2

LOOP BODY

enddo
enddo

(a)

1i

2i

 = 1, Nfor i1

LOOP BODY

enddo
enddo

 = 1, ifor i2 1

(b)

Figure 2: Example iteration spaces to illustrate invariant iterators (N = 6). (a) both i1 and i2 are invariant;
(b) none is invariant.

Definition 1. The density ρk of an iteration space Γ
along the axis corresponding to the loop index ik is defined
as follows:

ρk =
1

sk
, for 1 ≤ k ≤ n

Intuitively, the density of an iteration space along a partic-
ular dimension represents the distribution of index points
along that dimension. If ρk = constant, for 1 ≤ k ≤ n,
then the iteration space is said to be uniform, else the iter-
ation space is said to be non-uniform. Note that sk > 0
for 1 ≤ k ≤ n since skq > 0 for 0 ≤ q ≤ k − 1 and
i1, . . . , ik−1 ∈ N.

Definition 2. For each x, y ∈ R such that x < y, an
elementary set S(x, y) in Γ is defined as follows:

S(x, y) = {i|i ∈ Γ, x ≤ i1 < y}

Let β = {γ0, γ1, . . . , γm, γm+1} denote a set of breakpoints
along an axis corresponding to the outermost loop of L such
that γ0 < γ1 < γ2 < · · · < γm < γm+1, where γk ∈ R for
1 ≤ k ≤ m, γ0 = 1, γm+1 = N + ε, where 0 < ε < 1. The
parameter ε helps to capture the index points lying on the
hyperplane i1 = N (note that the interval of an elementary
set S is open on the right). Given a set of breakpoints β
(as defined above), a contiguous outermost partition is
defined as follows:

Q = {S(γk, γk+1)|γk ∈ β}

3. GENERAL APPROACH
Consider the loop nests and their corresponding iteration

spaces shown in Figure 2. We say that an iteration space
can be partitioned uniformly along a given axis if the sets
thus obtained have equal interval lengths (refer to Defini-
tion 2) and have the same number of iterations. We call an
iterator invariant if the lower bound, upper bound and the
stride of the iterator are constants and the coefficient corre-
sponding to this iterator in the expressions of lower bound,
upper bound and stride of other iterators is zero. For ex-
ample, in Figure 2(a) both i1 and i2 are invariant,whereas
in Figure 2(b), both i1 and i2 are not invariant. A more
rigorous definition of invariance is presented in Section 5.1.

In this context, an interesting property of invariance is that
an iteration space can be partitioned uniformly along the
axis corresponding to an invariant iterator to yield perfect
or near-perfect load balance. For example, assuming two
processors, the iteration space shown in Figure 2(a) can be
partitioned uniformly along either of the two axis to achieve
perfect load balance, whereas uniform partitioning of the it-
eration space shown in Figure 2(b) along either of the two
axis results in load imbalance [9].

We follow a top-down approach for partitioning the itera-
tion space of a given loop nest. First, we determine whether
there exists an invariant iterator(s) in the loop nest. If one or
more invariant iterators exist, then we move the loops corre-
sponding to all such iterators to the outermost position. For
the loop model shown in Figure 1 loop interchange is always
valid as there do not exist any loop carried dependences [10].
The loops are then linearized (if required); the linearization
process is further discussed in Section 6. Finally, the loop
nest is partitioned amongst P processors. However, an in-
variant iterator may not exist in the original loop. This
can be attributed to the fact that satisfying the invariance
conditions (discussed in Section 5.1) is dependent on the
definition of the lower bound (`k), upper bound (uk) and
the stride (sk). Nevertheless, one can find an invariant iter-
ator ik by transforming the original loop. In order to detect
such invariant iterators we define a unimodular transforma-
tion [11]. The transformation reduces the expressions of
lk, uk and sk into canonical form which makes the iteration
space amenable for uniform partitioning along ik. The sig-
nificance of presence of an invariant iterator lies in the fact it
obviates geometric [12] and variable density considerations
during the partitioning phase and the fact that partitioning
along the axis corresponding to an invariant iterator yields
perfect load balance.

In case an invariant iterator does not exist, e.g., in Fig-
ure 2(b), we employ a geometric approach to partition the
iteration space. The approach, presented in Section 7, pro-
vides an integrated solution of partitioning non-rectangular
and non-uniform iteration spaces to achieve near-optimal
load balance.

4. PROBLEM STATEMENT

The execution time of an elementary set S(x, y) is pro-
portional to the number of iterations, |S(x, y)|, in the set.

