

Table of Contents
VLSI Design 2009

Message from the General Chairs ..xv
Message from the Program Chairs...xvii

Message from the Organizing Chair...xix
Conference Steering Committee ...xx
Conference Committee ..xxi

Technical Program Committee...xxiv

Reviewers..xxvii

Tutorial Committee ..xxxii

VLSI Design 2008 Fellowship Recipients ...xxxiii

VLSI Design 2008 Awards ...xxxviii

VLSI Design Conference History...xxxix

Embedded Systems Design Conference History..xl

About the Cover ...xli

Invited Keynote Speakers...xlii

Invited Talks/Special Sessions
Chair: Rajiv Kapur

A Decade of Platform-Based Design: A Look Backwards, a Look Forwards...3
Grant Martin, Chief Scientist, Tensilica

Analog IC Design in Nanometer CMOS Technologies ...4
Willy Sansen, K.U. Leuven Belgium

Common Power Format: A User-driven Ecosystem for Proven Low Power Design Flows............................5
Sumit DasGupta, Senior Vice President, Si2

The Future of Low Power Design is Here: IEEE P1801, aka, UPF 2.0 ...6
Stephen Bailey, Director Product Marketing, Mentor Graphics

Making Sense Out of the Potential Babble of Low Power Standards..7
Gary Delp, Distinguished Engineer, LSI Corp

DFX and Productivity ..8
Robert C Aitken, R&D Fellow, ARM

Computational Lithography – Moore Bang for Your Buck ..9
Vivek Singh, Senior Principal Engineer, Intel

v

Made For India Forum

Made For India Forum...13

Chair: Rajiv Kapur

VLSI Design Conference 2009 – Panels
Chair: Rajiv Kapur

IP Panel Topic: Why is Design Automation and Reuse of Analog Designs
Increasingly Trailing the Digital World?...17

Organizers: Ghasi Agarwal and Prakash Bare
EDA Panel Topic: EDA Made-in-India: Fact or Fiction? ...18

Organizers: Raman Santhanakrishnan and Yatin Trivedi
Made For India Panel Topic: Solutions for a Small Car – Made for India
and Made in India...19

Organizers: India Semiconductor Association
Embedded SW Panel Topic: Accelerating Embedded System Design..20

Organizers: Techonline

Tutorials

Defect Aware to Power Conscious Tests – The New DFT Landscape ..23
Nilanjan Mukherjee, Janusz Rajski, and Jerzy Tyszer

Techniques for the Design of Low Voltage Power Efficient Analog
and Mixed Signal Circuits ...26

J. Ramirez-Angulo, Ramon G. Carvajal, and Antonio Lopez-Martin
Power Reduction Techniques and Flows at RTL and System Level..28

Anmol Mathur and Qi Wang
Security and Dependability of Embedded Systems: A Computer Architects’ Perspective............................30

Jörg Henkel, Vijaykrishnan Narayanan, Sri Parameswaran, and Roshan Ragel
Design for Manufacturability and Reliability in Nano Era...33

Goutam Debnath and Paul Thadikaran
Negative Feedback System and Circuit Design..35

Nagendra Krishnapura and Shanthi Pavan
Synthesis and Testing for Low Power ...37

Ajit Pal and Santanu Chattopadhyay
Power Management for Mobile Multimedia: From Audio to Video and Games ..39

Samarjit Chakraborty and Ye Wang
Robust Circuit Design: Challenges and Solutions..41

Saurabh K. Tiwary, Amith Singhee, and Vikas Chandra

vi

Session 1A: Low Power Design for Wireless Communication

Design-Space Exploration of Energy-Delay-Area Efficient Coarse-Grain
Reconfigurable Datapath...45

Sohan Purohit, Marco Lanuzza, Stefania Perri, Pasquale Corsonello,
and Martin Margala

Low-Power VLSI Design of LDPC Decoder Using DVFS for AWGN Channels...51
 Weihuang Wang, Gwan Choi, and Kiran K. Gunnam
Environment and Process Adaptive Low Power Wireless Baseband Signal Processing
Using Dual Real-Time Feedback ..57
 Muhammad Mudassar Nisar and Abhijit Chatterjee

Session 1B: SoC Verification

Efficient Techniques for Directed Test Generation Using Incremental Satisfiability65
 Prabhat Mishra and Mingsong Chen
Inline Assertions — Embedding Formal Properties in a Test Bench...71
 Aritra Hazra, Priyankar Ghosh, Pallab Dasgupta, and Partha Pratim Chakrabarti
Dedicated Rewriting: Automatic Verification of Low Power Transformations in RTL77
 Vinod Viswanath, Shobha Vasudevan, and Jacob A. Abraham

Session 1C: Fault Diagnosis

A Novel Approach for Improving the Quality of Open Fault Diagnosis ...85
 Koji Yamazaki, Toshiyuki Tsutsumi, Hiroshi Takahashi, Yoshinobu Higami,
 Takashi Aikyo, Yuzo Takamatsu, Hiroyuki Yotsuyanagi, and Masaki Hashizume
Fault Effect of Open Faults Considering Adjacent Signal Lines in a 90 nm IC..91
 Hiroyuki Yotsuyanagi, Masaki Hashizume, Toshiyuki Tsutsumi, Koji Yamazaki,
 Takashi Aikyo, Yoshinobu Higami, Hiroshi Takahashi, and Yuzo Takamatsu
Efficient Grouping of Fail Chips for Volume Yield Diagnostics ..97
 Lavanya Jagan, Ratan Deep Singh, V. Kamakoti, and Ananta K. Majhi

Session 2A: Analog and Mixed Signal I

100KHz-20MHz Programmable Subthreshold Gm-C Low-Pass Filter
in 0.18µ-m CMOS..105
 S. Ramasamy, B. Venkataramani, R. Niranjini, and K. Suganya
A 20MS/s 5.6 mW 6b Asynchronous ADC in 0.6µm CMOS..111
 Theja Tulabandhula and Yujendra Mitikiri
Design of a Low Power, Variable-Resolution Flash ADC...117
 Sreehari Veeramachanen, A. Mahesh Kumar, Venkat Tummala, and M.B. Srinivas

vii

Session 2B: Floorplanning and Analog Layout

Floorplanning for Partial Reconfiguration in FPGAs ..125
 Pritha Banerjee, Megha Sangtani, and Susmita Sur-Kolay
Efficient Synthesis of a Uniformly Spread Layout Aware Pareto Surface
for Analog Circuits ...131
 Almitra Pradhan and Ranga Vemuri
Efficient Analog/RF Layout Closure with Compaction Based Legalization ...137
 Subramanian Rajagopalan, Sambuddha Bhattacharya, and Shabbir H. Batterywala

Session 2C: Network on Chip

Improving Scalability and Per-core Performance in Multi-cores through Resource Sharing
and Reconfiguration...145
 Tameesh Suri and Aneesh Aggarwal
Forecasting-Based Dynamic Virtual Channels Allocation for Power Optimization
of Network-on-Chips ...151
 Amir-Mohammad Rahmani, Masoud Daneshtalab, Ali Afzali-Kusha, Saeed Safari,
 and Masoud Pedram
Negative Exponential Distribution Traffic Pattern for Power/Performance Analysis
of Network on Chips..157
 Amir-Mohammad Rahmani, Iman Kamali, Pejman Lotfi-Kamran, Ali Afzali-Kusha,
 and Saeed Safari
Latency, Power and Performance Trade-offs in Network-on-Chips
by Link Microarchitecture Exploration..163
 Basavaraj Talwar, Shailesh Kulkarni, and Bharadwaj Amrutur

Session 3A: Low Power Device Technology

A Low Voltage CMOS Proportional-to-Absolute Temperature Current Reference171
 Sanjay Kumar Wadhwa
Novel MOS Decoupling Capacitor Optimization Technique for Nanotechnologies175
 Bardia Bozorgzadeh and Ali Afzali-Kusha
Switched-Capacitor Based Buck Converter Design Using Current Limiter
for Better Efficiency and Output Ripple ..181
 Tamal Das and Pradip Mandal

viii

Session 3B: System Synthesis

Reversible Logic Synthesis with Output Permutation ..189
 Robert Wille, Daniel Große, Gerhard W. Dueck, and Rolf Drechsler
Cone Resynthesis ECO Methodology for Multi-Million Gate Designs...195
 Suresh Raman and Mike Lubyanitsky
A General Approach to High-Level Energy and Performance Estimation in SoCs200
 Sandro Penolazzi, Ahmed Hemani, and Luca Bolognino
Exploiting Hybrid Analysis in Solving Electrical Networks ..206
 V. Siva Sankar, H. Narayanan, and Sachin B. Patkar

Session 3C: Test Generation

The Effect of Filling the Unspecified Values of a Test Set on the Test Set Quality ..215
 Irith Pomeranz and Sudhakar M. Reddy
New Techniques for Accelerating Small Delay ATPG and Generating
Compact Test Sets...221
 Boxue Yin, Dong Xiang, and Zhen Chen
TIGUAN: Thread-Parallel Integrated Test Pattern Generator Utilizing
Satisfiability Analysis...227
 Alejandro Czutro, Ilia Polian, Matthew Lewis, Piet Engelke, Sudhakar M. Reddy,
 and Bernd Becker
An ILP Based ATPG Technique for Multiple Aggressor Crosstalk Faults Considering
the Effects of Gate Delays ..233
 Kunal Ganeshpure and Sandip Kundu

Session 4A: Advanced Device Modeling

Concept of “Crossover Point” and its Application on Threshold Voltage Definition
for Undoped-Body Transistors ...241
 Ratul Kumar Baruah and Santanu Mahapatra
Extended-Sakurai-Newton MOSFET Model for Ultra-Deep-Submicrometer
CMOS Digital Design...247
 Nishant Chandra, Apoorva Kumar Yati, and A.B. Bhattacharyya
Measurement and Analysis of Parasitic Capacitance in FinFETs with High-k Dielectrics
and Metal-Gate Stack ...253
 Abhisek Dixit, Anirban Bandhyopadhyay, Nadine Collaert, Kristin De Meyer,
 and Malgorzata Jurczak

ix

Session 4B: Application-Specific Architectures and Reconfigurable Computing

Design, Implementation and Validation of an Open Source IP-PBX/VoIP Gateway SoC261
 Spyros Apostolacos, George Lykakis, Apostolos Meliones, Vassilis Vlagoulis,
 Emmanuel Touloupis, and George Konstantoulakis
Efficient Implementation of Floating-Point Reciprocator on FPGA..267
 Manish Kumar Jaiswal and Nitin Chandrachoodan

Invited Talk

ReConfigurable Technologies ...272
Mona Mathur

Session 4C: Embedded Systems I

High-Speed On-Chip Event Counters for Embedded Systems..275
 Nilanjan Mukherjee, Artur Pogiel, Janusz Rajski, and Jerzy Tyszer
A Workbench for Analytical and Simulation Based Design Space Exploration
of Software Defined Radios...281
 T. Kempf, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr
Improved-Quality Real-Time Stereo Vision Processor..287
 Sang-Kyo Han, SeongHoon Woo, Mun-Ho Jeong, and Bum-Jae You

Session 5A: SRAM and Random Number Generation

A 7T/14T Dependable SRAM and its Array Structure to Avoid Half Selection ...295
 Hidehiro Fujiwara, Shunsuke Okumura, Yusuke Iguchi, Hiroki Noguchi, Hiroshi Kawaguchi,
 and Masahiko Yoshimoto
A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant All-Digital
True Random Number Generator in 45nm CMOS ..301
 Suresh Srinivasan, Sanu Mathew, Vasantha Erraguntla, and Ram Krishnamurthy
Single Ended Static Random Access Memory for Low-Vdd, High-Speed
Embedded Systems ..307
 Jawar Singh, Jimson Mathew, Saraju P. Mohanty, and Dhiraj K. Pradhan

Session 5B: Secure VLSI Design

Encoding of Floorplans through Deterministic Perturbation...315
 Debasri Saha and Susmita Sur-Kolay
Design Optimization and Automation for Secure Cryptographic Circuits..321
 Kuan Jen Lin, Yi Tang Chiu, and Shan Chien Fang
A Novel Sustained Vector Technique for the Detection of Hardware Trojans ..327
 Mainak Banga and Michael S. Hsiao

x

Session 5C: Embedded Systems II

Efficient Placement of Compressed Code for Parallel Decompression...335
 Xiaoke Qin and Prabhat Mishra
FPGA Based High Performance Double-Precision Matrix Multiplication ...341
 Vinay B.Y. Kumar, Siddharth Joshi, Sachin B. Patkar, and H. Narayanan
FPGA Implementation of Support Vector Machine Based Isolated Digit Recognition System...................347
 J. Manikandan, B. Venkataramani, and V. Avanthi
A “Stitch” in Time: Accurate Timekeeping with On-Chip Compensation...353
 Prashant Bhargava and Mohit Arora

Session 6A: Analog and Mixed Signal II

Systematic Methodology for High-Level Performance Modeling of Analog Systems361
 Soumya Pandit, Chittaranjan Mandal, and Amit Patra
A Comparison of Approaches to Carrier Generation for Zigbee Transceivers..367
 Leburu Manojkumar, Arun Mohan, and Nagendra Krishnapura
A 2.4Gbps-4.8Gbps XDR-DRAM I/O (XIO) Link ..373
 Vijay Khawshe, Kapil Vyas, Renu Rangnekar, Prateek Goyal, Vijay Krishna,
 Kashinath Prabhu, Pravin Kumar Venkatesan, Leneesh Raghavan, Rajkumar Palwai,
 Thrivikraman M, Kunal Desai, and Abhijit Abhyankar

Session 6B: Routing, Power Optimization

Design and Implementation of Fine-Grain Power Gating with Ground Bounce Suppression381
 Kimiyoshi Usami, Toshiaki Shirai, Tasunori Hashida, Hiroki Masuda, Seidai Takeda,
 Mitsutaka Nakata, Naomi Seki, Hideharu Amano, Mitaro Namiki, Masashi Imai,
 Masaaki Kondo, and Hiroshi Nakamura
A Method for the Multi-net Multi-pin Routing Problem with Layer Assignment..387
 Tuhina Samantam, Hafizur Rahaman, Prasun Ghosal, and Parthasarathi Dasgupta
A New Hardware Routing Accelerator for Multi-Terminal Nets..393
 Kaleem Fatima and Rameshwar Rao
Simultaneous Routing and Feedthrough Algorithm to Decongest Top Channel ...399
 Shashank Prasad and Anuj Kumar

Session 6C: Low Power Design

Metric Based Multi-Timescale Control for Reducing Power in Embedded Systems....................................407
 Nitin Kataria, Forrest Brewer, João Hespanha, and Timothy Sherwood
Code Transformations for TLB Power Reduction..413
 Reiley Jeyapaul, Sandeep Marathe, and Aviral Shrivastava
Simultaneous Peak Temperature and Average Power Minimization
during Behavioral Synthesis ...419
 Vyas Krishnan and Srinivas Katkoori

xi

Session 7A: Analog and Mixed Signal III

Low-Power Low-Voltage Analog Circuit Design Using Hierarchical
Particle Swarm Optimization..427
 Rajesh Amratlal Thakker, M. Shojaei Baghini, and Mahesh B. Patil
Variation-Aware Macromodeling and Synthesis of Analog Circuits Using Spline Center
and Range Method and Dynamically Reduced Design Space ...433
 Shubhankar Basu, Balaji Kommineni, and Ranga Vemuri
A Low Power Architecture to Extend the Tuning Range of a Quadrature Clock ...439
 Ramen Dutta and T.K. Bhattacharyya
Fuzzy Logic Based Guidance to Graph Grammar Framework for Automated
Analog Circuit Design..445
 Angan Das and Ranga Vemuri

Session 7B: Reliability and Design Space Exploration

RADJAM: A Novel Approach for Reduction of Soft Errors in Logic Circuits ...453
 Koustav Bhattacharya and Nagarajan Ranganathan
Soft Error Rates with Inertial and Logical Masking...459
 Fan Wang and Vishwani D. Agrawal
Accelerating System-Level Design Tasks Using Commodity Graphics Hardware:
A Case Study ...465
 Unmesh Dutta Bordoloi and Samarjit Chakraborty

Session 7C: BIST, Error Modeling

Built in Self Test Based Design of Wave-Pipelined Circuits in ASICs...473
 V. Vireen, N. Venugopalachary, G. Seetharaman, and B. Venkataramani
WOR-BIST: A Complete Test Solution for Designs Meeting Power, Area
and Performance Requirements ...479
 Chunhua Yao, Kewal K. Saluja, and Abhishek A. Sinkar
An Error Model to Study the Behavior of Transient Errors in Sequential Circuits485
 Karthikeyan Lingasubramanian and Sanjukta Bhanja

xii

Session 8A: Advanced Nanodevice Modeling

Analysis of the Energy Quantization Effects on Single Electron Inverter Performance
through Noise Margin Modeling ...493
 Surya Shankar Dan and Santanu Mahapatra
Exploring Carbon Nanotube Bundle Global Interconnects
for Chip Multiprocessor Applications ...499
 Sudeep Pasricha, Nikil Dutt, and Fadi J. Kurdahi
Impact of Bias Voltage on Magnetic Inductance of Carbon Nanotube Interconnects505
 K.C. Narasimhamurthy and Roy P. Paily
Conservative QCA Gate (CQCA) for Designing Concurrently Testable
Molecular QCA Circuits ..511
 Himanshu Thapliyal and Nagarajan Ranganathan

Session 8B: Timing Analysis and Optimization

An Approach to Measure the Performance Impact of Dynamic Voltage Fluctuations
Using Static Timing Analysis ..519
 Ramamurthy Vishweshwara, Ramakrishnan Venkatraman, Udayakumar H,
 and Arvind N V
Optimisation Quality Assessment in Large, Complex SoC Designs —
Challenges and Solutions ..525
 R. Venkatraman, Shrikrishna Pundoor, Arun Koithyar, Madhusudan Rao,
 and Jagdish C. Rao

Invited Talk

Unified Challenges in Nano-CMOS High-Level Synthesis ..531
Saraju P. Mohanty

Session 8C: Processor Design and Scheduling

Exploring the Limits of Port Reduction in Centralized Register Files...535
 Sandeep Sirsi and Aneesh Aggarwal
Temperature Aware Scheduling for Embedded Processors...541
 Ramkumar Jayaseelan and Tulika Mitra
SACR: Scheduling-Aware Cache Reconfiguration for Real-Time Embedded Systems................................547
 Weixun Wang, Prabhat Mishra, and Ann Gordon-Ross
H-NMRU: A Low Area, High Performance Cache Replacement Policy
for Embedded Processors ..553
 Sourav Roy

xiii

Session 9A: VLSI Education

Infrastructures for Education, Research and Industry in Microelectronics —
A Look Worldwide and a Look at India..561
 B. Courtois, K. Torki, S. Dumont, S. Eyraud, J-F Paillotin, and G. di Pendina

Session 9B: Invited Paper-Phase Locked Loops

Specification Driven Design of Phase Locked Loops ..569
 Prakash Easwaran, Prasenjit Bhowmik, and Rupak Ghayal

Session 9C: Invited Paper-Design for Variations

Coping with Variations through System-Level Design...581
 Nilanjan Banerjee, Saumya Chandra, Swaroop Ghosh, Sujit Dey, Anand Raghunathan,
 and Kaushik Roy

Author Index ...587

xiv

Proceedings

VLSI Design 2009

Proceedings

22nd International Conference
on VLSI Design

Held jointly with

8th International Conference on Embedded Systems

New Delhi, India 5-9 January 2009

Technical Co-Sponsorship
IEEE Circuits and Systems Society
IEEE Solid State Circuits Society

IEEE Electron Devices Society

Sponsored by
VLSI Society of India

Sister Conference
IEEE/ACM Design Automation Conference

Los Alamitos, California

Washington • Tokyo

Copyright © 2009 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P3506

BMS Part Number CFP09041-PRT
ISBN 978-0-7695-3506-7
ISSN Number 1063-9667

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81 3 3408 3118

http://computer.org/cspress
csbooks@computer.org

customer-service@ieee.org Fax: + 81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Lisa O’Conner
Cover art production by Alex Torres

Printed in the United States of America by The Printing House

IEEE Computer Society

Conference Publishing Services (CPS)
http://www.computer.org/cps

Message from the General Chairs

Anshul Kumar Anurag Seth

Welcome to the joint 22nd International Conference on VLSI Design and 8th International Conference on
Embedded Systems being held from 5th to 9th January, 2009 in New Delhi.

With a history of more than two decades, this conference has now become a prestigious annual event
with participation from industry leaders, technical experts, practicing engineers, academicians and
students from India and abroad. The conference theme this year is Improving Productivity Through
Higher Abstraction, which reflects a growing concern about design productivity as the VLSI chips and
systems are becoming increasingly complex while the time available for design is shrinking.

Like the past years, the conference brings three days of exciting technical sessions with papers selected
through a world-wide peer review process and two days of informative tutorials by experts on topics of
current interest. While the technical papers will present new results and discuss the intricacies of VLSI
Design, Electronic Design Automation and Embedded Systems, there will be keynotes and invited talks
by the leaders in the industry and academia, who would present a broader picture of the state of the art
and do a bit of crystal gazing into the future. Keynote speakers in this conference include Justin Rattner,
Intel Senior Fellow, Chief Technology Officer, Abhi Talwalkar, President and CEO, LSI Corp., Neil
Henderson, GM, Mentor Graphics, Thomas Williams, Synopsys Fellow, Dr. Ajoy Bose, Founder, Atrenta
and Jacob Abraham, Professor, University of Texas, Austin.

The conference has been constantly striving for improving its quality in order to attract the best of the
people in the field. This year there has been a very good response to our call for papers. There were as
many as 320 paper submissions, out of which the Program Chairs, Preeti Ranjan Panda and Rajendran
Panda, along with their team of program committee members and reviewers, have selected the best 79
through a rigorous review process. This is a testimony to the growing stature of the conference and the
selectivity it can afford now. The Tutorial Chairs, Sanjiv Narayan and Atul Jain, with their team of
reviewers, have organized 7 full day and 2 half day tutorials on a variety of topics including Power-
conscious Tests, Security & Dependability of Embedded Systems and Power Management for Mobile
Multimedia. Again, the response for tutorial submissions has been overwhelming with a record 40+
submissions and the review team had a tough time selecting the 9.

The Industry Forum is now a regular feature of this conference. The Special Sessions Chair Rajiv Kapur
has put together a session on Made for India, which would try to capture thoughts about the growing
economy of India as an agent in shaping the electronic products. Among the special sessions, besides the
mentioned keynotes, we have various high quality technical talks ranging from platform based design to
computational lithography to Analog Design to Low Power issues and standards. Moreover, we have

xv

four panel discussions this year in the areas of IP, EDA, Embedded software, and Automotive/Made for
India.

We continue to encourage and facilitate participation of students. In the 2008 conference, a new feature
Students Track was introduced with a view to initiate them in the field. The Student Track chairs
Gurudutt Bansal and M. Jagadesh Kumar have organized a track for students that will run parallel to
technical sessions on the 3rd day of the conference. The regular participants from the academia, both
students and faculty, are supported through the fellowship program, which is being coordinated by the
Fellowships Chair Vineet Sahula. The promotional activities of the conference, which aim at bringing out
innovative ideas from the budding professionals, include a Design Contest and the new EDA Software
Contest introduced this year. The Design Contest Chairs Aloknath De and Subind Kumar and the EDA
Contest Chairs Manu Lauria and Shabbir Batterywala have organized these contests.

A conference of this magnitude cannot materialize without the financial support from the industry as
well as organizational efforts from the individuals. The Sponsorship and Exhibits Chairs Sanjeev
Aggarwal and S. Uma Mahesh have taken care of mobilizing the required financial resources. The
sponsors this year include Cadence, ARM, Magma, Atrenta, Broadcom, and Conexant. You can expect to
see state of the art exhibits from these companies as well as several others. The Organizing Chair Rajeev
Sehgal and Organizing Coordinator Harish Chauhan have put in tremendous efforts to bring the
conference to this shape. As expected, without the proactive drive from the Finance Chair Prem Nivasa
(especially in the current economy) with a good tab on inflows and outflows and compliance issues etc,
things would have been not as smooth.

We would also like to acknowledge the proactive efforts from our publicity chairs – Ricky Bedi, Sapan
Garg and Yatin Trivedi to make the conference a grand affair.

The role of the Publication Chair Nagi Naganathan and Lisa O’Conner, Production Editor, Conference
Publishing Services of IEEE has been very crucial in bringing out the conference proceedings in a timely
manner.

The conference has been enjoying association with several reputed professional societies, that adds to its
prestige. We acknowledge the contributions of CP Ravikumar (VLSI Society of India), N. Ranganathan
(IEEE Circuits and Systems Society), Anantha Chandrakasan (IEEE Solid-State Circuits Society), Nikil
Dutt (ACM/SIGDA) and Poornima Shenoy (Indian Semiconductor Association) in making this
association continue.

Finally we would like to thank the Steering Committee Chair Vishwani Agrawal and other members of
the Steering Committee for giving us this opportunity to organize the conference. Hope you will enjoy
the conference as well as the host city of Delhi.

Anshul Kumar and Anurag Seth

xvi

Message from the Program Chairs

Preeti Ranjan Panda Rajendran Panda

It is our pleasure to welcome you all to 2009 edition of the VLSI Design Conference! A strong technical
program has been the hallmark of VLSI Design Conferences in the past, and we have endeavored to
ensure that you will witness an outstanding technical program this year also.

In keeping with the international character of the conference, this year we received about 320 paper
submissions from 21 countries. While India and USA accounted for a large fraction of the submissions,
we also received a significant response from Iran, China, Japan, Germany, and UK. Getting the papers
reviewed in the two months we had set for ourselves was a challenging task and would not have been
possible without the hard and diligent work put in by the 90 member Technical Program Committee
consisting of leading researchers from across the world, from both academia and industry. The papers
were divided into 9 tracks based on subject areas, and were reviewed by a total of more than 300
reviewers. We are very much indebted to the team of reviewers for doing an outstanding job in making a
thorough and fair evaluation of the submissions, that resulted in an average of more than 4 reviews per
paper. Email discussions were initiated by the track chairs even before the actual program committee
meeting, and approximate decisions were identified. In keeping with the conference tradition, two
program committee meetings were organised - one in IIT Delhi and the other in Rutgers University, USA.
A total of 57 Regular papers and 22 Short papers were selected by the program committee for inclusion in
the technical program. These excellent papers, on a wide-ranging set of topics related to VLSI Design and
Embedded Systems, have been organized into three parallel tracks for presentation. The selection process
was highly competitive and many good papers could not make it to the final list. We sincerely hope that
the feedback from our expert reviewers was helpful to every author. This being also an embedded
systems conference, we have one running track on 6th January titled “Embedded Systems Day”.

We would like to thank all authors for considering VLSI Conference as a venue for publishing their work.
We would like to place on record our gratefulness to the Technical Program Committee members and the
volunteer reviewers who worked very hard to make the technical program happen. The program
committee list and reviewer list appears elsewhere in these proceedings, but we would like to take the
opportunity to convey our special thanks to the track chairs who managed the review procedure within
the nine tracks: Srivaths Ravi (Test), Prabhat Mishra (Synthesis and Verification), Nitin Chandrachoodan
and Sudeep Pasricha (Application Specific Architectures), Puneet Gupta and Susmita Sur-Kolay (Physical
Design), Praveen Elakkumanan and Nagi Naganathan (Low Power Electronics), Shouri Chatterjee
(Analog), Kolin Paul and Tulika Mitra (Embedded Systems), Rajiv Joshi (TCAD), and Vijay Degalahal
(Architecture). We also like to convey our deep appreciation to Vishwani Agrawal, Srimat Chakradhar,
N. Ranganathan, and Mike Bushnell for their valuable help, feedback, and support throughout the
planning and execution of the review process.

xvii

Special thanks are due to Nagi Naganathan, the Publications Chair, for undertaking the crucial and
difficult task of co-ordinating with everyone else for compiling the contents of the conference proceedings
and overall management of the iterative process, and to Lisa O'Conner, Production Editor at the
Conference Publishing Services of IEEE for her expert handling of the proceedings production and for
patiently and instantly accommodating the numerous update requests in spite of ill health. The polished
final product in your hands is the result of their untiring efforts.

We sincerely believe we have assembled for you an outstanding technical program, and we hope you
enjoy the experience. The charming capital city of Delhi has ancient history rubbing shoulders with high
technology; it will dazzle you with its breathtaking sights, and has much to offer to both the first time
visitor as well as the experienced traveller. We invite you to lose yourself amidst the tantalizing environs
in and around Delhi.

Preeti Ranjan Panda, IIT Delhi
Rajendran Panda, Freescale Semiconductor, Austin
VLSI09 Program Chairs
New Delhi, January 2009

xviii

Message from the Organizing Chair

Welcome to the 22nd VLSI Design and 8th Embedded Systems conference to be held from 5th to 9th
January 2009.

In the past years India has seen a lot of growth in the VLSI and Embedded Systems industry. The leading
educational institutes in India have also been actively introducing curriculum with focus on this industry.
Not only that, there has been increasing collaboration between the two on focused research in solving
some of the extremely complex problems faced by the industry. The VLSI and Embedded systems
conference is more relevant than other time in the past.

In these extremely difficult economic times to stage a conference of this size was a challenge. Anurag Seth
and Dr. Anshul Kumar, the General chairs have led from the front in achieving the high goals set for the
conference and I would like to acknowledge their efforts for the same.

The conference comes to New Delhi and National Capital Region (NCR) after a gap of 6 years. Significant
changes have occurred during this period. There has been the introduction of Metro, building of more
flyovers and still a lot of construction is going all around in preparation for the 2010 Commonwealth
games to be held here. Similarly there has been tremendous growth in VLSI Design and EDA companies
in last six years, NCR is now home to major VLSI Design centers such as ST and Freescale. It is also a
home for many EDA companies, such as Cadence, Mentor, Sequence, Magma, Calypto, Co-Ware,
Atrenta, Interra Systems, and so on.

I am sure you will enjoy the conference, tutorials, panel discussions, keynote speeches, industry forum
and the special “Made for India” track, that the organizing committee has put together this year. Capital
of India, New Delhi houses finest museums, galleries, shopping, dining and entertainment inviting you
to take a plunge into the history and modernity of the city.

Once again, I welcome you to Delhi and the conference and have a memorable 5 days.

Rajeev Sehgal
Organizing Chair

xix

Conference Steering Committee

Vishwani D. Agrawal, Chair

Jaswinder Ahuja
M. Balakrishnan

Srimat T. Chakradhar
Dasaradha Gude

Apurva Kalia
Bobby Mitra
A. Prabhakar

N. Ranganathan
C.P. Ravikumar

xx

VLSI Design 2009 Committee Members
 Steering Committee

Chair

Vishwani Agrawal
Auburn University

General Chair

Anshul Kumar

IIT Delhi

 General Chair

Anurag Seth

Cadence

Program Chair

Preeti Ranjan Panda

IIT, Delhi

Program Chair

Rajendran Panda

Freescale

Organizing Chair

Rajeev Sehgal

Mentor Graphics

Organizing
Coordinator

Harish Chauhan

Cadence

Publication Chair

Nagi Naganathan

LSI Corp.

xxi

Publicity Chair

Ricky Bedi

Magma

Publicity Chair

Sapan Garg

Atrenta

Publicity Chair

Yatin Trivedi

Magma

Tutorial Chair

Sanjiv Narayan
Calypto

Tutorial Chair

Atul Jain
TI

Special Session Chair

Rajiv Kapur
Broadcom

Sponsorship / Exhibit
Chair

Sanjeev Aggarwal

Cadence

Sponsorship / Exhibit
Chair

S. Uma Mahesh

Indrion Technologies

Finance Chair

Prem Nivasa

Mentor Graphics

Design Contest Chair

Aloknath De

ST Microelectronics

Design Contest Chair

Subind Kumar

Freescale

Fellowship Chair

Vineet Sahula
MNIT, Jaipur

xxii

EDA Contest Chair

Manu Lauria

Cadence

EDA Contest Chair

Shabbir Batterywala

Synopsys

Student Track Chair

Gurudutt Bansal

Cadence

Student Track Chair

M Jagadesh Kumar

IIT, Delhi

IEEE Liaison

Nagarajan Ranganathan

University of
South Florida

SSCS Liaison

Anantha Chandrakasan

MIT

ISA Liaison

Poornima Shenoy

VSI Liaison

CP Ravi Kumar

TI

ACM/SIGDA Liaison

Nikil Dutt

University of California,
Irvine

xxiii

VLSI Design 2009
Technical Program Committee

Program Co-Chairs
Preeti Ranjan Panda, IIT Delhi, India
Rajendran Panda, Freescale Semiconductor, USA

Tracks (Names of Track Chairs or Co-Chairs are in BOLD)

AMS: Analog, RF, Mixed Signals
Shouri Chatterjee, IIT Delhi, India
Debapriya Sahu, Texas Instruments, India
G.S. Visweswaran, IIT Delhi, India
Nagendra Krishnapura, IIT Madras, India
Pavan K. Hanumolu, Oregon State University, USA
Prakash Easwaran, Cosmic Circuits, India
Sambuddha Bhattacharya, Synopsys, India
Shanthi Pavan, IIT Madras, India
Srinivasan C, Cosmic Circuits, India
Vivek G. Pawar, Sankalp Semiconductor, India

ASA: Application Specific Architecutures, Security
Nitin Chandrachoodan, IIT Madras, India
Sudeep Pasricha, Colorado State University, USA
Ashish Mathur, Freescale Semiconductor, India
Mona Mathur, ST Microelectronics, India
Sivakumar Sri, Wipro, India
Sri Parameswaran, UNSW, Australia
Sri Chandra, Freescale Semiconductor, India
Sriram R. Vangal, Intel, USA,

PHY: Physical Design, DFM, Power and Signal Integrity, Interconnect and Timing Analysis/Optimization,
Reliability
Puneet Gupta, UCLA, USA
Susmita Sur-Kolay, ISI Kolkata, USA
Chul-Hong Park, Samsung, S. Korea
Elaheh Bozorgzadeh, University of California, Irvine, USA
Florin Balasa, Southern Utah University, USA
Min Zhao, Magma Design Automation, USA
Murat Becer, CLK-DA, USA
Puneet Sharma, Freescale Semiconductor, USA
Sao-Jie Chen, National Taiwan University, Taiwan
Savithri Sundareswaran, Freescale Semiconductor, USA
Shabbir Batterywala, Synopsys, India
Vishal Khandelwal, Synopsys, USA
Vladimir Zolotov, IBM, USA

xxiv

EMB: Embedded Systems, Fault Tolerance, Sensor Networks, Ubiquitous Computing, Asynch. Design,
Low Power Systems
Kolin Paul, IIT Delhi, India
Tulika Mitra, National University of Singapore, Singapore
Anup Gangwar, AMD, India
Basant Dwivedi, Calypto Design Systems, India
Javier Resano, UCM Madrid, Spain
David Atienza, UCM Madrid, Spain
Madhu Mutyam, IIT Madras, India
Mahesh Mehendale, Texas Instruments, India
Nikil Dutt, UC Irvine, USA
Niraj Jha, Princeton University, USA
Paolo Ienne, EPFL, Switzerland
Pradip Jha, Xilinx, USA
Samarjit Chakrabarty, National University of Singapore, Singapore
Sarma Vrudhula, Arizona State University, USA

LPE: Low Power Electronics
Nagi Naganathan, LSI Corp, USA
Praveen Elakkumanan, IBM, USA
Amit Patra, IIT Kharagpur, India
Bharadwaj Amrutur, IISc, India
Ram Krishnamurty, Intel, USA
Tezaswi Raja, LSI Corp, USA
Xin Li, CMU, USA
Aditya Bansal, IBM, USA
Saibal Mukhopadhyay, Georgia Tech., USA

TECH: Technology, Device Modeling and Simulation, MEMs, Nanoelectronics, and Biological Systems
Rajiv Joshi, IBM, USA
Bipul Paul, Toshiba, USA
Durgamadhab Misra, NJIT, USA
Josef Watts, IBM, USA
M. Jagadesh Kumar, IIT Delhi, India
Madabusi Govindarajan, IBM, India
Sukumar Jairam, Texas Instruments, India

ARCH: Processor Architecture, Multi-core Systems
Vijay Degalahal, Intel, India
Ashok Jagannathan, Intel, India
Maurizio Palesi, UNICT, Italy
Petru Eles, Linkoping Universitet, Sweden
Nagarajan Ranganathan, University of South Florida, USA
S.K. Nandy, IISc, India
Sourav Roy, Freescale Semiconductor, India

xxv

SYN: Design Specification, Modeling, and Synthesis, Hardware/Software Co-design, Simulation,
Emulation and Formal Verification
Prabhat Mishra, University of Florida, USA
Indira Iyer, Synfora, India
Jayanta Bhadra, Freescale Semiconductor, USA
Logie Ramachandran, Synopsys, USA
Malay Haldar, Calypto Design Systems, India
Pallab Dasgupta, IIT Kharagpur, India
Saraju Mohanty, University of North Texas, USA
Shankar Hemmady, Synopsys, USA
Sandeep Shukla, Virginia Tech, USA

