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Abstract

The SpecC Language Reference Manual defines the syntax and the semantics of the SpecC
language.
The SpecC language is defined as extension of the ANSI-C programming language.
This document describes the SpecC constructs that were added to the ANSI-C language.
For each SpecC construct, its purpose, its syntax, and its semantics are defined. In
addition, each SpecC construct is illustrated by an example. In the Appendix, the full
SpecC grammar is included by use of an Extended Backus-Naur-Form (EBNF) notation.
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Chapter 1

Introduction

The SpecC language is a formal notation intended for the specification and design of digital
embedded systems including hardware and software. Built on top of the ANSI-C pro-
gramming language, the SpecC language supports concepts essential for embedded sys-
tems design, including behavioral and structural hierarchy, concurrency, communication,
synchronization, state transitions, exception handling and timing.

This document defines the syntax and the semantics of the SpecC language. Since the
SpecC language is a true superset of the ANSI-C programming language, this document
only covers the language constructs not found in ANSI-C. For detailed information about
the syntax and semantics of ANSI-C, please refer to the ISO Standard ISO/IEC 9899 [1].

Chapter 2 describes the foundation, the types, the classes, the statements, and other
constructs of the SpecC language. In addition, the complete grammar of the SpecC language
is included in Appendix A.

1.1 Brief history of the SpecC language

The first version of the SpecC language was developed in 1997 at the University of Cali-
fornia, Irvine (UCI) [2]. In the following years, research on system design with the SpecC
language was intensified at UCI and early tools including a SpecC compiler and a simulator
were implemented. Highlights of this research have been published in the first book on
SpecC, "SpecC: Specification Language and Methodology” [3].

3
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At the same time, the SpecC language gained world-wide acceptance in industry, reach-
ing a major milestone in the SpecC history, the foundation of the SpecC Open Technology
Consortium (STOC) in 1999 [4]. STOC was founded with the goal of promoting the SpecC
idea by standardizing the SpecC language and establishing design guidelines, industry col-
laboration and interoperability among design tools, based on SpecC.

This document defines version 1.0 of the SpecC language standard approved by STOC.

1.2 Contributors
The contributors to this SpecC Language Reference Manual are, in alphabetical order:

Rainer Dbmer
Daniel Gajski
Andreas Gerstlauer
Shuging Zhao

Jianwen Zhu



Chapter 2

SpecC Language

2.1 ANSI-C Basis

The SpecC language is based on the ANSI-C programming language as defined in 1SO
Standard ISO/IEC 9899 [1].

Unless specified otherwise in this document, the syntax and semantic rules specified for
ANSI-C are also valid for SpecC. Also, the SpecC constructs described in this document are
intended as straightforward extensions, to which the usual ANSI-C semantics are applied,
whenever possible.

2.1.1 Array assignment

In contrast to ANSI-C, the SpecC language allows the assignment of variables of array type.
Syntactically, such array assignment is specified in the same manner as basic variables are
assigned.

The assignment of a whole array is equivalent to the assignment of every element in the
source array to the element with the same index (or indices in case of multi-dimensional
arrays) in the target array.

For array assignments, the target and source arrays must have the same type and the
same dimensions. As the result of an array assignment, the target array will have the same
contents as the source array.



Example:

1int
2

3 double

4
5

a[10

1,

b[10];

c[3][3],
d(3][3];

6 void f(void)

74
8 a
9 c

10 }

CHAPTER 2.

/l array assignment
[/l array assignment

2.1.2 Variable initialization

SPECC LANGUAGE

In contrast to ANSI-C, the SpecC language initializes every variable that is statically de-
clared in the SpecC description. Unless a static variable has an explicit initializer specified
by the user, the variable is implicitly initialized with zero (while it would be uninitialized

in ANSI-C).

Example:

1int

2

3 char
4 float
5 void
6 long
7

a
b
c;
d;
*€e
f[2];

8 void f(void)

9{
10
11
12
13 ...
14}

int

static

int

O 1

/1
/1
/1
/1
/1
/1

explicitly initialized to
implicitly initialized to
implicitly initialized to
implicitly initialized to
implicitly initialized to
implicitly initialized to

/! uninitialized

// initialized to O

0
0

'\ 000"
0. of

0 (NULL)
{ol,ol}
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2.2 SpecC Types

2.2.1 Boolean Type

Purpose: Explicit support of the Boolean data type

Synopsis:

basictype_.name =
| bool
constant =

| false
| true

Semantics:
(a) A Boolean value, of typbool, can have only one of two valuesue or false
(b) It can be used to express the result of logical operations (e, g, ==, etc.).

(c) If converted (implicitly or explicitly) to an integer typérue becomes 1 anéhlse
becomes 0.

Example:

1 bool f(bool bl, int a)

2 {
3 bool b2;

4

5 if (bl == true)

6 { b2 = bl || (a> 0);
7 }

8 else

9 { b2 =1hb1;

10

11 return (b2);
12 }
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Notes:
i. A boolean type cannot k&gnedor unsigned

ii. The typeboolin SpecC is equivalent to the tym@ol in C++.
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2.2.2 Long Long Type

Purpose: Explicit support of a high precision integer data type

Synopsis:

decintegerll {decintegen[IL][IL]
octintegetcll {octinteger}[IL][IL]
hexintegerll {hexintegen[IL][IL]

decintegerull {decintegert([uUI[IL][IL] |[IL][IL][uU])
octintegerull {octinteger}([uUI[IL][IL] |[IL][IL][uU])
hexintegerull {hexinteger([uU][IL][IL] |[IL][IL][uU])

basictype_.name =
int
| long

basictype.specifier =
basictype_.name
| basictype_specifier basictype.name

constant =

| integer

Semantics:

(&) An integer literal of typesigned long longis specified with a suffiXl , where the
suffix is case-insensitive.

(b) An integer literal of typaunsigned long longis specified with a suffixill  or llu
where the suffix is case-insensitive.

(c) Thelong longtype is an integer type with high precision. Its precision is equal to or
higher than the precision of theng int type.

(d) The usual promotion and conversion rules apply.
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Example:
1 bool Boolean ; /I 1 bit
2 /I [ false=0, true=1]
3 char Character ; // 8 bit, signed
4 Il [—-128, 127]
5 unsigned char UCharacter; // 8 bit, unsigned
6 /1 [0, 255]
7 short Short; /l 16 bit, signed
8 Il [— 32768, 32767]
9 unsigned short UShort; // 16 bit, unsigned
10 I/l [0, 65535]
11 int Integer ; // 32 bit, signed
12 Il [— 2147483648, 2147483647]
13 unsigned int Ulnteger ; [/l 32 bit, unsigned
14 /I [0, 4294967295]
15 long Long; // 32 bit, signed
16 Il [— 2147483648, 2147483647]
17 unsigned long Ulong; [/l 32 bit, unsigned
18 /I [0, 4294967295]
19 long long LongLong; /I 64 bit, signed
20 Il [—9223372036854775808,9223372036854775807]
21 unsigned long long ULongLong;// 64 bit, unsigned
22 /I [0, 1844674073709551615]
23}
Notes:

i. The example shows the standard integral types of the SpecC language and their typi-
cal storage sizes and value ranges.
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2.2.3 Bitvector Type

Purpose: Explicit support for bitvectors of arbitrary length

Synopsis:

bindigit [01]

binary {bindigit}+

bitvector {binary}[bB]

bitvector.u {binary}([uU][bB] |[ bB][uU])

basictype_.name =

| bit '[' constantexpression ':' constanexpression ']’
| bit '[' constantexpression ']’

constant =

| bitvector
| bitvector.u

postfix_.expression =

| postfix_expression ’'[’ commaexpression ']’
| postfix_expression '[’ constanexpression '’
constantexpression ']’

concatexpression =
castexpression
| concatexpression '@ castexpression

Semantics:

(@) A bitvectorbit[l : r] represents an integral data type of arbitrary precision (length).
The length of a bitvector is determined by the difference of its left and right bounds:
length(bv) = abgle ft(bv) — right(bv) + 1).

(b) As a short-cut, the typleit[length is equivalent tdit]l : r], wherel = length— 1 and
r=0.
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(c) The left and right bound$andr, of a bitvector are specified at the time of declaration
and must be constant expressions evaluatable at compile time. The same applies to
length for the short declaration.

(d) A bitvector is eithesigned(default) orunsigned

(e) A bitvector can be used as any other integral type in expressions (for example, type
int is equivalent to typéit[sizeo{int) «8—1 : 0]).

(H) Implicit promotion from (nsigned int, (unsigned long, or (unsigned long long
to bitvector is performed when necessary.

(g) Automatic conversion (signed/unsigned extension or truncation) is supported as with
any other integral type.

(h) Bitvector constants are noted as a sequence of zeros and ones directly followed by a
suffix u or ub indicating the bitvector type (see the synopsis and example).