122

Therefore, the execution time of a contiguous outermost par-
tition is

T (Q) = max
γk∈β

|S(γi, γi+1)| × tLB (2)

where tLB is the execution time of the innermost loop body.
From hereon, we omit tLB , since it is a constant, in future
discussions. 3 Now, we present a rigorous formulation of
the problem we address in this paper.

Problem 1 (Minimum execution time). Given an it-
eration space Γ with variable densities and P (≤ N) pro-
cessors, find a contiguous outermost partition Q so as to
minimize the execution time:

T (Γ, P) = min
|β|=P+2

T (Q) (3)

5. INVARIANT ITERATOR DETECTION IN
NON-UNIFORM ITERATION SPACES

In this section, we first derive the necessary and sufficient
conditions for the existence of an invariant iterator. Sub-
sequently, we present a unimodular loop transformation to
transform the iterator into canonical form for uniform par-
titioning along the axis corresponding to that iterator.

5.1 Necessary Conditions
An iterator is invariant iff it does not reference any other

iterators nor is it referenced by any other iterators. In-
tuitively, the lower bound, upper bound and the stride of
an invariant iterator should be constant and the coefficient
corresponding to this iterator in the expressions of lower
bound, upper bound and stride of other iterators should be
zero. Mathematically, an invariant iterator ik must satisfy
the following:

`k1 = `k2 = · · · = `k(k−1) = 0

uk1 = uk2 = · · · = uk(k−1) = 0

sk1 = sk2 = · · · = sk(k−1) = 0

 (4)

`(k+1)k = `(k+2)k = · · · = `nk = 0

u(k+1)k = u(k+2)k = · · · = unk = 0

s(k+1)k = s(k+2)k = · · · = snk = 0

 (5)

5.2 Unimodular Loop Transformations
It is important to note that an invariant iterator in L

may not appear in the original code in canonical form, i.e.,
satisfying the system of equations given in (4) and (5). We
present a loop transformation based on the general theory
of unimodular matrices for canonicalization of the invariant
iterator. Let T be a unimodular matrix given by:

3We assume that the loop body H(i) has the same ex-
ecution time in each iteration. This can be used as an ap-
proximation even when execution time varies due to control
flow and/or caching effects, in which case we could use a
(weighted) average as a fixed approximation.

T =



1 0 0 0 · · · 0

t21 1 0 0 · · · 0

t31 t32 1 0 · · · 0
...

. . .
...

tn1 tn2 tn3 tn4 · · · 1


The mapping L 7→ LT is the unimodular transformation de-
fined by the matrix T. The loop nest LT is the transformed
loop nest of L defined by T. The lower bound matrix of
the transformed loop nest, denoted by LT, is related to the
lower bound matrix of original loop nest (L) by the following
equation:

LT = LT (6)

The upper bound and stride matrices of LT, represented
by UT, ST, are related to the corresponding upper bound
and stride matrices of L in a similar fashion. We seek an
n × n unimodular matrix T = (tpq) such that for each in-
variant iterator in LT , LT, UT and ST satisfy the system of
equations given in (4) and (5).

Let ik in LT be an invariant iterator. From Equations 4 and
6, ik must satisfy the following:

−`k1 − `k2t21 − `k3t31 · · · − `k(k−1)t(k−1)1 + tk1 = 0

−`k2 − `k3t32 · · · − `k(k−1)t(k−1)2 + tk2 = 0

...
...

−`k(k−1) + tk(k−1) = 0

Alternatively, for 1 ≤ p ≤ k − 1

−`kp +

k−1∑
q>p

(−`kqtqp) + tkp = 0 (7)

Similarly, for 1 ≤ p ≤ k−1, ik must also satisfy the following
conditions corresponding to the upper bound and stride.

− ukp +

k−1∑
q>p

(−ukqtqp) + tkp = 0 (8)

skp +

k−1∑
q>p

skqtqp = 0 (9)

From Equations 7 and 8 and from Equations 4 and 9, we
deduce the following conditions: for 1 ≤ p ≤ k − 1,

`kp = ukp

skp = 0

}
(10)

The system of equations in 10 represent the conditions for
the existence of a unimodular matrix.

123

From Equations 5 and 6, ik must satisfy the following:

−`(k+1)k + t(k+1)k = 0

−`(k+2)k − `(k+2)(k+1)t(k+1)k + t(k+2)k = 0

...
...