TEST: Testing, DFT
Srivaths Ravi, Texas Instruments, India
Adit Singh, Auburn University, USA
Bernard Courtois, CMP, France
Bhargav Bhattacharya, ISI Kolkata, India
Kartik Mohanram, Rice University, USA
Kewal Saluja, University of Wisconsin, USA
Nagesh Tamarapalli, AMD, India
Pradip Thaker, Analog Devices, India
C. P. Ravikumar, Texas Instruments, India
Rubin Parekhji, Texas Instruments, India
Srimat Chakradhar, NEC Labs, USA
Sudhakar Reddy, University of Iowa, USA
Vishwani Agrawal, Auburn University, USA

xxvi

Reviewers

External Reviewers

Aashish Pant UCLA
Abhijit Das TI
Adam Donlin Xilinx
Ajit Pal Indian Institute of Technology-Kharagpur
Ajit Gupte TI
Alexander Fell Indian Institute of Science
Alok Pugalia Sankalp Semiconductor P. Ltd.
Aman Kokrady TI
Amin Khajeh University of California, Irvine
Amit Badole Freescale Semiconductor
Amit D TI
Amol Bhinge Freescale Semiconductor
Amrit Singh Freescale Semiconductor
Anshoo Tandon Freescale Semiconductor
Anshuman Chandra Synopsys
Ansuman Banerjee Interra Systems
Anthony Chun Intel
Anupam Singal Freescale Semiconductor
Apu Sivadas TI
Aravindh Anantaraman Intel
Ari Valero-Lopez LSI
Arup Chakraborty University of California, Irvine
Aseem Gupta University of California, Irvine
Ashok Balivada Analog
Bernd Becker University of Freiburg, Germany
Bhaskar Pal Synopsys
Bhasker Karmakar TI
Bijoy Jose Virginia Tech
Bo Hu
Bo Wan
Chandra Tirumurti Intel
Chandramouli Gopalakrishnan Synopsys
Chao Huang Virginia Tech
Charles Wen National Chiao Tung University, Taiwan
Chittaranjan Mandal Indian Institute of Technology-Kharagpur
Chouki Aktouf DeFacTo Technologies
Chrysostomos Nicopoulos EPFL
Chungchun Wan Stanford University
Chunhua Yao University of Wisconsin
Colin Tan National University of Singapore
Craig Gleason Synfora
Daniel Chaver Universidad Complutense de Madrid
Daniel Mozos Universidad Complutense de Madrid

xxvii

Debasri Saha Indian Statistical Institute
Deepak C. Indian Institute of Science
Deepak Mathaikutty Intel
Deji Akinwanda Stanford University
Devadutt K Synfora
Devanathan Varadarajan TI
Dhruva Ghai University of North Texas
Dong Ha Virginia Tech
Dwarka Prasad Freescale Semiconductor
Ekaterina Trofimova Freescale Semiconductor
Elias Kougianos University of North Texas
Erika Cota Universidade Federal do Rio Grande do Sul
Fan Wang Juniper Network
Gabor Madl University of California, Irvine
Gaurav Singh Virginia Tech
Gireesh Rajendran TI
Grady Giles AMD
Haihua Yan Synopsys
Hangsheng Wang Freescale Semiconductor
Hans-Joachim Wunderlich University of Stuttgart, Germany
Harish P Indian Institute of Science
Hillary Grimes Auburn University
Himanshu Thapliyal University of South Florida
Himyanshu Anand Freescale Semiconductor
Hiren Patel University of California, Berkeley
Huynh Phung Huynh National University of Singapore
Ilia Polian
Indradeep Ghosh Fujitsu
Irith Pomeranz Purdue University
Iwao Yamazaki Hitachi
Jais Abraham AMD
James Tschanz Intel
Janakiraman V
Jawar Singh Bristol University
Jiang Hu Texas A&M University
Jie Qin Auburn University
Jim Holt Freescale Semiconductor
Jim Plusquellic University of New Mexico
Jimson Mathew Bristol University
Jins Davis Alexander Auburn University
Jong Eun Lee Arizona State University
Jooheung Lee University of Central Florida
José Ayala Universidad Complutense de Madrid
Jose Ignacio Gomez Universidad Complutense de Madrid
Jose Luis Risco Universidad Complutense de Madrid
Juan Antonio Clemente Universidad Complutense de Madrid
Kalyana Chakravarty Freescale Semiconductor
Kanishka Lahiri Intel
Kausar Banoo LSI
Kausik Datta Interra Systems

xxviii

Kedarnath Balakrishnan AMD
Keshavan Varadarajan Indian Institute of Science
Koushik M Indian Institute of Science
Koustav Bhattacharya University of South Florida
Krishnaiah Gummidipudi Indian Institute of Technology-Delhi
Krishnaswamy T TI
L. Begin Université Libre de Bruxelles
Lerong Chen University of California, Los Angeles
Lin Li Intel
Lin Zhong Rice University
Loganathan Lingappan Intel
Lokesh Gupta Magma
Luis Bathen University of California, Irvine
M. Balakrishnan Indian Institute of Technology-Delhi
Mahalingam Venkataraman University of South Florida
Mainak Banga Virginia Tech
Manish Pillai TI
Manish Ratnani University of North Texas
Manish Pillai TI
Manvi Agarwal NXP
Marcos Sanchez-Elez Universidad Complutense de Madrid
Michael Bushnell Rutgers University
Michael Hsiao Virginia Tech
Michel Renovell LIRMM, France
Mihir Choudhury Rice University
Mike Burns Freescale Semiconductor
Mingsong Chen University of Florida
Minyoung Kim University of California, Irvine
Mohammed Ashfaq Shukoor Auburn University
Mrinal Bose Freescale Semiconductor
Mukesh Mishra Intel
Mukund Sivaraman Synfora
Narasimhaswamy Bharath AMD
Naveen Raina Freescale Semiconductor
Neeraj Goel Indian Institute of Technology-Delhi
Nisar Ahmed TI
Nishad P University of Minnesota
Nithiyanandan Bashyam Intel
Nitin Yogi Auburn University
Nur Touba University of Texas-Austin
Pablo García Universidad Complutense de Madrid
Palkesh J TI
Patrick Schaumont Virginia Tech
Paul Schumacher Xilinx
PJ Joseph Freescale Semiconductor
Prajit Nandi Sankalp Semiconductor P. Ltd.
Prakash Venkitaraman AMD
Prasanta Basu Calcutta University
Pratap Das Indian Institute of Science
Praveen Sanjeev Analog

xxix

Preetam T TI
R Datta TI
Rahul Jain Calypto Design Systems
Rajamani Sethuram
Rajaraman Ramanarayanan Intel
Rajat Bhatia Freescale Semiconductor
Rajesh S Cosmic Circuits
Rakesh Kumar TI
Rakesh Gnana David
Ramkumar Jayaseelan National University of Singapore
Rani Ghaida University of California, Los Angeles
Ranjan Bose Indian Institute of Technology-Delhi
Ravi Venkatesan Intel
Rohit Kapur Synopsys
Rubin Parekhji TI
Saibal Mukhopadhyay Georgia Tech
Sanatan Chattopadhyay
Sandeep Oswal TI
Sandip Kundu University of Massachusetts
Sandip Ray University of Texas-Austin
Sanjay Kumar Broadcom
Sanjukta Bhanja University of South Florida
Sankaran Aniruddhan
Santosh Salunkhe Analog
Sanu Mathew Intel
Saravana Ganeshan TI
Satish Anand
Satish Yada Intel
Satishkumar Udayanarayanan Wipro
Saurabh Tiwari Intel
Seiji Kajihara
Shail Aditya Synfora
Shailendra Jain Intel
Shakti R TI
Sharad Seth University of Nebraska-Lincoln
Shashi Kumar Jonkoping University, Sweden
Shiva Kasiviswanathan Penn State
Shreya Dasgupta Analog
Shyam Sundar Analog
Silpa BVN Indian Institute of Technology-Delhi
Sitaraman Iyer
Sivaramalinga, Reddy Analog
Soonte Kim Information and Communication University, S. Korea
Soujanna Sarkar TI
Soumyaroop Roy University of South Florida
Sravan Kumar AMD
Srinivas Patil Intel
Srinivas V TI
Srinivas Katkoori University of South Florida
Srinivasulu Alampally TI

xxx

Sriparna Saha Indian Statistical Institute
Subhasis Banerjee Intel
Subir Roy TI
Subodh Sharma University of Utah, Salt Lake City
Subramanian Rajagopalan
Subrat Panda Indian Institute of Technology-Kharagpur
Sudheer Prasad TI
Sudip Shekhar
Sujoy Chakravarty TI
Suman Mandal
Sumant Kale TI
Sumit Ahuja Virginia Tech
Surendra Guntur NXP
Suresh PR TI
Sutirtha Sanyal Barcelona Supercomputing Center
Swarup Bhunia Case Western
T Pramod Magma
Tania Mishra University of Florida
Tej Rai Freescale Semiconductor
Theocharis Theocharides University of Cyprus
Tomokazu Yoneda NAIST, Japan
Tuck-Boon Chan University of California, Los Angeles
Udaykumar H TI
Umit Ogras Intel
Upavan Gupta University of South Florida
V. Nagarajan
Vaideeswaran Sethuraman AMD
Veezhinathan Kamakoti Indian Institute of Technology-Chennai
Venkatesh C Indian Institute of Science
Venugopal Puvvada
Vijay Sundaresan University of Cincinatti
Vikram K.N. George Washington University
Vincenzo Catania University of Catania, Italy
Virendra Singh Indian Institute of Science
Wei Jiang Auburn University
Wei Qin Boston University
Weixun Wang University of Florida
Wen Xiaoqing Kyushu Institute of Technology, Japan
Xiaofang Wang Villanova University
Xiaoke Qin University of Florida
Xijiang Lin Mentor Graphics
Yang Yi Freescale Semiconductor
Yi-Shing Chang Intel
Yong Wang
Yoshinobu Higami Ehime University, Japan
Yu Huang Mentor Graphics
Yuhong Fu Freescale Semiconductor
Zhan Guo Lund University, Sweeden
Zhao Li

xxxi

Tutorial Committee

Tutorial Co-Chairs
Atul Jain Texas Instruments

Sanjiv Narayan Calypto Design Systems

Reviewers

Abhishek Ranjan
Alok Jain
Anand K.

Anil Kumar
Anindya Saha

Anup Gangwar
Anurag Midha
Apu Sivadas

Arun Chandrashekhar
Arun Ramakrishnan

Ashish Mathur
Basant Dwivedi

Bhaskar Karmakar
D. R. Bhaskar
Dwayne Lee
Frank Vahid

Ganesan Thiagarajan
Jagdish Rao

Jai Balakrishnan
Jairam Sukumar
Jayashree Saxena

Kaushik De
Ken Butler
Kolin Paul

M. Balakrishnan
Mahesh Mehendale

Manu Chopra
Nikil Dutt

Nitin Chandrachoodan

Nitin Chawla
Pallab Dasgupta
Pradeep Kumar

Pravin Jain
Raj Mitra

Raj Senani
Rajan Arora

Rajeev Sehgal
Rajendra Pratap

Rajesh Gupta
Ranga Vemuri

Ranjit Dash
Reene Tayal
Ricky Bedi

Rubin Parekji
S. Dharamrajan
Sandeep Bhatia
Sandeep Kumar
Sandeep Pagey
Sanjeev Saluja

Saraju Mohanty
Shabbir Batterywala

Subhahshish Mukherjee
Sushil Gupta

Udaykumar H.
Venugopal Puvvada

Vinod Kathail
Vivek Pawar

xxxii

VLSI Design 2008
Fellowship Recipients

Ajith Kumar Panda NIS & T, Berhampur
Anilkumar V. Nandi B.V.B. College of Engg. & Tech.
Arunachalam.V SES, VIT University
Babita Roslind Jose Cochin University
Bhanu Murthy Bhaskara Nalla Malla Reddy Coll. Of Engg.
Bhavesh NIT, Silchar
B.Karthikeyan SES, VIT University
Bishnu Prasad Das IISC
C.D.Naidu VNR Institute of Engg.& Tech.
C.N. Shariff Bellary Engg.College
Surajit Das Vidya Sagar College, Kolkata
Dipak Kumar Kole St. Thomas College of Engg.& Tech.
Darvinder singh Oberoi University of Jammu
Ahsan Raja Chowdhury University of Dhaka
Ghanshyam Singh MNIT
H.Mangalam S.K. Collge of Engg. &Tech, Coimbatore
B.P. Harish Visveswaraya College of Engg.
Devasarmahiren Kumar SMIT, Sikkim
Indranil Hatai IIT, Kharagpur
Jayarajan. R Anna University, Chennai
K. Sivani Kakatiya Institute of Technology
Chitrasena Bhat KIT, Tiptur
Krishnendu Choudhury NIT, Durga pur
K. Sivasankaran SES, VIT University
Lakshmi Prabha Viswanathan Govt. College of Technology
T. Laxmikandan Anna University, Chennai
Prof. Kamaraju GEC, Gudlavalleru
Ms.Madhusmita Panda CV Raman College of Engg.
Manu. T.M Bellary Engg.College
D. Meghanathan Anna University, Chennai
Nachiketa Das MERI
N.B. Balamurugan Thiagarajar College of Engg.
M. Nirmala Devi Amrita Vishwa VidyaPeetham
N. Rajkumar NHCE
N. Siva Sankar Reddy Vasavi College of Engg.
Prof. N.S. Murthy NIT, Warangal
Sreehari Rao Patri NIT, Warangal
Pradyut Sarkar MCKV Institute of Engg.
Priyabrata Pattananaik Silcon Institute of Technology
S.Rajaram Thiagarajar College of Engg.
Rajib Kar NIT, Durga pur
K. Venkata Ramanaiah Narayana Engg.College, Nellore
Ramesh Bhakthavatchalu Amrita Vishwa VidyaPeetham

xxxiii

Aytha Ramesh Kumar VNR Institute of Engg.& Tech.
C.V. Krishna Reddy Kakatiya Institute of Technology
Rockey Gupta University of Jammu J & K
Pranab Roy BES University, Shibpur
R.Sakthivel V IT University
M.Sreenivasulu Nalla Malla Reddy Coll. of Engg.
Saroja V Siddamal JNTU, Kukatpally
Saurabh Choudhury NIT, Silchar
S.Sivanantham VIT University
Samrat L. Sabat Central University
S.Muthukumar VIT University
Sriyankar Acharyya West Bengal University of Tech.
S. Moorthi NIT, Tiruchirapalli
M.Srinivasa Rao VNR Institute of Engg.& Tech.
Susheel Kumar Sharma University of Jammu J & K
S.Vasu Krishna VNR Institute of Engg.& Tech.
P. Vijay Kumar PSG College of Tech., Coimbatore
Vinayak VNIT, Nagpur
V Vinoth Thyagarajan Thiagarajar College of Engg.
Madhavi latha JNTU
Rajeshwari M Bankar BVB College, Engg.& Tech.
S.P. Venu MadhavaRao Osmania University
Mohammed Abid Hussain IIIT, Hyderabad
Amit Harode VNIT, Nagpur
Aseem Gupta California
Rahul M Badghare VNIT, Nagpur
Chandan Karfa IIT, Kharagpur
Rathna Anna University, Chennai
Falguni Sinhababu ViT University
Prashanth Jnanendra IIT, Madras
Arun Janarthanan University of Cincinnati
Jimson Mathew University of Bristol
Janakiraman V IISc, Bangalore
K. Navaram Kumar VNIT, Nagpur
Kameswara Rao Chepette IIT, Delhi
Kaushik Bhattacharya IIT, Kharagpur
G. Krishnaiah IIT, Delhi
Rasmita Panda Berhampur University
Mehdi Fazeli Sharif University of Tech., Azadi
Susmit Maiti BES University, Shibpur
Mamatha.S, Mrs. IIIT, Hyderabad
G. Muneeswari IIT, Madras
Nagaraju Pothineni IIT, Delhi
Neeraj Goel IIT, Delhi
Noor Mahammad Sk IIT, Madras
Pejman Lotfi Kamran CAD Research Group
K. Praveen Kumar Reddy VNIT, Nagpur
K. Shyamala IIT, Madras
S. Ramasamy NIT, Trichy
R.V. Kshirsagar VNIT, Nagpur

xxxiv

Ravindra Jayanthi IIIT, Hyderabad
Ravindra Mukhiya IIT, Kharagpur
Rupam Mukherjee IIT, Kharagpur
Vikas. G IISc, Bangalore
S.D. Thimmappa IIT, Delhi
Chandrashekhar T Kukade VNIT, Nagpur
B.V.N. Silpa IIT, Delhi
Narasimham K C.C.C.M / B.A.R.C
Soumyajit Dey IIT, Kharagpur
Vijay Sundaresan University of Cincinnati
Supata Ditti BES University, Shibpur
Uma Rajaram Anna University, College of engg.,
P.V. Sankara Rao IIT, Kharagpur
Falguni Sinhababu BES University, Shibpur
Rabindra Kumar Pradhan IIT, Kharagpur
Rangababu University of Hyderabad
Abhay S Kochhar VNIT, Nagpur
Abhishek Mittal ViT University
Alladi. Mahish VNIT, Nagpur
Amitava Banerjee IIT, Kharagpur
Amey M. Walke VNIT, Nagpur
Anurag Sharma ViT University
Archana Devi .B.R. ViT University
Aishwarya Bharathi Sankara University of California, Irvine
V. Ashis Kumar N.I.T.K. Surathkal
Ashis Maity IIT, Kharagpur
Lingamneni Avinash IIIT, Hyderabad
Biswajit Ray IISc, Bangalore
Chester Rebeiro IIT, Madras
Deepa Kannan Arizona State University
Nithin B.Dev N.I.T.K. Surathkal
Vikas Singh IIT, Madras
Ganpat anant parulekar VNIT, Nagpur
Hassan Raza VNIT, Nagpur
Hitesh Kumar Gupta IISc Bangalore
Jayalakshmi Periyasamy VNIT, Nagpur
Prakash.J ViT University
Jyotirmoy Ghosh IIT, Kharagpur
T.V. Kalyan IIIT, Hyderabad
Kamalika Datta Ms IIT, Kharagpur
Karthik T J IIT, Madras
M Kiran Kumar Reddy IISc, Bangalore
Kranthi Kumar.Guduru N.I.T.K. Surathkal
J.S. Krishnam Raja Reddy ViT University
J. Lavanya IIT, Madras
Manas Kumar Lenka IISc Bangalore
Shashidhar L IISc, Bangalore
Manikumar Ravula N.I.T.K. Surathkal
Shyam Shroff IIT, Madras
M. Vijaya Raju University of Hyderabad

xxxv

Partha Mukhopadhyay IIT, Kharagpur
Narendra Konidala N.I.T.K. Surathkal
Sreeram N S IISc, Bangalore
N S Vinay IISc, Bangalore
Arun.K Anna Univ, College of Engg.,
Omprakash Parida IISc Bangalore
Lalit Patnaik IISc Bangalore
Prabhu Natarajan Anna University
Pradeep Nair IISc, Bangalore
T. Prashanth Reddy VNIT, Nagpur
Raja Shekar Guntupally N.I.T.K. Surathkal
Rajesh Kumar Dasari IIT, Madras
Prasenjit Ray BES University, Shibpur
Rooha Razmid Ahamed VNIT, Nagpur
Reiley Jeyapaul Arizona State University
Rajashekar n IISc, Bangalore
B. Sandeep VNIT, Nagpur
Bhukya Hariprasad VNIT, Nagpur
R. Rajasekhar Anna University, College of Engg.,
Mohammed Shoaib IIT, Madras
Sivakumar Bondada IISc, Bangalore
Sreekanth Reddy P IIIT, Hyderabad
Sreehari Veeramachaneni IIIT, Hyderabad
K. Srimannarayana Karthik Sathyabama University
Santanu Sarkar IIT, Kharagpur
Subho Chatterjee IIT, Kharagpur
Subir Kumar mandal VNIT, Nagpur
Sudip Roy IIT, Kharagpur
Sumit Samajpati IIT, Madras
Sunil shah IIT, Delhi
Virendra Thakur IIT, Madras
Mangaiarkkarasi.K ViT University
Umakant Goyal IISc Bangalore
Vani S ViT University
P. Venkateswarlu NIT, Trichy
Virendra Kumar Patidar IIT, Madras
Anurag Avinash Zope VNIT, Nagpur
G.Palakshi IIT, Madras
S.V. Mohanasundaram NIT, Trichy
Suraj Sindia IISC, CEDT
Deepa Devendran IIT, Madras
V. Raghavendra IIIT, Pune
Saurav Bandyopadhyay IIT, Kharagpur
Amal Kumar Kundu IIT, Kharagpur
Ajaykumar Devarapalli University of Hyderabad
M. Kirthi Krishna IIIT, Hyderabad
Mohit Sharma Malaviya Institute of Technology, Jaipur
Rahul Choudary Malaviya Institute of Technology
Aranab Ray Malaviya Institute of Technology
Vysakh Amrita University, Kerala

xxxvi

Navneet Menon Amrita University
Ashwin Menon Amrita University
Ranjith C National Institute of Technology, Warangal
Ms Gayatri National Institute of Technology
Venugopal. M National Institute of Technology
Swagat Nanda VIT
Anusha Kakarala VIT

xxxvii

VLSI Design 2008
Best Paper Awards

Arun Kumar Choudhury Best Paper Award
“Integrated TIA-Equalizer for High Speed Optical Link”

Saurav Bandyopadhyay (Indian Institute of Technology, Kharagpur)
Stephen E. Ralph (Georgia Institute of Technology, USA)
Pradip Mandal (Indian Institute of Technology, Kharagpur)
Kenneth Pedrotti (University of California, Santa Cruz, USA)

Nripendra Nath Biswas Best Student Paper Award
“Recursive Statistical Blockade: An Enhanced Technique for Rare Event Simulation with Application to
SRAM Circuit”

Amith Singhee (Dept. of ECE, Carnegie Mellon University, Pittsburgh, USA)
Jiajing Wang (ECE Dept., University of Virginia, Charlottesville, USA)
Benton H. Calhoun (ECE Dept., University of Virginia, Charlottesville, USA)
Rob A. Rutenbar (Dept. of ECE, Carnegie Mellon University, Pittsburgh, USA)

Honorable Mention Award
“Compact Modeling of Suspended Gate FET”

Y.S. Chauhan (Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland)
D. Tsamados (Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland)
N. Abelé (Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland)
 and (ST Microelectronics, Crolles, France)
C. Eggimann (Center for Integrated Systems, Stanford University, Stanford, CA USA)
M. Declercq (Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland)
A.M. Ionescu (Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland)

Honorable Mention Award
“Optimal Dual-VT Design in Sub-100 Nanometer PDSOI and Double-Gate Technologies”

Aditya Bansal (School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA)
Jae-Joon Kim (IBM T. J. Watson Research Center, Yorktown Heights, USA)
Keunwoo Kim (IBM T. J. Watson Research Center, Yorktown Heights, USA)
Saibal Mukhopadhyay (IBM T. J. Watson Research Center, Yorktown Heights, USA)
Ching-Te Chuang, (IBM T. J. Watson Research Center, Yorktown Heights, USA)
Kaushik Roy (School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA)

xxxviii

VLSI Design Conference History

Meeting
Sequence Place Dates Number of

Papers
Number of
Posters

Number of
Tutorials

Proceedings
Pages

First
Madras,
India

Dec. 26-28,
1985 29 0 1 193

Second
Bangalore,
India

Dec. 15-18,
1988 26 21 4 496

Third
Bangalore,
India

Jan. 6-9,
1990 30 22 4 390

Fourth
New Delhi,
India

Jan. 4-8,
1991 45 16 9 315

Fifth
Bangalore,
India

Jan. 4-7,
1992 57 24 4 378

Sixth
Bombay,
India

Jan. 3-6,
1993 70 9 6 371

Seventh
Calcutta,
India

Jan. 5-8,
1994 87 0 6 448

Eighth
New Delhi,
India

Jan. 4-7,
1995 77 6 6 456

Ninth
Bangalore,
India

Jan. 3-6,
1996 75 16 6 480

Tenth
Hyderabad,
India

Jan. 4-7,
1997 84 18 6 608

Eleventh
Chennai,
India

Jan. 4-7,
1998 98 0 6 624

Twelfth Goa,
India

Jan. 7-10,
1999 103 0 6 682

Thirteenth
Calcutta,
India

Jan. 3-7,
2000 93 0 6 590

Fourteenth
Bangalore,
India

Jan. 3-7,
2001 77 0 9 592

Fifteenth
Bangalore,
India

Jan. 7-11,
2002 109 0 8 834

Sixteenth
New Delhi,
India

Jan. 4-8,
2003 84 0 6 622

Seventeenth
Mumbai,
India

Jan. 5-9,
2004 120 44 8 1132

Eighteenth
Kolkata,
India

Jan. 3-7,
2005 113 23 9 922

Nineteenth
Hyderabad,
India

Jan. 3-7,
2006 136 0 11 880

Twentieth
Bangalore,
India

Jan. 6-10,
2007 147 0 15 990

Twenty First
Hyderabad,
India

Jan. 4-8,
2008 108 0 10 780

Twenty
Second

New Delhi,
India

Jan. 5-9,
2009 79 0 9 632

xxxix

Embedded Systems Conference: History

Meeting
Sequence Place Dates Number of

Papers
Proceedings

Pages

First
New Delhi,
India

Jan. 2-4,
2002 8 70

Second
New Delhi,
India

Jan. 4-8,
2003 84 622

Third
Mumbai,
India

Jan. 5-9,
2004 120 1132

Fourth
Kolkata,
India

Jan. 3-7,
2005 113 922

Fifth
Hyderabad,
India

Jan. 3-7,
2006 136 880

Sixth
Bangalore,
India

Jan. 6-10,
2007 147 990

Seventh
Hyderabad,
India

Jan. 4-8,
2008 108 780

Eighth
New Delhi,
India

Jan. 5-9,
2009 79 632

xl

About the Cover

India Gate, an important monument of the city, is a memorial built in commemoration of more than 80,000
Indian soldiers who were killed during World War I. At the base of the India gate there is another
memorial, the Amar Jawan Jyoti (Flame of the immortal warrior), a never-ceasing flame under the
humongous arch to remind the nation of soldiers who laid their lives to serve this nation. India Gate was
designed to convey to the people of India the values of “Duty, discipline, unity, fraternity, loyalty,
service and sacrifice”.

Delhi is the capital of India, a country that blends an amazing history and a dynamic future creating an
enchanting experience for all of its visitors, a vibrant dynamic masterpiece, the largest democracy and
second most populous nation on earth. It offers a unique cultural mix blending ancient and noble cultures,
modern and dynamic societies.

New Delhi is the only city in the world with 3 World Heritage Sites – The Red Fort, The Qutub Minar and
The Humayun’s Tomb.

Delhi has had the honour to host many magnificent events in the past. In 1951, the inaugural edition of
the Asian Games was organized in Delhi and again in 1982. Now the Capital city of Delhi is preparing to
host the most prestigious Commonwealth Games in 2010.

xli

VLSI Design 2009
Invited Keynote Speakers

Justin R. Rattner Abhi Talwalkar
Intel Senior Fellow
Vice President
Director, Corporate Technology Group and
Intel Chief Technology Officer

President and Chief Executive Officer
LSI Corporation

Neil Henderson Thomas W. Williams
General Manager, Synopsys Fellow, Synopsys, Inc.
Embedded Systems Division (ESD) of Mentor Graphics

Dr. Ajoy K. Bose Prof. Jacob A. Abraham
Chairman of the Board, Founder, Electrical and Computer Engineering
President and Chief Executive Officer Atrenta Inc. University of Texas, Austin

xlii

Invited Talks/Special Sessions
Abstracts

A Decade of Platform-Based Design: A look backwards,
a look forwards

Grant Martin, Chief Scientist, Tensilica

Abstract:

It has been 10 years since a group of us wrote the book “Surviving the SoC Revolution: A Guide to
Platform-Based Design”, and almost a decade since I gave a talk at VLSI 2000 in Kolkata about this
theme. The intervening time has seen considerable development in the platform based design
approach. It has become the near ubiquitous approach to the development of complex SoCs for many
application areas. It has branched out from its original, mainly hardware-centric focus, to assume much
more of a system and software focus complementing hardware. And the nature of platform
architectures have changed: we now see many more embedded processors of all kinds in SoC
platforms, from application-specific processors (ASIPs) to clusters of homogeneous or heterogeneous
processing engines and many integrated subsystems each including one or more ASIPs or general
purpose cores.

This talk will look back at the past decade in platform based design and describe the evolution of
architectures, design approaches and tools, and also look forward at the next decade or two and try to
paint some possible scenarios for the future evolution of the platform-based approach. As we move
towards new generations of design tools and higher level design approaches, what will be the main
forms of platforms in future and how will designers use them?

Speaker Bio:

Grant Martin is a Chief Scientist at Tensilica, Inc. in Santa Clara, California. Before that, Grant worked
for Burroughs in Scotland for 6 years; Nortel/BNR in Canada for 10 years; and Cadence Design
Systems for 9 years, eventually becoming a Cadence Fellow in their Labs. He received his Bachelor’s
and Master’s degrees in Mathematics (Combinatorics and Optimisation) from the University of
Waterloo, Canada, in 1977 and 1978.

Grant is a co-author or co-editor of nine books dealing with SoC design, SystemC, UML, modelling,
EDA for integrated circuits and system-level design, including the first book on SoC design published
in Russian. His most recent book, ESL Design and Verification, written with Brian Bailey and Andrew
Piziali, was published by Elsevier Morgan Kaufmann in February, 2007.

He was co-chair of the DAC Technical Program Committee for Methods for 2005 and 2006. His
particular areas of interest include system-level design, IP-based design of system-on-chip, platform-
based design, and embedded software. Grant is a Senior Member of the IEEE.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.100

3

Analog IC Design in Nanometer CMOS Technologies

Prof. Willy Sansen, K.U.Leuven Belgium

Abstract:

In nanometer CMOS technologies, several new effects emerge, such as velocity saturation and
gate leakage currents. As a result the transconductance and speed are both limited by velocity
saturation. Also noise and mismatch are affected as a result of the thinner gate oxides used. Moreover
the supply voltage is reduced to values below 1 Volt, creating new challenges for analog circuit design.

This presentation provides a review of the modifications in model parameters, including noise and
distortion. It is followed by an exploration of the noise/power compromise in existing circuit blocks such
as Miller operational amplifiers and Gm-C filters. An overview is the given of low-voltage
amplifiers/filters configurations with both Gate and Bulk drives. Several sub-1 Volt circuits are finally
discussed for different applications.

Speaker Bio:

Prof. Willy Sansen has the PhD degree from the University of California, Berkeley in 1972. Since 1980
he has been full professor at the Catholic University of Leuven, in Belgium, where he has headed the
ESAT-MICAS laboratory on analog design since 1984. He has been supervisor of sixtyfive PhD theses
and has authored and coauthored more than 625 publications and sixteen books, among which is
Analog Design Essentials. He is a Fellow of the IEEE. He was program chair of the ISSCC-2002
conference and is now President of the IEEE SSCS.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.101

4

Common Power Format: A User-driven Ecosystem
for Proven Low Power Design Flows

Dr. Sumit DasGupta, Senior Vice President, Si2

Abstract:

Low power design has emerged as one of the urgent needs in IC design. The International Technology
Roadmap for Semiconductors (ITRS) has identified the challenges surrounding low power design as
one of the fundamental bottlenecks in exploiting the full capabilities of some of the advanced
technology nodes. In fact, data from major chip design houses have underscored this need.

Much attention has been focused world-wide on the three existing formats for expressing low power
constraints and intent: Common Power Format (CPF) from Silicon Integration Initiative (Si2), UPF 1.0
from Accellera, and UPF 2.0/P1801 from IEEE. However, the real challenge lies in the development of
design flows and tools that exploit the content expressed by designers in these formats to solve real-
life, power-related issues in design. Therefore, it should come as no surprise that at Si2 the focus has
been on both developing and standardizing CPF in a coalition of both users and EDA suppliers, and in
creating an ecosystem that provides training and adoption aids for CPF to support its adoption by chip
designers and tool developers alike and proliferation of CPF into design flows in IC companies around
the world.

This presentation begins with a brief introduction on Si2 and the Low Power Coalition (LPC) and the
processes used in LPC to drive the development of CPF. There will be a discussion on the CPF
roadmap with an introduction of the current standard CPF version 1.1 identifying the key
enhancements over the previous version 1.0, and the roadmap leading to version 1.2 where
interoperability with P1801 is one of the focus items. Next, we will describe some of the enablers
provided by Si2 to support adoption, such as, training materials, a parser, a reference guide and a
relational analyzer which can be used both to train in CPF as well as to analyze the contents of
multiple CPF files used across the design. The talk will include examples of adoption by EDA
companies and will conclude with results achieved to-date among IC design companies with
references to some real-life success stories in low power design.

Speaker Bio:

Sumit DasGupta is the Senior Vice-President of Engineering at Silicon Integration Initiative (Si2) an
electronics industry consortium based in Austin, TX. Prior to joining Si2, Sumit was at Motorola
Semiconductors, now Freescale, where he served as Director of Design Systems and was responsible
for developing and integrating tools for the design of PowerPC microprocessors and SoC designs.
Before Motorola, Sumit was at IBM where he served in senior management and technical leadership
positions in the EDA field and was responsible for developing design tools and methods for physical
design, and design for test, many of which are still in use today. Sumit has a PhD in Computer Science
from Syracuse University. He has 8 patents issued and over 25 papers and publications. He is a
Senior Member of the IEEE and has served in several leadership positions in IEEE events and
activities.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.102

5

The Future of Low Power Design is Here:
IEEE P1801, aka, UPF 2.0

Stephen Bailey, Director Product Marketing, Mentor Graphics

Abstract:

Industry adoption of Accellera’s Unified Power Format (UPF) has been broad and swift. And why
shouldn’t it be? For the first time, UPF made it possible to specify the power design intent in
combination with the HDL specification of the design for use throughout the design, verification and
implementation flows. UPF’s portability and feature set opened the door for more efficient design of
low power systems. Now, UPF 2.0 is just around the corner. The IEEE P1801 working group, by the
time of this conference, will have completed the sequel and it will be well on its way to IEEE
standardization. Rumors are that there are significant changes to UPF 2.0. Why has been UPF been
enhanced? What value will the new capabilities deliver? Do the changes obsolete UPF 1.0? This
presentation will provide an overview of the major changes in UPF 2.0, its relationship with UPF 1.0
and the value that everyone doing low power designs will want to know.

Speaker Bio:

Stephen Bailey is Director of Product Marketing for Functional Verification at Mentor Graphics. He has
been active in EDA standards activities including chair of IEEE P1801 and Accellera UPF, past chair
of IEEE VHDL 1076 working group and participating in the PSL 1850 working group. He is the past
technical program chair, vice chair and general chair for the DVCon Conference (2004-2008). With
over 15 years of EDA and electronics industry experience, he has served in R&D, applications,
consulting, and technical and product marketing roles. Stephen has a BS and MS in Computer
Science from Chapman University.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.103

6

Making Sense Out of the Potential Babble
of Low Power Standards

Dr. Gary Delp, Distinguished Engineer, LSI Corp

Abstract:

For decades designers have worked with the digital abstraction, signals are either logical true or logical
false. As with all abstractions, this one had great utility, allowed optimizations in analysis, and
separated two areas of difficult analysis, making the design task achievable. In 2009, this abstraction
becomes more valuable, and more complex. Parts of digital circuits will be turned off relative to other
parts, parts will enjoy low-power slow-down modes, and parts will scream with performance and
energy. The good news is that there is a simple way to express the relationships, boundaries,
activities, and side effects of many power domains without having to give up most of the simplifications
that the digital abstraction allow us. The bad news is that there are currently two ways to do it.

Using examples from a number of design flows and design problems, the speaker will show how to
use both UPF/P1801 and CPF to express the power constraints and characteristics of designs. As
work is ongoing in both the Si2 Low Power Coalition, and the IEEE P1801 groups, the January state of
interoperability will be greater than it is currently, and much quicker and cleaner to hear about than it
has been to develop.

Speaker Bio:
Dr. Gary Delp is a Distinguished Engineer working out of the CTO office at LSI. As one of three
architects of the Low Power Coalition, and vice-chair of the IEEE P1801 working group, he is in a
unique position to provide insight into interoperability needs and potentials. Gary spends his time
working on design and IP reuse, inside of a design, across designs, and across the economic eco-
system. Some of this reuse is in the form of bundles and IP functions, some is in the form of formats,
methodologies, and exploratory work. Standards Setting bodies, Industry Alliances and University
research programs support this work of technology transfer.

He is the Technical Director of The SPIRIT Consortium, and the CTO of the VSI Alliance. He is also
the vice-chair of the IEEE study group on common power formats. LSI has a keen interest in power
reduction in service of the needs of their customers in the storage and consumer industries.

His work has always been in the area of system optimization, but the systems have varied. As a VLSI
Designer at the IBM AS/400 Division, he led teams in the optimization of hardware/software tradeoffs
for network interconnect and the provision of network services. He holds patents in scheduling and
shaping algorithms, circuit design, chip product structures, and video editing among others. He works
collaboratively; the bulk of his 40+ patents are joint with others. At the University of Delaware, his PhD.
Dissertation was MemNet: a distributed shared memory network implementation and architecture. IBM
Watson work included FDDI and ATM operating system/hardware interfaces.

He holds a Bachelor of Arts degree in Theatre from Oberlin College and a Master of Fine Arts in
Technical Theatre from the University of Memphis, Tennessee. Delp received his PhD in Electrical
Engineering from the University of Delaware and has taught in several institutions of higher education
including Rhode Island College, Memphis State University, and the University of Delaware. Once, as
technical director, he led a team in building 2 mountains for an outdoor historical drama in Chillicothe,
Ohio.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.104

7

DFX and Productivity

Dr. Robert C Aitken, R&D Fellow, ARM

Abstract:

CMOS scaling has led to ever-increasing numbers of potentially available transistors on chips. At the
same time, design productivity has also continued to improve, but has not been able to keep up,
resulting in increasing design effort. Many factors contribute to this situation, but one key element is
the complexity involved in ensuring that yield targets will be met. (DFY). This talk outlines the basics of
design-for-yield (DFY) and shows how it relates to design-for-manufacturability, test, and variability
(DFM, DFT, and DFV respectively). It is shown how a comprehensive approach to all of the problems,
known as DFX, can lead to improved design methodology and hence improved productivity.

Speaker Bio:

Robert C. Aitken is an R&D Fellow at ARM. His areas of responsibility include low power design,
library architecture, and design for manufacturability. He has worked on design, manufacturing and
variability issues for many years at ARM, Artisan, Agilent and HP. He has given tutorials and short
courses on a variety of subjects at conferences and universities worldwide. He has published over 70
technical papers, and holds a Ph.D. degree from McGill University in Canada.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.105

8

Computational Lithography – Moore Bang for your Buck

Dr. Vivek Singh, Senior Principal Engineer, Intel

Abstract:

There have been many pronouncements about the slowing down of Moore’s Law. Human enterprise,
however, has managed to disprove these dim prophecies by producing ingenious solutions on a
regular basis, to allow Moore’s Law to continue its unabated march. Many of these solutions are
coming from the growing field of Computational Lithography. Generally speaking, Computational
Lithography comprises a broad set of techniques that use physics-based calculations to eke out more
lithographic performance from today’s steppers than they were originally designed for. Given the
extraordinary cost of lithography tools and the fact that economics drives Moore’s Law as much as
physics, this boost in IC affordability is a key driver of innovations in Computational Lithography.

One such innovation is Pixelated Phase Mask technology. This technology was created to address the
problem caused by the growing gap between the lithography wavelength and the feature sizes
patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade
ago, Optical Proximity Correction was introduced to bridge this gap, but as this gap continued to
increase, one could not rely on the same basic set of techniques to maintain image quality. We sought
to alleviate this problem by introducing additional degrees of freedom within the mask. The resulting
Pixelated Phase Mask technology will be described in this paper, as an example of how Computational
Lithography can contribute to affordable scaling and design productivity.

Speaker Bio:

Vivek Singh obtained his Ph.D. in 1993 from Stanford University, where he worked on simulations and
experiments in plasma etching and deposition. He joined the TCAD department at Intel, where he
worked on many different aspects of lithography technology development and optimization. Currently,
he is a Senior Principal Engineer, and the Manager of Computational Lithography Group at Intel,
responsible for all tool development in the area of OPC, rigorous lithography simulation, double
patterning, and inverse lithography. Vivek also represents Intel on several DFM forums, and is
currently Chair of the SPIE DFM Conference.

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.106

9

Made For India Forum

Made For India Forum

Chair: Rajiv Kapur
Organizers: Chitra Giridhar, Sanjeev Mehta, and Anurag Gupta

India is an emerging market that is being noticed and taken seriously the world over.
The >1B population is very young (35% under the age of 15) with an ever-expanding
middle class. Sustained 8% GDP growth, rapid urbanization, increasing dispensable
income, changing lifestyles, opening economic policy, and democratic society are fuelling
‘explosive’ consumerism in India resulting in persistent demand for latest goods and
services.

India as a market encourages/requires creative product design or business models to
meet its needs. This uniqueness comes from its demographics, its economics, and its
inherent diversity. Hence this transmogrification of the India story: from “Made in India”
of yester years - “Made for India” today - “Made by India” tomorrow.

In this context we have created a platform titled “Made For India”. This is a platform to
help identify and promote products that are centered around semiconductors, electronics
and embedded SW, designed for the Indian market. We have created this platform for
eminent speakers to start with the end market and showcase use of technology, business
models/services that were established to meet its needs.

Speakers:

1. Rajeev Kaushal, Head - Pune Division, eInfochips
2. Manish Gupta, Associate Director, IBM India Research Laboratory
3. Rajeev Agarwal, CEO Innoviti
4. C. Damodaran, General Manager - Embedded & Networking Solutions
 at Network Systems and Technologies (NeST)
5. Prasad Mantri, Member ITRS, SUN
6. Ramendra S. Baoni, Managing Director, BiSquare Systems Pvt Ltd
7. Dr. G. Venkatesh, CTO, Sasken

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.98

13

VLSI Design Conference 2009
Panels

IP Panel Topic:

Why is design automation and reuse of analog designs increasingly trailing the digital
world?

Summary:

Demand for high performance in today's systems requires some key IP components to be
designed in analog, whereas quick turn around time requires significant use of digital IPs. While
there has been significant progress in design automation and design reuse of digital circuits in the
last couple of decades, much has not changed for analog design. Design capture in low
abstraction level, poor automation of implementation and verification steps, worsening silicon
variability etc. combined with several technology nodes/flavors put a lot of pressure on the limited
analog design expertise available today.

This panel discussion focuses on these issues and possible solutions. Can some of these design
functions be moved from analog domain to digital? What is involved in deploying some of the
digital design paradigms and reuse concepts in analog design? What can EDA vendors do to
address these issues? What can Fabs do to control process variability to enable reuse of Analog
IPs?

Organizers:

Ghasi Agarwal, Prakash Bare

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.107

17

EDA Panel Topic:

EDA Made-in-India: Fact or Fiction?

Summary:

Advances in EDA technology have barely kept pace with increasing complexity of IC designs and
growth in the semiconductor industry. Over the last 20 years, India has been playing an
increasing role in the design evolution. Semiconductor companies in India are steadily increasing
their contributions in leading-edge design work. Can the EDA industry in India keep pace with
that trend? Is there enough momentum in innovation by EDA companies in India? Will we ever
see a “Made-in-India” tag for EDA products and services?

EDA industry in India taps into a large talent pool that is proficient in electronic design, algorithms
and software development. Can this be a key driving factor for the EDA industry?

On the other hand, recent focus in EDA industry has been in topics that affect manufacturing and
yield, such as DFM, SSTA etc. Such topics warrant a deeper understanding of the
semiconductor process technologies and physics of deep-submicron devices. Given that Indian
semiconductor industry is mostly design oriented, with minimal experience in IC fabrication, will
the EDA industry be curtailed in it’s growth? Can Indian universities step up to play a significant
role to groom the EDA industry, similar to the roles played by Stanford and UC Berkeley during
the EDA industry’s infancy.