(i) In addition to all standard C operations, a concatenation operation, noted as @, and a
slicing operation, noted dib : rb], are supported (see lines 9 and 11 in the example).
Both operations can be applied to bitvectors as well as to any other integral type
(which will be treated as bitvector of suitable length).

() A bit-access operation, noted g% (same as the array access operator), is provided
as a short-hand for accessing a single [bit b]) of a bitvector. The result type of this
operation isunsigned bitf0 : 0.

(k) The slicing operation requires the left and right bounds to be constant expressions
which can be evaluated at compile time. This restriction does not apply to the single

bit access.
Example:
1 typedef bit[3:0] nibble_type ;
2 nibble_type a;
3 unsigned bit[15:0] c;

4
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5 void f(nibble_type b, bit[16:1] d)

6 {
7 a = 1101B; /1 bitvector assignment
8 c = 1110001111100011ub;
9 c[7:4] = a; [/l bitslice assignment
10
11 b = c[2:5]; [/l bitvector slicing
12 c[0] = c[16]; /! single bit access
13 d=a@b @ c[0:15]; I/l bitvector concatenation
14 b += 42 + ax 12; [/l arithmetic operations
15 d = "(b | 10101010B); /!l logic operations
16 }
Notes:

i. A bitvector can be thought of as a parameterized type whose bounds are defined with
the name of the type.

ii. The length of any bitvector expression is always known at compile time. This is
important for synthesis.

iii. Typically, no explicit type casting is necessary for operations on bitvectors.

iv. Special mapping rules apply to ports of bitvector type, see Section 2.3.5.
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2.2.4 Long Double Type

Purpose: Explicit support of a high precision floating point data type

Synopsis:

digit [0-9]

integer {digit }+

exponent [eE][+]?{integer}
fraction {integer}

floatl {integer}”.” {fraction}?({ exponent)?
float2 "." {fraction}({exponent)?
float3 {integer}{exponent
floating {floatl}|{float2}|{float3}
float_f {floating }[fF]

float_I {floating }[IL]

basictype_.name =
| long

| double

basictype_specifier =
basictype_.name
| basictype_specifier basictype.name

constant =

| floating

Semantics:

() Afloating point literal can be attached the suffixspecifying it as typédong double
The suffix is case-insensitive.

(b) Thelong doubletype is a floating point type with high precision. Its precision is
equal to or higher than the precision of heuble type.

(c) The usual promotion and conversion rules apply.
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Example:
1 float Float ; [/l 32 bit
2 double Double; I/l 64 bit
3long double LongDouble; // 96 bit
4}

Notes:

i. The example shows the standard floating point types of the SpecC language and their
typical storage sizes.

ii. The typelong doublein SpecC is equivalent to the tyjpeng doublein C++.
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2.2.5 Event Type

CHAPTER 2. SPECC LANGUAGE

Purpose: Events serve as a mechanism for synchronization and exception handling

Synopsis:

basictype_.name =

| event

wait_statement =

wait pareneventlist

notify_statement =

notify pareneventlist
| notifyone pareneventlist

Semantics:

(&) The typeeventis a special type that enables SpecC to support exception handling

(b) An event doesothave a value. Therefore, an event must not be used in any expres-

(c) Events can only be used with thait andnotify statements (see the example and

and synchronization of concurrently executing behaviors.

sion.

Section 2.4.5), or with they -trap-interrupt construct described in Section 2.4.6.

Example:

1int d;

2 event e;

3

4 void send(int x)
5 {

6 d = x;

7 notify e;

8}

9

10 int receive (void)
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11 {

12 wait e;

13 return (d);
14}

Notes:

17
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2.2.6 Time Type

Purpose: Specification of simulation time

Synopsis:

waitfor_statement =
waitfor time ’;’

constraint =
range '(’ any_name ;' anyname ’;’ timeopt ’;' time_opt ')’ ';’

time_opt =
<nothing>
| time
time =
constantexpression

Semantics:

(&) The time type represents the type of the simulation time. Time is not an explicit type.
It is an implementation dependent integral type (for exampisjgned long long.

(b) The time type is used only with thveaitfor statement and withange statements in
thedo-timing construct (see Section 2.4.7).

Example:
1 event SystemClock ;
2 const long long CycleTime = 10; // 10ns = 100MHz
3
4 void ClockDriver (void)
5 {
6 while (true)
7 { notify SystemClock;
8 waitfor (CycleTime);
9 }
10 }

Notes:
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2.3 SpecC Classes

2.3.1 Behavior Class

Purpose: Active object for specification of behavior; container for computation

Synopsis:

behaviordeclaration =
behaviorspecifier portlist_.opt implementsinterfaceopt ’;’

behaviordefinition =
behaviorspecifier portlist_.opt implementsinterfaceopt
"{’ internal_definition_list_opt '} ’;’

behaviorspecifier =
behavior identifier

implementsinterfaceopt =

<nothing>

| implements interfacelist
interfacelist =

interfacename

| interfacelist ',” interface.-name

primary_expression =

| this

Semantics:

(@) In SpecC, the functionality of a system is described by a hierarchical network of
behaviors. Abehavior declaration is a class declaration that consists of an optional

set of ports and an optional set of implemented interfaces.

(b) A behavior definition contains a body that consists of an optional set of instantiations,

an optional set of local variables and methods, and a mandatairy method.

(c) Through its ports, a behavior can communicate with other behaviors. This is de-

scribed in detail in Section 2.3.4.
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(d) A behavior can implement a list of interfaces, as described with the channel construct
in Section 2.3.2.

(e) A behavior that implements an interface, can refer back to itself by use tfithe
keyword. this can only be used inside a behavior body and the typinisfis the
behavior type.this can be passed as an argument to a function or method. In this
case, the type of the function of method parameter must be the interface type imple-
memented by the behavior.

(N All methods declared in a behavior are private, exceptién method and methods
implemented for interfaces.

(9) A behavior is called a composite behavior if it contains instantiations of other behav-
iors (as described in Section 2.3.5). Otherwise, it is called a leaf behavior.

(h) Themain method of a behavior is called whenever an instantiated behavior is exe-
cuted. Also, the completion of thmain method determines the completion of the
execution of the behavior.

(i) A behavior is compatible with another behavior if the number and the types of the
behavior ports and the implemented interfaces match.

() A behavior definition requires that all interfaces implemented by the behavior are
defined (have a body).

(k) A SpecC program starts with the execution of thain method of theMain behav-
ior.

Example:

1 behavior B (in int pl, out int p2)

2{

3 int a, b;

4

5 int f(int x)

6 {

7 return (x x X);
8 }
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9

10 void main(void)
11 {
12 a
13 b
14 p2 =
15 }

16 };

// read data from input port
/!l compute
; // output to output port

)
o R
[
N

Notes:

i. The example shows a simple leaf behavior. For typical composite behaviors, please
refer to Sections 2.4.1to0 2.4.6.

ii. Local variables and methods, asb, and f in the example, can be used to conve-
niently program the functionality of a behavior.

ii. Please note that, althoughain andMain are recognized by the SpecC compiler as
names denoting the start of the program and start of a behavior, these names are not
keywords of the SpecC language.

iv. Declarations of behaviors are sufficient to determine compatibility of the behaviors.
Full definitions are not needed. This is important for reuse of IP and "plug-and-play”.

v. The behavioMain usually is a composite behavior containing the testbench for the
design as well as the instantiation of the actual design specification.

vi. Behaviors that implement interfaces are rarely used. Implemented interfaces for be-
haviors are only useful for communication schemes that involve call-backs. For call-
back communication, the channel implementing the communication protocol, can
call back methods provided by the behavior that called the channel. In order to en-
able the channel to call-back the behavior, the channel needs to have a "pointer” to
the behavior. This pointer is passed to the communication function as an argument
of interface type. The argument is set by the behavior implementing the call-back by
use of thethis keyword.

vii. Note that the type othis in SpecC is a behavior, not a pointer.
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2.3.2 Channel Class

Purpose: Passive object for specification of protocols; container for communication

Synopsis:

channeldeclaration =
channelspecifier portlist_opt implementsinterfaceopt ’;’

channeldefinition =
channelspecifier portlist_.opt implementsinterfaceopt
"{’ internal_definition_list_opt '}’ ’;’

channelspecifier =
channel identifier

implementsinterfaceopt =
<nothing>
| implements interfacelist

interfacelist =

interfacename
| interfacelist ’,’ interface_.name

Semantics:

(&) Communication between behaviors should be encapsulated in channgianiel
declaration is a class declaration that consists of an optional set of ports and an op-
tional set of implemented interfaces.

(b) A channel definition contains the channels body which consists of an optional list of
instantiations and an optional set of local variables and methods.

(c) A channel can include a list of ports through which it can communicate with other
channels or behaviors. Ports are described in detail in Section 2.3.4.

(d) A channel is called a hierarchical channel if it contains instantiations of other chan-
nels (as described in Section 2.3.5).