−`nk − `n(k+1)t(k+1)k · · · − `n(n−1)t(n−1)k + tnk = 0

Alternatively, for 1 ≤ p ≤ n− k

−`(k+p)k +

k+p−1∑
q>k

(−`(k+p)qtqk) + t(k+p)k = 0 (11)

Similarly, for 1 ≤ p ≤ n− k

− u(k+p)k +

k+p−1∑
q>k

(−u(k+p)qtqk) + t(k+p)k = 0 (12)

s(k+p)k +

k+p−1∑
q>k

s(k+p)qtqk = 0 (13)

For convenience and simplicity of exposition, we represent
Equations 11-13 in a matrix form as follows:

Ax = b (14)

where, A is a 3(n− k)× (n− k) matrix, x is a (n− k)× 1
vector and b is a 3(n− k)× 1 vector given by:

A =



1 0 0 · · · 0

−`(k+2)(k+1) 1 0 · · · 0
...

...

−`n(k+1) −`n(k+2) −`n(k+3) · · · 1

1 0 0 · · · 0

−u(k+2)(k+1) 1 0 · · · 0
...

...

−un(k+1) −un(k+2) −un(k+3) · · · 1

0 0 0 · · · 0

s(k+2)(k+1) 0 0 · · · 0
...

...

sn(k+1) sn(k+2) sn(k+3) · · · 0



x = [t(k+1)k, t(k+2)k, . . . , tnk]T

b =



`(k+1)k

`(k+2)k

...

`nk

u(k+1)k

u(k+2)k

...

unk

−s(k+1)k

−s(k+2)k

...

−snk


To establish the consistency of the system of linear equa-
tions given by Equation 14, we reduce the augmented ma-
trix [A|b] to a matrix [E|c] that is in row echelon form,
using Gaussian elimination[13]. During reduction of [A|b]
to [E|c], if a situation arises in which the only non-zero entry
in a row appears on the right-hand side (as shown below),
the system is inconsistent if α 6= 0:

Row i −→


E E E E E
0 0 E E E
0 0 0 0 α

• • • • •
• • • • •

←− α 6= 0

There is no inconsistency if a row of the form (0 0 . . . 0 | 0) is
encountered. Equations 10 and 14 represent the conditions
for the existence of a unimodular transformation matrix for
ik. If T exists, we compute T as follows. Without any loss
in generality, we assume

tqp = 0, for p < q ≤ k − 1 ∧ 1 ≤ p ≤ k − 1

As a result, the solution of Equations 7 and 8 is given by:

tkp = `kp, ∀ 1 ≤ p ≤ k − 1

Similarly, for simplicity we assume

tqp = 0, for p < q ≤ n ∧ k + 1 ≤ p ≤ n

tqp = 0, for k + 1 ≤ q ≤ n ∧ 1 ≤ p ≤ k − 1

The unimodular transformation matrix T thus obtained is
given by:

T =



1 0 0 · · · 0 0 0 0

0 1 0 · · · 0 0 0 0
...

...

`k1 `k2 `k3 · · · 1 0 0 · · · 0

0 0 0 · · · t(k+1)k 1 0 · · · 0

0 0 0 · · · t(k+2)k 0 1 · · · 0
...

...

0 0 0 · · · tnk 0 0 · · · 1



124

doall i = 1, N, 1

doall j = i+1, i+N, 1

doall k = i+j, 2*i+j+N, 1

LOOP BODY

end doall

end doall

end doall

(a)

i1

i2

i3

(b)

 1 2 3 4 5 6 7 8 9
 4

 8
 12

 16
 20

 5
 10
 15
 20
 25
 30
 35
 40

 10 1

Figure 3: A motivating example

where, tjk = `jk +
∑j−1

p>k `jptpk, for k + 1 ≤ j ≤ n.

A formal description of detection and transformation of in-
variant iterators in non-uniform iteration spaces is given in
Procedure 1.

Procedure 1 Detection of an Invariant Iterator and the
corresponding Transformation Matrix

Input : An N-dimensional non-uniform iteration space Γ.
Output : An invariant iterator.

/* Check for the existence of an invariant iterator */

for each iterator ik, for 1 ≤ k ≤ n do
if Equations in 10 hold then

if Equation 14 has a consistent solution then
Compute the transformation matrix T

Compute LT, UT, ST

For each i ∈ I in each array occurrence substitute
I by TI

end if
end if

end for

Example 1. Consider the loop nest shown in Figure 3(a)
and its corresponding iteration space in Figure 3(b). For
clarity purposes, only the index points along the edges of
the polytope representing the iteration space are shown. The
iteration space has a parallelepiped (non-rectangular) geom-
etry in the i-j and i-k planes. Since neither i, j nor k satisfy
Equations 4 and 5, therefore, none of the iterators is invari-
ant.