Or, is it even worth for EDA companies in India to pursue the “Made-in-India” tag? Given the
amount of evolutionary knowledge that needs to be gained as well as the focus needed on
advanced research, isn’t Indian EDA industry better off not pursuing the “Made-in-India” tag on
EDA products?

The panelists will debate the topic from various angles and share their personal insight of the
history, challenges and vision for EDA and semiconductor industry in India and world-wide.

Organizers:
Raman Santhanakrishnan, Yatin Trivedi

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.108

18

Automotive Sector/Made For India Panel Topic:

Solutions for a small car – Made for India and Made in India

Summary:

Majority of the Indian and overseas auto manufacturers have plans of developing a small car in
India for the Indian consumers. According to industry sources, the key to success of the small car
will be a combination of parameters such as the design, features, specifications, manufacturing
efficiency, performance, marketing network and after sales service and the final competitive price.
Keeping low cost pricing as a crucial aspect of the game, how can solutions developed for such a
car be optimized in the most cost efficient manner?

What is the scope of optimization for a small car for the semiconductor industry? How much
impact do the manufacturing processes along with the marketing activities have on the final
success of the small car?

Organizers:

 India Semiconductor Association

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.109

19

Embedded SW Panel Topic:

Accelerating Embedded System Design

Summary:

From rack-mounted data or telecom computer systems to mobile devices, embedded systems
may take many forms but face very similar design issues. Power, cost, performance and time to
market are critical, as always, but so too is the user interface, as shown by the highly successful
Apple iPhone and the G1 Google Phone. That the user interface is so software dependent only
adds to the on-going debate as to whether hardware or software is more conducive to a effective,
fast-turnaround design. This panel will discuss where the emphasis should lie and also discuss
the various forms of system design abstraction and virtualization techniques available to
engineers to accelerate embedded system design.

Organizers:

Techonline

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.110

20

Tutorials

Tutorial T1

Defect Aware to Power Conscious Tests – The New DFT
Landscape
Nilanjan Mukherjee & Janusz Rajski, Mentor Graphics Corporation, Wilsonville, OR, USA,
{nilanjan_mukherjee, janusz_rajski}@mentor.com
Jerzy Tyszer, Poznań University of Technology, Poznań, Poland, tyszer@et.put.poznan.pl

Abstract
The rapid scaling of semiconductor devices along with technological innovations including
material and process changes such as high-k gate dielectric, metal gate electrodes, etc., are
making conventional fault models inadequate. In addition, the evolution of interconnects from
single to multiple-levels, the use of new materials to meet the wire conductivity requirements and
reduce dielectric permittivity, and the scaling of conventional metal/dielectric system have had
significant impact on the performance and power dissipation of devices. Multi-core designs,
heterogeneous component integration, and sophisticated packaging techniques further aggravate
the challenge of testing such devices effectively. This tutorial will focus on some of the advances
shaping the test industry today to address the above mentioned design and process changes. New
fault models that are termed as “defect aware” are being proposed and there is a demand for test
vectors targeting such defects. Bridging (static and dynamic), n-detect, stuck-open, inline-
resistance, propagation delay, etc., are some examples of new fault models that are being used to
various extent in the industry today. At the same time, at-speed testing is becoming the norm as
the industry moves towards smaller technology nodes. Methods to handle false and multi-cycle
paths effectively are common in practice to prevent unnecessary yield losses. For the first time,
timing information is being considered during Automatic Test Pattern Generation (ATPG)
targeting small-delay defects. Each one of the fault models will be discussed and the current
trends in the industry along with some preliminary silicon experiments will be presented.

Another industry trend posing a serious challenge to manufacturing test is the advent of power-
aware designs. Various techniques such as architecture driven voltage reduction, switching
activity minimization, switched capacitance minimization, and dynamic power management are
being deployed in designing low power devices. New DFT techniques are required as well to
limit power dissipation during test (preferably matching the power dissipation in functional mode
of operation) thereby preventing IR drops, voltage droop, or hot spots. Test pattern generation
needs to be tweaked to consider power dissipation during the key steps of the algorithm. In this
tutorial, methods to control power dissipation during test, both from DFT as well as test
generation perspectives will be discussed.

As numerous fault models are being proposed, all the different pattern sets along with power-
aware test pattern generation results in a significant increase in the number of patterns. This
directly impacts test cost as both test application time as well as the tester memory needed to
store the vectors are increasing. Compression schemes with not only aggressive compression
ratios are being adopted; they need to fit into the low power DFT methodology. This tutorial will
highlight some methods to handle low power designs with compression. Additionally, advanced
compression schemes to handle very large compression ratios will be discussed.

In summary, the trend towards “zero DPM” manufacturing, especially in certain applications such
as automotive, is pushing the envelope for high quality test sets as well as new DFT flows and
methodologies. All the above factors that have direct impact on test have to be addressed to

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.111

23

handle complex and heterogeneous devices that are being manufactured with new material and
technologies today. This tutorial will help in developing an understanding on how to address
some of these issues and highlight DFT techniques and methodologies that are being adopted to
achieve the desired results.

Speaker Biographies
Nilanjan Mukherjee received the B.Tech (Hons) degree in Electronics Engineering from IIT,
Kharagpur, India, and a Ph.D. degree from McGill University, Montreal, Canada, in 1996. Dr.
Mukherjee currently leads a technical group in the Design to Silicon division at Mentor Graphics
Corporation. At Mentor Graphics, he was a co-inventor of the EDT technology and is a lead
developer for TestKompress®. His research focuses on developing next generation test
methodologies for DSM designs, test data compression, test synthesis, memory testing, and fault
diagnosis. Prior to joining Mentor Graphics, he worked at Lucent Bell Laboratories, NJ. Dr.
Mukherjee has published more than 40 technical articles in various IEEE journals and
conferences and is a co-inventor of 17 US patents. He was an invited author for the special issue
of the IEEE Communications Magazine, June 1999. Dr. Mukherjee was the co-recipient of the
Best Paper Award at the 1995 IEEE VLSI Test Symposium and the best student paper award at
the Asian Test Symposium in November 2001. Recently, he received the prestigious 2006 IEEE
Circuits and Systems Society Donald O. Pederson Outstanding Paper Award recognizing the
paper on embedded deterministic test published in the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. Dr. Mukherjee has presented tutorials at several
conferences including ITC, DAC, VLSI Design, and have offered DFT seminars on behalf of
Mentor Graphics in the US and India.

Janusz Rajski received the M.Eng degree in electrical engineering from the Technical University
of Gdańsk, Poland, in 1973, and the Ph.D. degree in electrical engineering from Poznań
University of Technology, Poland, in 1982. From 1973 to 1984, he was a member of the faculty
of Poznań University of Technology. In June 1984, he joined McGill University, Montreal,
Canada, where he became Associate Professor in 1989. In January 1995 he accepted the position
of Chief Scientist at Mentor Graphics Corporation, Wilsonville, OR. His main research interests
include design automation and testing of VLSI systems, design for testability, built-in self-test,
and logic synthesis. He has published more than 150 research papers in these areas and is co-
inventor of 30 US and international patents. He is also the principal inventor of Embedded
Deterministic Test (EDT™) technology used in the first commercial test compression product
TestKompress®. He is co-author of Arithmetic Built-In Self-Test for Embedded Systems
published by Prentice Hall in 1997. He was co-recipient of the 1993 Best Paper Award for the
paper on logic synthesis published in the IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, co-recipient of the 1995 and 1998 Best Paper Awards at the
IEEE VLSI Test Symposium, co-recipient of the 1999 and 2003 Honorable Mention Awards at
the IEEE International Test Conference, as well as co-recipient of the 2006 IEEE Circuits and
Systems Society Donald O. Pederson Outstanding Paper Award recognizing the paper on
embedded deterministic test published in the IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. Dr. Rajski has given presentations at all major international
conferences in the area of testing. He has also presented advanced seminars and tutorials to many
companies in Europe, Japan and the USA.

Jerzy Tyszer received the M.Eng (Hons.) degree in electrical engineering from Poznań
University of Technology, Poland, in 1981, the Ph.D. degree in electrical engineering from the
same university in 1987, and Dr. Habilis degree in telecommunications from the Technical
University of Gdańsk, Poland, in 1994. From 1982 to 1990, he was a member of the faculty of
Poznań University of Technology, Poland. In January 1990, he joined McGill University,

24

Montreal, Canada where was Research Associate and Adjunct Professor. In 1996, he assumed the
position of Professor at the Institute of Electronics and Telecommunications of Poznań University
of Technology, Poznań, Poland. His main research interests include design automation and
testing of VLSI systems, design for testability, built-in self-test, embedded test, and computer
simulation of discrete event systems. He was co-recipient of the 1995 and 1998 Best Paper
Awards at the IEEE VLSI Test Symposium, the 2003 Honorable Mention Award at the IEEE
International Test Conference, and the 2006 IEEE Circuits and Systems Society Donald O.
Pederson Outstanding Paper Award recognizing the paper on embedded deterministic test
published in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. He has published 7 books, more than 90 research papers in the above areas and is co-
inventor of 21 US and international patents. Dr. Tyszer is co-author of Arithmetic Built-In Self-
Test for Embedded Systems published by Prentice Hall in 1997 and the author of Object-Oriented
Computer Simulation of Discrete Event Systems published by Kluwer Academic Publishers in
1999. In 1999, he was a guest co-editor of the special issue of the IEEE Communications
Magazine devoted to testing of telecommunication hardware. He has served on technical program
committees of various conferences including the IEEE VLSI Test Symposium and the IEEE
European Test Symposium. He is a senior member of the IEEE.

25

Tutorial T2

Techniques for the Design of Low Voltage Power
Efficient Analog and Mixed Signal Circuits
J. Ramirez-Angulo, New Mexico State Univ, Las Cruces NM, USA, jramirez@nmsu.edu
Ramon G. Carvajal, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain,
carvajal@gte.esi.us.es
Antonio Lopez-Martin, Universidad Publica de Navarra, Pamplona, Spain,
antonio.lopez@unavarra.es

Abstract
Emerging applications in various fields, such as Ambient Intelligence scenarios or remote
biomedical monitoring, currently demand wireless sensor networks with transceivers having
extremely low power consumption requirements. This is a key issue in order to decrease battery
weight and size and to increase the lifetime of the battery, which usually in these sensing nodes is
not replaceable. To achieve these strict power requirements, several solutions have been proposed
at various layers. At the physical layer, savings in power consumption are achieved by low-
voltage operation and optimized power-to-performance ratio. Supply voltages of 1V (or less) are
anyway mandatory in modern deep submicron technologies to operate reliably due to the
extremely thin oxide. Furthermore reduction of the supply voltage (even of not required) strongly
reduces power consumption in digital circuits since it scales with supply voltage. Although this is
not so simple in analog circuits, they should operate at the same supply voltage than the digital
part in mixed-mode systems to avoid the complexity involved in generating various supply
voltages.

The canonic way of designing analog circuits consist in using high-gain amplifiers with passive
components in negative feedback loops, both in continuous-time or discrete-time form.
Sometimes amplifiers are operated in open loop (e.g. Gm-C filters, some VGAs, etc.), and in this
case a large linear range is required for the amplifier at the expense of gain. In any case,
amplifiers play a key role in analog design, and their power consumption directly impacts that of
the overall analog system. Such amplifiers usually take the form of Operational
Transconductance Amplifiers (OTAs) with high output resistance, typically driving capacitive
loads, or operational amplifiers with low output resistance able to drive low resistive loads.
Besides low-voltage and power-efficient operation, these amplifiers should feature a fast settling
response, not limited by slew rate. Conciliating all these requirements is difficult with
conventional class A topologies, since the bias current limits the maximum output current. Hence
a trade-off between slew rate and power consumption do exists [1]. To overcome this issue, class
AB topologies are often employed. These circuits provide well-controlled quiescent currents,
which can be made very low in order to reduce drastically the static power dissipation. However,
they automatically boost dynamic currents when a large differential input signal is applied,
yielding maximum current levels well above the quiescent currents.

Several class AB amplifiers have been proposed. Most of them are based on adaptive biasing
techniques, by including extra circuitry that increases quiescent currents (e.g. by increasing tail
currents in differential stages). However, often the extra circuits included increase both power
consumption and silicon area, and add significant parasitic capacitance to the internal nodes. Also
positive feedback is often employed to get boosting of dynamic currents, which makes difficult to
guarantee stability considering process and temperature variations. In this work we illustrate the
use of new circuit design techniques to achieve low-voltage class AB amplifiers that combine

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.112

26

simplicity and power efficiency. These techniques allow introducing class AB operation at the
input stage and at the active load of the amplifier with minimum penalty in other performance
parameters. The tutorial is divided into several sections. Section 2 presents the concept of Super
Class AB amplifiers and various circuit implementations. As an application, a Sample and Hold
circuit is described in Section 3. Section 4 covers the design of class AB amplifiers using quasi-
floating gate transistors. Their application in a VGA and a sigma-delta modulator for a wearable
electroencephalogram monitoring system is described in Section 5.

Speaker Biographies
Jaime Ramírez-Angulo (F’00) received the degree in communications and electronic
engineering (Professional degree), the M.S.E.E. degree from the National Polytechnic Institute
and Director of the Mixed-Signal VLSI Lab at the Klipsch School of Electrical and Computer
Engineering, New Mexico State University, Las Cruces, NM. He was Professor at the National
Institute for Astrophysics Optics and Electronics (INAOE) and at Texas A&M University. His
research is related to various aspects of design and test of analog and mixed-signal very large
scale integrated circuits. He has made numerous contributions to this field which has been
reported in over 400 publications. He has two high technology patents. Prof. Ramírez-Angulo
received the prestigious Westhafer Award, which is the highest faculty award for research merits
at New Mexico State University in Mexico City, and the Dr.-Ing. degree from the University of
Stuttgart, Stuttgart, Germany, in 1974, 1976, and 1982, respectively. He is currently Klipsch
Distinguished Professor.

Antonio J. Lopez-Martin (M’04) received the M.S. and Ph.D. degrees (with honors) from the
Public University of Navarra, Pamplona, Spain, in 1995 and 1999, respectively. Currently, he is
an Associate Professor with the Public University of Navarra, and an Adjunct Professor with the
New Mexico State University. His current research interests include wireless transceivers and
sensor interfaces with emphasis on low-voltage low-power implementations. He has published
more than 200 technical contributions in books, journals, and conferences. He also holds two
international patents, leads various research projects, and is consultant for local companies. Dr.
Lopez was an Associate Editor of the IEEE Transactions on Circuits and Systems–II: Express
Briefs during 2006–2007. He is currently serving as an Associate Editor for the IEEE
Transactions on Circuits and Systems –I: Regular Papers, for the IEEE Latin-American Learning
Technologies Journal, and for other technical journals. His recent awards include the Caja
Navarra Research Award in 2007, the Young Investigator Award from the Complutense
University of Madrid in 2006, the 2005 IEEE Transactions on Education Best Paper Award, and
the European Center of Industry and Innovation (CEIN) Award in 2004 for excellence in transfer
of research results to industry.

Ramón González Carvajal (M’99–SM’04) was born in Seville, Spain. He received the
Electrical Engineering and Ph.D. degrees (with honors) from the University of Seville, Seville,
Spain, in 1995 and 1999, respectively. Since 1996, he has been with the Department of Electronic
Engineering, School of Engineering, University of Seville, where he has been a Lecturer (1996),
Reader (2002) and Professor (2007). He was invited researcher at the Klipsch School of Electrical
Engineering, New Mexico State University (NMSU), Las Cruces, NM, in the summers of 1999
and 2001–2004, and also at the Electrical Engineering Department of Texas A&M University in
1997. He also holds the position of Adjunct Professor at the Klipsch School of Electrical
Engineering, NMSU. He has published more than 70 papers in international journals and more
than 180 in international conferences. His research interests are related to low-voltage low-power
analog circuit design, A/D and D/A conversion, and analog and mixed-signal processing.

27

Tutorial T3

Power Reduction Techniques and Flows at RTL and
System Level
Anmol Mathur, Calypto Design Systems, Santa Clara, CA, USA , amathur@calypto.com
Qi Wang, Cadence Design Systems, San Jose, CA, USA, qwang@cadence.com

Abstract
Power reduction is becoming a critical design criterion for ASIC/SOC designers. Reducing both
dynamic and leakage power is imperative to meet power budgets for portable devices as well as
to ensure that the systems that these ASICs meet their packaging and cooling costs. In addition,
the power of an ASIC has a significant impact on its reliability and manufacturing yield.
Traditionally, most automated power optimization tools have focused at gate-level and physical
level optimizations. However, major power reductions are only possible by addressing power at
the RTL and system levels. At these levels, it is possible to make the sequential modifications
needed to reduce power and energy consumption via techniques like sequential clock gating,
power gating, voltage/frequency scaling and other micro-architectural techniques.

The focus of this tutorial will be on techniques for power reduction at the RTL and system level.
It will also focus on expressing power intent at system and RTL levels and the flows needed to
use that power intent in tools for functional verification, RTL-level optimization, logic synthesis
and physical design. The following sections describe the key focus areas in the tutorial.

We will start by discussing the key trends in the semiconductor industry and in CMOS
technology and relate them to the need for power-aware design flows all the way from system-
level design, through micro-architecture definition and RTL design and implementation. We will
then present different power and energy metrics that are used at different points in the design
cycle and for different purposes such as average power of a system, peak power of a system,
energy per cycle etc. We will relate these metrics to their typical use and discuss when a metric
should be used and optimized. State-of–the-art techniques for estimation of power and energy
metrics will be presented including those for software power estimation, energy estimation for
applications on a system, RTL and gate-level power estimation etc. We will discuss both
simulation-based and statistical techniques for estimating switching activity in a design.

Since, creation of system-level models is becoming a standard part of the design flow in most
design teams, we will present typical flows from system-level models to RTL and the kinds of
power/energy tradeoffs done at these levels such as power islands and mode identification,
memory and bus architectures, voltage scaling and scheduling, and identification of clocking
schemes and clock domains.

Since power of a design is a function of how it performs a computation over time, almost all the
major transformations that have significant impact on the power of a design are sequential in
nature – they change the sequence of values generated at key internal registers or memories in
time. We will discuss the sequential optimizations like, sequential clock gating, power gating,
dynamic voltage scaling and memory banking. The impact of these optimizations on verification
and implementation flows will be highlighted and solutions to verification and implementation
issues will be presented.

In the last few years, standards have started emerging to allow designers to express power intent
such as voltage islands and power modes in a design. These are allowing for the same power
intent to be seen by all the tools in the RTL flow: RTL simulation, logic synthesis, place and

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.113

28

route, logic equivalence checking and any other post-layout tools. Both CPF and UPF attempt to
specify this information. We will focus on the key information that the emerging power formats
need to support and how this impacts the RTL design and implementation flow. Specific power
optimizations enabled by such information in implementation tools will also be discussed.

We will conclude the tutorial with a few case studies of specific designs where power
optimization and power-aware design techniques discussed earlier in the tutorial were used.
Practical issues in using these techniques will be highlighted. We will also discuss extensions to
the power formats needed to support system-level to RTL power-aware flows and automatic
optimizations to enable low power design.

Speaker Biographies
Anmol Mathur is the CTO and a co-founder at Calypto Design Systems, a company that is
leveraging sequential analysis techniques for power optimization and sequential equivalence
checking. Prior to Calypto, he was the architect of the datapath synthesis and optimization group
at Ambit Design Systems and Cadence, where he led technology development and productization.
Earlier, Anmol was part of an award-winning team at the MIPS division of SGI that developed
and successfully deployed an RTL to gate-level equivalence checker and property checker within
the MIPS microprocessor division. Anmol holds multiple patents and has published several
papers in the areas of formal verification, logic synthesis, low power optimization and arithmetic
optimization techniques. Anmol has been part of the technical program committee of DAC since
2005 and has participated in the program committees of ICCAD, MTV and MEMOCODE
conferences in the past. He has presented tutorials and invited presentations on sequential
equivalence checking and low power optimization at several conferences and universities over the
last 4 years. Anmol participates in the Format Working Group as part of the Si2 Low Power
Consortium that is defining and standardizing the CPF standard. Anmol received a Bachelor of
Technology in Computer Science and Engineering from the Indian Institute of Technology,
Delhi, where he was awarded a gold medal for highest academic achievement by the institute. He
received an MS and PhD in Computer Science from the University of Illinois at Urbana-
Champaign.

Qi Wang is a Senior Architect in the Front End Design group of Cadence Design Systems. He is
the architect of the low power synthesis technology in RTL-Compiler and the Common Power
Format before it was donated to Si2. Currently he is responsible for driving R&D activities in
Power Forward Initiative and CPF based low power flow aross Cadence products. He is also one
of the architects of the Si2 Low Power Coalition and vice Chair of the Format working group. His
research interests include low power synthesis, high level synthesis and timing optimization. He
had more than 20 papers published in various international conferences and journals. He also
holds several US patents on synthesis and low power technologies. Dr. Wang holds a B.S. degree
in Applied Electronics from Shanghai Jiao Tong University, an MSEE degree from Southern
Illinois University and a Ph.D degree in Electrical and Computer Engineering from University of
Arizona.

29

Tutorial T4

Security and Dependability of Embedded Systems: A
Computer Architects’ Perspective
Jörg Henkel, University of Karlsruhe, Karlsruhe, Germany, henkel@informatik.uni-karlsruhe.de
Vijaykrishnan Narayanan, Pennsylvania State University, USA, vijay@cse.psu.edu
Sri Parameswaran, University of New South Wales, Australia, sridevan@cse.unsw.edu.au
Roshan Ragel, University of Peradeniya, Sri Lanka, roshanr@ce.pdn.ac.lk

Abstract
Designers of embedded systems have traditionally optimized circuits for speed, size, power and
time to market. Recently however, the dependability of the system is emerging as a great concern
to the modern designer with the decrease in feature size and the increase in the demand for
functionality. Yet another crucial concern is the security of systems used for storage of personal
details and for financial transactions. A significant number of techniques that are used to
overcome security and dependability are the same or have similar origins. Thus this tutorial will
examine the overlapping concerns of security and dependability and the design methods used to
overcome the problems and threats. This tutorial is divided into four parts: the first will examine
dependability issues due to technology effects; the second will look at reliability aware designs;
the third, will describe the security threats; and, the fourth part will illustrate the countermeasures
to security and reliability issues

Part I: Dependability Issues due to Technology Effects and Architectural Countermeasures
Moore’s law has been in place for more than four decades. Each new technology node provided
advantages in basically all major design constraints (performance, power, area, etc.). When
migrating to upcoming technology nodes it will become obvious that this win-win situation soon
will be at an end. Or, in other words, in future it becomes far more difficult and expensive to
migrate to new technology nodes. One major point is an inherent undependability which will
become a challenging problem. Undependability addressed within this part of the tutorial is
related to a) Fabrication and Design-Time Effects like “Yield and Process Variations” and
“Complexity” as well as b) run-time effects as “Aging Effects”, “Thermal Effects” and “Soft
Errors”. The first part of this tutorial will give the details of these effects and a prospect of how
these effects might influence future architectures for embedded systems. An overview of selected
state-of-the-art paradigms and approaches is given including a focus on organic computing
principles as well as run-time adaptive embedded processor architectures that can deal with
dependability issues.

Part II: Reliability Aware Design for Embedded Systems
Design of robust embedded systems meeting stringent quality, reliability, and availability
requirements is becoming increasingly difficult in advanced technologies. The current design
paradigm which assumes that no gate or interconnect will ever operate incorrectly within the
lifetime of a product must change to cope with such failures. New architectural features are
required for robust system design with built-in mechanisms for failure tolerance, detection and
recovery during normal system operation. This part of the tutorial will focus on new design
techniques required for building robust systems: concurrent error detection, recovery, and self-
repair. A broad spectrum of circuit-level, logic-level, micro-architectural, hardware subsystem,
and software techniques will be covered; the associated trade-offs among techniques will be
presented. Implemented protection mechanisms are determined by a complex evaluation of power

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.114

30

and performance requirements and constraints, in addition to the vulnerability of specific circuits
or structures to failures.

Part III: Security Attacks in Embedded Systems
Security of embedded computing systems is becoming a paramount concern as these devices
become more ubiquitous, contain personal information and are increasingly used for financial
transactions. Security attacks targeting embedded systems illegally gain access to the information
on these devices or destroy information. Security threats in embedded systems could be classified
by the means used to launch attacks. Typical launch methods are: physical, logical/software-
based and side-channel/lateral attacks. Physical attacks refer to unauthorized physical access to
the embedded system itself and are feasible only when the attacker has direct access to the
system. Logical attacks exploit weaknesses in logical systems such as software or a cryptographic
protocol to gain access to unauthorized information. Logical attacks are deployed easily against
systems which are able to download and execute software and have vulnerabilities in their design.
Side-channel attacks are performed by observing properties of the system (such as power
consumption, electromagnetic emission, etc.) while the system performs cryptographic
operations. This part of the tutorial highlights the most popular attacks on embedded computing
systems.

Part IV: Countermeasures Against Security Attacks
A wide range of techniques have been proposed in the past to detect and counter security attacks
in embedded devices. They could broadly be categorised into software based techniques and
hardware assisted techniques. Software based techniques use software tools such as code
analyzers and methods such as proof-carrying-code to overcome these attacks without changing
the architecture of the processor. Hardware assisted techniques use additional hardware blocks or
microarchitectural support to detect and protect against these security attacks. The talk gives an
overview of countermeasures against logical and side-channel attacks. The most prominent up-to-
date countermeasures are discussed in detail.

Speaker Biographies
Jörg Henkel is currently with Karlsruhe University (TH), Germany, where he is directing the
Chair for Embedded Systems CES. Before, he was with NEC Laboratories in Princeton, NJ. His
current research is focused on design and architectures for embedded systems with focus on low
power and reliability. Dr. Henkel has organized various embedded systems and low power
ACM/IEEE conferences/symposia as General Chair and Program Chair and was a Guest Editor
on these topics in various Journals like the IEEE Computer Magazine. He is/has been a steering
committee member of major conferences in the embedded systems field like at ICCAD and is
also an editorial board member of various journals like the IEEE TVLSI. He has given full/half-
day tutorials at leading conferences like DAC, ICCAD, DATE etc. Dr. Henkel is the Editor-in-
Chief of the ACM Transactions on Embedded Computing Systems (ACM TECS) and holds nine
US patents.

Vijaykrishnan Narayanan is currently at the Computer Science and Engineering and Electrical
Engineering Departments at Penn State. He is a member of the Embedded and Mobile Computing
Design Center and his research/teaching interests are in the areas of energy-aware reliable
systems, embedded systems, on-chip networks, system design using emerging technologies (3D
and Nano) and computer architecture. His research is supported by grants from National Science
Foundation, The Technology Collaborative, and DARPA. He leads an interdisciplinary project
funded by NSF that has set up a one-of-a-kind accelerated soft-error testing facility at the Penn
State Nuclear reactor. Dr. Narayanan is actively involved with various technical service activities.
He served as general co-chair, ISVLSI 2002; general-chair, ISVLSI 2003; vice-general chair,
Nanonets 2007, and as program co-chair for GLSVLSI 2006, Nanonets 2006, and ISLPED 2007.

31

He serves on the steering committees of ISVLSI and GLSVLSI conferences. He is currently the
editor-in-chief of the ACM Journal on Emerging Technologies in Computing Systems. He also
serves on editorial boards of IEEE Transactions on CAD and the Journal of Low Power
Electronics. He has offered full-day tutorials at major architectural conferences including
ASPLOS, ISCA and PACT on reliability and low-power.

Sri Parameswaran is a Professor in the School of Computer Science and Engineering,
University of New South Wales. His research interests are in Systems Security of SoCs and
MPSoCs, System Level Synthesis, Low power systems, High Level Systems and Network on
Chips. He has served on the Program Committees of numerous International Conferences, such as
the Design Automation Conference (DAC), Design and Test in Europe (DATE), the International
Conference on Computer Aided Design (ICCAD), the International Conference on
Hardware/Software Codesign and System Synthesis (CODES-ISSS, as TPC chair), and the
International Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES). He is also an associate editor of the ACM Transactions on Embedded Computing
Systems, and the EURASIP Journal on Embedded Systems.

Roshan Ragel is a Lecturer at the Department of Computer Engineering, University of
Peradeniya since December 2002. He completed his B.Sc. Engineering (Honours I) degree in
November 2001 (Peradeniya) and his PhD in June 2007 (University of New South Wales -
Embedded Systems Lab). His research interests include secure embedded processors, rapid
embedded hardware/software co-design, and micro-architectural support for secure and reliable
computing. Mostly, he works on secure embedded systems, mainly countermeasures against
code-injection attacks. Amongst his published works is the book Microarchitectural Support for
Security and Reliability: an Embedded Systems Perspective.

32

Tutorial T5

Design for Manufacturability and Reliability in Nano Era
Goutam Debnath, Intel Corporation, Hillsboro, OR, USA, goutam.debnath@intel.com
Paul Thadikaran, Intel Corporation, Hillsboro, OR, USA, paul.thadikaran@intel.com

Abstract
The bottom line of any company is to maximize the profit from any given product. There are
many factors influencing the product design resulting in a profitable business. One of the biggest
factors is the manufacturability of the product. It is becoming more and more crucial to meet the
6+6 (6 months for the development and 6 months for qualifying the product to ship to customer)
product life cycle to accommodate the rapid changing technology hungry market demand.
Smooth, reliable, and efficient product ramp through manufacturing is the key of success for
meeting TTM, capturing higher percentage of total available market (TAM).

This tutorial is going to address the difficulties industries are facing today in designing
manufacturing friendly highly complex giga-scale products in submicron technology. As we are
heavily into deep submicron era, the error margin or the tolerance guard band is getting tighter
and tighter with respect to the previous generation of fabrication process. On this note, it is
important to pay attention to Design For Manufacturing (DFM) related issues early in the design
cycle as oppose to later in the design. These include, however not limited to, all kinds debugging
hooks in the design for easy debugging of billion of transistors in a given design, paying attention
to manufacturing friendly physical design rules, making sure of adequate test coverage to toggle
most of the design nodes, making sure optimal guard band is implemented for transistor
degradation for the lifetime of the product, and last but not least, all reliability (ESD, EM/SH, LU,
etc) related issues are resolved in pre-silicon design before Tape out. In the past, manufacturing
issues were not given much attention; time has changed and designers must have to be more
sensitive than ever before in addressing manufacturing related issues early in the design cycle.

 In a nut shell, this tutorial will capture the must have knowledge for design engineers
(irrespective of front-end or back-end) who are involved in high performance VLSI design, as
DFM features moving upstream in the design cycle. Audience will walk out with a good
understanding on how to integrate specific manufacturing concerns into a product’s design to
obtain a product that is easier to manufacture with excellent overall quality in a shortest
development time.

This tutorial covers the following main topics in detail:

1. Introduction:
a. 6+6 product development strategy and overview
b. Technology Trend of VLSI products in the current design environment
c. Design trend (Power optimization, verification complexity)
d. High volume manufacturability challenges, such as Cost of test, DPM, reliability

issues
2. DFT:

a. DFT strategy & planning
b. Fault models
c. DFT features in nanotechnology designs
d. DFT Features for test cost optimization
e. Special test structures

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.115

33

3. Design for reliability:
a. FIT estimation for Design
b. Design features for reliability improvement
c. Design for Burn-in support
d. Design for transistor degradation
e. ESD for high speed IO
f. EM/SH requirement and it’s verification

4. Design for manufacturability:
a. Process and Layout interaction and specific guidelines to reduce manufacturing

defect
b. Manufacturing friendly design rules
c. Opportunistic usage of special cells to improve design yield

5. Post silicon Validation process for reliability and manufacturability:
a. Wafer and Package Test characterization
b. ESD/EM/SH/BI validation
c. HVM platform for DPM measurement
d. Test flow optimization
e. Test hole resolution process and DPM bucketing

Speaker Biographies
Goutam Debnath received a M.S. in Physics from University of St Louis, Missouri, USA and a
M.S. in Electrical Engineering from Southern Illinois University, Carbondale, USA. Goutam is in
the board of Industry Advisory Council for Electrical and Computer Engineering Department of
Southern Illinois University. Goutam is the Intel QPI Technology Execution lead (TXT) and
Manufacturing Program Manager (MPM) in Server Platform Group (SPG). He has acted as a
manager on various microprocessor designs focusing on design, design automation. He has done
15 Intel based desktop processors and 4 Xeon processor in last 17 years of Intel’s professional
carrier. Goutam’s primary focus is on achieving higher manufacturing excellence and smooth
enablement of QPI technology across the industry. Goutam has published and co-authored 9
technical papers in numerous conference including IEEE and VLSI conference. He has two USA
patents on clock distribution in control logic blocks and shared power grid distribution
respectively.

Paul Thadikaran received his Ph.D. in Computer Science from State University of New-York,
Buffalo. He is currently a Principal Engineer at the Client Platform Architecture Group in Intel
Corporation and focused on development of next generation client platform architecture. He has
been involved in various aspects of design and test of previous four generations of Intel’s IA-32
CPU. He has managed design methodology development, CAD tool development and standard
cell library development targeted for CPU designs for past seven years. His areas of interest
include methods and algorithms for test VLSI design, test and platform architecture. Paul has
published more than 20 papers in IEEE/Intel conferences and journals. He has also co-authored a
book on Iddq Testing published by Kluwer Academic Press. Paul has refereed several IEEE and
ACM journals such as IEEE Transactions on CAD and ACM Transactions on Design Automation
in Electronic Systems (TODAES). He has also offered tutorials on high performance design and
test at various International and Intel audiences.

34

Tutorial T6

Negative Feedback System and Circuit Design
Nagendra Krishnapura, Indian Institute of Technology, Madras, India, nagendra@iitm.ac.in
Shanthi Pavan, Indian Institute of Technology, Madras, India, shanthi.pavan@iitm.ac.in

Abstract
The negative feedback amplifier structure using an ideal integrator is derived. The time domain
and frequency domain descriptions of the integrator are discussed. The response of the negative
feedback amplifier in the time and frequency domains is analyzed. From these general
conclusions are drawn about the behavior of negative feedback amplifiers.

The ideal integrator is realized using controlled sources and passive elements. This realization
clearly shows the cause for finite dc gain in real opamps. The effects of finite dc gain are
analyzed. Relationships between amplifier specifications such as speed and accuracy and opamp
parameters such as unity gain frequency and dc gain are derived.

Methods of increasing the dc gain to improve accuracy are discussed. These lead to multistage
amplifiers. The response of such systems in time and frequency domains are analyzed. It is shown
that multistage amplifiers are potentially unstable. Stability conditions for negative feedback
systems are discussed.

The gain around the negative feedback loop is computed. The significance of loop gain is
illustrated. Stability criteria related to the loop gain such as phase margin and Nyquist’s criterion
are discussed. Frequently used criteria such as phase margin are clarified.

Multistage amplifiers are essential for realizing high accuracy. Different techniques of realizing
high gains while retaining stability-increasing the output resistance, miller compensation, and
feedforward compensation are shown.

There are various opamp architectures: folded/telescopic cascode; two stage miller compensated;
feedforward compensated; and three stage. The design procedures for the two stage miller
compensated opamp, the feedforward compensated opamp, and the three stage opamp are shown.
These opamps will be compared in terms of their performance parameters-bandwidth, noise,
power dissipation, slew rate, output swing.

The design of a 350MHz bandwidth continuous-time active-RC filter using feedforward
compensated opamps is shown. Measurement results from chips designed at IIT Madras illustrate
the benefits of the feed-forward opamp architecture for low power applications.

The design details of a three stage opamp with a DC gain exceeding 100dB is shown. The
constraints on the design of different stages are evaluated. Simulation results of the opamp
illustrate its suitability for a high precision application.

Speaker Biographies
Nagendra Krishnapura is an Assistant Professor of Electrical Engineering at the Indian Institute
of Technology, Madras in Chennai. He obtained the B.Tech degree in Electronics and
Communication Engg from the Indian Institute of Technology, Madras in 1996 and the masters
and doctoral degrees from Columbia University, New York in 1998 and 2000 respectively.
Between 2000 and 2005, he worked as a senior design engineer at Celight, Inc. and Multilink
(later Vitesse Semiconductor) where he designed integrated circuits for high speed broadband
communications. Since June 2005, he has been with the Department of Electrical Engineering of

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.116

35

the Indian Institute of Technology Madras, where he teaches, conducts research and consults for
several companies in the areas of high speed analog circuit design and signal processing.
Nagendra has been an adjunct faculty member at Columbia University, New York, where he
taught several advanced courses on analog design. He is also involved in improving expertise in
the areas of analog and mixed signal design in India through the Prof. K. Radhakrishna Rao
foundation. He and Dr. Shanthi Pavan presented a tutorial on continuous time delta sigma data
converters at the VLSI conference in 2008. Nagendra Krishnapura is an associate editor of IEEE
Transactions on Circuits and Systems, Part II: Express Briefs.

Shanthi Pavan is an Assistant Professor of Electrical Engineering at the Indian Institute of
Technology, Madras in Chennai. He obtained the B.Tech degree in Electronics and
Communication Engg from the Indian Institute of Technology, Madras in 1995 and the masters
and doctoral degrees from Columbia University, New York in 1997 and 1999 respectively. From
1997 to 2000, he was with Texas Instruments in Warren, New Jersey, where he worked on high
speed analog filters and data converters. From 2000 to June 2002, he worked on microwave ICs
for data communication at Bigbear Networks in Sunnyvale, California. Since July 2002, he has
been with the Department of Electrical Engineering of the Indian Institute of Technology Madras,
where he teaches, conducts research and consults for several companies in the areas of high speed
analog circuit design and signal processing. Shanthi Pavan serves on the editorial board of the
IEEE Transactions on Circuits and Systems, Part I: Regular Papers. Apart from having taught
several short courses in industries (like Texas Instruments, ST Microelectronics, National
Semiconductor, Genesys Microsystems and many others), Shanthi has offered a tutorial on
System Level Aspects of A/D Converter Design in the VLSI Design Conference in Hyderabad in
2006 and, with Nagendra Krishnapura, a tutorial on oversampled delta sigma data converters in
2008. He is also involved in improving expertise in the areas of analog and mixed signal design in
India through the Prof. K. Radhakrishna Rao foundation.

36

Tutorial T7-A

Synthesis and Testing for Low Power
Ajit Pal, Indian Institute of Technology, Kharagpur, India, apal@cse.iitkgp.ernet.in
Santanu Chattopadhyay, Indian Institute of Technology, Kharagpur, India,
santanu@ece.iitkgp.ernet.in

Abstract
In recent years, power dissipation has emerged as the key issue not only for portable computers
and mobile communication devices, but also for high-end systems. Reducing power dissipation
is of primary importance in achieving longer battery life in portable devices. On the other hand,
for high-end systems the cooling and packaging requirements are pushing the chip designers for
low power alternatives. As a consequence, apart from the size, cost and performance, now-a-
days power is also considered as one of the most important constraints. This has led to vigorous
research in the synthesis of low-power and high-performance circuits and systems. Moreover,
aggressive device size scaling used to achieve high-performance leads to increased variability
due to short-channel and other effects. This, in turn, leads to variations in process parameters
such as, Leff, Nch, W, Tox, Vt, etc. Performance parameters such as power and delay are
significantly affected due to the variations in process parameters and environmental/operational
(Vdd, temperature, input values, etc.) conditions.

Due to variability, the design methodology in the future nanometer VLSI circuits will
essentially require a paradigm shift from deterministic to probabilistic and statistical design
approach. The tight constraint on power dissipation has also created new challenges for testing
low power VLSI circuits, as the traditional test techniques do not account for power dissipation
during test application. It is now an accepted truth that test power is often much higher than the
power consumed in normal operation, due to voluminous test data, test parallelization and the
low correlation between successive test patterns.

The objective of this tutorial is to provide an overview of different aspects of low power circuit
synthesis at various levels of design hierarchy. It will introduce techniques to optimize the
performance and power in the presence of process variations. Low power testing techniques
will also be discussed.