(e) A channelis called a wrapper if it instantiates behaviors.
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() Variables and methods defined in a channel cannot be accessed from the outside (in

(9)

(h)

contrast to members of structures), unless through implemented interfaces.

By use of implemented interfaces (see Section 2.3.3), a subset of the internal methods
can be made accessable.

Theimplementskeyword declares the list of interfaces that are implemented by the
channel.

(i) All the methods of the implemented interfaces must be defined inside the channel. A

channel definition (a channel with body) requires that all implemented interfaces are
definitions (have a body).

(0 A channel is compatible with another channel if the number and the types of the

(k)

channel ports, and the list of the implemented interfaces match.

Methods encapsulated in channels are executed in non-preemptive (atomic) manner.
A thread executing a channel method is guaranteed not to be interrupted by other
threads, unless it is waiting for an event (&ta@t statement) or waiting for simulation

time increase (at avaitfor statement). Also, atomic execution does not apply to
functions or methods called from a channel method, unless a method in a channel
(that is atomic itself) is called.

Example:
1 interface |I;
2
3 channel C (void) implements |
44
5 int data;
6
7 void send(int x)
8 {
9 data = x;
10 }
11
12 int receive (void)
13 {
14 return (data);
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15 }
16 };

Notes:

i. The example above shows a simple channel providing a simple communication pro-
tocol via an encapsulated integer variable.
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2.3.3 Interface Class

Purpose: Link between behaviors and channels; support for reuse of IP and "plug-and-
playli

Synopsis:

interfacedeclaration =
interfacespecifier ’;’

interfacedefinition =
interface.specifier '{’ internal_declarationlist_.opt '}’ ;'

interfacespecifier =
interface identifier

internalLdeclarationlist_opt =
<nothing>
| internaldeclaration
| internal.declarationlist internalLdeclaration

internalLdeclaration =
declaration
| note_definition

Semantics:

(@) Aninterface is a class that consists of a set of method declarations. The method def-
initions for these declarations are supplied by a channel or behavidntpkments
the interface.

(b) A behavior or channel can have ports of interface type. Via such an interface port,
the behavior or channel can call the communication methods declared in that inter-
face. The actual channel or behavior performing these methods is determined by the
mapping of the interface port.

(c) For each interface, multiple channels can provide an implementation of the declared
communication methods. However, each channel must provide all methods declared
in the interface.
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(d) Any channel implementing a specific interface can be connected to a behavior or
channel port of the interface type when the behavior of channel is instantiated (see
Section 2.3.5).

Example:

linterface |

2 {
3 void send(int x);

4 int receive (void);
51}

6

7 interface 14B

8 {

9 int getword (void);
10 void put.word (int d);
11 };

12

13 interface 14C

14 {

15 void sendblock (14B b);
16 void receiveblock (14B b);
17 };

Notes:

i. Interfaces can be used to connect behaviors with channels in a way so that both, the
behaviors and the channels, are easily interchangable with compatible components

("plug-and-play™).

ii. The example shows thiaterface | which declares theendandreceivemethods for
the channeC in the example from Section 2.3.2.

iii. The interfaced4C and14B in the example can be used to define a communication
scheme involving call-backs. Assuming, there is a behaBionplementing inter-
facel4B and a channeC implementing interfacé4C, the communication protocol
is initiated by the behavioB with a call tosendblock or receiveblock where the
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behaviorB supplies itself as an argument by use of the keywhisl These meth-
ods, implemented in the chann@] can then call-back the methodst word and
put_word in order to get or store the data word by word.
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2.3.4 Ports

Purpose: Specification of connectors of behaviors and channels

Synopsis:
port_list_opt =
<nothing>
)
| (" port_list ')’
port_list =
port.declaration

| port.list ’,” port_declaration

port_.declaration =
port_.direction parametedeclaration
| interfaceparameter

port_direction =
<nothing>
| in
| out
| inout

interface.parameter =
interfacename
| interfacename identifier

Semantics:

(a) Behavior and channel classes can have a list of ports through which they communi-
cate. These ports are defined with the definition of the behavior or channel they are
attached to (exactly like function parameters are defined with the function definition).

(b) A port can be one of two types: standard or interface type. A standard type port can
be of any SpecC type, but includes the ports direction as an additional type modifier.

(c) A port direction can bén, out, or inout, and is handled as an access restriction to
that port.
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(d) Anin port allows only read access from inside the class (write access from the out-
side).

(e) Anout port only allows write access from the inside (read access from the outside).
(H An inout port can be accessed bi-directionally.

(g) For ports of event type, read access isviot on the event, write access isnotify
the event.

(h) As a shortcut, a port without any direction modifier is considereithaut port.

() On the other hand, an interface type port enables access to the methods of that in-
terface class. Via such a port, a behavior or a channel can call any of the methods
declared in the interface.

Example:

1 interface |I;

2

3 behavior Bl (in int pl, out int p2, in event clk);
4

5 behavior B2 (1 i, inout event clk);

6

7 channel C (inout bool f) implements I;

Notes:
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2.3.5 Class Instantiation

Purpose: Specification of structural hierarchy and connectivity among behaviors and
channels

Synopsis:

instancedeclaringlist =
behavioror_.channel instancealeclarator
| instancedeclaringlist ’,” instance.declarator

instancedeclarator =
identifier portmappinglist_opt

behavioror_.channel =
behaviotname
| channelname

port_mappinglist_opt =
<nothing>
| (" port_mappinglist ')’

port_mappinglist =
port-mappingopt
| port_-mappinglist ',” port_.mappingopt

port_mappingopt =
<nothing>
| port.mapping

port.mapping =
bit_slice
| portmapping '@ bitslice

bit_slice =
constant
| identifier
| identifier [’ constantexpression ’':’ constanexpression ']’

| identifier '[' constantexpression ']’

Semantics:
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(&) SpecC supports structural hierarchy by allowing child behaviors and child channels
to be instantiated as components inside compound behaviors and channels. The in-
stantiation of behaviors and channels also defines the connectivity of the instantiated
components.

(b) A class instantiation defines connections to ports by use of a port mapping list. The
port mapping list is left out if the class has no ports.

(c) In the port mapping list, each port of the instantiated class is mapped onto a corre-
sponding constant, variable or port of compatible type, or is left open.

(d) A port mapping to a constant is only allowed forports.
(e) An open port mapping is only allowed fout ports.

() Ports of interface type must be mapped onto a channel or behavior that implements
the interface, or another port of the same type.

(9) The port type must match the type of the mapped constant, variable or port, in the
same way as the types of arguments to a function call must match the types of the
function parameters.

(h) As a special case, a port of bitvector type can be connected to a list of concatenated
bitslices. In this case the connection restrictions listed above apply accordingly for
each single bit of the bitvector.

(i) Concatenation and bit slicing must not be used for port mappings of non-bitvector
type.

Example:

linterface I;
2 channel C (inout bool f) implements I;
3 behavior B1 (in int pl, out bit[7:0] p2, in event clk);

4 behavior B2 (I i, out event clk);
5 behavior Adder8(in bit [8] a, in bit[8] b, in bit[1] carry_in,
6 out bit[8] sum, out bit[1] carry_out);

7



32

CHAPTER 2. SPECC LANGUAGE

8 behavior B (bit[7:0] busl, bit[15:0] bus2)
9 {
10 bool b;
11 int i;
12 event e,
13 bit [8] a, b, sum;
14
15 C c(b); /! instantiate c¢ as channel C
16 B1 bl(i,busl,e),// instantiate bl and b3 as behavior Bl
17 b3(i,bus2[15:8], e);
18 B2 b2(c, e); /l instantiate b2 as behavior B2
19 Adder8 a8(a, b, 0b, // constant mapping
20 sum,
21 /xopenx/); [/ open mapping
22 };
Notes:

For bitvector ports, a port of typleit[15 : 0 can be mapped onto two adjacent busses
a[7 : Q@b[0 : 7], for example.

ii. The example above contains five class instantiations. In line 15, a chaisnektan-

tiated as type chann€l. Its only port of typebool is mapped to the Boolean variable
b.

ii. Lines 16 and 17 instantiate two behavidos andb3 (of type behavioB1) which are

both connected to integéand event. The second port dbl is connected tbusl
(the first port ofB), whereas the second port b8 is mapped to the higher bits of
bus2.

Inline 18,b2 is instantiated asB2 type behavior. Its ports are mapped to the channel
c (instantiated in line 15) and eveat

In line 19, an addeg8 is instantiated, adding andb to sum Its carry input is
connected to zero (hardwired to GND), its carry output is left open (unused).
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2.4 SpecC Statements

2.4.1 Sequential Execution

Purpose: Specification of sequential control flow

Synopsis:

statement =

labeledstatement

| compoundstatement

| expressionstatement

| selectionstatement
| iterationstatement
| jump_statement
| specc_statement

specc_statement =

concurrentstatement
| fsm_statement

| exceptionstatement
| timing_statement

| wait_statement

| waitfor_statement

| notify_statement

Semantics:

(a) Sequential execution of statements and behaviors is the same as in standard C. The
sequential control flow can be programmed using the standard C constrtiets-
else switch-case goto, for, while, etc.