Next, we find a unimodular transformation matrix for the
given loop nest. Due to space limitations, we restrict the
computation of the transformation matrix for the iterator j.
The matrices L, U, S for the loop nest shown in Figure 3(a)
are given as follows:

L =

 1 0 0

−1 1 0

−1 −1 1

 U =

 1 0 0

−1 1 0

−2 −1 1



S = 0

From above, we observe that conditions given by the system
of equations in 10 are satisfied. The augmented matrix is
given by:

[A|b] =

 1 1

1 1

0 0


The solution of Equation 14 is x = [1]. The transformation
matrix thus obtained is given by:

T =

 1 0 0

1 1 0

0 1 1


The transformed matrices LT, UT, ST are given by:

LT =

 1 0 0

0 1 0

−2 0 1

 UT =

 1 0 0

0 1 0

−3 0 1


ST = 0

doall i = 1, N, 1

doall j = 1, N, 1

doall k = 2*i, 3*i+N, 1

LOOP BODY

end doall

end doall

end doall

Figure 4: Unimodular transformation of the loop
nest shown in Figure 3

The transformed loop nest is shown in Figure 4. In Fig-
ure 4, the iterator j is invariant. Thus, the iteration space
can now be partitioned uniformly along the axis correspond-
ing to the iterator j. As stated earlier, we partition along the

125

outermost loop in order to maximize parallelism. Therefore,
the second loop is moved to the outermost position before
partitioning into different sets. The sets thus obtained are
mapped onto different processors.

5.3 Multiple Invariant Iterators
In the previous section we derived the necessary and suf-

ficient conditions for determining an invariant iterator and
presented a unimodular loop transformation to generate the
corresponding iterator. However, there may exist multiple
invariant iterators in an iteration space. We employ the
same approach to determine all the independent invariant
iterators and their corresponding transformation matrices.
However, as shown in [8], sequential application of the trans-
formation matrices does not yield invariant iterators. To
solve this problem, we employ Boyle’s mapping function [8]
to determine a unified transformation matrix, derived from
the independent unimodular transformation matrices.

6. LINEARIZATION
So far, we presented techniques to transform an iteration

space to make it amenable for uniform partitioning, i.e., par-
titioning the outermost loop equally amongst the different
processors to achieve perfect load balance. However, if the
span, i.e., the difference between the upper bound and lower
bound plus one, of the outermost loop is not an integral mul-
tiple of the number of processors, then uniform partitioning
is not feasible. To address this, we present a linearization-
based approach to facilitate uniform partitioning. Procedure
2 presents our approach.

Procedure 2 attempts to find a minimal subset of invari-
ant iterators such that their combined span is an integral
multiple of the number of processors available. If such a
subset exists, then it linearizes those iterators and moves
the new iterator thus obtained to the outermost position.
The outermost loop is then partitioned equally amongst the
different processors. For example, consider the following
loop nest shown in Figure 5, where the invariant iterators
have already been moved to the outermost position.

doall i = 1, 12

doall j = 1, 8

doall k = 1, N

doall l = 1, k

LOOP BODY

end doall

end doall

end doall

end doall

Figure 5: A sample example

Let us consider the partitioning of the iteration space of
the loop nest amongst 16 processors. We observe that the
iterator i is invariant. However, partitioning the iteration
space along the axis corresponding to i does not yield per-
fect load balance across all the 16 processors. Though one

4Note that, lbk and ubk are obtained after applying trans-
formation(s), thus they differ from the original bounds.

5Note that, µk = constant, for 1 ≤ k ≤ m.

Procedure 2 Linearization-based Uniform Partitioning of
an Iteration Space

Input : A set of invariant iterators ik, for 1 ≤ k ≤ m,
and the transformed loop nest LT.

Output : Uniformly partitioned iteration space.

/* Iteration Reordering */

for each ik do
Move ik to the outermost position

end for

Let lbk and ubk represent the lower and upper bound of
iterator ik respectively.4

Let µk = ubk − lbk + 1, where 1 ≤ k ≤ m. 5

j ← 1; p← P; G← ∅
while j 6= m ∨ p 6= 1 do

if gcd(µj , p) 6= 1 then
p← p/gcd(µj , p)

G← G ∪ {µj}
end if
j ← j + 1

end while

if p = 1 then
Linearize the iterators corresponding to all the µs in G

Move the new iterator to the outermost position

Partition the outermost loop uniformly amongst P pro-
cessors

Exit

end if

/* Uniform partitioning of the iteration space along
the axis corresponding to the outermost loop
is not feasible */

Partition the outermost loop “equally” amongst P proces-
sors

where gcd(a, b) stands for the greatest common divisor of
a and b.

can achieve perfect load balance by partitioning the iteration
space amongst 12 processors, however, it will result in un-
der utilization of the processors. As a result, it may lead to
overbearing loss in parallelism, thus adversely affecting per-
formance.6 To address the above problem, we linearize the
two outermost loops as their combined span (= 12×8 = 96)
is an integral number of the number of processors.