Topic outline:

1. Introduction and sources of power dissipation (30 minutes)
2. Switching power reduction techniques (30 minutes)
3. Leakage power reduction techniques under process parameter variation (30 minutes)
4. Importance of test power reduction (30 minutes)
5. Power minimization strategies for internal testing (30 minutes)
6. Power minimization strategies for external testing (30 minutes)

Speaker Biographies
Ajit Pal is currently a Professor in the Department of Computer Science and Engineering at
Indian Institute of Technology Kharagpur. He received his M. Tech. and Ph.D. degrees for the
Institute of Radio Physics and Electronics, Calcutta University in 1971 and 1976, respectively.
Before joining IIT Kharagpur in the year 1982, he was with Indian Statistical Institute (ISI),
Calcutta, Indian Telephone Industries (ITI), Naini and Defence Electronics Research
Laboratory (DLRL), Hyderabad in various capacities. He became full Professor in 1988 and

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.117

37

served as head of Computer Center from 1993 to 1995 and head of the Computer Science and
Engineering Department from 1995 to 1998. His research interests include Embedded Systems,
Low-power VLSI Circuits, Sensor Networks and Optical Communication. He is the principal
investigator of several Sponsored Research Projects including Low Power Circuits sponsored
by Intel, USA. He has over 125 publications in reputed journals and conference proceedings
and a book entitled Microprocessors: Principles and Applications published by Tata McGraw-
Hill. He is the Fellow of the IETE, India and Senior Member of the IEEE, USA. The presenter
has introduced a PG-level course entitled Low Power Circuits & Systems, which has become
increasingly popular in IIT Kharagpur in the last couple of years. He has also delivered
seminars on this topic in several places and coordinated a 2-week long workshop in the summer
of 2007 as part of a project sponsored by the Department of Electronics, Government of India.

Santanu Chattopadhyay is currently an Associate Professor in the Department of Electronics
and Electrical Communication Engineering at Indian Institute of Technology Kharagpur. He
received his B.E. degree in Computer Science and Technology from Calcutta University in
1990. In 1992 and 1996 he received his M. Tech in Computer and Information Technology and
PhD in Computer Science and Engineering degrees respectively, both from Indian Institute of
Technology Kharagpur. Before joining IIT Kharagpur, he was with B.E. College, Howrah,
West Bengal, and Indian Institute of Technology, Guwahati. His research interests include CAD
tools for low power circuit design and test, System-on-Chip testing, Network-on-Chip design
and test. He has got a number of projects on these topics from Dept. of Science & Technology,
Govt. of India, Dept. of Information Technology, Govt. of India, and Motorola (India) Pvt. Ltd.
He has more than 110 publications in refereed international journals and conferences. He is the
co-author of the book on Additive Cellular Automata – Theory and Applications, published by
the IEEE Computer Society Press in 1997. He has also written two text books on Compiler
Design and System Software, published by Prentice-Hall of India, in 2005 and 2007,
respectively. He has delivered many lectures on these topics at various forums.

38

Tutorial T7-B

Power Management for Mobile Multimedia: From Audio
to Video and Games
Samarjit Chakraborty, National Univ. of Singapore, Singapore, samarjit@comp.nus.edu.sg
Ye Wang, National Univ. of Singapore, Singapore, wangye@comp.nus.edu.sg

Abstract
Multimedia applications today constitute a sizeable workload that needs to be supported by a host
of mobile devices ranging from cell phones, to PDAs and portable game consoles. Battery life is a
major design concern for all of these devices. Whereas both – the complexity of multimedia
applications and the hardware architecture of these devices – have progressed at a phenomenal
rate over the last one decade, progress in the area of battery technology has been relatively
stagnant. As a result, currently a lot of effort is being spent to develop high-level power
management and application tuning techniques to minimize energy consumption and thereby
prolong battery life. Such techniques include dynamically scaling the underlying processor’s
voltage and clock frequency in response to a time-varying workload, powering down certain
system components when not being frequently used, and backlight scaling in LCDs with
controlled image-quality degradation. Some of the application tuning techniques include
selectively ignoring certain perceptually-irrelevant computations during audio decoding, and
injecting metadata with workload information into video clips which can then be used to
accurately estimate the decoding workload at runtime for better power management.

In this tutorial, we plan to give a comprehensive overview of this area and discuss power
management schemes for a broad spectrum of multimedia applications. In particular, we will talk
about several power management and application tuning techniques specifically directed towards
audio decoding, video processing and interactive 3-D game applications. Starting from the basics
of power management for portable devices, we will discuss the necessary mathematical
techniques, give high-level overviews of relevant algorithms and also present the hardware setup
that is necessary to perform research and development in this area.

The main objective of this tutorial will be to cover various techniques for power management for
audio, video and graphics-intensive game applications running on battery-operated portable
devices. In particular, we would illustrate how power management techniques differ for audio,
video and game applications and would present a number of techniques for each of these classes
of applications. We would also give an overview of open research problems and the challenges
facing this area. Finally, we would describe some of the hardware platforms that we have been
using to conduct research in this domain and give demonstrations of selected power management
techniques.

Speaker Biographies
Samarjit Chakraborty is an Assistant Professor of Computer Science at the National University
of Singapore. He obtained his Ph.D. in Electrical and Computer Engineering from ETH Zurich in
2003. For his Ph.D. thesis, he received the ETH Medal and the European Design and Automation
Association’s “Outstanding Doctoral Dissertation Award” in 2004. His work has also received
Best Paper Award nominations at DAC 2005, CODES+ISSS 2006 and ECRTS 2007, all of which
are premier conferences in the real-time/embedded systems area. Samarjit’s research interests are
primarily in system-level power/performance analysis of embedded systems. He has extensively

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.118

39

published in major research forums on this topic including DAC, DATE, CODES+ISSS, ASP-
DAC, RTSS and RTAS, and regularly serves on the technical program committees of many of
these conferences. Over the last few years he has been working on various problems specifically
related to power management of multimedia applications and have co-authored several papers
and patents in this area. He has given invited talks on various topics related to design, modeling
and analysis of embedded systems at various universities and industrial labs, including UC
Berkeley, MIT, CMU, Philips, General Motors and Creative Technology Labs. His experience
with conducting tutorials include (i) a tutorial at the IEEE International Conference on
Multimedia & Expo (ICME) at Amsterdam in July 2005, entitled “Multimedia Processing on
Multiprocessor SoC Platforms: What should Multimedia System Developers know about
Architectural Design, Performance Analysis and Platform Management?” (jointly with Radu
Marculescu from CMU and Paul Stravers from Philips Research), (ii) a half-day solo tutorial at
the ACM Multimedia Conference (MM) at Santa Barbara in October 2006 on “Flexible
Modelling and Performance Debugging of Real-Time Embedded Multimedia Systems”, (iii) a
tutorial at the VLSI Design Conference at Bangalore in January 2007 on “Performance
Debugging of Complex Embedded Systems” (jointly with Abhik Roychoudhury from NUS), (iv)
a tutorial at the ARTIST2 Winter School on Modelling, Testing, and Verification for Embedded
Systems (MOTIVES) at Trento, Italy in February 2007 on “Interactive Performance Debugging
of Real-Time Systems”, (v) tutorial at the VLSI Design Conference at Hyderabad in January
2008 on “Programming and Performance Modelling of Automotive ECU Networks” (with S.
Ramesh, General Motors R&D - India Science Lab), and (vi) a tutorial at the Design, Automation
and Test in Europe Conference (DATE) at Munich in March 2008 on “Formal Methods in
System and MpSoC Performance Analysis and Optimisation” (with Rolf Ernst from TU
Braunschweig, Kai Richter from Symtavision, Hans Sarnowski from BMW, and Marco Bekooij
from NXP).

Ye Wang received his Dr.-Tech. degree from the Department of Information Technology,
Tampere University of Technology, Finland. In 2001, he spent a research term at the University
of Cambridge, U.K., working with Prof. Brian Moore on compressed domain audio processing.
He is currently an Assistant Professor with the Department of Computer Science, School of
Computing, National University of Singapore. Dr. Wang has had a nine-year career with Nokia
Research Center in Finland as research engineer and senior research engineer, where he worked
on Digital Audio Broadcasting (DAB) receiver prototype development, optimization of
perceptual audio coding algorithms, error resilient audio content delivery to mobile phones and
compressed domain audio processing for multimedia applications on small devices. His research
interests include audio compression and content-based processing, perception-aware and low-
power audio processing, and error resilient content delivery to handheld devices via wireless
networks. He holds a dozen patents in these areas and has published about 30 international
journal and conference papers. He is a member of the technical committee, Coding of Audio
Signals of the Audio Engineering Society; and a member of the Multimedia Communications
Technical Committee, IEEE Communications Society. Dr Wang has also given a number of
tutorials and courses on audio and video processing while at Nokia Research Center Finland and
regularly teaches these topics at the National University of Singapore.

40

Tutorial T8

Robust Circuit Design: Challenges and Solutions
Saurabh K Tiwary, Cadence Research Labs, Berkeley, CA, USA, stiwary@cadence.com
Amith Singhee, IBM T J Watson Research Center, Yorktown Hts, NY, USA, asinghe@us.ibm.com
Vikas Chandra, ARM R&D, Sunnyvale, CA, USA, vikas.chandra@arm.com

Abstract
Scaling with Moore’s law is taking us to feature sizes of 32nm and smaller. At these technology nodes
designers are faced with an explosion in design complexity at all levels. In this tutorial we discuss
three somewhat novel and particularly confounding dimensions of this complexity:

• Electrical complexity: Digital circuit designers have particularly benefited from abstractions
of the underlying MOS devices while designing circuits. For them, a transistor is an ideal
switch and a wire is a perfect short between two nodes. This simplified abstraction is the
driving force behind our capability to design and verify chips with about a billion transistors
today. However, with aggressive device scaling, the properties of the devices that are being
manufactured today are moving further away from the abstractions that we have been using to
verify our designs. In this section of the tutorial, we look at some of the recent trends along
these lines and some of the techniques that designers use to extract ideal functionality from
non-ideal devices. We use design examples, both from analog/mixed-signal (PLL, ADC
design) and digital domain (clock tree, power network, static timing, etc.), as illustrative cases
studies.

• Manufacturing complexity: Minimum feature sizes at 45nm are already a quarter of the
wavelength of light used for lithography. Consequently, imperfections in manufacturing are
unavoidable and large enough to significantly change the intended design, resulting in dreaded
yield loss. Any design today has to satisfy stringent manufacturability and yield requirements.
At the same time, the complexity of critical variation mechanisms renders any simplified
methods, like corner analysis, ineffective. Design methods and tools are being changed at all
levels of the design flow to improve yield prediction and increase manufacturing robustness.
In this vein, this tutorial will cover a broad spectrum of topics: 1) relevant state-of-the-art
manufacturing process steps at 45 nm (193 nm lithography, ion implantation, etc.) and the
physical mechanisms resulting in electrical performance variations, 2) recently proposed
design techniques for mitigating the electrical variability, and 3) recently proposed design
tools for increasing robustness and predicting the yield impact of this variability. We will look
at various design phases from circuit architecture down to post-layout, and at several
applications from SRAMs to ASICs to analog.

• Reliability complexity: With nearly three decades of continued CMOS scaling, the devices
have now been pushed to their physical and reliability limits. Transistors on the latest chips in
45nm technology are so small that some of their parts are just a few atoms apart. Designs
manufactured correctly may become unreliable over time because of mechanisms like NBTI,
gate oxide breakdown and soft errors. The impact of unreliability manifests as time-dependent
variability where the electrical characteristics of the devices vary statistically in a temporal
manner, directly translating into design uncertainty in manufactured chips. Scaling to sub-
45nm technology nodes changes the nature of reliability effects from abrupt functional
problems to progressive degradation of the performance characteristics. The material
presented in this section of the tutorial is intended for designers to form a thorough

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.119

41

understanding of the physics and models of the various reliability mechanisms. The tutorial
will also introduce various design techniques to make the design more robust, which can be
readily applied to an SoC design.

To successfully optimize any aggressive design in the nanometer regime, a comprehensive
understanding of these challenges and available solutions is essential. We will review the physical
mechanisms underlying these design complexities, along with relevant models, design tools and
techniques for managing them and obtaining design robustness.

Speaker Biographies
Saurabh Tiwary is a Research Scientist at Cadence Research Laboratories, Berkeley, USA. He
received his Ph.D. degree in Electrical and Computer Engineering (ECE) from Carnegie Mellon
University (CMU). He received his B. Tech. degree from Indian Institute of Technology, Kanpur and
his Masters degree in ECE also from CMU. He has spent some of his summers working at IIT Kanpur
(India), Department of EECS, RWTH, Aachen (Germany) and Neolinear (USA). He has been
nominated for the best paper award at DAC and was awarded the CSSI fellowship during his graduate
studies at Carnegie Mellon. He has published papers at refereed conferences like DAC, ICCAD, CICC,
DATE, ITC, etc. and has two patents pending. He has served on the program committee of ICCAD
and as reviewer for Transactions on CAD, Transactions on VLSI, TCAS, DAC, FMCAD and ISCAS.
His research interests include design, macromodeling and simulation of analog circuits and mixed-
signal systems.

Amith Singhee is a Research Staff Member at the IBM T. J. Watson Research Center. His research
interests are in variation-aware design and design automation, design-oriented process variability
characterization, analog synthesis and general circuit simulation and optimization. He obtained his
Ph.D. and M.S. in Electrical and Computer Engineering from Carnegie Mellon University and his
B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Kharagpur. He was
with Neolinear, and subsequently Cadence Design Systems, from 2002 to 2004. Dr. Singhee is a
recipient of the Arthur G. Milnes dissertation award (2008) for his work on fast DFM algorithms for
scaled circuits, two best paper awards (DAC, 2002 and DATE, 2007), one best student paper award
(VLSI Design, 2008), and the Silver Medal (IIT, Kharagpur, EE), 2000. His paper on memory yield
prediction (DATE, 2007) was chosen as one of the 30 most influential papers in 10 years of DATE.
He is a chapter author for the book Embedded Memories for Nano-Scale VLSI and holds a U.S. patent
in the area of yield-driven circuit optimization.

Vikas Chandra is a Staff Researcher in the Corporate R&D group at ARM. He received his Ph.D. and
M.S. degrees in Electrical and Computer Engineering from Carnegie Mellon University (CMU). He
received his B.E. degree from the Birla Institute of Technology and Science (BITS), Plain, India. He
has worked at Intel’s Strategic CAD Labs, IBM Austin Research Lab and the Central R&D group at
STMicroelectronics. Dr. Chandra has published papers at prestigious international conferences like
ICCAD, DATE, FPGA, ICCD, DFTS etc. He has two approved US patents and three pending patents.
Dr. Chandra serves as a vice-chair of the ACM/SIGDA Technical Committee on FPGA &
Configurable Computing. He is the co-organizer of the SIGDA Design Automation Summer School
(co-located with DAC). He has served or is serving as a Technical Program Committee member for
CICC, ICCD, SELSE, DRV workshop and VLSI Design conference. Dr. Chandra’s research interests
are in high-performance & low-power custom circuit design, memory architecture, DFM and
reliability aware design.

42

Session 1A

Low Power Design
for Wireless Communication

Design-Space Exploration of Energy-Delay-Area
Efficient Coarse-Grain Reconfigurable Datapath

Sohan Purohit
Department of Electrical and

Computer Engineering
University of Massachusetts-

Lowell-USA
sohan_purohit@uml.edu

 Marco Lanuzza,
Stefania Perri,

 Pasquale Corsonello
Department of Electronics, Computer

Science and Systems,
University of Calabria

Rende (CS), Italy
{lanuzza,perri}@deis.unical.it

p.corsonello@unical.it

 Martin Margala
Department of Electrical and

Computer Engineering
University of Massachusetts-

Lowell-USA
martin_margala@uml.edu

Abstract—This paper presents the VLSI design of a high data
throughput, energy and area efficient data path targeted for
DSP and multimedia applications. Three different
implementations of the reconfigurable data path using static,
dynamic domino and D3L logic styles are presented to serve as
low power, high speed, and speed-energy optimized variants of
the architecture. When implemented using ST Microelectronics
90nm 1V CMOS technology, the proposed data path leads to a
maximum supported clock frequency ranging from 917 MHz to
1.2 GHz with a dynamic power consumption @ 500 MHz
ranging from 788 µW to 1.02 mW.

I. INTRODUCTION
Digital signal processing (DSP) and multimedia

applications require large amount of data to be processed in a
parallel and very often in a repetitive manner. These
applications require high-performance computations
alongside the capability of matching the rapid evolution of
the algorithms. The simultaneous demand for high
computational speed and flexibility makes reconfigurable
architectures attractive solutions for DSP and multimedia
applications.

Traditional fine grained FPGA-based solutions offer a
high level of flexibility but suffer from large area overhead
and high power consumption. On the contrary, Coarse Grain
Reconfigurable Architectures (CGRAs) [1] seem to be a more
feasible solution, as they provide relatively higher
performance with lower power consumption and higher area
efficiency for the targeted application domains.

In this paper, a high performance, energy and area
efficient data path implementation to be part of the recently
proposed CGRA [2], targeted for DSP and multimedia
applications is presented. As shown in Fig.1, the
reconfigurable system consists of a 2D array of

Reconfigurable Cells (RCs) organized into a hierarchical two
level pipelined structure [2]. The single RC forms the basic
unit of the architecture. It is composed of an 8-bit Processing
Element (PE), a 256 X 8-bit dual port SRAM and a control
unit for overall synchronization. The PE forms the backbone
for the RC being its computational unit.

I/O DATA & CONFIGURATION CONTROLLER

Host Interface External Memory Interface

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

DM
PE CL

 RAM

PE

 RAM

PE

Elab. Data Config. Data

Config. & Elab. Data Data Addr.

Figure 1: Top level architecture of the reconfigurable array [2].

In this work, three different transistor level

implementations of the PE for high speed, low power and
area efficient operations are presented and evaluated. More
precisely, the PE was designed using static and domino
design styles to provide for the low power and high speed
applications respectively. The third implementation makes

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.33

45

use of Data Driven Dynamic Logic (D3L) [3] and acts as a
good tradeoff between the high speed and low power
approaches. All the circuits were custom implemented in the
ST Microelectronics 90nm CMOS process.

The rest of the paper is organized as follows. Section II
gives an overview of the PE architecture. Section III
discusses in detail the three PE implementations. Post layout
results are presented in Section IV. Finally, some concluding
remarks follow.

Figure 2: Logic organization of the Processing Element [1].

II. THE PROCESSING ELEMENT
The PE is responsible for all the arithmetic and

accumulation operations performed by the RC. The block
diagram of the PE is shown in Fig. 2. It consists of two 8X4-
bit multipliers, a compressor stage, 16 bit carry linked adders
and multiplexer-based auxiliary logic. These multiplexers
driven by the control signals S7-S0 route the operands across
the data path and ensure efficient data exchange between the
arithmetic blocks, thus exploiting hardware reuse. Thanks to
such organization, the circuit maintains the maximum
functionality required for DSP elaborations with minimum
hardware to cut down both silicon area occupancy and power
consumption. The PE allows several single clock cycle 8-bit
operations to be performed. Note that, the supported
arithmetic operations include all the operations, which
normally dominate multimedia and digital signal processing
algorithms, such as two’s complement addition, subtraction,
accumulation, multiplication and multiply accumulation.
When the 8-bit addition is performed, the PE calculates
B[7:0]×0001 and A[7:4]×00000001 by the multipliers
MULT1 and MULT2, respectively. Adders ADDER1 and
ADDER2 compute A[3:0]+B[3:0]+0 and
B[7:4]×0001+A[7:4]×00000001+co1, respectively, and the
8-bit result is provided through the 8 least significant output
lines O[7:0]. The 8-bit subtraction is performed in a similar
way, but the operand A[7:0] is 2’s complemented and the
signal cin is forced to 1. The 8×8-bit multiplication is
executed by using the two 8×4-bit multipliers to compute the

two 12-bit partial results B[7:0]×A[3:0] and B[7:0]×A[7:4]
and the three carry-linked adders to opportunely add these
partial products. The 16-bit product is finally available
through the output lines O[15:0]. Simple accumulation
operation is performed by accumulating previously stored
result with the current operand A. Similarly, multiply-
accumulation is computed by adding the result of the
previous computation with current partial products in the
compressor stage.

It should be noted that the critical path of the PE includes
only a 2:1 multiplexer, a 8X4-bit multiplier and three small
carry linked adders. This ensures optimum performances,
thus maximizing the total throughput of the system.

The PE has been implemented using static, dynamic
domino and D3L [3] logic design styles to provide three
variants of the same architecture for different target
applications. These implementations are detailed in the
following section.

III. PE IMPLEMENTATION STRATEGIES
It is clear, from the previous section, that the architecture

of the PE has been designed to provide high flexibility in
performing single clock cycle 8-bit arithmetic operations,
along with high speed, low area occupancy and low power
consumption. However, in order to emphasize such
architectural benefits, an accurate transistor level design is
needed. In fact, depending on the different circuit logic
families considered for the PE implementation, several area-
speed-power tradeoffs can be achieved.

 A

CLK

OUT

N-logic for G

P-logic for G

B

A B

OUT

N-logic for G

A B

CLK

OUT

A
B

N-logic for G

A B

 (a) (b) (c)
 Figure 3: (a) Static, (b) domino and (c) D3L implementations of the
function OUT= G· (A+B).

As shown in Fig. 3, in order to implement a specific
function the conventional static CMOS logic style combines
dual Pull-Down and Pull-Up Networks. For increasing speed,
in domino dynamic logic, the Pull-Up Network (PUN) is
replaced by a single PMOS precharge transistor which is
controlled by the global clock. Compared to static CMOS
logic, the input capacitance of every domino dynamic gate is
significantly reduced. However, the usual requirement of an
additional transistor (i.e. the NMOS evaluation transistor) that
has to be cascaded with the Pull-Down Network (PDN), limits
the gate speed during the low to high transitions. Moreover,
due to the large load on the clock signal (that has to be
connected to every dynamic gate) and due to the higher
switching activity, circuits implemented using domino
dynamic logic usually result in a considerably more power-

MULT2
(8X4-bit)

4

4

8 8

8

8 8

8

MULT1
(8X4-bit)

4 4

4

8 8

8

4 4

4

4

4

4
4

Simplified (HA-based)
Compressor (4-bit)

3:2 (FA-based)
Compressor (8-bit)

Adder3
(4-bit)

Adder2
(8-bit)

Adder1
(4-bit)

Register
 (4-bit)

Register
 (8-bit)

Register
 (4-bit)

8

8

8 4

4
4

4

00000001 00000001

00000000 0000

0001

A[3:0]

B[7:0] B[7:0] A[3:0] A[7:4]

0000

S0 S2 S1 S3

S4

S5

S6 S6

O[3:0] O[11:4] O[15:12]

S7=cin co1 co2

46

hungry solution compared to their conventional static CMOS
counterparts [4]. One solution for reducing the excessive load
of the clock-tree network is to precharge using local data
instead of a global clock, as in D3L logic [3]. The most
evident benefits offered by this approach over the dynamic
domino implementation are the elimination of the clock
distribution system (with the associated reduction in terms of
power consumption), and the elimination of the clocked
NMOS transistor, which reduces the evaluation path delay. As
drawbacks, the input lines of D3L circuits have higher
capacitances with respect to their dynamic domino
counterparts and the precharge phase is no longer
simultaneous for all the gates since a propagation path exists
through cascaded stages [5].

By combining the proposed architecture with the previous
mentioned circuit design styles, we evaluated three different
implementations of the reconfigurable PE. The first, which is
based on a standard static CMOS logic, ensures low power
arithmetic operations with relatively good delay performance
and is highly suitable for portable multimedia processing with
strict power constraints. The dynamic domino based approach,
provides a faster solution at the cost of more power
dissipation. This version finds use in application environments
that require extremely high operating speeds, where power
optimization can be shifted to other stages in the cell. Finally,
the D3L based implementation serves as a golden mean
between the conventional static and domino implementations
by providing high speed and relatively low power
consumption.

A. Static CMOS implementation

The first implementation of the PE involves the design of
all the basic arithmetic and logic components using standard
CMOS static design style. Static implementation also offers
the option of using low power circuit topologies like pass
transistor logic [4]. However, the conventional CMOS static
approach was chosen owing to its higher operating speed,
higher signal integrity and symmetrical layout design.

The designed basic components include fundamental logic
gates, Full Adders, 4- and 8- bit Carry-Look-Ahead (CLA)-
based adders [4] and two 8 X 4-bit Wallace Tree multipliers.
The Wallace Tree topology was selected because it provides
efficient carry propagation for each stage of the multiplier, at
the cost of relatively lower power and area compared to other
topologies. Another advantage of the Wallace Tree approach
is the highly regular structure of the multiplier, which
facilitates layout design and guarantees better utilization of
silicon area [4]. The final adder stage in each multiplier is an
8-bit CLA based adder. This speeds up the final addition
stage, thus assuring performance efficiency.

All the basic circuits, belonging to the data path, were
implemented using a conventional transistor sizing criterion
[4]. More precisely, they were sized for symmetrical high to
low and low to high propagation delays, approximately equal
to those of the minimum size inverter (i.e. Wn=0.12um,
Wp=0.24 um). This approach was chosen in order to control
power dissipation.

The input and output registers of the PE are True Single-
Phase Clocked (TSPC) edge triggered registers [6].

B. Dynamic Domino implementation

Dynamic Domino circuits have traditionally been known
to provide high operating speeds [4]. They operate using a
sequence of precharge and evaluation phases on the basis of a
clock input. The basic domino approach requires a precharge
PMOS device in the PUN and a foot NMOS in the PDN. Both
of these devices are driven by the clock signal that
synchronizes the alternate precharge and evaluate phases.

In the domino-based implementation of the PE, all the
critical arithmetic circuits have been implemented using
dynamic domino logic style. On the contrary, the multiplexers,
which are relatively less critical from a performance point of
view, are based on static CMOS implementations. This allows
a reduction of the total power without significantly
compromising the circuit performance.

It is worth underlining that the domino-based pull-down
network of each gate has been designed using the same
transistor sizing criterion which was used for the static
implementation. Whereas, the pull-up network is now just a
minimum sized precharge device. Moreover, as a counter-
measure to the charge lost due to the PDN leakage, minimum
sized keeper transistors have been used.

Figure 4: Organization of the pipelined dynamic data path

In order to ensure a correct performance comparison
between the static and dynamic data paths, it is necessary that
the dynamic implementation utilizes the complete clock
period. This was assured by introducing a level of pipelining
inverting latches after the multiplier stage. As shown in Fig. 4,
this serves to divide the data path into two half-cycle stages,
which work using opposite phases of the clock. While the
clock is high, the first half-cycle stage evaluates and the
second precharges. While the clock is low, the second
evaluates and the first precharges. With this approach, the
precharge time does not appear in the critical path. The
inverting latches hold the result of the first half-cycle while
that stage precharges and the next evaluates.

MULT2

Wallace Tree
(8X4-bit)

4

4

8 8

8

8 8

8

MULT1

Wallace Tree
(8X4-bit)

4 4

4

8 8

8

4 4

4

4

4

4
4

Simplified (HA-based)
Compressor (4-bit)

3:2 (FA-based)
Compressor (8-bit)

CLA Adder3
(4-bit)

CLA Adder2
(8-bit)

CLA Adder1
(4-bit)

8 8

8 4

4 4

4

00000001 00000001

00000000 0000

0001

A[3:0]

B[7:0] B[7:0] A[3:0] A[7:4]

0000

S[0] S[2] S[1] S[3]

S[4]

S[5]

S[6] S[6]

O[3:0] O[11:4] O[15:12]

S[7]=cin co1 co2

A[7:0]

 40-bit Pipeline Latches

B[7:0] S[7:0]

Register A
 (8-bit)

Register B
 (8-bit)

Register S
 (8-bit)

1st Half-Cycle
Stage

2nd Half-Cycle
Stage

CLK

CLK

E P

P E

E: Evaluation;
P: Precharge

Register
 (4-bit)

Register
 (8-bit)

Register
 (4-bit)

47

It is worth noting that even though the data path is dynamic,
the remainder of the circuitry in the RC is static. Static gates
may produce non monotonic output signals; whereas domino
gates require inputs that are monotonic during evaluation [4]
(only single 0 1 transitions are permitted during the
evaluation period). As a consequence, a static-dynamic
interface at the input, as well as dynamic-static interface at
the output is needed for the dynamic data path to work
correctly with the remaining static blocks. This makes it
necessary to carefully select the type of registers to be used at
the input, output and pipeline stages.
The input registers, used in our dynamic implementation, are
based on a special static-dynamic interface latches called
Entry Latches (ELATs) [7] used in the Itanium processor.
The circuit structure of the generic latch is shown in Fig.5a.
This 1-bit latch is similar to the pulsed domino flip-flop and
provides a good interface between static and dynamic
circuits. The falling inputs must setup before the clock edge
while rising inputs can come in slightly later than the clock
edge. The output is a monotonically rising signal as is needed
by the subsequent dynamic stages inside the data path. Note
that this kind of circuit has been also used to implement the
pipeline latches.

CLK
Q

0.36

D

CLK

0.48

0.48

0.48

0.12

0.12

Static
Logic Monotonically

Rising Output

CLK 0.48

D 0.36

0.36

0.12

CLK Q

0.24

0.24

0.48
weak

Monotonically
Rising Input Static

Logic

(a)

(b)

Figure 5: (a) Static to Dynamic Interface [7]
 (b) Dynamic to Static Interface [8]

At the output stage, another type of register called pulse-
to-level converter was used [8]. The latter converts the output
of the domino signals into signals that remain stable until
sampled by the static sage. It thus provides the needed
dynamic- static interface. Furthermore, as these two types of
registers are mutually compatible, accumulation operation
which requires link between the output and pipeline latches
works perfectly. The circuit diagram for the pulse to level
converter is shown in Fig.5b. The dynamic domino-based PE
implementation requires careful design of the clock tree. In
order to distribute the clock signal to the dynamic domino
arithmetic sub-circuits, a two-level clock buffer tree was
purposely designed. In order to balance loading to the clock

network, the entire data path was divided into four portions
such that each portion provides approximately identical
loading to the clock network. The logical effort method [4]
was used for sizing the inverter chains of the clock buffering.

C. Data Driven Dynamic Logic Implementation

 It is well known that dynamic logics are widely used to
design high speed data paths due to their intrinsic
performance advantages. As a drawback, circuits based on
conventional dynamic logic styles suffer from a large amount
of power consumption primarily due to the excessive loading
on the clock. As demonstrated in [9], the power dissipation
owing to the clock distribution network in a dynamic system
can range from 20% up to 45% of the overall consumed
power.
D3L technique removes the clock distribution system
required within conventional dynamic circuits, and utilizes a
combination of the input signals (instead of the global clock)
to derive the alternate pre-charge and evaluation phases. This
provides the advantage of high speed circuit operation like
the other dynamic families without the extra cost of power
consumption and clock tree design [3, 5, 10].

As with domino implementation, only the arithmetic sub-
circuits within the PE are designed using the D3L approach.
The multiplexers even in this case are static.

A 0.48

0.24 0.24

0.12

0.24

0.24

0.24

0.12

(a)

A

A

B
A·B

0.24 0.24

B
A + B

A B

A B

0.48

0.12 0.12 A B

0.24 0.12 A
A+B

(b)

(c)
Figure 6: Implementation of (a) AND, (b) OR, (c) XOR gates using
data driven dynamic logic

Fig.6 shows the implementation of the D3L basic gates which
are inside the arithmetic sub-circuits. A collection of inputs is
selected to design the PUN and PDN so as to assure alternate
pre-charge and evaluate phases. They must be chosen to
satisfy the following conditions: 1) during the precharge
phase, the PDN is OFF, the PUPN is certainly turned ON and
the output node is charged to Vdd; 2) during the evaluation
phase, the output node is eventually discharged to 0 by the
PDN without any contention with the PUN. Fig.7 shows the
design of the implemented D3L full adder. Differently from a
nominal D3L-based implementation, in the SUM path, the

48

Figure 7: Implementation of Full adder using data driven dynamic logic (D3L)

PUN was split into two parts, thereby reducing capacitance at
the output node, and providing for a faster precharge
operation. This approach increases the speed at the cost of
slightly more power consumption.

The D3L implementation of the PE uses more transistors
compared to the corresponding domino based circuit.
However, the transistor count is still significantly less than
the static implementation.

It is worth pointing out that, similarly to the Domino
implementation, the D3L based PE is organized in a pipeline
fashion. The input, output and pipeline registers are identical
to those used for the domino PE.

IV. RESULTS
Custom design of all three circuits was implemented in ST

Microelectronics 90nm 1V CMOS technology, using
CADENCE IC Design suite.

After preliminary evaluations using pre-layout simulations,
custom layouts were designed. To ensure a fair and correct
comparison between the three designs, similar floor planning
and routing strategies were adopted for all the circuits. The
layout was aimed at achieving maximum possible density, to
optimize silicon area efficiency of the data paths. Careful
routing strategies were used to ensure minimum interconnect
dominance on circuit performance. Fig.14 shows the screen
images of all three layouts.

Extensive post layout simulations using the TT 25°C
process corner were performed on the data paths to evaluate
their performance in terms of speed and power consumption.
The Spectre simulator was used to evaluate achieved speed,
whereas energy consumption results were obtained using
Synopsis Nanosim.

Table 1 shows the obtained post layout results. The data
paths were characterized for delay, power and area. As shown
from the simulation results, each of the three designs brings
with it the features of the used implementation strategy. The

static design provides about 23 % and 9.5 % less energy
consumption compared to the domino and D3L designs,
respectively.

The domino design, exhibits an operating frequency over
1GHZ with 8% and 18% more silicon density compared to the
D3L and static counterparts, respectively.

The D3L data path appears ideal for GHz range
operations with 10% speed and 15 % energy consumption
advantages over the corresponding domino circuit. Note that
despite that both dynamic datapaths use more logic gates than
the static implementation due to the inserted pipelining
registers, they occupy less silicon area. Table 1 shows also a
comparison in terms of the Energy-Delay-Area (EDA)
product. Analyzing these results clearly proves that among
the evaluated implementations the D3L-based PE achievies
the best energy-delay-area tradeoff. In fact, it reduces the
EDA product of about 20% and 15% with respect to static
and dynamic domino implementations, respectively.

Table 1 : post layout results
Data
path

Frequency
[GHz]

Energy
[uW/MHz]

Area
[mm2]

EDA
[pJ*ps*
mm2]

Static 0.92 1.58 0.209 360.27

Domino 1.09 2.04 0.181 338.59

D3L 1.2 1.74 0.199 288.43

CONCLUSION
A high performance power- and area- efficient parallel

processing based data path has been proposed. Three variants
of the same namely, static, domino and D3L based
implementations have been evaluated achieving different
area-speed-power tradeoffs. A complete set of data paths is

49

thus available to be used as processing elements for a novel
multimedia oriented reconfigurable architecture [2]. The
choice of the implementation strategy to be used can be made
depending on the specific need of the targeted applicative
domain.

(a)

(b)

(c)

135µm

155 µm

165µm

110 µm

158µm

126 µm

REFERENCES
[1] Hartenstein, R.: A Decade of Reconfigurable Computing: a Visionary

Retrospective. Proc. of Design, Automation and Test in Europe, pp.
642-649, 2000.

[2] M. Lanuzza, S. Perri, P. Corsonello, M. Margala “A New
Reconfigurable Coarse-Grain Architecture for Multimedia
Applications”, AHS 2007, Page(s):119-126, 2007

[3] R. Rafati, S. M. Fakhraie, K. C. Smith, “Low-Power Data-Driven
Dynamic Logic (D3L)”, Proc. of IEEE International Symposium on
Circuits and Sytems, ISCAS, Volume 1, Issue , 2000 Page(s):752 - 755
Geneva, Switzerland, 2000.

[4] M. Rabaey, A. Chandrakasan, B. Nikolic “Digital Integrated Circuits–
A Design Perspective” Second Edition, Prentice-Hall Editor, 2002.

[5] Rafati, R.; Fakhraie, S.M.; Smith, K.C., ” A 16 bit barrel shifter
implemented in Data-driven dynamic logic,” IEEE transactions on
Circuits and Systems, Vol 53, Issue 10, pp-2194-2202, Oct. 2006

[6] C.G. Huang.,” Implementation of true single-phase clock D flipflops
Electronics Letters, Vol. 30, Issue 17, Page(s):1373 – 1374, 18 Aug
1994

[7] Naffziger, S.D.; Colon-Bonet, G.; Fischer, T.; Riedlinger, R.; Sullivan,
T.J.; Grutkowski, T. “The Implementation of the Itanium 2
Microprocessor”, IEEE Journal of Solid State Circuits, vol. 37, pp-
1448-1460,Volume 37, Issue 11, Nov 2002.

[8] N. Weste, D. Harris “CMOS VLSI Design -A Circuits and Systems
Perspective” (3rd Edition), Addison Wesley, 2005.

[9] H. Kawaguchi and T. Sakurai “A reduced clock-swing flip-flop
(RCSFF) for 63% power reduction,” IEEE J. Solid-State Circuits, vol.
33, no. 5, pp. 807–811, May 1998.

[10] Rafati, R.; Charaki, A.Z.; Fakhraie, S.M.; Smith, K.C.,” Data-Driven
Dynamic Logic versus NP-CMOS Logic, A Comprarison,” Proc. of
12th International Conference on Microelectronics 2000, pp-57-60,
2000

Figure 8: Layouts of the three data path implementations in ST
microelectronics 90nm technology: (a) static, (b) domino, (c) D3L.

50

Low-Power VLSI Design of LDPC Decoder Using
DVFS for AWGN Channels

Weihuang Wang, Gwan Choi
Department of Electrical and Computer Engineering

Texas A&M University, TX 77840

Email: whwang@tamu.edu, gchoi@ece.tamu.edu

Kiran K. Gunnam
Channel Architecture, Storage Peripherals Group,

LSI Corporation, Milpitas, CA 95035

Email: kiran.gunnam@lsi.com

Abstract—This paper presents a low-power LDPC decoder
design for additive white Gaussian noise (AWGN) channels.
The proposed decoding scheme provides constant-time decoding
and thus facilitates real-time applications where guaranteed
data rate is required. It analyzes each received data frame
to estimate the maximum number of necessary iterations for
frame convergence. The results are then used to dynamically
adjust decoder frequency and switch between multiple-voltage
levels; thereby energy use is minimized. It differs from recent
publications on speculative LDPC decoding for block-fading
channels. Our approach addresses the more difficult problem
of decoding requirement prediction for data frames in AWGN
channels. It is also directly applicable for fading channels. A
decoder architecture utilizing offset min-sum layered decoding
algorithm is presented. Up to 30% saving in decoding energy
consumption is achieved with negligible coding performance
degradation.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are special cases

of error correcting codes originally proposed by Gallager [1]

in 1960’s and rediscovered in late 1990’s [2]. LDPC codes

have recently gained a significant attention because of their

near Shannon-limit performance and high throughput. They

have been successfully adopted in next-generation standards,

such as IEEE802.11n, IEEE802.16e, DVB-S2, etc.

LDPC codes are defined by a sparse parity check matrix

H = [Hmn] that consists mostly of 0’s, as an example shown

in Figure 1. The H matrix of (dc, dv) regular LDPC code has

the following properties. Each column contains a small fixed

number dv of 1’s and each row contains a small fixed number

dc > dv of 1’s. The block length of this code is n which is

equal to the number of columns in the H matrix. Suppose

that the number of data bits before the channel encoding is l,
then the number of rows of this H matrix is m = n− l. Rate

of this code is defined as l/n = 1 − dv/dc. The code words

consist of all one-dimensional row vectors that span the null

space of the parity check H matrix. The number for dv and dc

should be no less than 3 and 6 respectively, for good coding

performance.

LDPC codes can be equivalently represented in a bi-

partite graph, illustrated by Figure 2. The widely used

message-passing algorithms exchange information between the

variable-nodes and check-nodes in an iterative fashion. In

practice, the LDPC decoder is typically set to run for data

convergence until a prescribed maximum number of iterations

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

H =

Fig. 1. An example H matrix of dc = 3 and dv = 2.

Fig. 2. Bipartite graph representation and two phase message passing
decoding algorithm.

(e.g. 20) depending on the code rate [3]–[6]. However, the

actual number of decoding iterations varies from frame to

frame. In the case that channel data comes in constant-

time interval, a conventional decoder has to be configured to

accommodate the worst case scenario. As a result, the decoder

often remains idle since for most frames, the decoding process

ends far earlier than the maximum number of iterations. Thus

it is not power efficient. In the decoders proposed in [7]–

[10] based on an on-the-fly computation paradigm, optimized

dataflow graphs are introduced to reduce the logic and internal

memory requirements of the LDPC decoder and at the same

time the decoder’s parallelization is tailored to average number

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.68

51

of decoding iterations for the target frame error rate for the

operating SNR region. These decoders buffer statistically for

different parallelization based on average number of decoding

iterations while ensuring the performance similar to that of

a fixed iteration decoder configured for maximum number of

iterations [7]–[10]. These decoders are almost fully utilized

and runs at the maximum frequency. The proposed paper

improves the system efficiency in a different approach by

adaptively adjusting the frequency and voltage of the decoder

to meet the required iterations for each incoming frame.