Example:

1 behavior B;

2

3 behavior B_seq(void)
44

5 B bl, b2, b3;
6

7 void main(void)
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8 |
9 bl.main();
10 b2. main ();
11 b3. main ();
12}

13 };

Notes:

i. The example above shows the trivial case of sequential, unconditional execution of
three behaviordy1, b2 andb3.
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2.4.2 Parallel Execution

Purpose: Specification of concurrency

Synopsis:
concurrentstatement =

| par compoundstatement
compoundstatement =

l{l i) }l ' '

| "{’" declarationlist '}’

| "{’ statementlist '}’

| "{’" declarationlist statementlist '}’
Semantics:

(8 Concurrent execution of behaviors can be specified witpanestatement.

(b) Every statement in the compound statement block followingp#rekeyword forms
a new thread of control and is executed in parallel.

(c) When executed in the simulator, the order of execution for the parallel threads is
undefined (i.e. any order is possible, including interleaved execution).

(d) The execution of thpar statement completes when each thread of control has fin-
ished its execution.

(e) The statements in the compound statement block are limited to function cabsrto
methods of behaviors. No other statement is allowed.

Example:

1 behavior B;

2

3 behavior B_par (void)
44

5 B bl, b2, b3;
6
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7 void main(void)
8 |
9 par{ bl.main();
10 b2. main ();
11 b3. main ();
12 1
13}
14 };
Notes:

Note that in simulation, concurrent threads of control are probably not really executed

in parallel. Instead, the scheduler, which is part of the simulation run-time system,
always executes one thread at a time and decides when to suspend and when to resume
a thread depending on simulation time advance and synchronization points.

ii. The threads in gar statement may be executed by a thread implementation with

preemption. In other words, the order in which the simulator executes the threads,
or portions of the threads, is undefined and no assumption on the order should be
made. In case a specific order is desired, this must be specified by use of explicit
synchronization or communication.

iii. Concurrent execution is used in the behavioral hierarchy in order to execute instanti-

ated behaviors in parallel. This is shown in the example above where the behaviors
b1, b2 andb3 are running concurrently. The compound behaBigrar finishes when
b1, b2 andb3 have completed.
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2.4.3 Pipelined Execution

Purpose: Explicit support for specification of pipelining

Synopsis:

storageclass =

| piped
| storageclass piped

concurrentstatement =

| pipe compoundstatement
| pipe '(’ comma.expressionopt ’;’ commaexpressionopt
;' comma.expressionopt ')’ compoundstatement

compoundstatement =

)

| '{' declarationlist '}’

| "{’ statementlist "}’

| "{’ declarationlist statementlist '}’

Semantics:

(a) Pipelined execution, specified by tpge statement, is a special form of concur-

(b)

()

(d)

rent execution. As the threads inpar statement, all statements in the compound
statement block after thaipe keyword form a new thread of control.

The threads in gipe statement represent pipeline stages and are executed in
pipelined fashion. Each stage runs in parallel to the others, but works on different
sets of data.

In its first form, without the arguments, thpgpe statement never finishes (except
through abortion which is described in Section 2.4.6). In other words, the unspecified
condition is assumed to be constéalse, thus, the pipeline never reaches the flushing
state.

In its second form, the optional expressions specify the number of iterations the
pipeline is executed. The expressions are used in the same fashion as widh the
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statement. The first expression is is evaluated before the pipeline execution as an
initializer. The second expression is the termination condition that is evaluated at the
beginning of each iteration. If it evaluatesttae, the pipeline execution is contin-

ued, otherwise the pipeline is flushed. The third expression is evaluated once in each
iteration, typically used in order to increment the iteration counter.

(e) Each state in the pipeline is executed the same number of times.

(H In a pipeline withn stages, the-th behavior is executed for the first time after 1
iterations of the first stage.

(g) When the termination condition beconfatse then-th stage of the pipeline is exe-
cuted forn— 1 more iterations.

(h) In order to support buffered communication in pipelines,giped storage class can
be used for variables connecting pipeline stages. A variablepifid storage class
can be thought of as a variable with two storages. Write access always writes to the
first storage, read access reads from the second storage.

(i) For apiped variable, the contents of the first storage are shifted to the second storage
whenever a new iteration starts in the pipeline.

(i) The piped storage class can be specifietimes defining a variable with buffers.
This can be used to transfer data ometages synchronously with the pipeline.

(k) The statements in the compound statement block are limited to function cailésro
methods of behaviors. No other statement is allowed.

Example:

1 behavior B(in int pl, out int p2);

2

3 behavior B_pipe(in int a, out int b)
44

5 int X;

6 piped int y;

7 B bl(a, x),

8 b2(x, vy),
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9 b3(y, b);
10
11 void main(void)
12 { int i;
13 pipe(i=0;i<10;i++)
14 { bl.main();
15 b2.main ();
16 b3.main ();
17 }
18 }
19 };
Notes:

i. In the example, the behaviotsl, b2 andb3 form a pipeline of behaviors. In the
first iteration, onlybl is executed. Whehl finishes the second iteration starts and
bl andb2 are executed in parallel (as with thar statement). In the third iteration,
after bl andb2 have completedy3 is executed in parallel withl andb2. Every
following iteration is the same as the third iteration, until the termination condition
i < 10 becomes false. Theb2 andb3 are executed in parallel one more time, and
finally only b3 is executed once.

ii. In the examplexXx is a standard variable connectitd (pipeline stage 1) wittp2
(stage 2). This variable is not buffered, in other words, every access from stage 1 is
immediately visible in stage 2. On the other hand, varightennectingb2 andb3
is buffered. A result that is computed by behavi@rand stored ity is available for
processing by3 in the next iteration wheh?2 already produces new data.
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2.4.4 Finite State Machine Execution

Purpose: Explicit support for specification of finite state machines and state transitions

Synopsis:

fsm_statement =

fsm 1{1 i) }1

| fsm ’{’ transition_list '}’
transition.list =

transition
| transitionlist transition

transition =
identifier '’
| identifier ’:’ cond_branchlist
| identifier "7 " {" "}’
| identifier ':* ' {’ cond_branchlist '}’

cond.branchlist =
condbranch
| condbranchlist condbranch

condbranch =
if (" comma,expression ')’ goto identifier ’;’
| goto identifier ’;’
| if '(" commaexpression ')’ break ’;’
| break ’;’

Semantics:

(&) Finite State Machine (FSM) execution is a special form of sequential execution which
allows explicit specification of state transitions. Both Mealy and Moore type finite
state machines can be modeled with féra construct.

(b) As shown in the synopsis section above, fbra construct specifies a list of state
transitions where the states are instantiated behaviors.

(c) A state transition is a triplécurrent_state condition next state. Thecurrent state
and thenextstate take the form of labels and denote behavior instances. The
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conditionis an expression which has to be evaluatedrie for the transition to
become valid.

(d) Each behavior instance must be listed exctly once in the list as a current behavior
(every label may only appear once).

(e) The transition condition is optional. If it is left out, it defaultsttoe.

() As a special form of the next statebeeak statement terminates the execution of the
fsm construct.

(g) The execution of &sm construct starts with the execution of the first behavior that
is listed in the transition list. Once the behavior has finished, its state transitions
determine the next behavior to be executed.

(h) The conditions of the transitions are evaluated in the order they are specified, and as
soon as one condition becontege the specified next behavior is started.

(i) If none of the conditions is true, the next behavior defaults to the following behavior
instance listed (similar to easestatement withoubreak). If there is no following
instance, thésm construct terminates (as if it had reacheor@ak statement).

Example:

1 behavior B;

2

3 behavior B_fsm(in int a, in int b)
44

5 B bl, b2, b3;

6

7 void main(void)

8

9 fsm{ bl: { if (b < 0) break;
10 if (b>=0) goto b2;
11 1

12 b2: { if (a> 0) goto bl;
13 goto b3;

14

}
15 b3: { break;
}
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17 }
18 }
19 };

Notes:

i. Note that the body of thésm construct does not allow arbitrary statements. As
specified in the synopsis section, the grammar limits the state transitions to well-
defined triples.
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2.4.5 Synchronization

Purpose: Support for synchronization of concurrent threads

Synopsis:

wait_statement =
wait pareneventlist ’;’

notify_statement =
notify pareneventlist ’;’
| notifyone pareneventlist ’;’

pareneventlist =
eventlist
| (" event_list ')’

eventlist =
identifier
| eventlist ', identifier

Semantics:

(&) There are three statements to support synchronization between concurrent threads of
execution:wait, notify andnotifyone. Each of these statements takes a list of events
(described in Section 2.2.5) as argument.