In a similar fashion, Procedure 2 searches for a set of loops
in the transformed loop nest LT such that the product of
their trip counts (denoted by µ in Procedure 2) is an integral
multiple of the number of processors. If there exists such a
set of loops, then the corresponding loops are linearized and
the loop thus obtained is partitioned uniformly amongst the
P processors to yield perfect load balance. Alternatively, the

6Note that using a larger number of processors does not
necessarily improve the performance of the resulting parti-
tion, as discussed in [12].

126

do i1 = 1, N

do i2

do i3

 = 1, i

 = 1, N

LOOP BODY

end do
end do

end do

, 1

, 1
1 + 1 , i1

(a) A loop nest

2i

1i1
1

(b)

1i

3i

1
1

(c)

Figure 6: An illustrative example (N=6)

iteration space is partitioned “equally” amongst the given
processors, i.e., assuming N iterations in the outermost loop
(N > P), N mod P processors are alloted dN/Pe iterations
and the remaining processors are alloted bN/Pc iterations.
Arguably, one could linearize L itself; however, remapping
of the index expressions in the presence of affine loop bounds
and strides introduces significant overhead, unlike lineariza-
tion of invariant iterators.

7. WEIGHT-BASED PARTITIONING
In this section we present an algorithm for partitioning an

iteration space Γ across P processors, assuming that there
do not exist any invariant iterators.

In Procedure 3, we first compute a partial weight of the
convex polytope as a function of the outermost index vari-
able. It is important to note that the volume of a poly-
tope provides an inaccurate estimate of the number of index
points as the density of the iteration space may be non-
constant, i.e., when the induction variables have variable
strides. Therefore, we follow a weight-based approach for
estimating the number of index points in a polytope. Next,
we compute the total weight of the convex polytope corre-
sponding to the loop nest L using Equation 15. Then we
determine the breakpoints along the i1-axis for partition-
ing Γ across the given processors. The solution of Equa-
tion 16 corresponds to the k-th breakpoint, denoted by γk.
Note that W (x) is a monotonically increasing function of x.
Therefore, there exists only one real solution of Equation 16.
In contrast, the algebraic approaches [3, 4, 8] proposed in
the past for iteration space partitioning are inapplicable in
such cases, as they are incapable of handling variable den-
sities; furthermore, these previous approaches achieve load
balance, even for uniform iteration spaces, by merging non-
contiguous sets, thereby possibly affecting locality adversely.
The breakpoints γk define the boundaries of the elemen-
tary sets in Γ. The sets thus obtained are contiguous which
eliminates the need for multiple loops, required in case of
non-contiguous sets. Furthermore, contiguous sets facilitate
exploitation of data locality. Obviously, the same approach
is applicable for determining the various sets of a partition
even when the density is constant. In contrast, previous
approaches [3, 4] achieve load balance across different pro-
cessors at the expense of data locality, as the sets obtained
by applying these approaches are non-contiguous.

Procedure 3 Weight-based Partitioning of N-dimensional
Non-Rectangular Non-Uniform Iteration Spaces

Input : An N-dimensional non-uniform iteration space,
Γ and P processors.

Output : An optimal partitioning of the iteration space.

/* Compute the partial weight W (x) of Γ */

W (x) =

∫ x

1

ρ1di1

∫ u2

`2

ρ2di2 . . .

∫ un

`n

ρndin

/* Compute the total weight W of Γ */

W =

∫ N

1

ρ1di1

∫ u2

`2

ρ2di2 . . .

∫ un

`n

ρndin (15)

/* Determine the kth breakpoint, γk */

W (γk) =
k

P
×W (16)

/* Determine the loop bounds */

lbk = dγk−1e (17)

ubk = bγkc (18)

where, lb and ub are the lower and upper bounds of an
elementary set.

127

Next, we determine the lower and upper bounds of the
loops corresponding to each set using equations 17 and 18
respectively. The algorithm is formally presented as Proce-
dure 3 on page . Let us examine our algorithm behavior
with the help of an example.

Example 2. Consider the loop nest shown in Figure 6(a).
The projection of the corresponding iteration space on i1-i2
and i1-i3 planes is shown in Figures 6(b) and 6(c) respec-
tively. First, we compute a partial weight of the convex poly-
tope as a function of the outermost index variable. Next, we
compute the total weight of the convex polytope correspond-
ing to the iteration space Γ. The partial and total weights
are given by:

W (x) =

∫ x

1

di

∫ i1+1

1

1

i1
dj

∫ N

1

dk

= (N − 1)(x− 1)

W =

∫ N

1

di

∫ i1+1

1

1

i1
dj

∫ N

1

dk = 25

Next, assuming 3 processors, we determine the breakpoints
for the iteration space.