There have been researches on early termination of frame

that can not be decoded even if the maximum iterations

are applied [5], [6]. In both of papers, early termination

of the iterative process is determined by checking the mes-

sages during the decoding. Their attempts are to dynamically

switch off the hardware when no additional iteration will

amount to improvement in decoding performance. Such ar-

chitectures yield unpredictable frame-completion time which

makes interfacing with the application modules rather difficult.

Wang, et al. address the problem of dynamic voltage and

frequency scaling (DVFS) for block fading channels in [11].

The presented approach predicts the required decoding effort

by evaluating number of checks in error for each frame. Such

approach will not work for AWGN channels where correlation

between initial check error and number of decoding iterations

is insufficient. This paper describes a more comprehensive

design that accommodate both fading channels and the more

difficult case of AWGN channels.

The rest of the paper is organized as following: Section II

presents the LDPC decoding algorithm based on offset min-

sum and layered decoding. The low-power adaptive decoder

architecture is proposed in Section III. Implementation results

as well as discussion is given in Section IV. Section V

concludes the paper.

II. LDPC LAYERED DECODING BASED ON OFFSET

MIN-SUM ALGORITHM

The array LDPC codes [12] are specified by three parame-

ters: a prime number p and two integers k and j such that

j < p and k < p. It is given by Equation (1):

H =

⎡
⎢⎢⎢⎢⎢⎣

I I I · · · I
I α α2 ... αk−1

I α2 α4 ... α2(k−1)

...
...

...
...

I αj−1 α(j−1)2 · · · α(j−1)(k−1)

⎤
⎥⎥⎥⎥⎥⎦

(1)

where I is the p×p identity matrix, and α is a p×p permutation

matrix representing a single left or right cyclic shift of I .

Power of α in H denotes multiple cyclic shifts, with the

number of shifts given by the value of the exponent.

Assume binary phase shift keying (BPSK) modulation (a 1
is mapped to −1 and a 0 is mapped to 1) over an additive

white Gaussian noise (AWGN) channel. The received values

yn are Gaussian with mean xn = 1 and variance δ2. The

iterative two-phase message-passing (TPMP) algorithm, also

known as belief-propagation (BP) algorithm [13], [14] is

computed in two phases. One is a check node processing

and the other is variable node processing. In the check node

processing, each row of the parity matrix is checked to verify

that parity check constraints are satisfied. In the variable node

processing the probability will be updated by summing up

the other probabilities from the rest of the rows and the a

priori probabilities from the channel output. The message-

passing algorithm can be simplified to the belief-propagation

based algorithm (also called Min-Sum algorithm) [15]. While

greatly reducing the decoding complexity in implementation,

the Min-Sum degrades the coding performance. The improved

BP based algorithm, Normalized-Min-Sum and Offset-Min-

Sum eliminates this performance degradation.

Following the same notation in [8], the check node process-

ing can be expressed as:

R(i)
mn = δ(i)

mn max
(
κ(i)

mn − β, 0
)

, (2)

κ(i)
mn =

∣∣∣R(i)
mn

∣∣∣ = min
n′∈N(m)\n

∣∣∣Q(i−1)
n′m

∣∣∣ , (3)

where Q
(i)
nm is the message from variable node n to check

node m, R
(i)
mn is the message from check node m to variable

node n, and superscript i denotes the ith iteration. M(n) is

the set of the neighboring check nodes for variable node n,

and N(m) is the set of the neighboring variable nodes for

check node m, β is a positive constant and depends on the

code parameters [15]. The sign of check-node message R
(i)
mn

is defined as

δ(i)
mn =

⎛
⎝ ∏

n′∈N(m)\n

sgn
(
Q

(i−1)
n′m

)⎞
⎠ . (4)

In the vairalbe node processing,

Qn = L(0)
n +

∑
m∈M(n)\m

R(i)
mn (5)

where the log-likelihood ratio of bit n is L
(0)
n = yn. For final

decoding

Pn = L(0)
n +

∑
m∈M(n)

R(i)
mn (6)

A hard decision is taken by setting x̂n = 0 if Pn(xn) ≥
0, and x̂n = 1 if Pn(xn) ≤ 0. If x̂HT = 0, the decoding

process is finished with x̂n as the decoder output; otherwise,

repeat processing of Equation (2)-Equation (6). If the decoding

process does not end within predefined maximum number of

iterations, itmax, stop and output an error message flag and

proceed to the decoding of the next data frame.

Mansour, et al. introduces the concept of turbo decoding

message passing (also called as layered decoding) for their

AA-LDPC codes using BCJR [4], which is able to reduce the

number of iterations required by up to 50% without perfor-

mance degradation when compared to the standard message

passing algorithm. Contrast to two phase message passing

52

2 1

2 4 2(1)

1 (1)2 (1)(1)

...

...

k

k

j j j k

I I I I

I

H I

I

a a a

a a a

a a a

-

-

- - - -

=

Fig. 3. In layered decoding, the H matrix is viewed as concatenation of dv

sub-codes and each block row (layer) is updated individually.

algorithm, where all check-nodes are updated simultaneously

in each iteration, layered decoding view the H matrix as a

concatenation of j = dv sub-codes, as shown in Figure 3.

The H matrix is divided into different block-rows and block-

columns. After the check-node processing of one layer, the up-

dated messages are immediately used to calculate the variable-

node message, whose results are then applied to next layer of

sub-code. Each iteration in the layered decoding algorithm is

composed of j sub-iterations. The processing of one block-

row is called a sub-iteration and each iteration is composed of

j = dv sub-iterations. Mathematically, the layered decoding

algorithm can be described as in Algorithm 1:

�R
(0)
l,n = 0, ∀l ∈ [1, dv], n ∈ [1, dc]

�Pn = �L
(0)
n , ∀n ∈ [1, dc]

foreach i = 1, 2, · · · , itmax do
foreach l = 1, 2, · · · , dv do

foreach n = 1, 2, · · · , dc do
[
�Q

(i)
l,n

]S(l,n)

=
[
�Pn

]S(l,n)

− �R
(i−1)
l,n (7)

�R
(i)
l,n = f

([
�Q

(i)
l,n′

]S(l,n′))
,∀n′ ∈ [1, dc] (8)

[
�Pn

]S(l,n)

=
[
�Q

(i)
l,n

]S(l,n)

+ �R
(i)
l,n (9)

Algorithm 1: Layered decoding for array LDPC.

III. LOW-POWER ADAPTIVE LDPC DECODER

ARCHITECTURE

This section presents the adaptive decoder architecture for

additive white Gaussian noise (AWGN) channel. Decoding

effort is estimated before the decoding process of every frame

in block-fading channels [11], [16]. Decoding energy is saved

via truncating the distribution of decoding effort and applying

dynamic voltage and frequency scaling (DVFS) technique.

This approach, however, does not work for LDPC decoding

in AWGN channels.

While number of check errors for the coming channel data

still partially represents the degree of noise impairment, and

indicate effort required for decoding, the correlation between

number of check errors and number of decoding iteration

though, becomes much less. However, this correlation can be

5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of decoding sub−iterations

P
r
o
b
a
b
i
l
i
t
y

Number of checkError >= 108

Number of checkError between 108 and 90

Number of checkError between 90 and 64

Number of checkError < 64

Fig. 4. Distribution of decoding sub-iteration for different number of check
errors after three sub-iterations with channel Eb/No at 3.7dB.

�R
(0)
l,n = 0, ∀l ∈ [1, dv], n ∈ [1, dc]

�Pn = �L
(0)
n , ∀n ∈ [1, dc]

foreach l = 1, 2, 3 do
foreach n = 1, 2, · · · , dc do[

�Q
(1)
l,n

]S(l,n)

=
[
�Pn

]S(l,n)

�R
(1)
l,n = f

([
�Q

(1)
l,n′

]S(l,n′))
,∀n′ ∈ [1, dc][

�Pn

]S(l,n)

=
[
�Q

(1)
l,n

]S(l,n)

+ �R
(1)
l,n

x̂n = hard decision of Pn

if x̂HT ∈ (cErrThre1, +∞) then isub,max = C1

else if x̂HT ∈ (cErrThre2, cErrThre1] then
isub,max = C2

else if x̂HT ∈ (cErrThre3, cErrThre2] then
isub,max = C3

else if x̂HT ∈ (0, cErrThre3] then
isub,max = C4

foreach isub = 4, · · · , isub,max do
i = �isub/dv�
l = (isub − 1) mod (dv) + 1
foreach n = 1, 2, · · · , dc do[

�Q
(i)
l,n

]S(l,n)

=
[
�Pn

]S(l,n)

− �R
(i−1)
l,n

�R
(i)
l,n = f

([
�Q

(i)
l,n′

]S(l,n′))
,∀n′ ∈ [1, dc][

�Pn

]S(l,n)

=
[
�Q

(i)
l,n

]S(l,n)

+ �R
(i)
l,n

Algorithm 2: Adaptive LDPC decoding for AWGN chan-

nel.

recovered after several initial decoding iterations. Analysis in

this section has been carried out based on a sample array

LDPC code, with parameters dv = 5, dc = 25, and p = 67.

And layered decoding based on offset min-sum (OMS) algo-

rithm is used for decoding. Similar analysis can be extended

to other array LDPC codes. It is shown in Figure 4 that after

three sub-iterations, the number of check errors remaining is

53

Fig. 5. Block diagram of the proposed adaptive decoding for AWGN channel.

Fig. 6. DVFS controller for adaptive LDPC decoding.

correlated with the total number of decoding iterations. As

such, the adaptive decoding for AWGN channel is proposed

as in Algorithm 2.

Fig. 7. Variable supply voltage scheme [17].

There are two sets of parameters that need to be determined

experimentally for each specific application: the check-error

threshold values cErrThre[1:3] and the maximum number of

decoding sub-iterations C[1:4]. Note that this algorithm can be

easily extended to fading channels as well.

An efficient decoder architecture is proposed based on

the layered decoding architecture [7]. Block diagram of the

decoder is shown in Figure 5. There are three main blocks:

the pre-processing unit, the processing unit and the DVFS

controller. For each incoming data frame, the first three

decoding sub-iterations take place in the pre-processing unit.

The check-node messages and P sum messages are stored

in frame buffers and the value of cHT will be sent to the

DVFS controller for voltage and frequency adjustment. The

processing unit takes over the unfinished decoding process by

reading messages from the frame buffers. It operates in the

variable voltage VDDL domain. Decoding power is reduced

since majority of the decoding process is done with the

processing unit.

Diagram of the DVFS controller is presented in Figure 6.

Number of check errors is calculated after three sub-iterations

of each frame. Since cHT is needed by the decoder for decod-

ing termination decision and it can be reused, this calculation

does not impose any additional hardware resource. Because

level of the voltage supply can not be changed instantly, frame

buffer is required between the pre-processing unit and the

processing unit, the frequency-selection register stores decod-

ing iteration information for the corresponding data frames.

The clock divider divides the fast system clock into slower

clock signals according to the frequency selection register.

Clock divider is preferred over other designs such as phase-

loop locker (PLL) in [18], because it provides reasonable

frequency resolution for the decoding policy and capability to

change immediately. fdec clocks the decoder for current frame,

and fctr is sent to the variable voltage scheme, as shown in 7.

fctr is conservatively generated as the fastest clock such that

the voltage supply will be within safe region for operation.

The variable voltage scheme is studied in depth by T. Kuroda,

et al., and the readers are referred to [17] for the details.

Figure 8 shows the adaptive LDPC decoder architecture

in detail. The CNUs in the figure take the dc variable-node

message associated with each check-node serially, and com-

putes the compressed check-node message in the form of M1,

−M1, M2 or −M2, and index of M1 [7]–[9], in which M1 is

the least magnitude of all dc variable-node messages and M2
is the second least magnitude. These compressed check-node

messages are called Final States (FS) and they are stored in

FS buffers. Check-node messages to each associated variable-

node are sent out serially again and they are selected from M1,

−M1 and M2 or −M2 by index and sign comparison, where

the signs of R messages are stored in sign FIFO. This approach

reduces check-node message memory requirement by 50% to

80% depending on the code parameters. As soon as check-

node message to the first connected variable-node are ready,

the corresponding P sum message can be computed. Therefor,

the Q message is ready for check-node message processing of

next sub-iteration. As such, each CNU operates on two layers

of the H matrix simultaneously: selecting check-node message

for one layer and computing FS for the next layer.

The pre-processing unit operates in the nominal VDD volt-

age domain. In the first iteration, Qshift equals channel LLR

or P message subtracting Rold, in which Rold is check node

message from last iteration, i.e. Ri−1
l,n in Equation (7). Since

both FS register and sign FIFO are reset to zero when decoding

starts, and remains zero during the first decoding iteration, the

subtraction is not necessary for the pre-processing unit. As

such, channel data will go directly to the CNU array through

the shifter. Only three sub-iterations will take place in the pre-

processing unit, less CNU units can be instantiated than the

processing unit, to match their throughput. Achieving p × p
cyclic shifts by M × M shifter, where M < p, is introduced

in [8]. P messages and check-node messages are passed from

pre-processing unit to processing unit through the frame buffer.

The frame buffer size K is determined by time response of

variable voltage supply Vddl as well as expected decoding

time, i.e. decoder throughput. As will be presented later, buffer

size of 4 frames is typically needed. The overhead is buffer

of size 3 frame since a buffer size of 1 frame is intrinsic for

the decoder architecture [7]. Considering the memory-saving

nature of the decoder architecture, this overhead is very small.

54

Fig. 8. Proposed decoder architecture for AWGN channel.

Note that other than the frame buffer, the pre-processing unit

should not be considered as hardware overhead of the adaptive

decoder architecture because it is an inherit part of the decoder

and it contributes directly to the final decoder throughput.

The processing unit takes P sum messages and check-

node messages from the pre-processing unit and continue

decoding. The difference from pre-processing unit lies in that

Q messages instead of P message are stored. Computation of

Q messages are carried exactly as in Equation (7).

IV. RESULTS AND DISCUSSION

The design of voltage-scaling controller has been simulated

using TSMC0.13μm technology. Critical path of the decoder

is extracted from Synopsys design compiler. With 1.5V volt-

age supply, the decoder can be clocked as fast as 175MHz,

as shown in Figure 9. Extra 5% timing margin has been added

to the critical path replica in the controller to accommodate

variations.

Area of the DVFS controller and variable supply voltage

scheme is 0.1 × 0.13mm2, about 1% of the 1.1mm2 whole

decoder and the power overhead is less than 10mW , which

mainly comes from the buck converter. This power consump-

tion is small comparing to the total power dissipation of

the decoder at around 200mW . The variable voltage scheme

is capable of adjusting the VDDL voltage at a speed of

20mV/μs. Similar results has been reported in [17]. For

LDPC decoding at Eb/No of 3.7dB, the maximum number

of decoding sub-iterations C[1:4] is choose to be 48, 32, 24 and

19, respectively and the corresponding decoder frequency is

chosen to be 165MHz, 110MHz, 82.5MHz and 66MHz,

which can be easily derived from a 330MHz system clock.

As such, it will yield a nearly equal maximum decoding time

for frames in each category. The voltage supply varies from

1.5V to 1V within this frequency range. It takes about 25μs to

50 100 150 200 250 300 350

1

1.5

2

2.5

Operating Frequency (MHz)

S
u
p
p
l
y

V
o
l
t
a
g
e

(
V
)

Based on critical path delay

Critical path delay plus extra 5%

safe region

Timing violation

Fig. 9. Voltage supply requirement for different operating frequencies of the
processing unit.

scale the voltage up by 0.5V . In the case of dc = 25, dv = 5
and p = 67, the voltage controller is able to respond to as

much as 200Mbps throughput with a frame-buffer size of 4.

The proposed adaptive decoder architecture saves significant

energy consumption. Simulation results is shown in Figure 10,

the amount of saving is in comparison with the decoder

architecture but without voltage and frequency adjustment. At

relatively low SNR level, with Eb/No at 3.4dB for example,

up to 30% percent saving in energy consumption is achieved.

Note that power consumption is estimated assuming 80%

dynamic power and 20% static power consumption. Energy

consumption is lowered at hight SNR level. At Eb/No of

4.0dB, the saving, though decreases to 21%, is still significant.

This decreasing occurs because the reduced average number

of decoding iterations. Since the first three sub-iteration takes

place in the fixed Vdd voltage domain, as SNR increases,

55

3.4 3.5 3.6 3.7 3.8 3.9 4

20

22

24

26

28

30

32

Eb/No (dB)

S
a
v
i
n
g

i
n

d
e
c
o
d
i
n
g

e
n
e
r
g
y

(
%
)

Fig. 10. Saving in decoding energy at different SNR levels.

3.4 3.5 3.6 3.7 3.8 3.9 4

10
−5

10
−4

10
−3

Eb/No (dB)

B
i
t

e
r
r
o
r

r
a
t
e

Traditional decoding

Proposed adaptively decoding

Fig. 11. BER comparison for traditional decoding and proposed adaptive
decoding.

decoding energy consumption of the pre-processing block

rises relative to the processing unit. Figure 11 shows that the

proposed adaptive decoding architecture performs closely with

conventional decoding schemes in terms of code performance.

As seen, less than 0.05dB BER degradation is observed.

V. CONCLUSION

We have presented a low-power LDPC decoder design for

additive white Gaussian noise (AWGN) channels. Decoding

effort for each channel frame is estimated in the early stage

of the decoding process. The proposed approach solves the

difficult problem of decoding prediction for AWGN channels,

and it is also applicable for fading channels. Power overhead

of the adaptive decoder control unit mainly stems from the

variable voltage supply scheme, and it is small compared

with power saved. Up to 30% energy saving in decoding

process is achieved with less than 0.05dB coding performance

degradation in Eb/No.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Inform.
Theory, vol. 8, pp. 21–28, Jan. 1962.

[2] D. MacKay and R. Neal, “Near shannon limit performance of low
density parity check code,” Elec. Letters, vol. 332, pp. 1645 – 1646,
Aug. 1996.

[3] M. Mansour and N. Shanbhag, “High-throughput ldpc decoders,” IEEE
Trans. on Very Large Scale Integrated (VLSI) System, vol. 11, no. 6, pp.
976 – 996, Dec. 2003.

[4] M. Mansour and N. Shanbhag, “A 640-mb/s 2048-bit programmable
ldpc decoder chip,” IEEE J. of Solid-State Circuits, vol. 4, no. 3, pp.
684 – 698, Mar. 2006.

[5] F. Kienle and N. When, “Low complexity stopping criterion for ldpc
code decoders,” IEEE 61st Vehicular Technology Conference, vol. 1,
pp. 606 – 609, May 2005.

[6] G. Glikiotis and V. Paliouras, “A low-power termination criterion for
iterative ldpc code decoder,” IEEE Workshop on Signal Processing
Systems Design and Implementation, pp. 122 – 127, Nov. 2005.

[7] K. Gunnam, G. Choi, W. Wang, E. Kim, and M. Yeary, “Decoding
of quasi-cyclic LDPC codes using on-the-fly computation,” Fortieth
Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC
0́6, pp. 1192 – 1199, Oct. 2006.

[8] K. Gunnam, W. Wang, G. Choi, and M. Yeary, “Multi-rate layered
decoder architecture for block LDPC codes of the IEEE 802.11n
wireless standard,” IEEE International Symposium on Circuits and
Systems, pp. 1645–1648, May 2007.

[9] K. Gunnam, G. Choi, and M. B. Yeary, “A parallel layered decoder ar-
chitecture for array LDPC codes,” Proceedings of the 20th International
Conference on VLSI Design, pp. 738–743, Jan. 2007.

[10] K. Gunnam, G. Choi, M. B. Yeary, S. Yang, and Y. Lee, “Next gneration
iterative LDPC solutions for magnetic recording storage,” Forty-second
Asilomar Conference on Signals, Systems and Computers, 2008, Oct.
2008.

[11] W. Wang and G. Choi, “Minimum-energy LDPC decoder for real-time
mobile application,” Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp. 1–6, Apr. 2007.

[12] A. Dholakia and S. Olcer, “Rate-compatible low-density parity-check
codes for digital subscriber lines,” 2004 IEEE International Conference
on Communications, vol. 1, pp. 415 – 419, Jun. 2004.

[13] T. J. Richarson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Information Theory, vol. 47, pp. 619 – 637, Feb. 2001.

[14] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. on Information Theory, vol. 47, pp.
498 – 519, Feb. 2001.

[15] J. Chen and M. Fossorier, “Near optimum universal belief propagation
based decoding of low-density-parity-check codes,” IEEE Trans. on
Communications, vol. COM-50, pp. 406 – 414, Mar. 2002.

[16] W. Wang and G. Choi, “Speculative energy scheduling for LDPC
decoding,” Proceedings of the 8th International Symposium on Quality
Electronic Design, pp. 79–84, 2007.

[17] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, and et al., “Variable
supply-voltage scheme for low-power high-speed CMOS digital design,”
IEEE J. of Solid-State Circuit, vol. 33, no. 3, pp. 454 – 462, Mar. 1998.

[18] P. Macken, M. Degrauwe, M. van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” 1990 IEEE International Solid-
State Circuits Conference, Digest of Technical Papers. 37th ISSCC., pp.
238 – 239, Feb. 1990.

56

Environment and Process Adaptive Low Power Wireless Baseband Signal

Processing Using Dual Real-Time Feedback

Muhammad M. Nisar, Abhijit Chatterjee

School of Electrical and computer Engineering

Georgia Institute of Technology, Atlanta, GA, USA

{mnisar, chat@ece.gatech.edu}

Abstract
As technology scales below the 45nm CMOS

technology node, RF front ends and baseband

processors will need to be aggressively overdesigned

to work reliably under worst case channel

(environment) conditions as well as worst case

manufacturing variations. In this paper, a new dual

feedback based design approach is proposed that

allows the baseband unit of a wireless OFDM system

to adapt dynamically to channel conditions as well as

manufacturing process variations. Two nested

feedback control loops are used. The first allows the

baseband SNR to increase when channel conditions

are good and vice versa by modulating system

wordlength. The second modulates the system supply

voltage in response to the resulting changing

wordlength values. Both feedback loops are designed

to allow the processor to operate at the minimum

power consumption possible without exceeding a

specified overall bit error rate across all channel noise

and process variability conditions.

1. Introduction
Power consumption and process variations are

major concerns in highly scaled and functionally

complex devices. In wireless baseband receivers, the

noise performance of specific signal processing

algorithms for signal demodulation and symbol

decoding can be traded off for power under good

channel conditions. In operating conditions where the

worst case channel is seen infrequently, significant

power can be saved by reducing the performance of the

baseband signal processing algorithms (trade off

performance for power) when channel conditions are

not worst-case. The amount of power that can be saved

depends however, on the speed of the underlying logic

circuitry, i.e. the process parameters corresponding to

the manufactured unit. Hence, for minimum power

operation, knowledge of both channel conditions as

well as logic speed (process parameters) is necessary.

We propose a dual feedback mechanism that tailors the

operation of each device to changing channel

conditions (dynamic) and its manufacturing process

parameters (device-specific and static) for minimum

power operation.

2. Relationship to Prior Work
 Voltage scaling is a well known and very powerful

power savings technique because of the quadratic

relationship of voltage with power [1]. Wordlength

optimization is another important technique for power

savings. In prior research, simulation based techniques

[2]-[4] have been proposed to find the optimal

wordlength for digital signal processing applications.

Such algorithms optimize the wordlength according to

predetermined system-level performance metrics.

Often, the resulting digital circuits are implemented

with large wordlength values. A method for tuning the

wordlength of digital baseband OFDM signal

processing algorithms was proposed in [5]. This allows

dynamic adjustment of the wordlengths of digital

filtering and FFT operations driven by continuous

monitoring of the error vector magnitude (EVM) of the

demodulated signal. The method relies on the use of

gated clocks for wordlength adaptation, which in turn

requires significant modifications in hardware

implementation.

 In prior work [6], a test enabled power savings

methodology was presented that trades off power for

noise (without compromising overall bit-error rate) in

the baseband system under good operating conditions

by simultaneously modulating supply voltage (Vdd) and

wordlength (W). Signal scaling [6] is used for system

wordlength tuning. The methodology is process

tolerant and tunes Vdd and W of the DSP blocks

according to a minimum power locus. The “power

locus” is stored in the system as a lookup table, with

appropriate Vdd and W values for different channel

conditions. The channel quality is determined in real

time by calculating the EVM of the received symbols.

A set of loci are stored in the system representing

different intra-die process variations. Although, the

scheme results in significant power savings, it requires

significant calibration and use of on-chip timing

assessment mechanisms. The calibration mechanisms

must be appropriately guardbanded to allow margin for

calibration errors, resulting in loss of performance

and/or power efficiency. In this paper, we present a

completely dynamic process-tolerant low power

This work was supported in part by NSF Grant CCR-0635016 and

by GSRC MARCO under award 2003-DT-660.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.90

57

adaptation scheme for baseband OFDM processors.

The proposed scheme uses two nested control loops for

dynamic adjustment of supply voltages and

wordlengths of the baseband receiver modules. The

outer feedback control loop that monitors system EVM

is used to adjust the wordlengths of individual DSP

blocks. The inner control loop allows the supply

voltage to drop until errors occur in the most

significant bits (MSBs) corresponding to the current

wordlength value. These errors are then compensated

accurately using checksum codes applied to the

respective DSP functions (filters, FFT, etc). The inner

feedback control loop is designed to control the supply

voltage in such a way using a PID controller, that the

MSB error rate is always below a prescribed limit.

This ensures that the impact of periodic errors on the

EVM of the decoded symbols is minimized. The use of

two feedback control loops based on two different

signal quality metrics (EVM and error rate) ensures

that no pre-calibrated lookup tables are needed in the

system. Moreover, the use of two separate signal

quality metrics to set wordlength and supply voltage

values makes this system independent of intra-die

process variations [7] effects and allows the control

mechanisms to settle at the lowest power operating

point for any channel condition automatically.

 The rest of the paper is organized as follows. An

overview of the dual nested architecture is given in

Section 3. Section 4 summarizes the EVM based

feedback control presented in prior work. Guided

probabilistic architecture (GPC) that enables low

power operation of digital filters is also explained in

the same section. In Section 5 the two nested loop

control for dynamic adjustment of module wordlengths

and supply voltages is explained in detail. This is

followed by experimental results in Section 6.

3. Proposed Methodology: Rationale and

Overview
In wireless communication systems, the

wordlength of the baseband signal processing system is

determined in such a way that the system bit error rate

(BER) is less than the maximum allowed BER value

for the wireless communication protocol being used for

communication. Note that lower wordlength results in

lower signal SNR and thereby a higher bit error

probability. The selected wordlength corresponds to

the worst channel quality that the highest

communication data rate can sustain without exceeding

a prescribed bit error rate limit (typically between 10e-

4 to 10e-5 for many wireless communication

protocols). Given the fact that most of the time a

mobile device does not operate under worst case

channel conditions, the effective wordlength and

corresponding module voltage values can be reduced

when the channel is not worst-case, saving power

while keeping the system BER within quality of

service (QoS) requirements.

Figure 1: Proposed Architecture

The proposed dual-feedback control architecture is

shown in Figure 1 without block error control for

simplicity. The EVM value is computed across several

frames of data (about 1000 received symbols) in real-

time, is updated dynamically and has latency in the

order of 10s of milliseconds. The EVM value is used

as input to an “outer loop” controller (not shown in

Figure 1) that determines the wordlength of the

processor. The EVM adaptation metric represents the

cumulative sum of the quality of transmission, the

channel quality degradation and the quality of signal

reception. It is shown in previous work that EVM has a

strong correlation with BER [5][6].

Figure 2: Dual loop control strategy

 As the wordlength changes, an “inner control loop”

adapts the supply voltage to the current selected

wordlength. This is done by decreasing the supply

voltage for reduced wordlength (and vice versa) until

errors occur in the most significant bits of computation

Is EVM >

threshold?

Yes, increase

wordlength

No, reduce

wordlength

Outer

Controller

wordlength Inner Controller

Is MSB error rate

> threshold?

Yes, increase

Vdd

No, decrease Vdd

58

(MSB errors).These errors are then compensated

accurately using checkum codes applied to the

underlying DSP algorithms. To allow computation to

proceed without loss of throughput, some inaccuracy in

the compensation process is allowed. Since a higher

error rate has an adverse effect on EVM, the inner loop

control mechanism is designed to always maintain a

low predetermined MSB error rate. In this manner, the

“outer” and “inner” control loops interact with each

other to always allow the lowest power operation for

any channel condition. The use of two nested feedback

loops to adjust Vdd and W of the individual blocks at

run-time, without any pre-calibrated lookup tables

makes this scheme independent of process variations as

well. Figure 2 describes the proposed control strategy.

4. Key Concepts
 In the following, we first describe how the effective

wordlength is dynamically modulated using a concept

called signal scaling. Subsequently we review the

checksum based error control methodology used in this

work. Finally we show how the two can be combined

via dual-feedback control to build low power process

tolerant wireless baseband units.

4.1 Input Signal/Voltage scaling
 In prior work, a signal is degraded by scaling

down the input (dropping LSB bits) and

correspondingly adjusting the supply voltage (Figure

3). The approach exploits the fact that the critical

circuit path lengths of the underlying arithmetic units

(multipliers and adders) are reduced by input data

scaling. This reduction in circuit critical path length

allows the correct operation of the arithmetic units at

lower supply voltage without incurring additional bit

errors. Since data scaling causes LSB bits drop, it

results in graceful system-level performance

degradation. This dynamic wordlength/supply voltage

adjustment is done to save power while keeping the

adaptation metric of the demodulated signal below a

specified upper limit.

Figure 3: Supply voltage and wordlength scaling

Since, we know the effect of input scaling on the

length of the active critical circuit paths and the effect

of voltage scaling on the delay characteristics of the

critical paths, a lookup table is constructed that

determines different supply voltage levels as per the

timing requirements of the requisite active critical

paths. The advantage of such a lookup table, having

wordlength and corresponding voltage entries is that it

ensures that no MSB bits get corrupted due to signal

scaling and supply voltage modulation.

 Process variations cause the performance

characteristics (delay, power, etc) of the manufactured

devices to vary from their nominal values. If the delay

of the circuit changes due to process variations, the

entries of the lookup table as described in the previous

section are no longer optimal from a power

consumption perspective. For example, if the delay of

the circuit increases, then a higher voltage level is

necessary to meet the timing requirements for a

particular wordlength. Therefore to counter the effect

of process variations many loci are stored in the system

at design time corresponding to different variations on

DSP modules. During characterization phase of the

device, timing tests are used to pick the best operating

locus by determining the process variations on

different modules. At run-time, device is operated on

the locus under varying channel conditions for low

power operation [6].

4.2 Low-power digital filters

Error Detection
(Checksum)

PID

Controller

Filter w/ EC

Error

Rate

Input Output

Vdd

EC Values

Figure 4: Supply voltage feedback control

Checksum codes are used for low power operation

of digital filters by voltage overscaling and operating

the filter within allowable error rate. The feedback

control system adjusts the supply voltage according to

the error rate in the system. Error rate is monitored in

the system using a counter which counts the number of

errors detected by the error detection block over a

certain period of time. If the error rate is low then the

computations in the circuit are completing too quickly

(critical paths are not being excited) and/or the error

correction is working well enough to lower the supply

voltage further to save power. On the other hand, if the

error rate increases then the filter components are not

meeting the timing constraints and error correction is

not sufficient to compensate for the number of errors

occurring. In that case, feedback control increases the

supply voltage to bring the error rate within acceptable

range. A PID feedback controller modulates the supply

59

voltage in proportion to the error rate in the system. To

ensure that the feedback control system is stable, the

error rate sample period is set to the minimum time

needed to change a single voltage step. A filter fitted

with continuous error detection and correction along

with a feedback controller is shown in Figure 4.

4.2.1 Checksum based error detection

Linear digital circuits can be represented by state

variable systems. Let (u1,u2...um) and (y1…yw) be the

primary inputs and primary outputs of the circuit. If

s(t)=[s1(t), s2(t)…sn(t)]
T
 are the system states and

u(t)=[u1(t), u2(t)…un(t)]
T
 are the system input at time t

then the state variable form is:

(1) () ()

(1) () ()

S t As t Bu t

Y t Cs t Du t

+ = +

+ = +

 (1)

Where A,B,C and D represent the arithmetic operations

performed on m primary inputs u(t) and current states

s(t) to generate w primary outputs y(t), and the next

states s(t+1).

A coding vector CV= [α1, α2, α3 …αn] is used for

encoding the matrices A and B such that X=CV.A and

Y=CV.B. To detect an error, a check variable c(t+1) is

computed as c(t+1)= X.s(t)
T
+Y.u(t)

T
 and subtracted

from CV.s(t+1)
T
. A non-zero value of e(t+1), the result

of this subtraction, indicates a transient or a permanent

fault in the circuit. In the absence of any error,

c(t+1)=CV.s(t+1)
T
 and e(t+1) [8] is determined as:

 (1) . (1) - (1) T
e t CV s t c t+ = + + (2)

4.2.2 Guided Probabilistic Compensation (GPC)

Architecture

GPC architecture [9] is explained in the following

section. In GPC shadow latches [10] are used for

diagnosis of erroneous states and system level error

compensation is performed under the assumption that

the shadow latches clearly delineate the erroneous

states from the error-free ones.

For error detection in the system states, we use the

concept of low precision shadow latches that augment

the full precision registers as shown in Figure 5. Since

voltage overscaling causes errors in the MSB bits, we

only monitor errors in the high order bits using low

precision shadow latches that operate on a delayed

clock compared to the main circuit flip-flops. In case

of no error in the circuit paths under voltage

overscaling, the values in the MSB bits of the main

register and shadow latch are the same. However, if the

critical path violates the timing requirements under

scaled supply voltage for any input, the comparator

flags an error due to mismatch between the main flip-

flop and shadow latch values. To ensure that shadow

latches always capture the correct data, the operating

voltage should be constrained so that under worst case,

the logic delay does not exceed the shadow latch’s

setup time. Also, to minimize the power cost because

of added latches and comparator, we limit the number

of MSB bits to be monitored. In our experiments, we

used shadow latches to monitor just four MSB bits of

the data word.

C
o
m
p
u
ta
tio
n
a
l B
lo
c
k

U1(t+1)

Um(t+1)

U2(t+1)

Yw(t+1)

Y2(t+1)

Y1(t+1)

Checksum Block

(CV.A).S(t)+(CV.B).U(t+1)

Sn(t+1)

S2(t+1)

S1(t+1)

Sn(t)

S2(t)

S1(t)

Compute

CV.S(t+1)

e(t+1)

c(t+1)

0

0

0

Counter

e/j
Count = j

Main Flip-Flop

Shadow Latch

Comparator

Output

Error

Figure 5: GPC Architecture

Under voltage overscaling, GPC architecture will work

as following:

• If the timing requirements of some logic paths

are violated in time (t,t+1) then one or more

states will have erroneous data at time t+1 and

e(t+1) will be non-zero.

• One or more shadow latches will flag an error

due to mismatch of the main flip-flop and

shadow-latch values.

• The total number of erroneous states is

calculated at every time instance t by a counter.

• Divide the error in the system e(t+1) by the

number of erroneous states. If the counter value

is j, then the compensation value for the

erroneous states is e(t+1)/j.

• The error signal of every state is used as the

control signal of the multiplexer and selects

between a zero or e(t+1)/j correction value (see

Figure 5). This correction value is added to the

erroneous states at time t+2.

In case, only one state is erroneous, the error value is

used to compensate only that erroneous state. If two

states are found to be erroneous, then the error value is

divided by 2 and both erroneous states are

compensated with the same error/2 value. No

60

compensation is performed for the states that are not

flagged erroneous by the shadow latches. The

presented guided probabilistic error correction

technique only compensates the error at the erroneous

states with an overall goal of minimizing the system

noise.

5. Nested Loop Architecture
In prior EVM feedback based communication

system, system Vdd and W is modulated by operating

the device on the optimal system locus. However

relationship between Vdd and W changes under process

variations. Therefore for optimal power consumption

and also to make sure that no MSB errors occur

because of Vdd scaling, various loci are stored in the

system at design time corresponding to different

process variations on various DSP modules. In

characterization phase, POTTs is used to pick the

correct locus for system operation.

Figure 6: Dual loop architecture

The proposed dual nested loop architecture does

not require storage of any pre-calibrated lookup tables

(loci) in the system. In this architecture, two signal

quality metrics are used to independently control

wordlength and supply voltage of the DSP modules.

EVM feedback control is used as outer loop that

defines the wordlength of baseband receiver.

Checksum based error rate as defined in Section 4.2 is

used in inner control loop to set the supply voltages of

the DSP modules. Each DSP module has its own

supply voltage feedback control as shown in Figure 6

(In this work, GPC is implemented only on filter). For

a given system, maximum allowable EVM value and

error rate is defined in the control loops. At run-time,

feedback control loops independently strive to operate

the system at the defined signal quality limits, thus

saving considerable system power under good channel

conditions. The key advantage of having two feedback

controls is that because of independent control of

system Vdd and W, this scheme is immune from

process variations effects.

In any feedback system, stability is a main

concern. To make sure that the proposed dual loop

structure is stable, the minimum period for changing

the wordlength equals to the time required for supply

voltage step change. Also, checksum error rate value is

set to a low value. This ensures that supply voltage

loop follows the wordlength loop and supply voltage

will be lowered only if some bits have been dropped by

the outer (wordlength) loop. Moreover, in case of

sudden adverse change in channel conditions,

wordlength and supply voltage is restored to the

highest values to ensure that system BER does not

increase more than the maximum allowed limit.

6. Experimental results
 The OFDM based transceiver model used for

simulation results is shown in Figure 7. At the

transmitter side, data encoding, QPSK modulation and

IFFT are implemented in the floating point units. To

model various channel conditions (good to bad)

different values of white noise, interference and

multipath fading effects are used. In the receiver

demodulator, a 4-tap low pass filter is implemented

along with 128-point FFT and MMSE equalizer. Reed-

Solomon (255,223) codes were implemented with a

correction capability of 16 symbols. All the voltage

dependent receiver modules are implemented in fixed

point Q4.8 binary format, which enables us to measure

system performance changes by signal scaling based

voltage adjustment. Negative numbers are in two’s

complement form. For time delay and power

estimations of the circuit, a full-adder was

implemented in HSPICE with 70nm BPTM device

model [14] and is used as the basic building block of

every receiver module. Average power consumption in

the receiver modules is based on the number of full

adders in those circuits and their average switching

activity. The 4-tap IIR filter used in the simulations

operates at four times a higher frequency than FFT,

thus consuming significant power. In this phase of

experiments, GPC architecture is only implemented on

low pass filter. The system EVM variations and power

savings under different channel conditions without any

process variations is shown in Figure 8.

Figure 7: Simulation model

61

0%

5%

10%

15%

20%

25%

30%

35%

0 2 4 6 8 10 12 14

EV
M

Channel Conditions

System EVM vs. Channels

Good Worse

25

30

35

40

45

0 2 4 6 8 10 12 14

P
o

w
e

r(
m

W
)

Channel Conditions

System Power vs. Channels

Worse
Good

Figure 8: System EVM and Power consumption

under different channel conditions.

Figure 9: Images received with low and high

checksum error rate.

Table 1: Process variations effects

Channel – 1 (Good)

Process

Variation (Vt)

Wordlength Supply

Voltage (volts)

0 volts 9 0.80

0.04 volts 9 0.90

-0.04 volts 9 0.75

The effect of low and high checksum error rate is

shown in Figure 9. The top image is clean as no MSB

errors were introduced when checksum error rate

(0.001) is low. However this is not the case in second

image, when error rate is relatively high (0.01). As

shown in Table 1, the nested dual loops result in

different values of Vdd and W (thus different power

consumption) under different process variations. The

average power savings in the scheme is approximately

30% under good operating conditions. The default

value of threshold voltage Vt is 0.2 volts, maximum

system wordlength is 12 bits and maximum system

voltage is 1 volts.

7. Conclusion
In this paper, a novel dual feedback based design

approach is proposed that allows the baseband unit of a

wireless OFDM system to adapt dynamically to

channel conditions as well as manufacturing process

variations, with end objective of low power operation.

8. References
[1]. T. Pering, T. Burd and R. Broderson, “The Simulation and

Evaluation of Dynamic Voltage Scaling Algorithms,” Proc. Of Int’l

Symp. on Low Power Electronics and Design(ISLPED 98), ACM

Press, 1998, pp. 76-81.