(b) Each thread is either active, or waiting.

(c) Thewait statement suspends the current thread from execution (puts it into the wait-
ing state), until one of the specified events is notified. Then, the thread becomes
active again and resumes its execution.

(d) Thenotify statement triggers all specified events so that all threads, which are cur-
rently waiting on any of these events, can continue their execution.

(e) The same way as thmtify statement, thaotifyone statement triggers all specified
events. However, only one thread out of the set of threads, that are currently waiting
on the events triggered by thietifyone, is resumed.
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(N A notified event is guaranteed to wake up all threads (fotifyone, one of the
threads) that are currently waiting for the event, including active threads that will
be waiting for the event as their imnmediate next state.

(g) Otherwise, if there is no such thread waiting, the notified event is ignored.

Example:

1 behavior A(out int x, out event e)

2 {

3 void main(void)

4 A

5 X = 42;

6 notify e;
7}

8 };

9

10 behavior B(in int x, in event e)
11 {

12 void main(void)

13 {

14 wait (e);

15 printf ("%d”, X);
16}

17 };

18

19 behavior Main

20 {

21 int X;

22 event e;

23 A a(x, e);

24 B b(x, e);

25

26 void main(void)
27 { par { a.main();
28 b.main ();
29 1

30}

31 };

Notes:



2.4. SPECC STATEMENTS 45

Note that, when resuming execution fronwait statement due to a notified event,
thewait statement provides no information to determine which of the specified events
was actually notified.

. Notified events can be thought of as being collected until no active behavior is avail-

able for execution any more. Then, the collected events are applied to the waiting
threads, activating those threads that are waiting on any of the collected events.

iii. The example shows two parallel executing behavibendB, whereA sends data to

B. To make sure, tha® reads the data only aftér has produced it3 is waiting for
the evene to be notified byA.

Note that, regardless of the execution order of plae statement, the example will
correctly transfer the data fro to B and then terminate. The event semantics
described above ensure that the event notified s/not lost.

Note also that, in an extreme example, the event semantics allow for a thread to wake
up itself, i.e. a thread will pass through a statement sequenuetidf e;wait e;.
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2.4.6 Exception Handling

Purpose: Support for abortion of execution and interrupt handling

Synopsis:

exceptionstatement =
try compoundstatement exceptiahist_opt

exceptionlist_opt =
<nothing>
| exceptionlist

exceptionlist =
exception
| exceptionlist exception

exception =
trap pareneventlist compoundstatement
| interrupt pareneventlist compoundstatement

pareneventlist =
eventlist
| (" event_list ')’

eventlist =
identifier
| eventlist ’,’ identifier

Semantics:

(a) Thetry-trap-interrupt construct supports two types of exception handling: abortion
(or trap) and interrupt.

(b) Withtry, the listed behavior, including all its children, is made sensitive to the events
listed with thetrap andinterrupt declarations. Sensitive means that, when any exe-
cution thread of théry behavior is waiting for events (atveait statement) or waiting
for simulation time increase (atwaaitfor statement), it will implicitly wait also for
the listed exception events, which take priority over the actizdt or waitfor . Thus,
whenever an exception event occurs while executingrhdehavior or any of its
children, the execution is immediately suspended.
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()

(d)

(e)

(f)

@

(h)

For aninterrupt event, the specified interrupt handler is executed. Immediately after
its completion, the execution of titey behavior is resumed from the point it was
stopped.

For atrap event, the suspended execution is aborted and the trap handler takes over
the execution.

Thetry -trap-interrupt construct completes with the completion of the behavior,
or the completion of &rap behavior.

During the execution of the exception handlers, any occurring exception events are
ignored. In other words, the exception handlers are not sensitive to the events listed
as exceptions, unless explicitly specified by another ltrgalconstruct inside the
handlers.

In onetry -trap-interrupt construct, thenterrupt andtrap declarations are priori-
tized in the order they are listed. Only the first specified exception, that matches any
of the notified events, is executed.

For hierarchically composetty -trap -interrupt constructs, the outer, higher-level
exceptions take precedence over the inner, lower-level exceptions. Any exception
event is serviced only at its highest possible level.

(i) The statements in the compound statement blocks are limited to zero or one function

calls tomain methods of behaviors. No other statement is allowed.

Example:

1
2
3
4
5

©O© 0o ~NO®

10

behavior B;

behavior B_except(in event el, in event e2)
{ B bl, b2, b3;
void main(void)
{ try { bl.main();}
interrupt (el){ b2.main();}
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11 trap (e2) { b3.main(); }
12 }
13 };

Notes:

i. In the example, whenever eveet is notified during execution of behavibd, the
execution obl is immediately suspended and behawidris started. Then, whei?
finishes, the execution of behavibt is resumed right from the point where it was
interrupted.

ii. During execution ob2, any eventgl are ignored. In other words, the interrupt does
not interrupt itself.

iii. As soon as eveng2 occurs, while executing behavitd, the execution obl is
aborted and3 is started. Then, the terminationa# will also terminate the execution
of thetry -trap -interrupt construct.

iv. A system reset can be modeled witlra-trap construct enclosed in an infinite reset
loop.

v. The prioritiy rules described above essentially say that any simultaneously occurring
events can only cause one single exception to be serviced.

vi. Also, exception events are not stored or queued.
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2.4.7 Timing Specification

Purpose: Explicit specification of execution time and timing constraints

Synopsis:

waitfor_statement =
waitfor time ';’

timing_statement =
do compoundstatementtiming '{’ constraintlist_.opt '}’

constraintlist_opt =
<nothing>
| constraintlist

constraintlist =
constraint
| constraintlist constraint

constraint =
range '(’ any_name ’';’ anyname ’';’ timeopt ’;' time_opt ')’ ';’

time_opt =
<nothing>
| time

time =

constantexpression

Semantics:

(&) There are two constructs that support the specification of timing (simulation time) in
SpecCwaitfor anddo-timing.

(b) Thewaitfor statement specifies execution time (or delay). Whenever the simulator
reaches avaitfor statement, the execution of the current behavior is suspended for
the specified amount of simulation time units.

(c) The argument of thevaitfor statement must be of time type, or must be implicitly
convertable to time type (see also Section 2.2.6).
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(d) As soon as the simulation time has been increased by the number of time units spec-
ified with thewaitfor statement, the execution of the current behavior will resume,
unless it is still handling an interrupt exception. In this case, the execution will re-
sume immediately after the interrupt has been handled.

(e) Thewaitfor statement is the only statement in SpecC whose execution results in an
increase of the simulation time.

() Thedo-timing construct is used to specify timing constraints in terms of minimum
and maximum number of time units.

(g) The action block introduced with thie keyword is a compound statement block that
includes labeled statements. Only the labels defined in this block can be used in the
following timing block.

(h) The execution of the action block is the same as the execution of any other compound
statement block. The enclosed statements are executed in the specified order.

() Timing constraints are specified witlange statements in théming block. Each
constraint consists of two labels, which must have been defined in the action block,
and a minimum and maximum time value.

(1) The minimum and maximum times are optional constant expressions of time type.
These must be evaluatable at compile time.

(k) If left unspecified, the minimum time value defaults to negative infinityo}, the
maximum time value defaults to positive infinity-¢).

() The semantics of a statemeange(l1,12,min,may is the following: The statement
labeledl 1 is to be executed at leasintime units before, but not more thamaxtime
units after the statement labeled with

(m) Thedo-timing construct specifies synthesis constraints. As such, it does not change
the execution of the compound statement block, unless constraint validation is en-
abled in the simulator. The way, the simulator performs the constraint validation, is
implementation dependent.
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Example:

1 bit[7:0] ReadByte pit[15:0] Address)

2{
3 bit [7:0] MyData ;
4
5 do { t1: { ABus = Address;
6 waitfor (2);
7 }
8 t2: { RMode = 1; WMode = O;
9 waitfor (12);
10
11 t3: { waitfor (5);
12 }
13 t4 : { MyData = DBus;
14 waitfor (5);
15 }
16 t5: { ABus = O;
17 waitfor (2);
18 }
19 t6 : { RMode = 0; WMode = O;
20 waitfor (10);
21 }
22 t7: {
23 }
24 1
25 timing
26 { range(tl; t2; O; );
27 range(tl; t3; 10; 20);
28 range(t2; t3; 10; 20);
29 range(t3; t4; 0; );
30 range(t4; t5; O; );
31 range(t5; t7; 10; 20);
32 range(t6; t7; 5; 10);
33 1
34 return (MyData);
35}

Notes:

i. Typically, constraint validation is performed as follows: during execution of the ac-
tion block, the runtime system of the simulator collects time stamps at the execution
of each label. After the execution of the action block is completed, these time stamps
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are then used to validate thange constraints. Any violation of the specified con-
straints is reported to the user in form of a warning or error message.

ii. If a simulator allows constraint validation, this process should be parameterizable by
the user. At least, there should be a mechanism to disable such checking.

iii. The example shows the specification of a read protocol for a static RAM. The timing
constraints specified with the protocol are listed in formmaofge statements. In the
action block, one valid instance of implementation (out of many possible implemen-
tations) is shown.