(γ1 − 1)(N − 1) =
1

3
W ⇒ γ1 = 2.67

(γ2 − 1)(N − 1) =
2

3
W ⇒ γ2 = 4.33

The new loop bounds of the sets thus obtained are given by:

(lb1, ub1) = (1, 2), (lb2, ub2) = (3, 4)

(lb3, ub3) = (5, 6)

So far, we have only considered perfect loop nests. How-
ever, our algorithm can be applied to multiway loop nests7 in
a similar fashion. Detailed discussion of the above is outside
the scope of this paper.

8. THE ALGORITHM
In this section we present a unified algorithm for iteration

space (with variable densities) partitioning. In Algorithm 1,
the function InvariantIteratorExists determines if there ex-
ists an invariant iterator(s) in Γ using Procedure 1. If an
invariant iterator(s) exists then we partition Γ uniformly
along an axis corresponding to the outermost loop using
Procedure 2. If an invariant iterator does not exist, then we
employ a weight-based partitioning approach, as discussed
in Section 7, for partitioning Γ.

9. CASE STUDY
As a case study to illustrate our algorithm, we consider

The Sieve of Eratosthenes (TSoE). TSoE identifies all prime

7A loop is multiway nested if there are two or more loops
at the same level[14]. Note that the loops may be nested
themselves.

Algorithm 1 Partitioning N-dimensional Iteration Spaces
with Variable Densities

Input : An N-dimensional iteration space Γ and P pro-
cessors.

Output : Partitioned iteration space.

if InvariantIteratorExists then
Partition Γ uniformly across P processors using Proce-
dure 2

else
Partition Γ using Procedure 3

end if

numbers up to a given number N . The algorithm first “un-
marks” all the integers from 2 to N . The first unmarked
integer, 2, is the first prime. Then, it marks every multiple
of this prime. Subsequently, it repeatedly takes the next un-
marked integer as the next prime and marks every multiple
of that prime.

Figure 7 a) shows the kernel of TSoE. The corresponding
iteration space is shown in Figure 7 b). Let us consider par-
titioning of the iteration space amongst 2 processors. The
matrices L, U, S for the loop nest shown in Figure 7 a) are
given as follows :[

1 0

−1 1

] [
1 0

0 1

] [
0 0

2 1

]

First, we check the existence of an invariant iterator. For
the first iterator, i.e., loop index i, we note that equations
given in (10) are not applicable. The augmented matrix of
the first iterator is given by:

A =

 1 1

1 0

0 −2


From the above, we note that the system of equations rep-
resented by A is inconsistent as α 6= 0 (see the third row of
A). Therefore, the first iterator is not invariant. Similarly,
we observe that the second iterator is also not invariant as
it does not satisfy the equations given in (10). Therefore,
we employ our geometric approach, described in Section 7,
for partitioning the iteration space shown in Figure 7 b).
First, we determine a partial weight of the convex polytope
corresponding to the iteration space of Figure 7 b).

W (x) =

∫ x

3

di

∫ N

i

2i dj

= 1000x2 − 2

3
x3 − 8982

Next, we determine the total weight of the convex polytope
using Equation 15.

W =

∫ N
′

3

di

∫ N

i

2i dj =

∫ N
′

3

2i(N − i)di

= 993172.67

Next, we determine the breakpoint for the partition.

128

doall i = 3, N’, 2

doall j = i, N, 2*i

LOOP BODY

end doall

end doall

a)

N’
i

3

j

N

b)

S1: doall i = 3, 22, 2

doall j = i, N, 2*i

LOOP BODY

end doall

end doall

S2: doall i = 22, N’, 2

doall j = i, N, 2*i

LOOP BODY

end doall

end doall

c)

Figure 7: A non-uniform iteration space. (N = 1000, N
′
= d
√

Ne)

1000γ2
1 −

2

3
γ3
1 − 8982 =

1

2
993172.67

⇒ γ1 ≈ 22.655

The new loop bounds of the sets thus obtained are given by
:

(lb1, ub1) = (3, 22), (lb2, ub2) = (23, 32)

Loops S1 and S2 in Figure 7 c) correspond to the two sets
of the partitioned iteration space.

10. PREVIOUS WORK
It has been shown that loops without dependences among

their iterations (traditionally known as DOALLs [5]) account
for greatest amount of parallelism in numerical and scien-
tific applications [15]. In addition, several compiler tech-
niques [16] have been proposed to convert loops with inter-
iteration dependences to DOALL loops for parallel execution.
However, once this is done, the problem is how to partition
the iteration space of the DOALLs across a given number of
processors so as to minimize execution time and optimize
processor utilization.