[2]. H. Choi and W.P. Burleson, “Search-based wordlength

optimization in VLSI/DSP synthesis”, VLSI Signal Processing

Workshop VII, pp.198-207, Oct.1994.

[3]. K. Han and B.L. Evans, “Wordlength optimization with

complexity and distortion measure and its applications to broadband

wireless demodulator design”, Proc. IEEE ICASSP2004,

vol.5,pp.37-40, May 2004.

[4]. A.G. Dempster and M. D. Macleod, “Variable statistical

wordlength in digital filters”, IEE Proc.-Vis. Image Signal Process.,

Vol. 143, No. 1, Feburary 1996, pp.62-66.

[5]. S. Yoshizawa and Y. Miyanaga “Tuneable wordlength

Architecture for a Low Power Wireless OFDM demodulator”, IEICE

Trans. Fundamentals, Vol.E89-A, Issue10, October 2006, pp. 2866-

2873.

[6]. Muhammad Mudassar Nisar, Abhijit Chatterjee, “Test Enabled

Process Tuning for Adaptive Baseband OFDM Processor”, VTS

2008, pages 9-16.

[7]. K. A. Bowman, J. D. Meindl, “Impact of die-to-die and within

die variation parameter fluctuations on the maximum clock

frequency distribution for a gigascale integration.” IEEE Journal of

Solid State Circuits, Vol. 37, Issue 2, Feb. 2002, pp. 183-190.

[8]. V. S. Nair and J. A. Abraham, “Real-number codes for fault-

tolerant matrix operations on processor arrays,” IEEE Trans. on

Computer, vol.39, pp. 426-435, April 1990.

[9]. Muhammad M. Nisar, Abhijit Chatterjee, “Guided probabilistic

Checksums for Error Control in Low Power Digital-Filters”, IOLTS

2008.

[10]. D. Ernst, S. Das, D. Blaauw, “RAZOR: Circuit-level

Correction of Timing Errors for Low-Power Operation”, IEEE

Micro, Vol. 24, Issue 6, Nov-Dec 2004 pp:10-20.

[11]. Tasic, A., Serdjin, W.A., Long, J.R., “Adaptive multi-standard

ciruits and systems for wireless communications”, IEEE Circuits and

Systems Magazine, Vol 6, Issue 1, pp. 29-37.

[12]. Abidi, A., Pottie, G.J., Kaiser, W.J., “Power-conscious design

of wireless circuits and systems”, Proceedings of the IEEE, Vol. 88,

Issue 10, Oct 2000, pp. 1528-1545.

[13]. J.G. Proakis, Digital Communications, 2nd Edition, McGraw-

Hill, 1989.

[14]. BPTM 70nm: Berkley predictive technology model.

62

Session 1B

SoC Verification

Efficient Techniques for Directed Test Generation using Incremental Satisfiability∗

Prabhat Mishra and Mingsong Chen

Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA

{prabhat, mchen}@cise.ufl.edu

Abstract

Functional validation is a major bottleneck in the current

SOC design methodology. While specification-based valida-

tion techniques have proposed several promising ideas, the time

and resources required for directed test generation can be pro-

hibitively large. This paper presents an efficient test genera-

tion methodology using incremental satisfiability. The existing

researches have used incremental SAT to improve counterex-

ample (test) generation involving only one property with differ-

ent bounds. This paper is the first attempt to utilize incremen-

tal satisfiability in directed test generation involving multiple

properties. The contribution of this paper is a novel methodol-

ogy to share learning across multiple properties by developing

efficient techniques for property clustering, name substitution,

and selective forwarding of conflict clauses. Our experimental

results using both software and hardware benchmarks demon-

strate that our approach can drastically (on average four times)

reduce the overall test generation time.

1 Introduction

Functional verification is a major bottleneck in System-on-

Chip (SOC) design due to the combined effects of increasing

design complexity and decreasing time-to-market. Simulation-

based validation is the most widely used form of SOC verifi-

cation using functional test programs. There are three types of

test generation techniques: random, constrained-random, and

directed. The directed tests can reduce overall validation effort

since shorter tests can obtain the same coverage goal compared

to the random tests. However, directed test generation is mostly

performed by human intervention. Due to manual develop-

ment, it is infeasible to generate all directed tests to achieve

a comprehensive coverage goal. Automatic test generation is

the alternative to address this problem.

Test generation using model checking is one of the most

promising approaches due to its capability of automatic test

generation. However, it is unsuitable for large designs due to

the state space explosion problem. SAT-based bounded model

checking (BMC) restricts search space that is reachable from

initial states within a fixed number (k) of transitions, called

bound. After unrolling the model of design k times, the BMC

∗This work was partially supported by grants from Intel Corporation and

NSF CAREER award 0746261.

problem is converted into a propositional satisfiability (SAT)

problem. SAT solver is used to find a satisfiable assignment

of variables that is converted into a counterexample. If the

bound is known in advance, SAT-based BMC is typically more

effective for counterexample (test) generation because search

for counterexample is faster and SAT capacity reaches beyond

BDD capacity [1]. The effectiveness of BMC can be further

improved by observing that the search for counterexamples of

increasing lengths is translated into a sequence of SAT checks.

Therefore, it is possible to exploit the similarity of these SAT

instances by forwarding clauses learned during conflict analy-

sis from one instance to the next.

Incremental SAT-based BMC is very promising to reduce the

test generation complexity but all the existing approaches are

applicable for a test generation scenario consisting of one de-

sign and only one property (with varying bounds). This paper

proposes a novel methodology to exploit incremental SAT in

the context of test generation involving one design and multi-

ple properties. The basic idea of our approach is to reuse the

learning of one test generation instance for other related test

generation scenarios. It is important to note that the design re-

mains the same for all test generation scenarios. Although, each

test generation instance requires a different property, several

properties related to testing specific functionalities are similar

or have a significant overlap. A major challenge in implement-

ing this idea is to identify the property similarities and perform

efficient clustering to share learning and thereby reduce the test

generation time. To enable the knowledge sharing across mul-

tiple properties, we have developed a number of efficient tech-

niques for property clustering, name substitution, and selective

forwarding of conflict clauses. The contribution of this paper is

the development of a number of conceptually simple, but very

effective, techniques to generate drastic reduction in directed

test generation time.

The rest of the paper is organized as follows. Section 2

presents related work addressing test generation approaches.

Section 3 presents our test generation methodology using in-

cremental satisfiability. Section 4 presents the experimental re-

sults. Finally, Section 5 concludes the paper.

2 Related Work

Model checking [4] has been successfully used in software

and hardware verification as the test generation engine [3, 18].

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.72

65

Model of design is applied to a model checker along with

negated temporal logic properties to exploit falsification capa-

bility of model checking. However, traditional model check-

ing does not scale well due to the state explosion problem.

Biere et al. [2] introduced bounded model checking (BMC)

combined with satisfiability solving. The recent developments

in SAT-based BMC techniques have been presented in [15].

BMC is an incomplete method that cannot guarantee a true

or false determination when a counterexample does not exist

within a given bound. However, once the bound of a counterex-

ample is known, large designs can be falsified very fast since

SAT solvers [14] do not require exponential space, and search-

ing counterexample in an arbitrary order consumes much less

memory than breadth first search in model checking. The per-

formance of bounded and unbounded algorithms was analyzed

on a set of industrial benchmarks in [16]. The capacity increase

of BMC techniques has become attractive for industrial use. In-

tel study [5] showed that BMC performs better over unbounded

model checking for real designs. The efficiency of test gener-

ation can be further improved by employing incremental SAT

solving.

Incremental SAT solvers [6, 12, 17] try to leverage the sim-

ilarity between the elements of a sequence of SAT instances;

most do so by re-utilizing conflict clauses, though when many

closely related instances must be solved, caching solutions [11]

and incremental translation [13] can also be effective. If a SAT

instance is obtained from another by adding some clauses (as in

[7]), then all conflict clauses of the first can be forwarded to the

second. This is correct because the second instance implies the

first, which in turn implies all its (conflict) clauses. Therefore,

when clauses are only added through the sequence of instances,

there is no need to screen conflict clauses to determine which

ones can be forwarded. This, on the other hand, is necessary

when arbitrary clauses are both added and subtracted to create

a new instance. A common approach to such general case is to

have the incremental SAT solver keep track of whether a con-

flict clause depends on some removed clauses. The approach

of [12] is to record, for each conflict clause, the clauses that

made up the corresponding implication graph. This approach

does not require any prior knowledge of the subsequent SAT

instances to be solved incrementally, and does not restrict the

changes possible from one instance to the next; however, keep-

ing track of dependencies may be expensive. Strichman [17]

was the first to observe that in BMC some clauses are known

to survive through all instances in the sequence. A formula

passed by BMC to the SAT solver contains clauses that de-

scribe the transition relation of the model unrolled a number

of times. These clauses are not discarded when the length of

the counterexample is increased. Hence, a conflict clause that

depends only on them can be forwarded.

To the best of our knowledge, all the existing approaches ex-

ploit incremental satisfiability to improve the test (counterex-

ample) generation time involving only one property with dif-

ferent bounds. Our approach is the first attempt at utilizing in-

cremental satisfiability across multiple properties in the context

of directed test generation for validation of SOC designs.

3 Test Generation using Incremental SAT

The goal of our approach is to reduce the overall functional

validation effort by reducing the test generation time for di-

rected tests. We assume that the designer have developed a set

of properties (one property to generate one directed test) based

on a specific fault model. For example, a pipelined processor

with n functional units needs n(n− 1)/2 properties to activate

all 2-unit interactions. Based on the structure of the design and

the fault model, the generated properties can be clustered us-

ing functional as well as structural similarity e.g., all properties

related to a particular execution path can be placed in a clus-

ter. The basic idea is to learn from solving one property and

share learning (through conflict clauses) for solving the simi-

lar properties in the cluster. While solving the first property,

the SAT solver may have taken many wrong decisions (lead to

conflicts) and therefore took long time to find a counterexam-

ple. By forwarding conflict clauses, we are ensuring that these

wrong decisions are avoided while solving the similar proper-

ties. An important question is whether all the wrong decisions

are relevant to all the properties in the clusters? Since the prop-

erties are similar but not the same, all the decisions are not rel-

evant. Therefore, adding all the conflict clauses while solving

the similar properties may increase the solution time. In our

approach, we determine the common CNF (conjunctive nor-

mal form) clauses by computing the intersection of clauses and

use this intersection information to exactly identify the conflict

clauses that are relevant to solving the respective properties.

This paper focuses on test generation for safety properties.

In this context, we are interested in finding a counterexample

for each property. We assume that the bound is pre-determined

and given as input to our method. Determination of bound is

intractable in general. However, in the context of directed test

generation, it is possible to determine the bound based on the

structure of the design and the associated property.

Algorithm 1 describes our test generation methodology. It

accepts a design and a set of properties as inputs and generates

the testcases. Since one property is used to generate a testcase,

the number of input properties is exactly same as the number

of output testcases. The first step is to partition the set of prop-

erties into different clusters based on their similarity in terms

of both structure and behavior. The second step is to select the

base property who has the potential to generate maximum over-

all savings for the cluster by sharing learned conflict clauses.

The third step computes the CNF clauses for all the proper-

ties in each cluster using the design and the respective bound.

The fourth step performs name substitution to maximize knowl-

edge sharing. The fifth step computes the intersection of CNF

clauses between the base property and all the other properties

in the cluster. The sixth step marks the clauses in the base prop-

erty to indicate whether a particular clause is also in the clause

set of another property in the cluster. The marking informa-

tion includes the identifier of the property (or properties) with

which the clause is identical. The next step uses an existing

SAT solver to generate the conflict clauses and the counterex-

ample (test) for the base property. Based on the intersection

66

information with the base property, the set of conflict clauses is

filtered to identify the relevant ones for solving the other prop-

erties in step 8. The final step uses the relevant conflict clauses

to solve the remaining properties using our approach. The al-

gorithm reports all the generated counterexamples (tests).

Algorithm 1: Test Generation using Incremental Satisfiability

Inputs: i) Design, D

ii) Properties, P, and their respective satisfiable bounds

Outputs: Testcases

Begin

1. Cluster the properties based on similarity

for each cluster, i, of properties

2. Select the base property Pi
1 and generate CNF, CNF i

1

for j is from 2 to the sizei of cluster i

/* Pi
j is the jth property in the ith cluster */

3. Generate CNF, CNF i
j = BMC(D,Pi

j,boundi
j)

4. Perform name substitution on CNF i
j

5. INT i
j = ComputeIntersection(CNF i

1, CNF i
j)

6. Mark the clauses of CNF i
1 using INT i

j

endfor

/* Generate the counterexample and record conflict clauses */

7. (Con f lictClausesi, test i
1) = SAT(CNF i

1)

Testcases = {test i
1}

for j is from 2 to the sizei of cluster i

/* Find relevant ones for Pi
j from conflict clauses

8. CCi
j = Filter (Con f lictClausesi, j)

endfor

for j is from 2 to the sizei of cluster i

9. test i
j = SAT(CNF i

j

S

CCi
j)

Testcases = Testcases ∪ test i
j

endfor

endfor

return Testcases

End

We use a simple example to illustrate how Algorithm 1

works. Let us assume that we are interested in generating tests

using n properties for a design. The first step divides the prop-

erties into m (m ≤ n) clusters based on property similarities.

Each cluster can have different number of properties. In the

worst case, each cluster can have only one property which is

not suitable for test generation using incremental satisfiability.

However, this scenario is rare in practice since a typical design

uses thousands of properties for directed test generation and

majority of them share significant parts of the design function-

ality. For ease of illustration, let us assume that there is a cluster

with three similar properties, {P1, P2, P3}. Let us further as-

sume that the second step selects P1 as the base property using

the method described in Section 3.1. The fourth step computes

intersection of CNF clauses of P1 with P2, and P1 with P3. This

information is used to filter conflict clauses (generated while

solving P1) relevant for P2 and P3 in step 8. The last step adds

the relevant conflict clauses while solving the respective prop-

erties to reduce the test generation time. The remainder of this

section describes three important steps in our approach: prop-

erty clustering, computation of intersections, and identification

of relevant conflict clauses.

3.1 Clustering of Similar Properties

One obvious, but costly, way to determine property similar-

ity for clustering is to compute the intersection of CNF clauses

between properties. We can cluster the properties that have a

relatively large number of clauses in the intersection. This is a

very time consuming step because it requires n(n−1)/2 inter-

sections for n properties. A simple and natural way to cluster

properties is to exploit the structural and behavioral informa-

tion of the properties. As mentioned earlier, in the context of

directed test generation, properties are generated based on a

set of fault models to obtain a functional coverage goal. Each

fault model tries to cover different parts of the design (e.g., all

computation nodes, execution paths, various interactions, etc.).

Therefore, we can cluster the properties that try to cover a spe-

cific part of the design using the same fault model. For ex-

ample, in an SOC environment, the properties can be clustered

based on whether they are related to verifying the processor, co-

processor, FPGA, memory, bus synchronization, or controllers.

Each cluster can be further refined based on structural details of

each component. For example, the processor related properties

can be further divided based on what execution path they cover

such as ALU pipeline, load-store pipeline etc.

Once clustering is completed, we need to determine the base

property of the cluster. In our approach, the base property is

solved first and its conflict clauses are shared between the re-

maining properties. Although, any property in the cluster can

be used as the base property for that cluster, our studies have

shown that certain properties serve better as base property and

thereby generates maximum overall savings for the cluster. We

need to consider two important factors while choosing a base

property for a cluster. First, the base property should be able to

generate a large number of conflict clauses. In other words, a

weak base property may find the satisfiable assignment quickly

without making mistakes (generating conflict clauses). In this

scenario, the remaining properties have nothing to learn from

the base property. Secondly, the SAT checking time for the

base property should be relatively small. This will ensure that

the overall gain is maximized by reducing the solution time of

the properties which takes longer time to solve. In fact, none

of these requirements can be determined without actually solv-

ing them. Based on our experience, we have observed that the

following heuristics works well most of the time.

• Choose the property with the smallest bound that have sig-

nificant variable and/or sub-expression overlap with the

rest of the properties in the cluster.

• If the property bounds in the cluster are same, choose the

property with the smallest number of variables that have

significant variable and/or sub-expression overlap with the

rest of the properties in the cluster.

67

3.2 Name Substitution for Computation of Intersections

Name substitution is an important preprocessing step in Al-

gorithm 1. Currently there are a few BMC tools that can sup-

port the name mapping from the variables of the CNF clauses

and the names in the model of the unrolled design. So the

variables of the CNF clauses of two different properties may

not have any name correspondence. In other words, the same

variable in two properties may have different name in their re-

spective CNF clauses. Therefore, without name substitution

(mapping), it will miss the structural similarity. As a result, the

computed intersection will be small and will adversely affect

the sharing of learned conflict clauses. Our experimental stud-

ies have shown that the improvement in test generation time

without using name substitution is negligibly small due to very

small number of clauses being forwarded as a result of small

number of clauses in the intersection. Since the properties are

similar and the design is exactly the same, the size of the in-

tersection is very large when our name substitution method is

employed.

Our framework uses zChaff SAT solver which accepts the

input in the DIMACS format. The input DIMACS file for each

property provides the name mapping from the CNF variable

to the unrolled design. The following example shows that the

variable 8 is used in CNF to refer to the 7th bit of variable var in

the design specification at time step 1. This can also be written

as, 8 => var[6] 1.

c 8 = V1_var[6]

Given two DIMACS files f 1 and f 2 for two properties P1

and P2 respectively, the name substitution is a procedure that

changes the names of clause variables of f 2 using the name

mapping defined in f 1. Figure 1 shows an example for name

substitution. Before the name substitution, the intersection

(f 1∩ f 2) is empty. However, after the substitution, there are

two common clauses in the intersection (f 1∩ f 2′). The com-

plexity of both name substitution and computation of intersec-

tion is linear (using hash table) to the size of the DIMACS file

of the properties. Therefore, the time required for name substi-

tution and intersection computation is negligible compared to

the SAT solving time for the complex properties.

c 2 => b_1

c 1 => a_1

c 3 => a_2

p cnf 3 3

−1 2 0

DIMACS f1 DIMACS f2

1 4 0

DIMACS f2’

c 2 => b_1
c 3 => a_2

p cnf 6 4p cnf 6 4

c 1 => a_1

c 6 => a_2

c 5 => b_1

......
c 4 => a_1

......

5 −4 0
5 6 0 3 2 0

 1 3 0

2 −3 0 5 −6 0
4 1 0

2 −1 0

2 3 0

Figure 1. An example of name substitution

It is important to note that the same variable at different time

steps can be assigned a different number. Therefore, the name

mapping (substitution) method needs to consider the same vari-

able at different time steps in the CNF clauses of the same prop-

erty as well as in the CNF clauses for the different properties in

the same cluster. Moreover, the name mapping routine needs to

remap some of the variables in the CNF clauses. For example,

when the variable 4 in file f 2 (in Figure 1) is replaced with the

variable 1 (in f 2′), the name mapping routine needs to remap

the original variable 1 in file f 2′ to a different variable.

3.3 Identification and Reuse of Common Conflict Clauses

Our implementation of relevant conflict clause determination

is motivated by the work of [17] which proved that for two set

of CNF clauses C1 and C2, and their intersection ϕ, using the

conflict clauses generated from the ϕ when checking C1 will

not affect the satisfiability of the CNF clauses C2

S

ϕ. There-

fore, the conflict clauses generated from the intersection when

checking the base property can be shared by other properties in

the cluster.

Strichman [17] suggested an isolation procedure that can iso-

late the conflict clauses which are deduced solely from the in-

tersection of two CNF clause set. We have modified the isola-

tion procedure to improve the efficiency of test generation for

a cluster of properties. We have modified zChaff [9] and use

it as the SAT solver in our framework. The zChaff provides

utilities for implementing incremental satisfiability. For each

clause, it uses 32 bits to store a group id to identify the group

where this clause belongs. Use of group id allows us to gener-

ate the conflict clauses for different properties when checking

the base property. If the ith bit of the group id is 1, it implies

that the clause is shared by the CNF clauses of property Pi. If

the clause of the base property is not shared by any property,

the field will be 0.

Assume that there are k properties in a cluster with P1 as the

base property. Therefore, there are k sets of clauses with C1 as

the base set (CNF clauses for P1), and C2,C3, ...,Ck are k − 1

similar sets with C1. We use the following steps to calculate the

conflict clauses for C2,C3, ...,Ck when solving C1.

1. During preprocessing, for each clause in C1, if this clause

exists in Ci(2 ≤ i ≤ k), then mark the ith bit of C1’s group

id 1.

2. When one conflict clause is encountered during the check-

ing of the base property, collect all the group ids of the

clauses which leads to the conflict. The group id of the

conflict clause is the logical “OR” of these group ids.

3. For each conflict clause, if the ith bit of the group id is 1,

then this conflict clause can be shared by Ci+1.

Figure 2 illustrates how this computation is done using an

example implication graph. The implication graph is a directed

acyclic graph where each vertex represents an assignment of the

variable and each edge implies that all the in-edges implicate

the assignment of the vertex. For example, x4@4 means vari-

able x4 is assigned value 1 at decision level 4. The graph has a

clause (x1′+x4+x5), we call it the antecedent clause of x4 i.e.,

68

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

−x5 @ 4

x1 @ 3

x4 @ 4

−x6 @ 1

x2 @ 4

x8 @ 4

−x8 @ 4

x7 @ 2

−x3 @ 4

CUT 1
(X1’ + x5 + x6 + x7’)

Conflict Clause

Conflict Side Clauses

(x1’ + x4 +x5)

(x3’ + x4’)

(x2 + x4’ +x6)

(x3 + x7’ +x8’)

(x2’ + x3 + x8)

ImplicateCutConflicting VertexImplication VertexDecision Vertex

Clauses
4 3 2 1

 0 1 1 1

1 0 1 0

1 1 1 1

1 0 1 0

1 1 1 0

Group id

Figure 2. An example of implication graph

the assignments x1 = 1 and x5 = 0 imply x4 = 1. Only the im-

plication vertex (non-decision vertex) has an antecedent clause.

The conflict exists when in the implication graph, one variable

is assigned both value 0 and 1. So the SAT solver will analyze

the conflict and find the reason expressed by the conflict clause.

A conflict clause can be found by a bipartition of the implica-

tion graph. The side containing the conflicting vertex called

con f lict side, and the other side is called reason side which

can be used to form the conflict clause. In Figure 2, CUT 1 is a

cut that divide the implication graph into two parts. We list the

conflict clause on the reason side and all other clauses on the

conflict side. In our approach, each conflict side clause has a

group id which is marked during the preprocessing step. So the

group id of the conflict clause is the logical “OR” value of all

the group ids of the conflict side clauses. For example, in Fig-

ure 2, we use four bits to express the group id, and the group

id of the conflict clause is 0010. In other words, this conflict

clause can only be forwarded to clause set C2. Therefore, the

use of this conflict clause in solving P2 will reduce the SAT

solving (test generation) time.

4 Experiments

We have applied our test generation methodology for valida-

tion of various software and hardware designs. In this section,

we present two case studies from two different domains: a stock

exchange system, and a VLIW implementation of the MIPS ar-

chitecture. Both experiments were performed on a Linux PC

using 2.0GHz Core 2 Duo CPU with 1 GB RAM. In our exper-

iments, we used the NuSMV [8] as our BMC tool to generate

the CNF clauses (in the DIMACS format) for the design and

properties. We modified zChaff [9] to integrate our methods

for name substitution, clause intersection and constraint shar-

ing described in Section 3.

4.1 A Stock Exchange System

The purpose of the on-line stock exchange system (OSES)

is to process three scenarios: accept, check and execute the

customer’s orders (market order and limit order). The system

uses the UML activity diagram as its behavior specification and

JAVA based implementation. The UML specification has 27 ac-

tivities, 29 transitions and 18 key paths. We translate the spec-

ification into the NuSMV input and generate the correspond-

ing test case based on various functional coverage criteria. We

group the properties into five clusters. The first cluster consists

of {Path1, Path2} with Path1 as the base property in the clus-

ter. Similarly, each of the remaining clusters consists of four

properties with the first one as the base property.

Table 1. Test Generation for Stock Exchange System

Properties Preproc. zChaff [14] Our Method Improv.

(Tests) Time (s) (sec) (sec) Factor

Path1 Base 0.37 0.37 1.00

Path2 3.79 59.45 4.06 14.66

Path3 Base 2.82 2.82 1.00

Path4 4.16 2.89 0.54 5.35

Path5 4.09 29.67 4.04 7.34

Path6 3.73 42.75 6.28 6.81

Path7 Base 0.44 0.44 1.00

Path8 4.14 7.36 0.30 24.86

Path9 3.88 113.70 33.23 3.42

Path10 3.79 40.41 6.53 6.19

Path11 Base 4.58 4.58 1.00

Path12 4.24 13.04 1.20 10.91

Path13 4.44 23.74 14.60 1.63

Path14 4.02 102.76 31.42 3.27

Path15 Base 0.25 0.25 1.00

Path16 4.36 64.04 1.26 50.66

Path17 4.38 185.03 5.05 36.62

Path18 4.02 176.77 68.78 2.57

Average 4.08 48.33 10.32 4.68

Table 1 shows the results involving all the 18 properties of

key paths. The first column indicates the properties used for

test generation. The second column indicates the preprocess-

ing time that includes the time for both name substitution and

computation of clause intersection. This column is not applica-

ble for the base property since the base property is solved using

the existing approach. The third and fourth columns indicate

the time (in seconds) required to generate the counterexam-

ple (test) by zChaff [14] and our approach, respectively. The

last column indicates the improvement factor1 in test genera-

tion time. The last row in the table presents the averages of

all the entries. Our approach can produce almost five times

improvement compared to zChaff, a popular CNF SAT solver.

Our approach should be used in the test generation scenarios

where SAT takes a long time to find a counterexample. As a re-

sult, the cost (preprocessing time) will be negligible compared

to the savings in test generation time.

4.2 A VLIW MIPS Processor

We applied our methodology on a single-issue MIPS [10] ar-

chitecture. Figure 3 shows the simplified version of the VLIW

MIPS architecture. It has five pipeline stages: fetch, decode,

execute, memory (MEM), and writeback. The execute stage

1The improvement factor is computed as the ratio between the third and

fourth column entries.

69

has four parallel execution paths: integer ALU, 7 stage multi-

plier (MUL1 - MUL7), four stage floating-point adder (FADD1

- FADD4), and multi-cycle divider (DIV). The oval boxes rep-

resent units and dashed boxes represent storages. The solid

lines represent instruction-transfer paths and dotted lines repre-

sent data-transfer paths.

Instruction Flow

Data Transfer

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

Decode

IALU

MUL7

DIV

RegFile

Memory

Figure 3. The VLIW MIPS architecture

We translated the specification into the NuSMV input and

generated the required directed tests based on various path cov-

erage criteria. Table 2 shows the results. Each row presents

the averages of all the properties in that cluster. The first col-

umn indicates the four clusters corresponding to the four ex-

ecution paths in Figure 3. The second column represents the

average number of CNF clauses for each property in that clus-

ter. The third column shows the average number of clauses in

the intersection. The fourth and fifth columns indicate the time

(in seconds) required to generate the counterexample (test) by

zChaff and our approach, respectively. Our approach is able to

improve the test generation time on average by four times.

Table 2. Test Generation for MIPS Processor

Clusters CNF Intersec. zChaff Our Improv.

Clauses Size [9] Method Factor

CLALU 460994 457168 19.35 5.10 3.79

CLFADD 592119 67894 61.61 42.46 1.45

CLMUL 854386 522283 718.85 159.21 4.51

CLDIV 526517 457160 35.07 8.19 4.28

Average 608504 376126 208.72 53.74 3.88

5 Conclusions

Directed test vectors can reduce overall validation effort of

both hardware and software designs since shorter tests can ob-

tain the same coverage goal compared to the random tests. The

applicability of the existing approaches for directed test gen-

eration is limited due to capacity restrictions of the automated

tools. This paper addressed the test generation complexity by

exploiting the commonalities between a set of similar proper-

ties using incremental satisfiability. The existing incremental

SAT approaches are applicable only on a single property and it

utilizes the learning between various bounds of the same prop-

erty. To the best of our knowledge, our work is the first attempt

to share learning across multiple properties. To enable knowl-

edge sharing across multiple properties, we have developed a

number of conceptually simple, but extremely effective, tech-

niques including property clustering, name substitution, and se-

lective forwarding of learned conflict clauses. Our experimen-

tal results using both hardware and software designs demon-

strated on average four times reduction in directed test genera-

tion time.

References

[1] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model check-

ing. Advances in Computers, 58, 2003.

[2] A. Biere, A. Cimatti, E. Clarke and Y. Zhu. Symbolic model

checking without BDDs. TACAS, 193–207, 1999.

[3] A. Gargantini and C. Heitmeyer. Using model checking to gener-

ate tests from requirements specifications. ACM SIGSOFT Soft-

ware Engineering Notes, volume 24, 146–162, 1999.

[4] E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT

Press, Cambridge, MA, 1999.

[5] F. Copty et al. Benefits of bounded model checking at an indus-

trial setting. CAV, 436–453, 2001.

[6] H. Jin and F. Somenzi. An incremental algorithm to check satis-

fiability for bounded model checking. BMC, 51–65, 2004.

[7] J. Hooker. Solving the incremental satisfiability problem. Jour-

nal of Logic Programming, 15(12):177–186, 1993.

[8] http://nusmv.irst.itc.it/. NuSMV.

[9] http://www.princeton.edu/ chaff/zchaff.html. zChaff.

[10] J. Hennessy and D. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, 2003.

[11] J. Kim et al. On solving stack-based incremental satisfiability

problems. ICCD, 379–382, 2000.

[12] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incre-

mental satisfiability engine. DAC, 542–545, 2001.

[13] M. Benedetti and S. Bernardini. Incremental compilation-to-sat

procedures. SAT, 2004.

[14] M. Moskewicz et al. Chaff: Engineering an efficient SAT solver.

DAC, pages 530–535, 2001.

[15] M. Prasad, A. Biere and A. Gupta. A survey of recent advances

in SAT-based formal verification. STTT, 7(2):156–173, 2005.

[16] N. Amla et al. An analysis of SAT-based model checking tech-

niques in an industrial environment. CHARME, 254–268, 2005.

[17] O. Strichman. Pruning techniques for the sat-based bounded

model checking problem. CHARME, 58–70, 2001.

[18] P. Mishra and N. Dutt. Graph-based functional test program gen-

eration for pipelined processors. DATE, 182–187, 2004.

70

Inline Assertions – Embedding
Formal Properties in a Test Bench

Aritra Hazra, Priyankar Ghosh, Pallab Dasgupta and P. P. Chakrabarti
Department of Computer Science & Engineering,

Indian Institute of Technology Kharagpur, INDIA 721302.

{aritrah, priyankar, pallab, ppchak}@cse.iitkgp.ernet.in

Abstract— The scope of immediate assertions in SystemVerilog
is restricted to Boolean properties, where as temporal properties
are specified as concurrent assertions. Concurrent assertion state-
ments can also be embedded in a procedural block – known as
procedural concurrent assertions which are used under restricted
situations. This paper introduces the notion of inline assertions
which generalizes the embedding of temporal properties within
the procedural code of a test bench. The paper proposes verifica-
tion methodologies for inline assertions and compares them with
the traditional approaches of formal property verification and
dynamic assertion based verification. The paper also focuses on
coverage related issues when the intent of a concurrent assertion
is modeled as an inline assertion.

I. INTRODUCTION

Capacity has always been the major limitation of model
checking techniques for formal property verification (FPV) [2],
[3]. On the other hand, formal properties or assertions have
become very popular for capturing complex functional require-
ments and monitoring them dynamically during simulation.
The dynamic approach, popularly known as bug hunting, relies
on the simulation coverage of those behaviors that are relevant
to the given properties, unlike model checking techniques that
verify the properties over all behaviors.

Most assertions are relevant in certain contexts. For exam-
ple, consider a property which says that ”if the input x is
high for three consecutive cycles, then the output y must be
asserted in the next cycle”. The property may be developed
as a concurrent SystemVerilog Assertion (SVA) [6] as:

property P;
@(posedge clk)
x ##1 x ##1 x |− > ##1 y ;

endproperty

The property is relevant only in the context where the input
x has been high for three consecutive cycles. In all other
contexts, the property is vacuously true. The context of a
concurrent assertion is sometimes specified explicitly as the
antecedent of an implication (as in this example), but it may
also be implicit. Typically the person who writes an assertion
knows the context of the property.

The success of property verification in bug hunting mode
relies on (a) the coverage of states satisfying the context
of a property, and (b) the exhaustiveness of the search for
a refutation from a context satisfying state. When random
simulation fails to reach states satisfying the context of a
property, the verification engineer has to write directed test

benches for driving the simulation towards these states.

In this work we study the option of embedding assertions
within the procedural code of a test bench. These assertions,
which we call inline assertions are expressed as follows:

assert property (<expression>);
SystemVerilog [6] supports the embedding of immediate as-
sertions within the procedural code of a test bench, but their
scope is restricted to Boolean properties only. Procedural
concurrent assertions can be positioned within the procedural
code, but their usage is restricted. On the other hand, our inline
assertions are generalized embedding of temporal properties.
The following example demonstrates the notion of inline
assertions.

IDLE

DATA

start

ADDR

WAIT

INIT

req && !gnt

req && gnt

!req

!gnt

gnt

req && !rdy

req && rdy

req

!req

!req !req

req

validaddr

Master
Interface

abort

rdy

gnt req

rw

delayed

Fig. 1. Context State Machine

Example 1: Consider the specification of a master interface par-
ticipating in a simple bus protocol with an arbiter and a slave device.
Figure 1 shows the master interface and its behavior by the context
state machine where each state specifies certain contexts of the
protocol. The transitions among the context states of the master is
based on the signals like req (request to arbiter), gnt (grant from
arbiter) and rdy (slave ready). There are few other signals also,
namely, (a) rw (indicating the nature of current transfer, write or
read), (b) validaddr (flag indicating the validity of address floated on
the bus), (c) abort (transfer terminated by the slave), and (d) delayed
(delayed transfer).

Suppose we want to verify the following three properties on the
master (DUT):

• P0: If the transfer waits due to non-availability of slave while
the abort signal is low, then the delayed signal should be
asserted in the next cycle.

• P1: Once requested, the master holds the request until it gets
the grant (owns the bus).

• P2: If the master is in address cycle of write transfer, it should
always hold a valid address in the next cycle.

These properties are relevant in certain contexts of the protocol –
P0, P1 apply only when the master is in WAIT phase and P2 apply

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.31

71

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.31

71

when it is in ADDR phase.

The following test bench for the master shows the use of inline
assertions corresponding to the above properties.

module master tb top();
/*clock & input-output signal definitions*/
/*DUT (master) instantiation*/
logic [2:0] state;
initial state = 3’b000;
always @(posedge clk) begin

case (state)
3’b000: // IDLE state

state = (req)? 3’b001 : 3’b000;
gnt = (req)? 1’b0 : gnt;

3’b001: // WAIT state
assert property (##1 req[*0:$] ##1 gnt);
state = 3’b010;
if (!gnt) begin

abort = 1’b0;
assert property (##1 delayed);
gnt = 1’b1;

end
3’b010: // INIT state

state = (req)? 3’b011 : 3’b000;
3’b011: // ADDR state

state = (req)? 3’b100 : 3’b000;
rdy = 1’b1;

3’b100: // DATA state
state = (req)? 3’b011 : 3’b000;
if(rw) assert property (##1 validaddr);

endcase
end
/*clock generation block*/

endmodule �
It may be noted that the structured test bench for the master

models the abstract states of the protocol, and it is easy for
the verification engineer to embed the inline assertions at the
appropriate places of the test bench code.

The intuitive idea behind inline assertions is to start the
matching of the assertion whenever the control flow reaches
the statement of the procedural code where it is embedded.
The context of the property is implicit in the position where
it is embedded in the test bench, and only the guarantee is
specified in the inline assertion.

One advantage of using inline assertions is that the verifica-
tion engineer does not have to express the context of a property
using a complex antecedent expression. For example, in order
to express the properties in Example 1 as concurrent assertions
in SVA [6], one has to either encode the state machine shown
in the figure as an auxiliary state machine [3] or encode the
contexts (such as WAIT, INIT and ADDR) within the property,
as shown below.

property P0;
@(posedge clk)
(req && !gnt && !abort)

|− > ##1 delayed ;
endproperty
property P1;

@(posedge clk)
(req && !gnt)

|− > ##1 req[*0:$] ##1 gnt;
endproperty

property P2;
@(posedge clk)
(req && gnt) ##1 (req && rdy && rw)

|− > ##1 validaddr ;
endproperty

A common problem with concurrent assertions having
complex antecedents is that random simulation often fails to
reach the context of the assertion within reasonable time, and
therefore the assertion is not covered even though we may
have 100% code coverage of the test bench. The coverage of
inline assertions is more closely related to code coverage of the
test bench, since the assertion is non-vacuously tested every
time the control reaches the part of the test bench where it is
embedded. In other words the task of reaching the context of
an inline assertion is automatically addressed by the developer
of the test bench.

With inline assertions, we have the option of switching
over to formal search (such as bounded model checking)
whenever the context of the assertion is reached. This is a
major advantage, since often the truth of an assertion relies on
what the DUT may do after reaching the context, not on how it
reached the context. Complex concurrent assertions often use
complex antecedents (having large sequential depth) to specify
the context and a short consequent (that is, the guarantee).
Such assertions are typically hard to verify formally. With
inline assertions, we only verify the consequent, which is more
amenable for formal verification.

The main limitation of using inline assertions is that the test
bench may not reach all states that satisfy the context of the
required property. Let S∗ denote the set of context satisfying
states of the DUT and let S(T) denote the set of context
satisfying states that can be reached using a given test bench
T . There are two coverage questions to be answered here:

1) Is S(T) = S∗? In other words, is T capable of reaching
all states satisfying the context of the property?

2) At a given point of time, has the test bench reached all
states of S(T)? If so, then we may stop checking the
inline assertion from this time.

The first problem is closely related to the traditional func-
tional coverage of the test bench, and can be addressed using
the same metrics that are used to assess the completeness
of a test bench. This paper presents several approaches for
addressing the second problem.

The main contributions of this paper are as follows:

1) We extend the notion of immediate assertions and pro-
cedural concurrent assertions to introduce generalized
inline assertions.

2) We compare several methods to verify the same intent.
3) We present methods for ascertaining verification closure

with given inline assertions and test bench.

II. VERIFICATION METHODS

In this paper we will compare three approaches for
verifying assertions. These are as follows:

7272

(a) Assertion Checking over Random Simulation:

In this approach, we develop concurrent assertions and
verify them dynamically over random simulation runs. The
assertion is said to be covered if the simulation reaches a
state satisfying its context. Tools like VCS [8] have support
for reporting non-vacuous matches of an assertion.

(b) Formal Assertion Verification:

In this approach, we develop concurrent assertions and use
a model checking based formal verification tool to verify
the assertions exhaustively. This approach guarantees 100%
assertion coverage but suffers from capacity limitations.

(c) Semi-Formal Inline Assertion Verification:

We propose a semi-formal methodology which is motivated
by the fact that in most cases, the truth of context sensitive
inline assertion depends not on how the DUT reached the
context, but on what the DUT did after reaching the context.
In this approach, we reach states satisfying the context of
an assertion through simulation and switch over to bounded
formal search methods (bounded model checking(BMC) [1])
to verify the assertion from the context satisfying states.
Figure 2 demonstrates the approach proposed.

Test Bench

Inline
Assertion

+
Context Reached
during Simulation

Context−
Sensitive
Properties

DUT Properties
Coverage

Report

Simulator

EngineBMC

Fig. 2. Semi-Formal Verification Arch.

The goal of these verification methods is to validate a given
assertion exhaustively only from the relevant states which
are reachable in the total state-space. Repeated simulation of
test bench over DUT uses depth-first-search (DFS) to verify
an assertion, whereas formal assertion verification methods
uses exhaustive breadth-first-search (BFS) to do the same.
The verification exhaustiveness (reaching all possible relevant
states) by random test bench simulation is restricted by test
bench design and the number of repeated executions of it
and hence may not be guaranteed. On the other hand, formal
methods take care of all possible states together among which
very few satisfies the actual context and are relevant for a given
assertion. Thus, they stuck in capacity limitations and fails to
verify complex properties. Using inline assertions, we provide
a perfect blend of DFS and BFS search strategy. Firstly, DFS
by test bench simulation helps to reach context-satisfying
states for the inline assertion and thereafter BMC over inline
assertion uses BFS with reasonable number of states and can
verify the property within capacity limits. Figure 3 illustrates
the comparison between three different search strategies.