Thewaitfor statements in the action block can be validated by the range check per-
formed during simulation. Without theaitfor statements, the specified timing con-
straints would not hold and the simulation would report errors or warnings, if the
validation is turned on.
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2.5 Other SpecC Constructs

2.5.1 Library Support

Purpose: Support of component libraries

Synopsis:

import.definition =
import string_literal_list ';’

string_literal_list =
string
| string_literal_list string

Semantics:

(&) The SpecC language supports the inclusion of (possibly) precompiled design libraries
into the current description by use of timeport construct.

(b) The string argument of tHenport declaration denotes the file name of the library to
be integrated.

(c) Multiple imports of the same library are automatically suppressed. Onlyirone
port declaration is effective for a library, repeategport declarations with the same
library are ignored.

(d) The search for the library file in the file system is implementation dependent. (Usu-
ally, this involves applying a suffix and searching in a list of specified directories.)

(e) The contents of an imported library file are SpecC declarations and definitions. These
are incorporated into the current description as if they were specified directly in the
source code. The same rules apply for definitions in an imported file as for definitions
in the source code. Multiple definitions of the same symbol are not allowed.

() The format of the imported file is implementation dependent. For example, source
code and/or precompiled binary files can be supported for imported libraries.
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1 #include <stdio . h>
2 #include < stdlib . h>

3

4 import
5 import
6 import
7 import

Notes:

"Interfaces /I117;
"Interfaces /12";
"Channels/PCIBus”;
"Components/ MMPEQI”;

i. In contrast to thefinclude construct inherited from the C language, theport
construct automatically avoids multiple inclusions of the same file. There is no need
to usettifdef ’s around a library file to avoid unwanted redefinitions.

ii. The import construct is seen by the SpecC compiler or synthesizer, i.e. it is not
eliminated by the C preprocessor as thieclude construct is. Thugmport can
be used by the tools for code structuring purposes.
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2.5.2 Persistent Annotation

Purpose: Support for persistent design annotation for synthesis purposes

Synopsis:
any_declaration =
|mnote_definition
any_definition =
|mnote_definition
note_definition =
note any.name '=' annotation ’;’

| note any.name ’'.’ anyname ’'=' annotation ’;’

annotation =
constantexpression

any.name =
identifier
| typedefname
| behaviorname
| channelname
| interfacename

Semantics:

(a) Using thenote definition, a persistent annotation can be attached to any symbol,
label, and user-defined type in the SpecC description.

(b) An annotation consists of a key and a value. The key is the name of the annotation.
The value is any type of constant or constant expression (evaluated at compile time).

(c) Annotation keys have their own name space. There is no name conflict possible with
symbols, user-defined types or labels.

(d) Local annotation have their own local name space. There is no hame conflict between
annotations at different objects with the same key.
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(e) Inthe first form, a note is attached to the current scope. Legal scopes are the global
scope, the class scope, the function or method scope, or the scope of a user-defined

type.

(N Inthe second form, the note is attached to the named object. The object name preceds
the annotation key, separated by a dot.

Example:

1/« C style comment, not persistent/
2/l C++ style comment, not persistent
3

4 note Author
5 note Date

"Rainer.Doemer”;
"Tue.Jan.23.08:20:37.PST.2001";

6

7 const int x = 42;

8 struct S { int a, b; float f; };
9

10 note x. Size =sizeof(x);

11 note S. Bits = sizeof(struct S) x 8;
12

13 behavior B(in int a, out int b)
14 {

15 note Version = 1.1;

16

17 void main(void)

18 {

19 1: b= 2% a;

20 waitfor (10);

21 12: b= 3% a;

22

23 note NumOps = 3;

24 note 11.0pID = 1;

25 note 12.0pID = 3;

26}

27 };

28 note B. AreaCost = 12345;

Notes:

i. SpecC, as does any other programming language, allows comments in the source
code to annotate the description. In particular, SpecC supports the same comment
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styles as C++, which are comments enclosed*inand*/ delimiters as well as
comments aftef/ up to the end of the line (see lines 1 and 2 in the example above).

. These comments are not persistent, which means, they will be eliminated in the pre-

processing step by the C preprocessor.

A note can be attached to the current scope. This way, global notes (lines 4 and 5

in the example), notes at classes (line 15), notes at methods (line 23), and notes at
user-defined types can be defined.

Second, the object, a note will be attached to, can be named explicitly. Inthe example,

this style is used to define the notes at variab{ine 10), structures (line 11), and
labelsl1 andl2 (lines 24 and 25).
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Appendix A

SpecC Grammar

In the following, the complete grammar of the SpecC language is listed in form of an

Extended Backus-Naur-Form (EBNF).

A.1 Lexical Elements

A.1.1 Lexical Rules

The following lexical rules are used to make up the definitions below.

delimiter
newline
whitespace
ws
ucletter
Icletter
letter
digit
bindigit
octdigit
hexdigit
identifier
integer
binary
decinteger
octinteger
hexinteger

[\t\b\r]

[\P\f\V]

{delimiter}+
{delimiter}x

[AZ]

[az]
({ucletter}|{Icletter})
[0-9]

[01]

[0-7]

[0-9a—fA—F]

({ letter}|” _")({ letter}|{digit }|” _") )
{digit }+

{bindigit}+

[19]{ digit }x*

"0{ octdigit }x*

"0"[xX|{ hexdigit}+

59
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decintegeru
octintegeru
hexintegeru
decintegetl
octintegerl
hexintegerl
decintegerul
octintegerul
hexintegerul
decintegetll
octintegetcll
hexintegerll
decintegerull
octintegerull
hexintegerull
octchar
hexchar
exponent
fraction
floatl

float2

float3
floating
float_f
float_|
bitvector
bitvector_u
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{decintegern[uU]

{octinteger}[uU]

{hexintegen[uU]

{decintegen]IL]

{octinteger}[IL]

{hexintegen[IL]

{decinteger}([uU][IL] |[IL][uU])
{octinteger}([uU][IL] |[IL][uU])
{hexintegert([uUI[IL] |[IL][uU])
{decintegen[IL][IL]
{octinteger}[IL][IL]
{hexintegen[IL][IL]
{decintegert([uUJ[IL][IL] |[IL][IL][uU])
{octinteger}([uUJ[IL][IL] |[IL][IL][uU])
{hexintegert([uUJ[IL][IL] |[IL][IL][uU])
A\\"{octdigit}{1, 3}

\\x"{hexdigit}+

[eE][+]?{integer}

{integer}
{integer}”.” { fraction}?({ exponent)?
"."{fraction}({exponent)?
{integer}{exponent
{floatl}|{float2}|{float3}

{floating }[fF]

{floating }[IL]

{binary}[bB]
{binary}([uU][bB] |[ bB][uU])

A.1.2 Comments

In addition to the standard C style comments, the SpecC language also supports C++ style
comments. Everything following two slash-characters is ignored until the end of the line.

"I+" <anything> "x/"
"[I” < anything> "\n"

/% ignore commentx/
/+ ignore comment«/
A.1.3 String and Character Constants

SpecC follows the standard C/C++ conventions for encoding character and string constants.
The following escape sequences are recognized:
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"\n” [+ newline (Ox0a) =/
"\ t” [+ tabulator (0x09)x/
"\Vv” I+ vertical tabulator (Ox0b }«/
"\ b” /+ backspace (0x08 X/
"\r” /= carriage return (ox0d }/
"\ f” /% form feed (0x0c) =/
m\a” I+ bell (0x07) =/
{octchar} /* octal encoded charactef/
{hexchan I+ hexadecimal encoded charactef

Strings are character sequences surrounded by quotation marks. Two strings are con-
catenated, i.e. are treated the same way as one single string, if two strings directly follow
each other, only separated by whitespace.

A.1.4 White space and Preprocessor Directives

White space in the source code is ignored. Preprocessor directives are handled by the C
preprocessorcpp ) and are therefore eliminated from the SpecC source code when it is
read by the actual SpecC parser.

{newline} I+ skip =/
{whitespacé /% skip =/

A.1.5 Keywords

The SpecC language recognizes the following ANSI-C keywords:

auto, break, case char, const continue, default, do, double, else enum, extern,
float, for, goto, if, int, long, register, return, short, signed sizeof static, struct, switch,
typedef, union, unsigned void, volatile, while.

In addition, the following SpecC keywords are recognized:

behavior, bit, bool, channel event false fsm, implements import, in, inout, inter-
face interrupt , note, notify, notifyone, out, par, pipe, piped, range, this, timing, trap,
true, try, wait, waitfor .