In [17], Anik et al. discuss several models for parallel exe-
cution of nested loops. The simplest model is to execute the
outermost loop in parallel and all the inner parallel loops se-
quentially. Another model involves collapsing [18] the nested
loops into a single loop using compiler transformations. In
another model, the inner loops are executed in parallel and
a blocking barrier is used at the end of each parallel loop,
which prevents the overlapping between execution of inner
loops. Similarly, loop interchanging [16, 19] may be used to
switch parallel loops to the outer position when the origi-
nal outer loop is not parallel. However, in case of a nest of
DOALLs, loop interchange is redundant w.r.t. parallel execu-
tion of the loop nest.

Techniques such as loop concurrentization [20] partition
the set of iterations of a loop and assigns a different subset
to each processor. Irigoin and Triolet’s supernode partition-
ing approach [21] divides an iteration space of a loop nest

into nodes with several goals : vector computation within
a node, loop tiling for data reuse and parallelism between
tiles. In [4], Sakellariou discusses the necessary condition
for partitioning a loop nest across different processors with
equal workload. Based on whether the iterations are dis-
tributed among processors before or during run-time, loop
partitioning can be classified as static or dynamic. In static
partitioning, each processor is assigned a fixed number of
iterations such that the distribution among processors is as
even as possible. The most common approaches for static
partitioning are:

❐ Cyclic partitioning (CP) : It distributes the iterations
in a round robin fashion; thus given n iterations and p
processors, processor i executes iterations i + kp, k =
0, 1, . . . , n/p. However, this approach may deteriorate
performance due to false sharing.8

❐ Block partitioning (BP) [22] : This approach maps
contiguous iterations onto processors in a consecutive
manner; thus a processor i executes iterations in/p+1
through (i+1)n/p. The efficiency of BP is governed by
the block size. Assuming zero scheduling overhead, the
optimal block size is k = dn/pe number of iterations.

❐ Balanced chunk scheduling (BCS) [23] : BCS attempts
to distribute the total number of iterations of the loop
body among processors as evenly as possible as op-
posed to cyclic and block partitioning which distribute
only the iterations of the outer loop. An example of
the latter is shown in Appendix B of [4]. However,
Haghighat and Polychronopolous restrict their discus-
sion to double loops.

❐ Canonical loop partitioning (CLP) [4] : Sakellariou in-
troduce a notion of canonical loop nest for loop par-
titioning. CLP assumes that the outermost loop can
be equi-partitioned into 2pm−1 parts, where p is the

8False sharing occurs when multiple processors access
data in the same cache line and one of the accesses is a
‘write’, thus causing the cache line to be exchanged between
processors even though the processors access different parts
of it.

129

number of processors and m is the depth of a loop
nest. However, this may generate empty sets which
leads to load imbalance. Moreover, CLP generates a
fragmented partition i.e. each individual set is a col-
lection of non-contiguous subsets. CLP employs an
enumeration-based approach to determine the total
number of index points in an iteration space. It re-
lies on loop normalization in the presence of non-unit
strides. However the introduction of floors and ceilings
renders this approach nonviable in practice (see Sec-
tion 7). Furthermore, determination of the set bound-
aries in CLP is very cumbersome.

Several other techniques have been proposed in [24, 25, 26]
for mapping affine loops on to multiple processors. However,
these techniques focus primarily on communication mini-
mization between the processors.

11. CONCLUSIONS
In this paper we presented an algorithm for partition-

ing N-dimensional iteration spaces with variable densities.
First, we presented a mathematical formulation for detect-
ing invariant iterators in a loop nest with non-constant strides.
Assuming an invariant iterator exists, we presented an ap-
proach to partition the iteration space to achieve perfect
load balance. Otherwise, unlike previous approaches [3, 4],
we follow a geometric approach for partitioning an iteration
space. The partition thus obtained consists of contiguous
sets, which facilitates exploitation of data locality. As fu-
ture work, we would like to extend our approach to partition
iteration spaces at run-time.

12. ACKNOWLEDGMENTS
The first author would like to thank Siddharth Choudhuri

and Mohit Singh for their valueable feedback.

13. REFERENCES

[1] C. Polychronopoulos, D. J. Kuck, and D. A. Padua.
Execution of parallel loops on parallel processor
systems. In Proceedings of the 1986 International
Conference on Parallel Processing, pages 519–527,
August 1986.

[2] E. H. D’Hollander. Partitioning and labeling of loops
by unimodular transformations. IEEE Transactions on
Parallel and Distributed Systems, 3(4):465–476, 1992.