Formal Verification Random Simulation

BMC BMC BMC

Semi−Formal Verification

context−satisfying states context−satisfying states

Fig. 3. Comparing Three Verification Search Strategies

If the context-satisfying states are relatively shallow, then
formal search would reach those states within its capacity
limit and thereby it can verify a property triggered from
that context. Whereas, for deep contexts, formal search is
ineffective due to capacity limitation, and so it fails to verify
properties having deep contexts. Design bugs having deep
contexts can be broadly classified into three categories – (a)
bugs that can be detected along all paths from all the context-
satisfying states, (b) bugs that are manifested along some
path from all the context-satisfying states and (c) bugs that
are present only in some path from a few context-satisfying
states. The first category of bugs can be easily verified using
simulation methods and therefore the easiest among the three.
But, to detect the rest of the two bugs, we need semi-formal
approaches. In category-(b), we simulate to reach the context
(when inline assertion are hit) and trigger BMC every time to
find the error; whereas the last category bugs are hardest to
detect. However with the help of experts who can write test
benches that reaches the contexts from where the bugs are
manifested, the third category bugs can also be detected using
the proposed semiformal approach.

The main challenge in this approach is to reach all context-
satisfying states. The next section describes several approaches
to determine when a test bench has reached all the context-
satisfying states that it can possibly reach.

III. VERIFICATION CLOSURE

For a given DUT, a test bench with inline assertions reaches
verification closure when all reachable states (state of test
bench with DUT) matching the contexts are traversed by the
test bench simulation and then we terminate the simulation.
The code of a test bench can also be visualized as a control
flow graph (CFG) comprising of the sequence of conditional
statements and the set of assignment statements. We define a
control point and a state as follows:

Definition 1: [Control Point (CP):] A control point is
a location within the procedural source code where program
control transfers when a conditional expression gets evaluated.
�

Definition 2: [State:] A state at a particular simulation
point (instance) is the values of a subset of state-variables
from DUT and test bench. �

7373

Instead of saving the values of all variables of a test bench
as well as DUT at every CP as a state, we select a subset of
state-variables. The following two kinds of state-variables are
selected to represent a state.

• With respect to a test bench, these are the control path
variables determining the control flow to the locations of
inline assertions during simulation.

• With respect to DUT, the selected state-variables include
the signals specified within an inline assertions along with
other variables of DUT that affects those signals.

This improves efficiency by abstracting the saved state-
space into a feasible one and thereby reduce time for loop
detection (since less number of value-comparison done) and
lessen termination overhead. The reason is that all other
variables, except the participating ones in the state, do not
contribute to the coverage of state-space for a test bench and
so their values remain as don’t care with respect to the state.

A. Approaches for Terminating Test Bench Simulation

The overall methodology described below summarizes
the basic strategy for determining termination point of test
bench simulation with respect to inline assertions. We use
VPI-callbacks [5] to save states and to invoke loop-detection
algorithm dynamically during simulation at each CP .

Overall Methodology: [Terminating Test benches:]
Input : DUT module J + its test bench T B with inline assertions.
Output : Total simulation cycles M of T B when terminated and

few related metrics indicating the computational effort.

Step 1: identify control points within T B;
Step 2: determine state-variables;
Step 3: simulate test bench T B with DUT J ;
Step 4: Upon reaching CP for the first-time

save the state using VPI-callback;
Step 4: Upon reaching CP for subsequent times

invoke loop-detection procedure using VPI-callback;
Step 5: if loop detection SUCCESSFUL

5.1: terminate simulation;
5.2: report M & few related metrics;

Step 6: else continue to Step 4;

The crux of test bench termination methodology lies in the
fact that we terminate the simulation of a test bench when
all control paths of it traversed with all possible responses
from DUT through repeated simulation runs and the last run is
bound to be the exact replica of some previous run. Since, test
bench and DUT together forms a deterministic closed system,
so if a state repeats then the sequence between the repetition
of that state will also repeat.

The main feature of the overall methodology lies in
detecting the loop by comparing among the saved states
through the invocation of loop-detection algorithm in Step
4. In the following sub-sections, we describe three different
approaches for detecting loops which basically demonstrates
three different test bench termination methodologies.

(a) Strategy-1: Approximate Global Loop Detection

In this approach, we do not distinguish among the control
points while saving and comparing the states. Since we may
detect loops while matching the states at different CP locations
instead of matching them at a particular CP location similar
to where the previous state is saved, we get approximate
matching of states. Therefore, a loop may be detected falsely.
However, experimental results reveal that such cases happen
rarely.

(b) Strategy-2: Loop Detection Including Individual Con-
trol Point

Unlike approach-1 mentioned earlier, here we detect loop
with respect to a particular CP . The new state is checked
with the saved old one only after reaching same CP location
within pre-defined number of simulation/comparison cycles
(K). If the current number of cycles exceeds before finding
loop or reaching the marked CP , state at immediate next CP
location is saved and the maximum cycle limit, K is doubled.
The same procedure is repeated thereafter on reaching next
CP . The above mentioned approach compares a state saved
at one particular CP with the new state saved when visiting
that location next time. States at all other control points are
ignored for comparison.

(c) Strategy-3: Loop Detection Including All Control Points

This approach extends the previous one by saving the
states at every CP . It is done by introducing maximum
simulation/comparison check limit (Ki) with each control
point-i separately instead of a global limit. On reaching a
particular CP for the second time, we try to detect loops with
respect to the state saved on that CP before, provided the
number of comparison does not exceed maximum simulation-
cycles/comparison-checks. Upon exceeding the limit, we dou-
ble the maximum limit with respect to the individual CP .

This approach has two variants. In case of the first variant,
we double Ki when the current simulation-cycle count of i-th
CP exceeds the maximum simulation-cycles indicated by Ki.
Whereas for the second variant, we double Ki when current
comparison-checks (instead of simulation-cycles) of i-th CP
exceeds its Ki.

B. Computational Effort Measurement Metrics

We introduce the following metrics to measure the compu-
tational effort required for each of these three methodologies
proposed earlier.

• Simulation-Cycle Count – total number of clock cycles
elapsed to detect state-loop.

• Comparison-Cycles Count – total number of cycles where
two states get compared for state-loop detection.

• Saved-States Count – total number of distinct states
needed to be saved before terminating simulation.

• Compared-States Count – total number of distinct saved-
state pairs to be compared to detect state-loop.

• State-Value-Changes Count – number of times value
change occurs in any state-variable of a state.

7474

With the help of these metrics, we can compare the relative
efficiency and mutual benefits of our proposed methods. In the
next subsection, we compare the proposed methodologies.

C. Relative Study of Three Proposed Approaches

The proposed approaches are compared using the number
of simulation/clock cycles, comparison-cycles count and total
saved states required in each of these cases. Total clock cycles
required for Strategy-1 will be minimum among all three
strategies since it does some approximation during global
loop detection. Between Strategy-2 and Strategy-3, Strategy-2
will have more clock-cycle count than Strategy-3, but lesser
number of comparison-cycles count and saved states. The
reason is, in Strategy-2 we save states at a particular CP
and state comparison is done when the same CP is reached
again. Whereas in Strategy-3, we save states corresponding to
every CP . When simulation reaches any of the control points,
state comparison is done. Hence, the number of saved states is
lesser and more number of states get compared in Strategy-3.
Moreover, due to more comparisons, Strategy-3 detects loop
early in terms of simulation-cycles than in Strategy-2.

IV. IMPLEMENTATION AND RESULTS

We use Verilog HDL [4] to describe the design and the test
bench with inline assertion is written in System Verilog [6].
We have used VCS [8] from Synopsys to simulate the test
bench over the design. Moreover, to formally verify the inline
assertions, we have used VIS tool [10] as a formal verifier.

A. Implementation Details

Start

End

Simulator
VCS

DUT

Test Bench

VPI
Callback

variable
save

hitting

control points

values

continue

terminate

Algorithm
Detection

Loop

Detected
Loop
NO

Loop
Detected

Measurement
Computational Effort

states
saved

Fig. 4. VCS-based Implementation Architecture for Verification Closure

We instrument the test bench code by inserting VPI-
callbacks [5] at each CP . The state variables are computed a
priori. During simulation, at each CP , these VPI-callbacks are
used to dynamically save the states and simultaneously execute
the loop-detection algorithm to detect repeating states. Finally,
we either terminate the simulation encountering a state-loop or
else, continue it. At the simulation termination point, we also
report several metrics determining computational efficiency of
our three approaches. Figure 4 shows the overall architecture
of our verification closure strategy.

We continue simulating the test bench over the DUT till
we reach the targeted inline assertion. Upon reaching the

Test Bench

Inline
+

Assertion

Context−
Sensitive
Properties

Simulator

DUT
target

hitcontext

DUT

Saved
State reset−

VIS

Bounded
Model

Checking

state

Fig. 5. Implementing VIS-based Semi-Formal Verification Architecture

target context, the state (values of the state-variables) is saved
to form a reset-state to be used in the next phase. In the
subsequent phase, this saved state is utilized as a initial state
by VIS to reset the DUT, from where we trigger the BMC
routine of VIS without rebuilding the network (as in the usual
case). Figure 5 shows the overall semi-formal verification
architecture of our approach.

B. Experimental Results

We have used the PCI Bridge and Ethernet examples from
OpenCores verification benchmarks [9] and also PCI circuits
from Texas97 benchmarks [7] as our case study. We have
modified the test benches of the mentioned benchmarks by
inserting inline assertions. All experiments are performed on
a 2.8 GHz. Processor of INTEL(R) XEON(TM) machine with
4 GB RAM.

Table I shows the result of our proposed verification closure
methodologies over the benchmarks. Column 1 indicates the
type of benchmark circuit/module and column 2-6 presents
design statistics. Column 7 shows three different strategies.
Columns 8-12 denote the relevant metrics that are defined
to measure the computational efficiency in for each proposed
strategy to terminate simulation. These metrics are simulation-
cycles count, comparison-cycles count, saved-states count,
compared-states count and state-value-changes count as indi-
cated through columns 8-12 respectively. From Table I, we
see that the values of the metrics for measuring computational
efficiency matches as per our discussion in section III-C.

In Table II, we show the capacity blowups and inability
of pure formal verification in VIS to validate a property
triggered at deep context-satisfying states; which is easily
handled (with less memory requirement) by our semi-formal
approach. Column 1 denotes two of our written properties from
the target and the master modules of PCI circuit of Texas-
97 benchmarks [7]. Columns 2 to 6 present design statistics
extracted by VIS. Column 7 shows the set of properties for
the respective module. Columns 8 and 9 show the memory
requirements (in MB) and time needed (in sec.) respectively
to formally verify an inline property from the initial states of
the design. Finally, columns 10 and 11 denote the same by
our semi-formal methodology. The time indicated in column
11 is the total (summed) time required to formally verify an
inline property (using BMC) from all its satisfying contexts
reachable by the test bench and the memory usage is the
average memory required during these phases. Column 8

7575

No. of No. of Count of Relevant Metrics (Measuring Computational Effort)
Circuit No. of No. of Seq. Comb. No. of Strategy Simulation Comparisons Saved Compared State-Value
Module Inputs Outputs Elem. Elem. Nets Cycles States States Changes

Strategy-1 56848 50888 31 2 100245
PCI 162 207 3802 26424 30388 Strategy-2 5856098 4407860 22 35 10121400

Bridge Strategy-3a 2641620 9219686 61 58 4553203
(OpenCores) Strategy-3b 2641620 7578812 61 58 4553203

Strategy-1 358977 66 118 10 242
Ethernet 96 115 10545 47296 57937 Strategy-2 359119 176 7 18 258
Circuit Strategy-3a 358977 184 10 9 242

(OpenCores) Strategy-3b 358977 182 10 9 242

Strategy-1 3217975 3217910 114 864570 2799413
PCI 12 8 156 3071 7038 Strategy-2 4691067 4690972 20 53938 2601697

Target Strategy-3a 3257383 8171724 14383 14381 350562
(Texas97) Strategy-3b 3257383 7557364 14383 14381 350562

Strategy-1 3045615 3044542 90 46185 830346
PCI 12 11 253 3685 8862 Strategy-2 4522849 4522532 23 34270 1233107

Master Strategy-3a 3170465 6923146 1152 987 321401
(Texas97) Strategy-3b 3170465 7210127 1152 987 321401

TABLE I

VERIFICATION CLOSURE AND COMPUTATIONAL EFFICIENCY MEASUREMENT OVER FEW BENCHMARKS

Ckt. No. of No. of No. of Seq. No. of No. of VIS Pure Formal Method Our Semi-formal Approach
Modules Inputs Outputs Seq. Elem. Comb. Elem. Nets Prop Memory (MB) Time (Sec) Memory (MB) Time (Sec)

PCI P1 342 timeout 0.094 853.76
Target 12 8 156 3071 7038 P2 306 timeout 0.091 694.28

PCI P1 296 timeout 0.092 751.24
Master 12 11 253 3685 8862 P2 284 timeout 0.089 712.84

TABLE II

COMPARISONS OF MEMORY USAGE & TIME OF PCI MODULES FROM TEXAS97 BENCHMARKS

shows the greater memory requirement of VIS when the
timeout is set to two minutes. We have further experimented
with higher timeout values (in order of hours). Even with
higher timeout values, VIS fails to detect counter-example.
We have observed that for higher timeout values, the memory
requirement increases drastically.

Our Semi−formal ApproachPure Formal Methods

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

M
em

or
y

U
sa

ge
 (

in
 K

B
)

[lo
g1

0
sc

al
e]

Computing Time (in Sec.) timeout

fails
property

property
undecided

Fig. 6. Dynamic Memory Usage Graph

We have also plotted a dynamic memory usage graph as

shown in Figure 6 for a property from PCI target module.
It reveals the efficiency of our approach over pure formal
methods, which essentially blows up (in capacity) to verify
a property. In the graph shown above, we have found how
memory requirement blows up when a property is run for 100
seconds by a pure formal engine and yet the property remains
undecided. On the other hand, our semi-formal approach first
simulate up to a satisfying context in 8.22 sec. and then
invoking the BMC engine of VIS tool, we can prove the failure
in 24.65 sec. (total in 32.87 sec.) for the same inline property.

REFERENCES

[1] Biere A., Cimatti A., Clarke E. M., Strichman O., Zhu Y.; Bounded
Model Checking, In Journal of Advances in Computers, vol. 58, pp.
118149, 2003.

[2] Clarke, E. M., Grumberg, O., and Peled, D. A.; Model Checking. MIT
Press, 2000.

[3] Dasgupta P.; A Roadmap for Formal Property Verification. Springer,
2006.

[4] IEEE 1364-2001 Standard Verilog Hardware Description Language;
http://ieeexplore.ieee.org/iel5/7578/20656/00954909.pdf?arnumber=954909

[5] Sutherland S.; The Verilog PLI Handbook, Second Edition, Kluwer
Academic Publishers, 2002.

[6] System Verilog from Accellera; http://www.systemverilog.org/
[7] Texas97 Benchmarks;

http://www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/
[8] VCS Simulator from Synopsys; http://www.synopsys.com/vcs/
[9] Verification Benchmarks from OpenCores; http://www.opencores.org/

[10] VIS homepage; http://vlsi.colorado.edu/vis

7676

Dedicated Rewriting: Automatic Verification of Low Power Transformations in RTL

Vinod Viswanath Shobha Vasudevan Jacob A. Abraham
Computer Engineering Research Center Department of Electrical and Computer Engineering Computer Engineering Research Center

University of Texas at Austin University of Illinois at Urbana-Champaign University of Texas at Austin
vinod@cerc.utexas.edu shobhav@uiuc.edu jaa@cerc.utexas.edu

Abstract

We present dedicated rewriting, a novel technique to automati-
cally prove the correctness of low power transformations in hard-
ware systems described at the Register Transfer Level (RTL). We
guarantee the correctness of any low power transformation by
providing a functional equivalence proof of the hardware design
before and after the transformation. We characterize low power
transformations as rules, within our system. Dedicated rewriting
is a highly automated deductive verification technique specially
honed for proving correctness of low power transformations. We
provide a notion of equivalence and establish the equivalence
proof within our dedicated rewriting system. We demonstrate our
technique on a non-trivial case study. We show equivalence of a
Verilog RTL implementation of a Viterbi decoder, a component of
the DRM SoC, before and after the application of multiple low
power transformations.

1 Introduction
In today’s electronic systems, power is one of the most criti-

cal design parameters, especially in portable computing and per-
sonal communication applications such as cell phones, PDAs,
and the emerging Mobile Internet Devices (MID) market. Even
in the case of stationary systems, power-aware designs can of-
fer competitive advantages regarding considerations of size and
cost of power supply and cooling systems. In the case of today’s
extremely large and complex designs, implementing a reliable
power network and minimizing power dissipation have become
major challenges for design teams. Employing low power trans-
formations in existing designs has emerged as an extremely im-
portant technique in achieving the power goals of a design.

Utilizing the program structure or the dataflow information
available at the architectural and RTL levels can lead to many
interesting and complicated low power transformations [4], [6],
[16]. Yet most power transformations in today’s designs are at
the gate-level [2], [13]. The primary reason for this is the diffi-
culty of the verification problem. If low power transformations
are at the gate level, then equivalence checking methods [12] can
be used to automatically prove the correctness of the transforma-
tions. Although there are a few sequential equivalence checking
algorithms [10], [14], they are not widespread in the hardware in-
dustry. In a typical industry scenario, an RTL or architectural low
power transformation implies a full cost of dynamic validation,
which can extend to many months, and require a lot of resources.

We present dedicated rewriting, a rewriting methodology to
automatically prove the correctness of low power transformations
at the RT-level. We propose a highly automated deductive veri-
fication technique which is fine-tuned for low power transforma-

tions. We prove the equivalence of two Verilog RTL designs, one
derived from the other after the application of a low power trans-
formation. Our notion of equivalence is defined with respect to
an observable. An observable is a variable in the Verilog RTL
that, by specification, is expected to have the same function in
both RTLs. The inputs to our system are the two RTLs and a set
of observables.

The computation model in our technique involves Term
Rewriting Systems (TRSs) [11]. A TRS is defined as a tuple of
terms and rules. Our technique starts by automatically deriving a
TRS from a given Verilog RTL. The variables in the Verilog RTL
form the terms of the TRS. The rules of the TRS represent the
hardware design and are both time-preserving and atomic. The
time-preserving nature of the rules guarantees that both explicit
and implicit timing dependencies in Verilog RTL are captured in
the rules. Atomic transactions ensure that a given rule is executed
in its entirety without interruption or conflict with rest of the sys-
tem. We derive TRSs from both Verilog RTLs, before and after
applying the low power transformation. We have defined a no-
tion of equivalence of two TRSs with respect to an observable (a
term in both TRSs). We now proceed to prove the equivalence of
the two TRSs with respect to the observable. In the process, we
create a dedicated database of low power transformation rules. If
a proof cannot be established, then we either add a new rule to
the database, or we have found a bug. This process is repeated
for all observables.

We present the result of our technique on different low power
transformations applied to a Verilog RTL implementation of
Viterbi decoder [17] module that is a part of the Digital Radio
Mondiale (DRM) SoC [1]. The main contributions of this work
are the following.

• We present a methodology to automatically verify correct-
ness of applying a low power transformation on existing
hardware, thereby drastically reducing design cycle time.

• We present dedicated rewriting, an automatic and dedicated
prover for low power transformations in RTL. There is min-
imum overhead of providing environment and additional
lemmas as opposed to a general purpose rewriting engine.

• We present a novel notion of capturing the functional and
timing description of RTL in the form of atomic transactions
called rules.

• We have created a dedicated database of low power trans-
formation rules.

• We leverage the expressive power and relative simplicity of
high-level designs by reasoning entirely at that level.

• We demonstrate our technique by proving the correctness of
multiple low power transformations on a real life SoC RTL.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.85

77

input clk; input clk;
input pgate signal; input pgate signal;

assign gated clk = clk & ∼pgate signal;
always @(posedge clk) begin always @(posedge gated clk) begin

if (c3 state) butterfly 1 = fifo[3:0] + gsm[15:12];
else

case (sw) case (sw)
0: butterfly 1 = fifo[11:8] + gsm[23:20]; 0: butterfly 1 = fifo[11:8] + gsm[23:20];
1: butterfly 1 = fifo[7:4] + gsm[19:16]; 1: butterfly 1 = fifo[7:4] + gsm[19:16];
default: butterfly 1 = fifo[3:0] + gsm[15:12]; default: butterfly 1 = fifo[3:0] + gsm[15:12];

endcase endcase
end end

(a) Pre-transformation Verilog RTL. (b) Post-transformation Verilog RTL.

Rule: butterfly 1(t) −→ fifo[11:8](t-1) + gsm[23:20](t-1)
if (sw(t-1) == 0) and (posedge clk(t-1))

Rule: butterfly 1(t) −→ fifo[7:4](t-1) + gsm[19:16](t-1)
if (sw(t-1) == 1) and (posedge clk(t-1))

Rule: butterfly 1(t) −→ fifo[3:0](t-1) + gsm[15:12](t-1)
if ((sw(t-1)!=0) and (sw(t-1)!=1)) and (posedge clk(t-1))

(c) Pre-transformation TRS Rules.

Rule: gated clk(t) −→ (clk(t) & ∼pgate signal(t))
if (T)

Rule: butterfly 1(t) −→ fifo[3:0](t-1) + gsm[15:12](t-1)
if (c3 state(t-1)==T)

Rule: butterfly 1(t) −→ fifo[11:8](t-1) + gsm[23:20](t-1)
if (sw(t-1)==0) and (c3 state(t-1)!=T) and (posedge gated clk(t-1))

Rule: butterfly 1(t) −→ fifo[7:4](t-1) + gsm[19:16](t-1)
if (sw(t-1)==1) and (c3 state(t-1)!=T) and (posedge gated clk(t-1))

Rule: butterfly 1(t) −→ fifo[3:0](t-1) + gsm[15:12](t-1)
if ((sw(t-1)!=0) and (sw(t-1)!=1)) and (c3 state(t-1)!=T)
and (posedge gated clk(t-1))

(d) Post-transformation TRS Rules.

Figure 1. Clock gating for lowering switching activity power dissipation.

Initial application of Term Rewriting Systems in verification
was in program verification [3], [7]. Subsequently they have
been used to design correct circuits [9], and verifying them
[5], [15], [18] in the context hardware design. In sharp contra-
distinction to prior work in this area, this paper presents a new
technique in a completely different hardware context of low
power transformations at the RT-level.

We explain our notion of rules in full detail in Section 2. Sec-
tion 3 describes our dedicated rewriting methodology. In Sec-
tion 4 we present a case study of using our technique on multiple
low power transformations on the Viterbi decoder. We discuss
the merits of our technique and conclude in Section 5.

2 Rules
A Term Rewriting System is defined as a tuple 〈S, R〉, where

S is a set of terms, and R is a set of rewriting rules. The state of
a system is represented as a TRS term, while the state transitions
are represented as TRS rules. The general structure of rewriting
rules is:
Rule: s1 −→ s2 if p(s1)

where s1 and s2 are terms and p is a predicate. We can use a
rule to rewrite a term if the rule’s left-hand-side pattern matches

the term or one of its sub-terms, and the corresponding predicate
is true. The new term is generated in accordance with the rule’s
right-hand side. If several rules apply, then any one of them can
be applied. If no rule applies, the term cannot be rewritten any
further.

Applying a rule is also called executing or firing. When a
rule is applied, the state on the left-hand-side is read at the be-
ginning of the clock cycle and updated at the end of the clock
cycle. This single cycle notion automatically enforces the atom-
icity constraint of each rule. All enabled rules fire in parallel (or
in no particular order). If two rules modify the same state ele-
ment, then we have a race condition. We expect the Verilog RTL
to be race-free and combinational-loop-free at the input. This is
an easy constraint to impose on the input Verilog, since it can
checked by standard Verilog linting tools.

We have two kinds of rules within our system, structural rules
and logical rules. Structural rules are timing preserving atomic
transactions representing a state update in hardware. These are
derived directly from the Verilog RTL. Logical rules represent
identities about the RTL operators and carry information about
the low power transformations. We explain these further in the
next two subsections.

78

2.1 Structural Rules
Consider the example in Figure 1. Verilog RTL prior to a clock

gating transformation is shown in Figure 1(a) and the post trans-
formation RTL is shown in Figure 1(b). When we derive the TRS
from the Verilog RTL, we arrive at the structural rules as shown
in Figure 1(c) and Figure 1(d).

Each hierarchical signal in Verilog is represented by a new
constant function symbol (signal function), thereby creating a
“flattened” TRS. Rewrite rules rewrite each signal function into
an expression consisting of RTL operators and other signal func-
tions. The cycle-accuracy of the RTL semantics is maintained in
the TRS by each signal function being a function of time t. The
notion of time is relative. A combinational logic assignment in
the Verilog is a rewrite rule with all terms being a function of the
same time t (the first rule in Figure 1(d)). Whereas, a sequential
logic assignment in the Verilog is a rewrite rule with the assigned
term being a function of time t and all other terms relatively 1
cycle before the assigned term, as a function of time (t − 1) (all
other rules in Figure 1(c) and Figure 1(d)).
2.2 Logical Rules

The logical rules codify identities about RTL operators and
various low power transformations. This is an independent
database that is part of our dedicated rewriting system. These
rules can be generic or low power transformation specific. Some
examples of the generic rules in this database are shown in Fig-
ure 2.

Rule: (x & x) −→ (x) if (T)

Rule: (x & ∼x) −→ (F) if (T)

Rule: ((x << 1) - x) −→ (x) if (T)

Rule: (x + y) −→ (y + x) if (T)

Rule: (x & (y|z)) −→ ((x&y) | (x&z)) if (T)

Rule: ((x << 2) - x) −→ (x * 3) if (T)

Figure 2. Logical rules in the dedicated rule database.

Generic rules define RTL operator identities and are helpful in
simplification of terms during the equivalence proof. We also do
not restrict the level of abstraction of the input RTL. This struc-
ture in our system allows us to, for example, use a new (or non-
synthesizable) RTL operator in the input Verilogs, and define the
identities of that operator within this rule database to allow for
simplification during the proof process. Typically, the predicate
function of these generic logical rules is always true (T).

The low power transformation specific rules define the iden-
tities associated with the transformation. These will be different
for each transformation. However, these are independent of the
RTL on which the transformation will be applied, and as such
need to be incorporated as part of this database exactly once, for
each transformation.

Consider the clock gating example in Figure 1. It shows the
Verilog RTL and the derived TRS rules before and after the appli-
cation of the transformation to achieve lower switching activity
power dissipation. In this example, the transformation creates a
new clock gated by the signal pgate signal. As shown in
Figure 1(d) two new rules corresponding to the creation of the
gated clock are added to the list of rules. In this example, apart
from these structural rules, two new, transformation specific rules
are added to the logical rule database:

• An external assumption when to enable power clock gat-
ing decides the value of the signal pgate signal. The
enabling assumption needs to be codified into the transfor-
mation specific rules database as follows:

Rule: (pgate signal) −→ T if (T)

If we were to run our proof with power clock gating dis-
abled, then we would add the corresponding rule, setting the
signal to F.

• The algorithm of power gating has the hardware assume a
special state (c3 state) when the transformation is en-
abled. This information is captured in a transformation spe-
cific rule as follows:

Rule: (c3 state) −→ T if (pgate signal==T)

Assumptions of this nature which are very specific to the
low power transformation need to be specially encoded as
rules in order to assist the proof system.

Rules are powerful representations of always blocks. The ac-
tive rules, where the guards (predicates) are true, can be applied
in parallel, but each rule operates as an atomic transaction, i.e.,
each rule observes and ensures a consistent state relative to all
other rules in the system.

3 Dedicated Rewriting
We propose a refinement based rewriting methodology to au-

tomatically generate proofs for low power transformations in
RTL. Figure 3 gives a flow chart representation of our proof
methodology.

Figure 3. Dedicated rewriting proof system flow chart.

The input to the system are two RTLs, an original RTL and a
transformed RTL (after the application of the low power transfor-
mation), and a set of observables. The proof methodology works
in three primary stages. First, we derive the structural rules of the
TRS from the Verilog RTL for both models. Next, we execute

79

the rules to derive expressions for all observables in each model.
Finally, for each observable, we go through an iterative, mostly
automated proof process. These are labeled as stage 1, stage 2,
and stage 3 in Figure 3. Figure 4 gives the algorithm for the ded-
icated rewriting procedure. We describe the procedure stage by
stage by elaborating on the functions involved in each stage in
the rest of this section.

3.1 derive (): Verilog RTL to TRS rules

This function translates Verilog RTL to TRS rules. As we de-
scribed in Section 2, rules are atomic transactions carrying tim-
ing information. The derive () function will generate the struc-
tural rules of the TRS. We have fully automated this translation
process. Examples of this automated translation in different con-
texts are shown in Figure 1. Combinational logic statements in
the RTL get translated to rules with all terms at the same rela-
tive time t, whereas, sequential logic statements get translated to
different relative times. We do this translation on both models.

The fully automatic nature of this translation allows us to use
our methodology on any existing Verilog RTL design. This is par-
ticularly useful in the context of verification of low power trans-
formations since most of these transformations tend to be RTL
changes late in the design stage in order meet the power require-
ments of the landing zone.

3.2 execute (): TRS rules to expressions

This function computes the expression of a particular observ-
able by rewriting the structural TRS rules. The process of rewrit-
ing is based on firing the rules that are ready to fire. If more
than one rule can fire at any given time (clock cycle), then all
the rules fire in no particular order. Since our rules are strictly
atomic transactions this maintains the correctness of the Verilog
semantics. At the end of this process, we have essentially com-
puted the symbolic expression of the observable. We do this in
tandem on both models for each observable in the input set of
observables. The next subsection explains how the equivalence
of the two expressions in the two models, for every observable, is
proved.

Depending on the design we are working with, these expres-
sions can be arbitrarily large, thereby making the equivalence
proof arbitrarily hard. In order to mitigate that problem, we use
some heuristics to reduce the complexity of the expressions. One
heuristic we have successfully used in the context of arithmetic
circuits is a bit-wise partitioning of assignments to a particular
RTL signal. If we have matching bit partitions aligned in both
models, then the expression corresponding to that bit partition is
treated as the basis for the equivalence proof between the models.

This procedure is also completely automated and includes the
above decomposition heuristic. We have structured our method-
ology such that it can accommodate any decomposition strategy.
Our tool is designed such that we can easily and seamlessly in-
corporate any library of decomposition heuristics in our routine
that calculates expressions by rewriting structural rules.

3.3 prove (): Equivalence of expressions

In this function we check the equivalence of two expressions
by rewriting based on simplification using the logical rules from
the dedicated rule database. As described in Subsection 2.2 these
logical rules codify various identities about RTL operators, as
well as rules specific to the low power transformation.

These rules can be generic or design specific or transforma-
tion specific. While trying to prove the equivalence of two ex-
pressions, we select the set of rules ready to fire from the rule
database and apply them in some arbitrary order. If the resulting
simplifications fail to establish the equivalence, then the rules are
applied in a different order. These proof iterations continue until
equivalence is established or no more rules can be applied in any
order. This step is executed in the function dedicated rewrite ().
These iterations are guaranteed to terminate since we are work-
ing with finite bit-width hardware signals, and in the worst case,
all possible value-combinations of all variables is explored over
a finite (albeit large) number of iterations.

When two designs are declared unequal by this technique, the
eponymous function analyze () analyzes the result and discovers
one of two possibilities. In the first case, the two designs are truly
not equal, in which case we have caught a “bug” in the transfor-
mation, and our technique provides a detailed proof trace and also
picks a counterexample starting from the inputs at specific times.
In the second case, we may not have sufficient rules in the ded-
icated rule database. In this case we allow for user intervention
to create and add the required rules to the database (this is han-
dled in the function generate and add ()), and the entire process
can be repeated again. The shaded part of Figure 3 (stage 3) de-
scribes this process. This entire process is repeated for every pair
of expressions that need to be proved equivalent.

Algorithm Dedicated Rewriting.

main (Vo: Original RTL model, Vp: Transformed RTL model,
O: Set of observables, DRdb: dedicated rule database)

begin
proved = T
To = derive (Vo)
Tp = derive (Vp)
for every observable o ∈ O
begin

{〈expr1, expr2〉} = execute (To, Tp, o)
end
for every pair of expressions 〈expr1, expr2〉
begin

proved = proved && (prove(expr1, expr2,DRdb))
end
return (proved)

end

prove (expr1: Original expression, expr2: Transformed expression,
DRdb: dedicated rule database)

begin
do
begin

out = dedicated rewrite (expr1, expr2, DRdb)
if (out == T) return (T)
else
begin

true error = analyze ()
if (true error == T)

return (counter example)
else

generate and add (DRdb)
end

end
while (out==F && true error==F)

end

Figure 4. Dedicated rewriting algorithm

Figure 4 gives the full algorithm for the dedicated rewriting

80

process we described in this section. Once we establish the equiv-
alence of two TRSs with respect to a given set of observables, in
effect, we have proved he correctness of the low power trans-
formation which created the transformed RTL from the original
RTL. In this process, we have established the logical transforma-
tion specific rewrite rules as part of our dedicated rule database.
Therefore, all further proofs of application of the same transfor-
mation on any other RTL design should be possible with minimal
user intervention or changes to the dedicated database. This is
what separates dedicated rewriting from a general purpose rewrit-
ing engine or a theorem prover, and makes the technique a highly
automated approach.

4 Case Study: Viterbi Decoder
We perform our experiments on a Viterbi decoder, that is a

part of the Digital Radio Mondiale (DRM), implemented in Ver-
ilog RTL. The initial Viterbi decoder RTL is a basic model that
implements the Viterbi decoding algorithm, but has no optimiza-
tions for power, area, or performance. On this model, we per-
form certain low power transformations aimed at reducing the
switching activity power dissipation. These transformations do
not cross register boundaries. We then use our framework to
prove that these transformations do not affect the functionality
of the original design.

Next, we use a more complicated Viterbi decoder design, also
implemented in Verilog RTL, but one optimized for lower power
dissipation. In contrast to the earlier transformations, this trans-
formation crosses register boundaries. We estimate the power
dissipation savings and also prove the equivalence of the two se-
quential designs.

Finally, we use a third Viterbi decoder design, also imple-
mented in Verilog RTL, but optimized for a combination of power
and timing. This is more realistic in today’s industry where ev-
ery functional unit block in the design has specific area, power,
and timing budgets, and all optimizations have to meet an opti-
mal landing zone satisfying all the three requirements. Again,
we prove the equivalence of the two sequential designs, the opti-
mized design and the original Viterbi design by dedicated rewrit-
ing. These automatically generated correctness proofs are the
contribution of our system to this problem, and not the quality of
power savings generated by these specific transformations.

4.1 Combinational low power transformations

There are two major stages to the functionality of the Viterbi
decoder. One is collecting the inputs depending on the Puncture
Pattern and storing them in a buffer (FF Buffer). The other stage
is the Trellis computation. The next state values of the Trellis
matrix are computed by a function (Butterfly network) of current
state values of the Trellis matrix and the inputs stored in the FF
Buffer.

We perform combinational low power optimization in the
logic computing the values of the Trellis matrix. The
low power transformations performed include common sub-
expression elimination, movement of operations, constant propa-
gation and commutativity and associativity based optimizations.
All these optimizations were strictly between register boundaries
of the design. Hence, the symbolic terms at every comparison
point were at the same relative times in both models. We used the
macro-modeling technique employed in [8] to estimate power at

Optimizations used Estimated
power (mW)

Nil 143
Common sub-expression reduction-1 112
Common sub-expression reduction-2 105

Constant propagation 104
Commutative rearrangement 127
Associative rearrangement 121

Figure 5. Results of power estimation due to combi-
national logic low power transformations in the Viterbi
decoder.

Design Configuration Estimated
power (mW)

Original Viterbi, clock delay=10ns 416.37
Transformed Viterbi, clock delay=10ns 354.33

Original Viterbi, clock delay=20ns 208.41
Transformed Viterbi, clock delay=20ns 177.17

Figure 6. Results of power estimation after sequential
low power transformations in the Viterbi decoder.

the RT-level of abstraction. This method involved characterizing
the power consumed by the basic combinational blocks (macros)
used in the design. We did the characterization for the all macros
in the GetMatrixSet block of the Viterbi decoder design. All
our optimizations were also in the same block.

The table in Figure 5 shows the power estimation results for
these optimizations. The first column in the table denotes the
transformations used to optimize the design. The entry “Nil”
corresponds to the base design before optimization. The power
estimated (not including glitch power) after applying each trans-
formation sequentially is listed in the second column. This esti-
mated power is only for the GetMatrixSet block.

4.2 Sequential low-power optimizations
The sequential optimizations for low-power included clock-

gating, some functional gating, and reorganizing pipeline regis-
ters. The table in Figure 6 shows the power estimation before
and after the low-power transformation. These numbers were ob-
tained by using the Artisan TSMC 0.18um library. The Verilog
designs were synthesized using Synopsys Design Compiler and
the power estimated using Synopsys Power Compiler. The ac-
tivity factors were kept as default, which is 1 per cycle for input
signals and 2 per cycle for the clock signal. We show the power
estimation numbers for a clock delay of 10ns and 20ns.

4.3 Optimizations for power and timing
These optimizations were similar to the sequential lower

power optimizations except that some aggressive power saving
was sacrificed to lower the critical path delay time of the design.
The power estimation methodology was the same as in the case
of the sequential optimizations and the estimated dynamic power
dissipation is very close to the previous case. The table in Fig-
ure 7 shows the results.

4.4 Correctness of low power transformations on the Viterbi
decoder

We start with the basic Viterbi decoder design, and three trans-
formed designs, and construct the equivalence proof of each of

81

Design Configuration Estimated
power (mW)

Original Viterbi, clock delay=10ns 416.37
Transformed Viterbi, clock delay=10ns 358.06

Original Viterbi, clock delay=20ns 208.41
Transformed Viterbi, clock delay=20ns 179.04

Figure 7. Results of power estimation after sequential
optimization for low power and timing in the Viterbi de-
coder.

the three transformed designs against the basic design. In this
subsection, we outline the proof of equivalence of the sequen-
tial low power transformation using our technique. We have four
observables in this design, 8 FIFO entries, 64 Trellis

Matrix entries, 2 entries in the MatDecTable, and
a decoded output. We build the proof of equivalence for each
observable. In accordance with our algorithm in Figure 4 we fol-
low the three stages. We first translate both designs into TRSs.
Next, We identify and obtain the expressions that need to be
proved equivalent for each observable. Finally, we use the dedi-
cated rule database, and prove the equivalence of the expressions
by rewriting. We had to add several rules to the dedicated rule
database while we proved the correctness of this transformation.
The key insight here is that the transformations once proved on
any RTL, yield the same set of logical rules for any new RTL.
This is in a way similar to thinking of proving the correctness of
the transformation irrespective of the RTL context (although new
RTL contexts themselves might throw up new logical rules, inde-
pendent of the transformation). Similarly, we derive correctness
proofs for the transformations in each design.

5 Discussion and Conclusions

We have presented dedicated rewriting, a novel technique for
proving correctness of low power transformations in RTL. Our
technique uses Term Rewriting Systems and decomposes the
problem into smaller and tractable proofs. The deductive na-
ture of the rewriting system ensures that we do not encounter any
size or capacity issues that are common in an algorithmic sequen-
tial formal verification framework. However, the complexity of
the verification problem in our system is converted into the prob-
lem of incompleteness of the dedicated rule database. While this
might lead to a highly interactive system in the general case, re-
stricting the rule database to low power transformations, helps us
leverage a higher degree of automation. Once the database cap-
tures a transformation (in the form of rules), then those rules work
for any RTL and have high reuse value. The primary advantage
of this technique is that we reason with uninterpreted operators
and bit abstractions at the RT-level, which is decidedly a more
abstract (and therefore smaller) representation than reasoning at
the gate-level. In this paper we have described the technique in
the context of a real life SoC, the Viterbi decoder. We have also
proved complicated low power transformation on pipelined mi-
croprocessors using the same dedicated rewriting system. This
work gives a specialized rewriter in the context of low power
transformations. Given the cost of re-validating hardware sys-
tems in a traditional design cycle, an automated technique of this
nature is extremely desirable and can add immense value to the
hardware design cycle.

References

[1] Digital Radio Mondiale http://www.drm.org/.
[2] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Pa-

paefthymiou. Precomputation-based sequential logic optimiza-
tion for low power. IEEE Trans. Very Large Scale Integr. Syst.,
2(4):426–436, 1994.