For future extensions, the following tokens are reserved. These keywords cannot be
used in any SpecC program.

asm catch, class constcast delete dynamic_cast explicit, export, friend, in-
line, mutable, namespacenew, operator, private, protected, public, reinterpret _cast,
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static_cast template, throw, typeid, typename using, virtual .

A.1.6 Tokens with Values

The following is a complete list of all tokens in the grammar that carry values.

identifier =
{identifier}

typedefname =
{identifier}

behaviorname =
{identifier}

channelname =
{identifier}

interfacename =
{identifier}

integer =
{decintegen
| { octinteger}
| { hexintegen
| { decintegeru}
| { octintegeru}
| { hexintegeru}
| { decintegerl }
| { octintegerl }
| { hexintegerl }
| { decintegerul}
| { octintegecrul}
| { hexintegerul}
| { decintegerll }
| { octintegertll }
| { hexintegertll }
| { decintegerull }
| { octintegerull }
| { hexintegerull }
floating =

{floating}

| { float_f}



A.2. CONSTANTS

| { float_l}
character =

{charactet
string =

{string}
bitvector =

{bitvector}
| { bitvector.u}

A.2 Constants

constant =
integer

| floating

| character

| false

| true

| bitvector

| string_literal_list

string_literal_list =
string
| string_literal_list string

A.3 Expressions

primary_expression =
identifier
| constant
| (" comma,expression ')’
| this

postfix_.expression =
primary_expression

| postfix_expression '[' commaexpression

| postfix_expression '(’ )’

1
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| postfix_expression ’'(’ argumenexpressionlist ')’
| postfix_expression membename

| postfix_expression ->' membername

| postfix_expression '++’
|
|

postfix_.expression ~—
postfix_.expression ’'[’ constanexpression
constantexpression ']’

membermame =
identifier
| typedefor_classname

argumentexpressionlist =
assignmentexpression
| argumentexpressionlist ’,” assignmentexpression

unary_expression =
postfix_expression
| "++’ unary_expression
| '—=" unary_expression
| unary.operator castexpression
| sizeof unaryexpression

| sizeof '(’ type_name ')’

unary.operator =
1&!
| ) )

*
|l+!

castexpression =
unary_expression
| "(’ type_name ')’ castexpression

concatexpression =
castexpression
| concatexpression '@ castexpression

multiplicative_expression =
concatexpression
| multiplicative_expression %’ concatexpression
| multiplicative_expression '/’ concatexpression
| multiplicative_expression %’ concakxpression
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additive_expression =
multiplicative_expression
| additive_expression '+’ multiplicativeexpression
| additive_expression -’ multiplicative_expression

shift_expression =
additive_expression
| shift_expression &<’ additive_expression
| shift_expression >>' additive_expression

relationalexpression =
shift_expression
| relationalexpression ' shift_expression
| relationalexpression >’ shift_expression
| relationalexpression &= shift_expression
| relationalexpression >=" shift_expression

equality_expression =
relationalexpression
| equality.expression
| equality_expression

1 ’

==" relationalexpression
"I=" relationalexpression
and.expression =

equality_expression

| and.expression '&' equalityexpression

exclusiveor_expression =
and.expression
| exclusiveor_expression

1~y

andexpression

inclusive.or_expression =
exclusiveor_expression
| inclusive.or_expression

exclusive_or_expression

logical_-and_expression =
inclusive.or_expression
| logical_.and.expression '&&’ inclusiveor_expression

logical_or_expression =
logical_-and.expression
| logical_or_expression ||

logical_and.expression

conditionalexpression =
logical_or_expression
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| logical_or_expression '?’ commaxpression ':’
conditionalexpression

assignmentexpression =
conditionalexpression
| unary_expression assignmerdperator assignmeng¢xpression

assignmentoperator =

commaexpression =
assignmentexpression

| commaexpression ', assignmenéxpression

constantexpression =
conditionalexpression

commaexpressionopt =
<nothing>
| commaexpression

A.4 Declarations

declaration =
suedeclarationspecifier ’;’
| suetype_specifier ’;’
| declaringlist ’;’

| defaultdeclaringlist ’;’

defaultdeclaringlist =
declarationqualifier_list identifier.declarator initializeropt
| type_qualifier_list identifier.declarator initializeropt
| defaultdeclaringlist ',’ identifier_declarator initializeropt
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declaring.list =
declarationspecifier declarator initializeopt
| type_specifier declarator initializemopt

| declaringlist ',” declarator initializeropt

declarationspecifier =
basicdeclarationspecifier
| sue.declarationspecifier
| typedefdeclarationspecifier

type_specifier =
basictype.specifier
| suetype._specifier
| typedeftype_specifier

declarationqualifier_list =
storageclass
| type_qualifier_list storageclass
| declarationqualifier_list declarationqualifier

type_qualifier_list =
type_qualifier
| type_qualifier_list type_qualifier

declarationqualifier =
storageclass
| type_qualifier

type_qualifier =
const
| volatile

basicdeclarationspecifier =
declarationqualifier_list basictype_.name
| basictype_specifier storageclass
| basicdeclarationspecifier declarationqualifier
| basicdeclarationspecifier basictype_.name

basictype_.specifier =
basictype_.name
| type_qualifier_list basictype.name
| basictype.specifier typequalifier
| basictype_specifier basictype_.name
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sue.declarationspecifier =
declarationqualifier_list elaboratedtype_name
| suetype_specifier storageclass
| sue.declarationspecifier declarationqualifier

suetype_specifier =
elaboratedtype_.name
| type_qualifier_list elaboratedtype_name
| suetype_specifier typequalifier

typedefdeclarationspecifier =
typedeftype_specifier storageclass
| declarationqualifier_list typedefname
| typedefdeclarationspecifier declarationqualifier

typedeftype_specifier =
typedefname
| type_qualifier_list typedeftname
| typedeftype_specifier typequalifier

storageclass =
typedef
| extern
| static
| auto
| register
| piped

basictype_.name =
int
| char
| short
| long
| float
| double
| signed
| unsigned
| void
| bool
| bit '[' constantexpression ':' constanexpression ']’
| bit '[' constantexpression ']’
| event

elaboratedtype_.name =
aggregatename
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| enumname
aggregatename =
aggregatekey '{’ memberdeclarationlist '}’
| aggregatekey identifieror_typedefname '{’
membercdeclarationlist '}’
| aggregatekey identifieror_-typedefname
aggregatekey =
struct
| union
memberdeclarationlist =
memberdeclaration
| memberdeclarationlist memberdeclaration
memberdeclaration =
memberdeclaringlist ';’
| memberdefaultdeclaringlist ’;’
| note_definition
memberdefaultdeclaringlist =
type_qualifier_list memberidentifier_declarator
| memberdefaultdeclaringlist ', member.identifier_.declarator

memberdeclaringlist =

type_specifier memberdeclarator

| membecrdeclaringl

memberdeclarator =

declarator bitfield_

| bit_field_size

membercidentifier_.declarator

ist ',” member.declarator

size.opt

identifier_declarator bitfield_size opt

| bit_field_size
bit_field_size.opt =

<nothing>

| bit_field_size

bit_field_size =

enumname =

constantexpression
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enum ' {’ enumeratotlist '}’
| enum identifier.or_.typedeftname ’{’ enumeratorlist '}’
| enum identifier.or_.typedefname

enumeratorlist =
identifier.or_.typedefname enumeratavalue_opt

| enumeratorlist ’,” identifier_or_typedefname
enumeratorvalueopt

enumeratorvalue.opt =
<nothing>

| '=" constantexpression

parametertype_list =
parameterlist
| parameterlist ', ...’