[3] M. R. Haghighat and Constantine D.
Polychronopoulos. Symbolic analysis for parallelizing
compilers. ACM Transactions on Programming
Languages and Systems, 18(4):477–518, July 1996.

[4] R. Sakellariou. On the Quest for Perfect Load Balance
in Loop-Based Parallel Computations. PhD thesis,
Department of Computer Science, University of
Manchester, October 1996.

[5] S. Lundstrom and G. Barnes. A controllable MIMD
architectures. In Proceedings of the 1980 International
Conference on Parallel Processing, St. Charles, IL,
August 1980.

[6] J. Foley, A. van Dam, S. Feiner, and J. Hughes.
Computer Graphics: Principles and Practice.
Addison-Wesley, 2nd edition in C edition, 1990.

[7] P. Anninos. Computational cosmology: From the early
universe to the large scale structure. In Living Reviews
in Relativity 4, 2001.

[8] M. O’Boyle and G. A. Hedayat. Load balancing of
parallel affine loops by unimodular transformations.
Technical Report UMCS-92-1-1, Department of
Computer Science, University of Manchester, January
1992.

[9] M. Haghighat and C. Polychronopoulos. Symbolic
analysis: A basis for parallelization, optimization, and
scheduling of programs. In Proceedings of the Sixth
Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, August 1993.

[10] U. Banerjee. A theory of loop permutations. In
D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing. The
MIT Press, 1990.

[11] U. Banerjee. Loop Transformation for Restructuring
Compilers. Kluwer Academic Publishers, Boston, MA,
1993.

[12] A. Kejariwal, P. D’Alberto, A. Nicolau, and C. D.
Polychronopoulos. A geometric approach for
partitioning N-dimensional non-rectangular iteration
spaces. In Proceedings of the 17th International
Workshop on Languages and Compilers for Parallel
Computing, West Lafayette, IN, 2004.

[13] C. D. Meyer. Matrix Analysis and Applied Linear
Algebra. SIAM, Philadelphia, PA, 2000.

[14] C. Polychronopoulos. Loop coalescing: A compiler
transformation for parallel machines. In S. Sahni,
editor, Proceedings of the 1987 International
Conference on Parallel Processing. Pennsylvania State
University Press, August 1987.

[15] D. Kuck et al. The effects of program restructuring,
algorithm change and architecture choice on program
performance. In Proceedings of the 1984 International
Conference on Parallel Processing, August 1984.

[16] M. J. Wolfe. Optimizing Supercompilers for
Supercomputers. The MIT Press, Cambridge, MA,
1989.

[17] Sadun Anik and Wen mei W. Hwu. Executing nested
parallel loops on shared-memory multiprocessors. In
Proceedings of the 1992 International Conference on
Parallel Processing, pages III:241–244, Boca Raton,
Florida, August 1992.

[18] M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, Redwood City, CA, 1996.

[19] M. J. Wolfe. Advanced loop interchanging. In
Proceedings of the 1986 International Conference on
Parallel Processing, St. Charles, IL, August 1986.

[20] D. A. Padua and M. J. Wolfe. Advanced compiler
optimizations for supercomputers. Communications of
the ACM, 29(12):1184–1201, December 1986.

[21] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the Fifteenth Annual ACM Symposium
on the Principles of Programming Languages, San
Diego, CA, January 1988.

[22] C. P. Kruskal and A. Weiss. Allocating independent
subtasks on parallel processors. IEEE Transactions on
Software Engineering, 11(10):1001–1016, 1985.

[23] M. Haghighat and C. Polychronopoulos. Symbolic

130

program analysis and optimization for parallelizing
compilers. In Proceedings of the Fifth Workshop on
Languages and Compilers for Parallel Computing,
New Haven, CT, August 1992.

[24] N. Koziris, G. Papakonstantinou, and P. Tsanakas.
Mapping nested loops onto distributed memory
multiprocessors. In International Conference on
Parallel and Distributed Systems, pages 35–43,
December 1997.

[25] M. Dion and Y. Robert. Mapping affine loop nests:
new results. In HPCN Europe 1995, pages 184–189,
1995.

[26] M. Dion and Y. Robert. Mapping affine loop nests.
Parallel Computing, 22(10):1373–1397, 1996.

131

	1 Introduction
	2 Terminology
	3 General Approach
	4 Problem Statement
	5 Invariant Iterator Detection in Non-Uniform Iteration Spaces
	5.1 Necessary Conditions
	5.2 Unimodular Loop Transformations
	5.3 Multiple Invariant Iterators

	6 Linearization
	7 Weight-based Partitioning
	8 The Algorithm
	9 Case Study
	10 Previous Work
	11 Conclusions
	12 Acknowledgments
	13 REFERENCES -5pt