parameterlist =
parameterdeclaration

| parameterlist ',” parameterdeclaration
| interfaceparameter
| parameterlist ’,’ interface_parameter

parameterdeclaration =
declarationspecifier

| declarationspecifier abstractdeclarator

| declarationspecifier identifietdeclarator

| declarationspecifier parametetypedefdeclarator

| declarationqualifier_list

| declarationqualifier_list abstractdeclarator

| declarationqualifier_list identifier_.declarator

| type_specifier

| type_specifier abstractdeclarator

| type_specifier identifiecdeclarator

| type_specifier parametetypedefdeclarator

| type_qualifier_list

| type_qualifier_list abstractdeclarator

| type_qualifier_list identifier.declarator

identifier.or_.typedefname =
identifier
| typedefor_classname

type_.name =
type_specifier
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| type_specifier abstractdeclarator
| type_qualifier_list
| type_qualifier_list abstractdeclarator

initializer_opt =
<nothing>
| '=" initializer

initializer =
"{" initializer_list '}’
| "{" initializer_list ’,” "}’
| constantexpression

initializer_list =
initializer
| initializer_list ’,” initializer

A.5 Classes

specc_definition =
import.definition
| behaviocdeclaration
| behaviordefinition
| channeldeclaration
| channeldefinition
| interfacedeclaration
| interfacedefinition
| note_definition

import_definition =
import string_literal_list ';’

behaviordeclaration =
behaviorspecifier portlist_.opt implementsinterfaceopt ’;’

behaviordefinition =

behaviorspecifier portlist_.opt implementsinterfaceopt
"{’ internal_definition_list_opt '} ’;’

behaviorspecifier =
behavior identifier

channeldeclaration =
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channelspecifier portlist_opt implementsinterfaceopt ’;’

channeldefinition =
channelspecifier portlist_.opt implementsinterfaceopt

"{’ internal_definition_list_opt '} ’;

channelspecifier =
channel identifier

port_list_opt =
<nothing>
| ¢ )
| (" port_list ')’

port_list =
port.declaration

| port_list ',” port_declaration

port.declaration =
port_.direction parametedeclaration
| interfaceparameter

port_direction =
<nothing>
| in
| out
| inout

interfaceparameter =
interfacename
| interfacename identifier

implementsinterfaceopt =
<nothing>
| implements interfacelist

interfacelist =
interfacename
| interfacelist ',” interface.-name

internal_definition_list_opt =
<nothing>
| internalLdefinition_list

internalLdefinition_list =
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internal_definition
| internaldefinition_list internal.definition

internal_definition =
function_definition
| declaration
| instantiation
| note_definition

instantiation =
instancedeclaringlist ’;’

instancedeclaringlist =
behavioror_.channel instancealeclarator
| instancedeclaringlist ’,” instance.declarator

instancedeclarator =
identifier portmappinglist_opt
| typedefor_classname portmappinglist_opt

behavioror_.channel =
behaviotname
| channelname

port-mappinglist_opt =
<nothing>
| (" port_mappinglist ")’

port_mappinglist =
port_mappingopt
| port_mappinglist ',” port_.mappingopt

port_mappingopt =
<nothing>
| portmapping

port.mapping =
bit_slice
| portmapping '@ bitslice

bit_slice =
constant
| identifier
| identifier '[' constantexpression
| identifier '[' constantexpression ']’

constanexpression ']’
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interfacedeclaration =
interfacespecifier ’;’

interfacedefinition =
interface.specifier '{’ internal_declarationlist.opt '}’ ;'

interfacespecifier =
interface anyname

internalLdeclarationlist_opt =
<nothing>
| internal.declarationlist

internal.declarationlist =
internaldeclaration
| internal.declarationlist internaldeclaration

internalLdeclaration =
declaration
| note_definition

note_definition =
note any.name '=' annotation ’;’
| note any.name '.’ anyname

=’ annotation ’;
annotation =
constantexpression

typedefor_classname =
typedefname
| behaviorname
| channelname
| interfacename

any_name =
identifier
| typedefname
| behaviotname
| channelname
| interfacename

A.6 Statements
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statement =

labeledstatement

| compoundstatement

| expressionstatement

| selectionstatement
| iterationstatement
| jump_statement
| specc_statement

labeledstatement =

identifier.or_.typedefname ’';’ statement

| case constantexpression ’':' statement

| default ':’ statement
compoundstatement =

l{l i) }l

| '{' declarationlist '}’
| "{’" statementlist '}’
| "{’" declarationlist statementlist '}’

declarationlist =
declaration
| declarationlist declaration
| note_definition
| declarationlist note.definition

statementlist =
statement
| statementlist statement
| statementlist note.definition

expressionstatement =
commaexpressionopt ’;’

selectionstatement =
if (" comma,expression ')’ statement
| if '(" comma,expression ')’ statementelse statement
| switch '(° comma,expression ')’ statement

iterationstatement =
while (' comma.,expressionopt ')’ statement
| do statementwhile ’(° comma.expression ')’ ’;’

| for (" comma.expressionopt ;' commaexpressionopt ’;’
commaexpressionopt ')’ statement
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jump_statement =
goto identifier.or_typedefname ';’
| continue ’;’
| break ’;’

| return commaexpressionopt ’;’

specc.statement =

concurrentstatement
| fsm_statement

| exceptionstatement
| timing_statement

| wait_statement

| waitfor_statement

| notify_statement

concurrentstatement =
par compoundstatement
| pipe compoundstatement
| pipe '(’ comma.expressionopt ';’ commaexpressionopt

;' comma_expressionopt ')’ compoundstatement

fsm_statement =

fsm l{l !}l

| fsm ' {’ transition_list '}’
transition.list =

transition
| transitionlist transition

transition =
identifier ’:’
| identifier ':’ cond_branchlist
| identifier *:7 " {" '}’
| identifier ':’ ' {’ cond.branchlist '}’

cond.branchlist =
condbranch
| cond.branchlist condbranch

condbranch =
if '(" comma.expression ')’ goto identifier ’;’
| goto identifier ’;’
| if "(" comma,expression ')’ break ’;’
| break ’;’
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exceptionstatement =
try compoundstatement exceptiahist_opt

exceptionlist_opt =
<nothing>
| exceptionlist

exceptionlist =
exception
| exceptionlist exception

exception =
trap pareneventlist compoundstatement
| interrupt pareneventlist compoundstatement

pareneventlist =
eventlist
| (" event_list ')’

eventlist =
identifier
| eventlist ’,’ identifier

timing_statement =
do compoundstatementtiming '{’ constraintlist_.opt '}’

constraintlist_opt =
<nothing>
| constraintlist

constraintlist =
constraint
| constraintlist constraint

constraint =
range '(’ any_name ’';’ anyname ;' timeopt ’;' time_opt ')’ ';’

time_opt =
<nothing>
| time

time =
constantexpression
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wait_statement =
wait pareneventlist ’;’

waitfor_statement =
waitfor time ';’

notify_statement =
notify pareneventlist ’;’

| notifyone pareneventlist ’;’

A.7 External Definitions

translationunit =
<nothing>
| externaldefinition_list

externaldefinition_list =
externaldefinition
| externaldefinition_list externaldefinition

externaldefinition =
function_definition
| declaration
| specc._definition

function_definition =
identifier_.declarator compoundtatement
| declarationspecifier declarator compounstatement
| type.specifier declarator compounstatement
| declarationqualifier_list identifier.declarator
compoundstatement

| type_qualifier_list identifier_declarator
compoundstatement

declarator =
identifier.declarator
| typedefdeclarator

typedefdeclarator =
parentypedefdeclarator
| parametertypedefdeclarator

parametertypedefdeclarator =
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typedefor_classname
| typedefor_classname postfixingabstractdeclarator
| cleantypedefdeclarator

cleantypedefdeclarator =

cleanpostfix_.typedefdeclarator

| "+’ parametertypedefdeclarator
| "+’ type_qualifier_list parametertypedefdeclarator
cleanpostfix_.typedefdeclarator =

(" clean_typedefdeclarator ')’

| (" clean_typedefdeclarator ')’

postfixing_.abstractdeclarator

parentypedefdeclarator =
parenpostfix_.typedetdeclarator
| "«" "(" simple_parentypedefdeclarator ')’
type_qualifier_list '(* simple_parentypedefdeclarator ')’
parentypedefdeclarator
type_qualifier_list parentypedefdeclarator

| 7 *
I
I
parenpostfix_.typedefdeclarator =

(" paren_typedefdeclarator ')’

| (" simple_parentypedefdeclarator

postfixing.abstractdeclarator ')’

| (" paren_.typedefdeclarator ')’

postfixing_.abstractdeclarator

simple_parentypedefdeclarator =
typedefor_classname
| (" simple_parentypedefdeclarator ')’

identifier.declarator =
unary.identifier_declarator
| parenidentifier.declarator

unary.identifier.declarator =
postfix_identifier.declarator
| "+’ identifier.declarator
| "+’ type_qualifier_list identifier.declarator
postfix_identifier.declarator =
parenidentifier_declarator postfixingabstractdeclarator
| (" unary_identifier.declarator ')’
| (" unary_identifier.declarator ')’
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postfixing_.abstractdeclarator

parenidentifier_declarator =
identifier
| (" paren_identifier_.declarator ')’

abstractdeclarator =
unary_abstractdeclarator
| postfix_.abstractdeclarator
| postfixing.abstractdeclarator

postfixing_.abstractdeclarator =
array.abstractdeclarator
| !(1 1)1

| (" parametertype_list ')’

array.abstractdeclarator =
l[l 1]!
| '[' constantexpression ']’
| array.abstractdeclarator '[’ constantexpression ']’

unary_.abstractdeclarator =
" type_qualifier_list
abstractdeclarator
type_qualifier_list abstractdeclarator

|
postfix_abstractdeclarator =
(" unary_abstractdeclarator ')’
| (" postfix_abstractdeclarator ')’
| (" postfixing_abstractdeclarator )’
| (" unary_abstractdeclarator ')’
postfixing_.abstractdeclarator
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