[3] S. Antoy and J. Gannon. Using term rewriting to verify software.
IEEE Trans. Softw. Eng., 20(4):259–274, 1994.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. In Pro-
ceedings of the 27th annual international symposium on Computer
architecture, pages 83–94. ACM Press, 2000.

[5] M. S. Chandrasekhar, J. P. Privitera, and K. W. Conradt. Applica-
tion of term rewriting techniques to hardware design verification.
In 24th ACM/IEEE conference proceedings on Design automation
conference, pages 277–282, 1987.

[6] D. Chaver, L. Piñuel, M. Prieto, F. Tirado, and M. C. Huang.
Branch prediction on demand: an energy-efficient solution. In
Proceedings of the 2003 international symposium on Low power
electronics and design, pages 390–395. ACM Press, 2003.

[7] T. Genet and F. Klay. Rewriting for cryptographic protocol veri-
fication. In Conference on Automated Deduction, pages 271–290,
2000.

[8] S. Gupta and F. N. Najm. Power macro-models for dsp blocks with
application to high-level synthesis. In ISLPED ’99: Proceedings
of the 1999 international symposium on Low power electronics
and design, pages 103–105, New York, NY, USA, 1999. ACM.

[9] J. Hoe and Arvind. Hardware synthesis from term rewriting sys-
tems. In X IFIP International Conference on VLSI (VLSI 99), Lis-
bon, Portugal, November 1999.

[10] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. Verifying sequential
equivalence using atpg techniques. ACM Trans. Des. Autom. Elec-
tron. Syst., pages 244–275, 2001.

[11] J. Klop. Term Rewriting Systems. In In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors: Handbook of Logik in Com-
puter Science, Oxford University Press, volume 2, pages 1–116,
1992.

[12] Y. Matsunaga. An Efficient Equivalence Checker for Combina-
tional Circuits. In Proceedings of Design Automation Conference,
pages 629–634, 1996.

[13] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: pushing
power management to logic synthesis/design. In Proceedings of
the 1995 international symposium on Low power design, pages
221–226. ACM Press, 1995.

[14] S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu. Auto-
matic decomposition for sequential equivalence checking of sys-
tem level and rtl descriptions. In Proceedings of IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2006), pages 71–80, 2006.

[15] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abra-
ham. Automatic verification of arithmetic circuits in rtl using step-
wise refinement of term rewriting systems. IEEE Trans. Comput.,
56(10):1401–1414, 2007.

[16] V. Viswanath, J. A. Abraham, and Warren A. Hunt, Jr. Automatic
insertion of low power annotations in rtl for pipelined micropro-
cessors. In DATE ’06: Proceedings of the conference on Design,
automation and test in Europe, pages 496–501, 2006.

[17] A. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. In IEEE Transactions on
Information Theory, pages 260–269, 1967.

[18] Z. Zhou and W. Burleson. Equivalence checking of datapaths
based on canonical arithmetic expressions. In Proceedings of the
32nd ACM/IEEE conference on Design automation conference,
pages 546–551. ACM Press, 1995.

82

Session 1C

Fault Diagnosis

A Novel Approach for Improving the Quality of Open Fault Diagnosis

Koji Yamazaki
Toshiyuki Tsutsumi

Meiji University

Hiroshi Takahashi
Yoshinobu Higami

Takashi Aikyo
Yuzo Takamatsu
Ehime University

Hiroyuki Yotsuyanagi
 Masaki Hashizume

The University of Tokushima

Abstract

With the shrinking process technologies and the use
of copper process, open defects on interconnect wires,
contacts and vias often cause failure. Development of
an efficient fault diagnosis method for open faults is
desired. However, the diagnosis method for open faults
has not been established yet. In this paper, we propose
a novel approach for improving the diagnostic quality
of open faults by introducing a threshold function in
which the logical value of the line with open defect
depends on the weighted logical values of its adjacent
lines. By using the threshold function, we can deduce
not only a faulty line but also an open defect site at the
faulty line. Experimental results show that the
proposed method can identify an exact faulty line in
most cases with a very small computation cost. The
proposed method can also identify the open defect site
within 25%-length of the faulty line.

1. Introduction

In order to reduce the cost and to improve the yield,
it is important to develop an efficient fault diagnosis
method. With the shrinking process technologies and
the use of copper process, open defects on interconnect
wires, contacts and vias often cause failure. Such
defects are modeled as open faults. However, the
diagnosis method for open faults has not been
established yet. Therefore, development of an efficient
fault diagnosis method for open faults is desired
strongly.

Some open fault models have been proposed [1-5].
In the fault model of [1], the line with open fault has an
intermediate voltage, and the faulty line behaves as
stuck-at 0 or 1, depending on the threshold voltage of
the gate with the faulty line in its input. Some fault
diagnosis methods for this model have been proposed
[7-10]. In the fault model described in [2-5], the

voltage of a line with open defect is determined by the
voltage of its adjacent lines. In this open fault model,
the value of the faulty line is represented as a logic
function of its adjacent lines.

In [3], a fault excitation function in which the
logical value of the line with open defect depends on
the logical values of its adjacent lines is proposed to
diagnose the open faults. In the previous method, we
defined the fault excitation function as a majority
function. However, not all fault excitation functions
are a majority function. From observation obtained
from TEG (Test Element Group) chips using a 90nm
process in [11], we determined that an effect of an
adjacent line depends on the length of the adjacent line
and the distance to a faulty line. Each adjacent line has
each weight for the faulty line. Therefore, we propose a
new approach that introduces a fault excitation
function as a threshold function of the adjacent lines.

Some open diagnosis methods considering a fault
excitation function have been proposed [4-6].
However, these methods do not use the feature that the
fault excitation function for open faults is a threshold
function.

In this paper, we propose a method for improving
the quality of open fault diagnosis. We introduce the
fault excitation function as a threshold function of the
adjacent lines. On a real defect in a chip, an open
defect site exists at somewhere on the faulty line with
the narrow defect region. To deduce the open defect
site at the faulty line is more useful for the failure
analysis. In the method proposed in this paper, 1)
candidate faults are deduced by deducing a fault
excitation function from test results, and 2) open defect
sites at the faulty line is deduced by using relative
weights of the adjacent lines for the faulty line, where
the weight represents how much the adjacent line
affects the faulty line.

Experimental results show that the proposed method
can identify an exact faulty line in most cases. The
proposed method can also identify the open defect site

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.53

85

within 25%-length of the faulty line. The computation
time for the circuit with about 2 million gates is less
than 2 minutes.

This paper is organized as follows. In section 2, we
describe the open fault model. In section 3, we explain
the outline of the proposed method. In section 4, the
effectiveness of the method is demonstrated by
computer experiments and section 5 concludes the
paper.

2. Open fault model with considering
adjacent lines

In this paper, we consider the open fault model
described in [2-5]. Let Vf be voltage of a faulty line f
with the open defect. Also let ai (i = 1, 2, ... , n) be
adjacent lines of f, and Vi be voltage of ai. In the fault
model, Vf is defined as follows;

∑ ⋅= iif VWV , (1)
where the weight Wi represents how much the adjacent
line ai affects f. Let Vth be threshold voltage of the gate
with f in its input. The logical value vf of f is given by
the following equation.

⎪⎩

⎪
⎨
⎧

≥

<
=

thf

thf
f VV

VV
v

1

0

Fig.1 A structure of the faulty line

and its adjacent lines

Table 1 The observed values at the faulty line 5

IN1 IN2 IN3 IN4 IN6 IN7 IN8 IN9 OUT5

0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0
0 0 0 1 1 0 0 0 1
1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1

This equation means that vf is determined by the
logical values of its adjacent lines.

In order to ascertain the effect from adjacent lines,
we have fabricated TEG chips using a 90nm
STARC/ASPLA 6 layer-Metal CMOS technology [11].
Figure 1 shows the structure of a test element in the
TEG chips. In this figure, the line 5 is the faulty line
with open defect, and others are its adjacent lines. The
length of each line is 30um. Table 1 shows the
observed logical values of the line 5 in the TEG chip.
As shown in the fourth row of Table 1, logic 1s on two
adjacent lines 4 and 6, which are on the same layer of
the faulty line 5, force the line 5 to a logic 1. Even if
the line 4 or 6 has a logic 0, 1s on all of the other
adjacent lines force the line 5 to a logic 1, as shown in
the fifth and sixth rows of Table 1.

A logical expression which represents conditions of
exciting a fault is called a fault excitation function
(FEF). For the open fault model, since the logical
value vf of the faulty line depends on the logical values
vi of its adjacent lines ai, the FEF is a function of the
adjacent lines.

vf = FEF(v1, v2, ... , vn)
We have proposed a method to diagnose open faults[3].
In this method, we defined a fault excitation function
as a majority function.

vf = FMJ(v1, v2, ... , vn)
However, the weight Wi in the equation (1) depends on
the length of the adjacent line ai and the distance to the
faulty line. Therefore, not all the fault excitation
functions are equally determined by the majority
function.

(a) open fault with 3 adjacent lines

(b) open fault with 2 adjacent lines

Fig.2 An example of open fault

M4

M3

M2

IN9
IN8

IN7

IN6
IN5

IN4

IN3
IN2

IN1

OUT5

X

0.14um

30um

open

open

a1 a2

a3
f

a1 a2

a3

f

open

86

In order to improve the diagnostic quality of open
faults, we introduce the fault excitation function as a
threshold function (FTH) of the adjacent lines. In
generally,

vf = FTH(v1, v2, ... , vn).
Since FTH changes according to the open defect site at
the faulty line, it is very difficult to predict it before
diagnosis process. For example, FTH of Fig.2(a) is

vf = FTH (v1, v2, v3)
while that of (b) is

vf = FTH (v2, v3) .
In the proposed method, FTH is not given before
diagnosis. The proposed method deduces the FEF for
each line from test results, and deduces candidate faults
by checking the FEFs are a FTH or not.

3. Open fault location procedure

The proposed method consists of 4 steps.
(STEP-1) Deduce candidates by using a stuck-at fault
simulator.
(STEP-2) Deduce candidates by checking
monotonicity of FEFs.
(STEP-3) Deduce candidates by checking complete
monotonicity of FEFs.
(STEP-4) Deduce open defect sites.

Definition 1 A test ti is called a fail test if errors have
been observed at primary outputs in ti, and otherwise a
pass test.

3.1. Outline of STEP-1

In all of the fail tests, an error generated on the
faulty line must be propagated to primary outputs.
Therefore, if there is at least one fail test that does not
detect stuck-at fault on a line fc, fc is decided to be
fault-free. Figure 3 shows the procedure of STEP-1.

STEP-1()
{

C = the set of all lines;
for (every fail test t) {

stuck_at_fault_simulation(t);
for (every line Cfc ∈) {

if (t does not detect stuck-at fault on fc) {
delete fc from C;

}
}

}
}

Fig.3 Procedure of STEP-1

3.2. Outline of STEP-2
We first explain three premises used in this paper

which form the basis of the algorithm in STEP-2.

Premises 1: The value of faulty line f is decided

uniquely by the combination of the signal values
on its adjacent lines.

Premises 2: An error must occur on f at all fail tests.
Premises 3: If a pass test t detects a stuck-at fault on

f, no error occurs on f at t.

Using an example, let us explain the outline of
STEP-2. Let vi be the signal value of an adjacent line ai,
and vc be the signal value of a candidate fault fc. Also
let G be a deduced FEF for fc. Table 2 shows fault-free
values of fc and its adjacent lines a1, a2 and a3. The
tests t1 and t2 are fail tests. The tests t3 and t4 are pass
tests of which detect the stuck-at fault on fc. If open
fault occurs on fc, 0-error must be generated on fc at the
fail test t1. In test t1, v1=0, v2=1 and v3=1. Since the
FEF G must be an FTH and an FTH is a monotonic
function, v1=0 is a sufficient condition for vc=0.

Although the test t3 detects stuck-at fault on fc, t3 is
a pass test. Therefore, v1=v2=v3=0 is a sufficient
condition for vc=0. Therefore,

13211 vvvvvG =+= .
Similarly, we obtain

321 vvvG +=

for tests t2 and t4. It is obvious that GG ⋅ must be 0.
However,

 31vvGG =⋅
in this example. This means that G(0, x, 1)=0 at the fail
test t1, while G(0, x, 1)=1 at the pass test t4. From this
inconsistency, fc is decided to be fault-free.

Figure 4 shows the procedure of STEP-2.

Table 2 An example of STEP-2

 vc v1 v2 v3

fail tests t1 1 0 1 1
t2 0 1 1 0

pass tests t3 0 0 0 0
t4 1 0 0 1

87

STEP-2()
{

// C : the set of candidate faults
// ai : adjacent lines
// vi : variables for ai
// n : the number of adjacent lines
// v(x, t) : fault-free value of line x in test t

;0== GG
for (every candidate fault Cfc ∈) {

for (every fail test t) {
if (v(fc, t) ==1) {

))),(((
1

ii
n

i
vtavGG ∨∨= ∧

=
;

} else {

))),(((
1

ii
n

i
vtavGG ∨∨= ∧

=
;

}
}
for (every pass test t) {

if (t detects a stuck-at fault on fc) {
if (v(fc, t) == 0) {

))),(((
1

ii
n

i
vtavGG ∨∨= ∧

=
;

} else {

))),(((
1

ii
n

i
vtavGG ∨∨= ∧

=
;

}
}

}
if (0≠⋅ GG) {

delete fc from C;
}

}
}

Fig.4 Procedure of STEP-2

3.3. Outline of STEP-3

In STEP-2, we check the monotonicity of FEF to
deduce the candidates. In order to reduce the number
of candidates, in STEP-3, we add to check whether
FEF is a threshold function or not. It is known that an
n-variable)8(≤n complete monotonic function is a
threshold function. We, therefore, check the complete
monotonicity of FEF)8(≤n as follows [12].

Let G be a FEF, and Xi be a input vector.

Definition 2 If a pair of input vectors (X1, X2), (X3, X4)
satisfies X1+X2=X3+X4, the pair is called a diagonal
vector pair.
Definition 3 If a pair of input vector (X1, X2), (X3, X4)
satisfies

),...,(12431 nvvXXXX =−=−

∑= ivk ,
the pair is called a distance-k diagonal vector pair.
Definition 4 If no diagonal vector pair whose distance
is lower than k satisfies

0)}()({)}()({ 2431 <−⋅− XGXGXGXG ,
G is called a k-monotonic function.

If an n-variable function G is a ⎣ ⎦2/n -monotonic

function, G is a complete monotonic function.

3.4. Outline of STEP-4
It is difficult to decide the correct value of weight

Wi in the equation (1), because Wi depends on the
threshold voltage of the gate with the faulty line in its
input. However the relative weights of adjacent lines
are decided easily from the length of adjacent lines and
the distance to the faulty line [5]. We define the weight
Wi as follows;

ii wCW ⋅=
while C is a constant, and wi is the relative weight. In
STEP-4, the open defect site at the faulty line is
deduced by using this relative weight wi.

Let wi be the relative weight of the adjacent line ai
in the fault-free circuit, and wi' be that in the faulty
circuit. Assume that a candidate fault has adjacent lines
aj, ak, am and an. The relationship of relative weights in
the fault-free circuit is given as follows.

nmkj wwww +≥+ (2)
Let G=(aj, ak, am, an) be the FEF deduced in STEP-3. If

G(1, 1, 0, 0) = 0
G(0, 0, 1, 1) = 1,

then we deduce that the relationship of relative weights
in the faulty circuit as follows.

'''' nmkj wwww +<+ (3)
The expression (3) is different from (2). Therefore, the
open defect must occur in the range that the expression
(3) is satisfied.

Using an example, let us explain the outline of
STEP-4. Figure 5 shows a geometrical pattern of a
faulty line and its adjacent lines, and relative weights
of adjacent lines. Let G(v1, v2, v3, v4) be the FEF
deduced at STEP-3. If

G(1, 1, 0, 0) = 0
G(0, 0, 1, 1) = 1,

then we deduce that the relationship of relative weights
in the faulty circuit as follows.

88

 '''' 4321 wwww +<+
In this example, the relationship of relative weights

in the fault-free circuit is as follows.
 4321 wwww +>+
In order to decide the open defect site easily, we

consider only the discrete distance on the candidate
faulty line from its input gate. In Fig.5, the length of
the candidate faulty line is 8. Since the weight of an
adjacent line is proportional to its length, the weight at
each point is decided as shown in Table 3. From Table
3, w1'+w2' is smaller than w3'+w4' from point 2 to 4.
Therefore, the open defect site must be within this
range. If no point satisfies the inequality, fc is decided
to be fault-free.

Fig.5 Faulty line and its adjacent lines

Table 3 Weights in the faulty circuit
 0 1 2 3 4 5 6 7

w1'
w2'
w3'
w4'

5
1
3
2

4
1
3
2

3
1
3

1.5

2
1
3
1

1
1
2

0.5

0
1
1
0

0
0.5
0
0

0
0
0
0

w1'+ w2'
w3'+ w4'

6
5

5
5

4
4.5

3
4

2
2.5

1
1

0.5
0

0
0

4. Experimental results

To evaluate the performance of the diagnosis
method presented in Sec.3, we used ISCAS'89
benchmark circuits, ITC'99 benchmark circuits and
subcircuits of STARC'03 benchmark circuit [13]. The
profiles of STARC03 benchmark circuits are shown in
Table 4, where the number of primary inputs, the
number of primary outputs and the number of gates are
shown. In the experiment, we used 3000 random tests.
Adjacent lines and fault excitation functions are
generated randomly. The number of adjacent lines is 8
for all lines. In STEP 4, the line length is 20 for all
lines. The diagnosis program was run on a computer
with Intel Core2 (2.4GHz) and 2GB memory. In this
experiment, we use only pass/fail information. Table 5
shows the mean values for randomly sampled 100 open
faults. In Table 5, "# of DSs" shows the number of

candidate open defect sites deduced in STEP-4. In
order to reduce the CPU time, stuck-at fault simulation
in STEP-1 was applied to first 32 fail tests.

Simulation results show that the faulty line can be
exactly identified in most cases. CPU time for s3-3
(2.3M gates) is less than 2 minutes. The candidate
open defect site is about 25%-length of the faulty line.

5. Conclusion

We have proposed a method for improving the
quality of open fault diagnosis by introducing the fault
excitation function as a threshold function of the
adjacent lines. Experimental results show that the
proposed method can identify an exactly faulty line in
most cases. CPU time for 2.3M gates circuit is less
than 2 minutes. Therefore the proposed diagnosis
method is applicable to large circuits.

In future, we have a plan to submit a paper for
modeling dynamic open faults. We also have a plan to
propose a method for generating tests for dynamic
open faults with considering adjacent lines.

Acknowledgment

This work was supported in part by Semiconductor
Technology Academic Research Center (STARC)
under the Research Project.

The VLSI chip in this study has been fabricated
through the chip fabrication program of VLSI Design
and Education Center (VDEC), the University of
Tokyo, with the collaboration by STARC, Fujitsu
Limited, Matsushita Electric Industrial Company
Limited., NEC Electronics Corporation, Renesas
Technology Corporation, and Toshiba Corporation.

References
[1] S. M. Reddy, I. Pomeranz, H. Tang, S. Kajihara and K.

Kinoshita, "On Testing Interconnect Open Defects in
Combinational Logic Circuits with Stems of Large
Fanout," Proc. ITC, pp.83-87, 2002.

[2] Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda and M.
Takakura, "A Persistent Diagnostic Technique of
Unstable Defects," Proc. ITC, pp.241-249, 2002.

[3] H. Takahashi, Y.Higami, S. Kadoyama, T. Aikyo, Y.,
Takamatsu, K. Yamazaki, T. Tsutsumi, H. Yotsuyanagi
and M. Hashizume, "Clues for Modeling and
Diagnosing Open Faults with Considering Adjacent
Lines, " Proc. ATS, pp.39-44, 2007.

[4] C. Liu, W. Zou, S. M. Reddy, W-T. Cheng, M. Sharma
and H. Tang, "Interconnect Open Defect Diagnosis
with Minimal Physical Information," Proc. ITC, 2007.

[5] R. R-Montanes, D. Arumi, J. Figueras, S.
Einchenberger, C. Hora, B. Kruseman, M. Lousberg
and A. K. Majhi, "Diagnosis of Full Open Defects in
Interconnecting Lines," Proc. VTS, pp.158-166, 2007.

0 21 3 4 765

a4

a3

a1

a2

w1=5

w3=3

w4=2

w2=1

89

[6] R. Desineni, O. Poku and R. D. Blanton, "A Logic
Diagnosis Methodology for Improved Localization and
Extraction of Accurate Defect Behavior," Proc. ITC,
2006.

[7] S. Venkataraman and S. B. Drummonds, "A Technique
for Logic Fault Diagnosis of Interconnect Open
Defects," Proc. VTS, pp.313-318, 2000.

[8] S. Huang, "Diagnosis of Byzantine Open-Segment
Faults," Proc. ATS, pp.248-253, 2002.

[9] W. Zou, W. Cheng S. M. Reddy, "Interconnect Open
Defect Diagnosis with Physical Information," Proc.
ATS, pp.203-209, 2006.

[10] Y. Sato, H. Takahashi, Y. Higami and Y. Takamatsu,
"Faillure Analysis of Open Faults by Using
Detecting/Un-detecting Information on Tests," Proc.
ATS, pp.222-227, 2004.

[11] H. Yotsuyanagi, M. Hashizume, H. Takahashi, T.

Tsutsmi, K. Yamazaki, T. Aikyo, Y. Higami and Y.
Takamatsu, "Fault Effect of Open Faults Caused by
Adjacent Signal Lines in a 90nm IC," Proc. VLSI
Design, 2009.

[12] Y. Takamatsu, K. Murakami and T. Aibara, "Isobaricity
for a Set of Multivalued Logic Functions and Its
Application to the Synthesis of Multithreshold
Threshold Elements," IECE Systems. Computers.
Controls., vol.5, No.5, pp.28-35, 1974.

[13] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y.
Nozuyama, and S.Kajihara, "Invisible Delay Quality-
SDQM Model Lights Up What Could Not Be Seen,"
Proc. ITC, pp.1202-1210, 2005.

circuits # of PIs # of POs # of gates
s3-1 1,486 1,307 44,516
s3-2 18,373 17,679 107,695
s3-3 52,111 45,641 2,272,320

Circuit # of gates
of candidate faults

CPU time (s) # of DSs min max avg
cs38417 22k 1 1 1.00 0.2 5.3
cs38584 19k 1 2 1.02 0.1 5.9

cb17 31k 1 4 1.04 0.5 7.3
cb18 111k 1 3 1.02 2.8 6.9
cb19 225k 1 1 1.00 3.6 6.9
s3-1 45k 1 1 1.00 1.0 4.5
s3-2 108k 1 1 1.00 1.6 5.9
s3-3 2.3M 1 1 1.00 108.7 5.2

Table 4 Specifications of STARC'03 benchmark circuits

Table 5 Experimental results

90

Fault Effect of Open Faults Considering Adjacent Signal Lines in a 90 nm IC

Hiroyuki Yotsuyanagi1, Masaki Hashizume1,
Toshiyuki Tsutsumi2, Koji Yamazaki3, Takashi Aikyo4,

Yoshinobu Higami4, Hiroshi Takahashi4, Yuzo Takamatsu4

1Institute of Technology and Science, The Univ. of Tokushima
2School of Science and Technology, Meiji University

3School of Information and Communication, Meiji University
4Graduate School of Science and Engineering, Ehime University

Abstract

Open faults are difficult to test since the voltage at the
floating line is unpredicted and depends on the voltage at
the adjacent lines. The modeling for open faults with con-
sidering adjacent lines has been proposed in [10]. In this
work, the 90 nm IC is designed and fabricated to evaluate
how the voltage at adjacent lines affect the defective line.
The open fault macros with a transmission gate and with an
intentional break are included in the IC. The nine lines are
placed in parallel in three layers to observe the effect of the
coupling capacitance when an open occurs. The benchmark
circuits with the open fault macro are also included in the
IC. The simulation and experimental results show that the
relationship between the floating line and the adjacent lines.
The experimental results are also compared with the open
fault model that calculate the weighted sum of voltages at
the adjacent lines.

1. Introduction

Open faults and bridging faults are the faults most likely
occur in deep sub-micron(DSM) ICs. Some of the faults
can not behave like conventional stuck-at fault model and
are hard to be detected [1,5–8]. Especially open faults cause
unstable voltage at the faulty wires. It has been pointed out
that the voltage at the floating wires occurred by an open
fault is influenced by its adjacent lines [8, 13].

In [2, 7, 9, 11], test generation methods for open faults
have been proposed. Another test approach in [3] detects
open defects by applying time-varying electric field from
outside of ICs to swing the voltage of floating wires that
causes the logic error at outputs.

In [4, 10–12], fault model of open faults which takes the
effects of the adjacent lines into account has been proposed.

In the model, it is required to estimate how the voltage at
adjacent lines affects the defective line.

The fault effects of open defects in real chips have been
reported in some paper [1, 5, 6, 13]. These results are ob-
tained for 1.5 μm to 0.35 μm technology. In this paper, the
90 nm IC is designed and fabricated which includes open
faults. The open faults are intentionally inserted into the IC
to observe the effect of adjacent lines around a faulty line.
The adjacent lines are placed not only in the same layer but
also in the different layers in our IC to evaluate the effects
between the layers.

This paper is organized as follows. In Section 2, the open
fault model assumed in this work is shown. To estimate the
effect of the adjacent lines, the open fault macros with a
transmission gate and an intentionally break are designed.
Its design and simulation results are also shown in Section
2. In Section 3, the description about the test chip fabri-
cated in 90 nm technology is given. Experimental results
are shown in Section 4 and section 5 concludes the paper.

2. Open fault macros

2.1. Open fault model with adjacent lines

In [10, 11], the voltage at a floating line is modeled as
the weighted sum of the voltages at the adjacent lines. The
faulty voltage on the line v is defined as the following equa-
tion.

Vv′ = Σ(αi × Vai) + β × Vv (1)

where Vv′ is the voltage at the faulty line, Vai is the voltage
at adjacent line ai, and αi and β are the coefficients. For
a complete disconnected open fault, these coefficients are
mainly related to the coupling capacitance and the gate ca-
pacitance connected to the faulty line. The purpose of our
experimental IC is to estimate the relationship between a
faulty line and its adjacent lines.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.60

91

2.2. Design of open fault macros

In this work, two kinds of open faults are intentionally
inserted into the design. One is an open fault realized by
a transmission gate as shown in Fig. 1. Input TG is uti-
lized to control the transmission gate to emulate an open
fault. The other is a complete open fault realized by a break
in a signal line as shown in Fig. 2. The break is designed
by inserting a minimum space (0.14 μm) that is allowed by
the design rule. To estimate the effect of the coupling ca-
pacitances between the floating line and the adjacent line,
an nMOSFET is placed between the floating line and the
ground in order to remove the charge unlike the test chip
in [1]. It also prevents the excessive current from flowing
in open fault macros which are not selected to be observed.
In the normal mode, output OUT4 of the open fault macro
is set to H level when RESIN = L level. The expected
output including this macro is the same as the circuit with a
stuck-at 0 fault at the faulty line.

Figure 1. Open fault macro with a transmis-
sion gate

Figure 2. Open fault macro with an intentional
break

The line with an open fault is designed with eight ad-
jacent lines in three layers , Metal 2, Metal 3 and Metal
4. Two structures of lines called L3L3L3 structure and

L2L5L2 structure are constructed as shown in Fig. 3(a) and
Fig. 3(b), respectively. An open fault is placed at line 4
for each open fault macro. In L3L3L3 structure, three lines
are placed in metal 2, metal 3, and metal 4. This structure
is utilized to observe the difference of the coupling effects
among the layers. In L2L5L2 structure, two lines are placed
in metal 2 and metal 4, and five lines are placed in metal 3.
This structure is utilized to observe the effect of multiple
adjacent lines in the same layer. The lines placed in parallel
with minimum distance (0.14 μm) described in the design
rule.

(a) L3L3L3

(b) L2L5L2

Figure 3. Placement of adjacent lines

2.3. Simulation results

The layout of the open fault macros described above is
designed in 90 nm CMOS technology. Some layouts are
designed with different length L of the faulty line. The
HSPICE simulation is applied for the netlists extracted from
the layouts. The maximum voltage at the floating line,
Vopen, is calculated by applying the input vector which
bring the signal at all eight adjacent lines from L to H. Fig.
4 shows the relationship between the maximum voltage at
the faulty line Vopen versus the length of the faulty line L
obtained for the open fault macros. The results obtained for
the open fault macro with a transmission gate are labeled as
TG. The results obtained for the open fault macro with a
break are labeled as BR. Since the supply voltage is 1.0[V]
and the threshold voltage for logic H is about 550[mV] ob-
tained from an inverter gate, logical error will be occurred
for the faulty line with length more than 30 μm.

Fig. 5 and Fig. 6 show the HSPICE simulation results

92

Figure 4. Simulation results of the length of a
faulty line L vs Vopen characterization

how much the adjacent lines affect the voltage of the faulty
line. The simulation is applied for the open fault macro with
a transmission gate with L3L3L3 structure of adjacent lines.
The length L of the faulty line is set to 100 μm.

The effect of each adjacent line is shown in Fig. 5. In
this simulation, the input pattern is provided such that the
signal transition from L to H occurs only one adjacent line
at a time. Note that an inverter gate is inserted between the
input and the parallel lines. An open fault is inserted in line
4 in Fig. 3(a). The signal transition occurs at the adjacent
lines (8, 0, 6, 2, 7, 1, 5, 3) in this order. The waveforms
shown below in the figure are the voltage waveforms of the
output OUT4 and the faulty line (dashed line). It can be
seen that the adjacent lines at the same layer can bring the
largest voltage change at the faulty line among the eight
adjacent lines. Since the single transition from L to H can
not bring the voltage at the faulty line over the threshold
voltage of a logic gate, the output voltage was not affected
by the fault.

The simulation result to observe the effect of combina-
tion of the adjacent lines is shown in Fig. 6. In this simula-
tion, the signal transition from L to H consecutively occurs
at the adjacent line (8, 0, 6, 2, 7, 1, 5, 3) in this order. The
voltage at the faulty line rises as the adjacent lines at which
the voltage changed from L to H increase as shown in the
waveform at the faulty line shown in the dashed line. The
output voltage shows an error when all lines at the different
layer (lines 8,0,6,2,7,1) and one line at the same layer (line
5) becomes H level.

3. An experimental test chip with open faults

In this work, an IC including the circuits with open
faults is designed and fabricated in 90 nm STARC/ASPLA 6
layer-Metal CMOS technology. Our experimental test chip
includes the open fault macros described in Section 2 and
the macros of ISCAS85 benchmark circuits c17, c880, and

Figure 5. Fault effects due to a single adja-
cent line

Figure 6. Fault effects due to multiple adja-
cent lines

93

c3540, with the open fault macro. The length of the floating
line L in the open fault macros is set to 100 μm in the IC.

Each macro has nine inputs and nine outputs and a con-
trol input TG or RESIN that selects the faulty behavior of
a macro. For benchmark c17, some extra inputs and outputs
and inverter chains are added. Five lines in the benchmark
circuit and four lines in the inverter chains are selected and
replaced with the open fault macro. For benchmark c880
and c3540 that have primary inputs/outputs more than nine,
the two input patterns can be provided through scan chains.
Fig. 7 shows the circuit diagram of the macros with bench-
mark circuits c880 and c3540. Nine lines in the benchmark
circuits are selected and replaced with the open fault macro.
These lines are selected such that many combination of sig-
nal values are obtained by 1000 random input patterns. To
observe effects of an open fault, the lines are selected such
that they are not on the output paths from an open fault. The
selected lines are replaced with an open fault macro in ver-
ilog netlist. The circuit layout is then obtained by a place
and route tool. Fig. 8 shows the layout of the c3540 with
an open fault macro. The IC includes twenty-four macros
comprised of the open fault macros and the benchmark cir-
cuits with the open fault macro.

Figure 7. The input/output circuits for bench-
mark macros

Figure 8. The layout of the benchmark circuit
with an open fault macro

4. Experimental results

To observe the influence of the adjacent lines on the sig-
nal line with an open fault, several input patterns are applied
to the fabricated ICs. Some of the patterns and the results
obtained for the IC are shown in Table 1. The pattern p1
to p8 are applied that provide the signal values at the par-
allel lines as in Column (a8a7a6 a5va3 a2a1a0). v denotes
the input of the faulty line and aj denotes the adjacent lines
as in Fig. 3. For the macros including benchmark circuits
c880 and c3540, the two patterns that provide the assign-
ments in the column are selected and applied through the
scan chain shown in Fig. 7. Column OUT4 shows whether
an error is detected at the output of the fault line or not. The
voltage supplied to the faulty line is set to L, therefore the
fault-free output value at OUT4 is H. This is the case that
Vv is set to L in the open fault model in Eq. 1. In this ex-
periments, first the control input TG or RESIN is set to L
to reduce the trapped charge for 2 clock periods (0.4 μ sec).
and then these inputs are set to H to make the open fault
macro behave like complete open. After that, input patterns
are applied.

Pattern p1 is the basic pattern that set all adjacent lines to
L level. The pattern is considered not to activate a fault ef-
fect. In pattern p2, when all of eight adjacent lines changed
its signal from L to H, the output changed to L level and
the open fault can be detected. In pattern p3, the output
value was changed when two adjacent lines at the same
layer (metal 3) changed its signal value. Only two near-
est adjacent lines a5 and a3 can bring the voltage at floating
line up to the threshold voltage of the inverter. This is also
deduced from the simulation result in Fig. 5. Pattern p4
changes the adjacent lines except the nearest lines a5, a3.
In this case, the fault effect at the output signal did not be
observed. Pattern p5 changes only one nearest adjacent line
a5. The faulty output values were not observed for the pat-
tern. The same output patterns were also be observed for the
other adjacent lines. Any one of the adjacent lines can not
bring the faulty line from L to H in the experiments. Pattern
p6 changes the adjacent lines except one of the nearest line
a3. In this case, the error was found at the output. This is
also deduced from Fig. 6. It is confirmed by the results ob-
tained for pattern p5 and p6 that the voltage at the floating
line is affected from the other layers. The results shown in
Table 1 were obtained for both the open fault macros and
the benchmark circuit with the open macros. Pattern p7 and
p8 shows the case that the adjacent line a0 affected whether
the faulty output was observed or not. The line a0 is placed
in the lower right side from the floating line. Although the
effect from a0 is considered to be very small, the logic value
at the line affects the faulty behavior as shown in the case
for pattern p7 and p8.

In our experiments, the clock is provided at a speed of 5

94

MHz. Pattern p1 to p8 are repeatedly applied with some dif-
ferent period for the open fault macro and the fault macro of
benchmark circuit c17. Fig. 9 is the output signal obtained
for pattern p1. In this experiments the fault effect did not
remain for 1 μsec. The voltage at output OUT4 becomes H
before the adjacent lines aj changed from H to L. It seems
that the trapped charge was reduced with time by leakage.
The similar output pattern was also observed for the other
patterns and for the other open fault macros.

Table 1. The examples of the input patterns
and the results of fault detection

pattern adjacent lines OUT4
(a8a7a6 a5va3 a2a1a0) (v′)

p1 (LLL LLL LLL) H
p2 (HHH HLH HHH) L
p3 (LLL HLH LLL) L
p4 (HHH LLL HHH) H
p5 (LLL HLL LLL) H
p6 (HHH HLL HHH) L
p7 (HHL LLH HHH) L
p8 (HHL LLH HHL) H

Figure 9. Output signal obtained for pattern
p1 and p2

The input pattern used in the simulation of Fig. 6 was
applied to the IC. The pattern changes the voltage at the
adjacent lines in descending order of the distance from the
faulty line. Fig. 10 shows the output pattern obtained for the
same input pattern as in the simulation of Fig. 6. The output
OUT4 changes when the adjacent lines except the nearest
lines a5, a3 and one of the nearest adjacent line are H level.

The coupling capacitance between the lines in the same
layer is about five to ten times greater than the capacitance
between the lines in the different layer according to the
extracted value from the layout. Table 2 shows the cou-
pling capacitance extracted from the open fault macro with
L = 100μm. The simulation results also shows the dif-
ference among adjacent lines as shown in Fig. 4,5 and 6.
The experimental IC also shows there exists the difference
between the nearest adjacent lines and the other adjacent

lines.

Table 2. The coupling capacitance extracted
from the layout of Fig. 2 (L=100μm)

adjacent lines coupling capacitance [fF]
a5 − v′ 8.82
a3 − v′ 8.81
a7 − v′ 1.80
a1 − v′ 1.71
a2 − v′ 0.25
a8 − v′ 0.25
a6 − v′ 0.25
a0 − v′ 0.22
v − v′ 0.01

To estimate the relation between the model in [10, 11],
we calculate Vv′ in Eq.(1) with αi = Cv′−ai

/Ctotal. Ctotal

is the total amount of the capacitances shown in Table. 2
(=22.12). All combination of nine inputs were applied to the
fabricated chips. All pattern are applied three times for five
chips. The relation between Vv′ calculated for the inputs
and the experiments are follows:

• For Vv′ < 0.497 (235 vectors), the floating lines be-
have as L level for all input patterns and for all chips.

• For 0.497 < Vv′ < 0.505 (45 vectors), the floating
lines behave as L level for the inputs that provide v =
L. However, the logic value is different among the
chips for the inputs that provide v = H .

• For 0.505 < Vv′ < 0.570 (60 vectors), the observed
logic values differed from the chips.

• For 0.570 < Vv′ (172 vectors), the floating lines be-
have as H level for for all input patterns and for all
chips.

For the intermediate value of Vv′ , the logic value is not de-
termined by the input vector. The process variation affects
the results. Therefore, some modification of α may differ-
entiate the logic value of the floating line, there may remain
the case that the logic value at the floating line is not pre-
dicted. In this example, for 407 vectors out of 512 vectors
the observed logic values are matched with the prediction
given by the calculation.

The IC also includes test elements of open fault macros
with various parameters such that the length of the floating
lines and the distance between the floating lines. To investi-
gate more detailed condition for the faulty output due to the
coupling effects, another 90 nm chip is currently fabricated
and the results obtained for both chip will be reported in the
future work.

95

Figure 10. Output signal obtained for pattern
Fig. 6

5. Conclusion

The IC with test elements for investigating the fault ef-
fect of open faults and its adjacent lines are designed and
fabricated in 90 nm CMOS technology. It can be found that
two or more adjacent lines will affect the output logic. The
effect of adjacent lines depends on the length and the dis-
tance between the faulty line and the adjacent lines. There
exists the case that the fault effect depends on the adjacent
lines at different layers from the faulty line. The compar-
ison between the weighted sum of voltages at the adjacent
lines and the observed logic values shows the logic value at
the floating lines can be predicted for almost 80% of input
vectors. The more detailed relationship between the voltage
at the faulty line and the parameters of adjacent lines such
as the length and the distance will be analyzed in the future
work.

Acknowledgement

This work was supported in part by Semiconductor Tech-
nology Academic Research Center (STARC) under the Re-
search Project. The VLSI chip in this study has been fabri-
cated through the chip fabrication program of VLSI Design
and Education Center(VDEC), the University of Tokyo,
with the collaboration by STARC, Fujitsu Limited, Mat-
sushita Electric Industrial Company Limited., NEC Elec-
tronics Corporation, Renesas Technology Corporation, and
Toshiba Corporation. The authors would also like to thank
the reviewers of this paper for their valuable comments.

References

[1] D. Arumi, R. Rodriguez-Montanes, and J. Figueras. Ex-
perimental characterization of CMOS interconnect open de-
fects. IEEE Trans. on Computer-Aided Design, 27(1):123–
136, Jan 2008.

[2] R. Gomez, A. Giron, and V. Champac. Test of interconnec-
tion opens considering coupling signals. Defect and Fault-
Tolerance in VLSI Systems, IEEE International Symposium
on, pages 247–258, 2005.

[3] M. Hashizume, M. Ichimiya, H. Yotsuyanagi, and T. Tame-
sada. CMOS open defect detection by supply current mea-
surement under time-variable electric field supply. IEICE
transactions on information and systems, E85-D(10):1542–
1550, Oct. 2002.

[4] M. Hashizume, Y. Yamada, H. Yotsuyanagi, T. Tsutsumi,
K. Yamazaki, Y. Higami, H. Takahashi, and Y. Takamatsu.
Fault analysis of interconnect opens in 90nm CMOS ICs
with device simulator. Proc. International Technical Confer-
ence on Circuits/Systems, Computers and Communications,
pages 249–252, 2008.

[5] J. C.-M. Li, C.-W. Tseng, and E. McCluskey. Testing for
resistive opens and stuck opens. Proc. International Test
Conference, pages 1049–1058, 2001.

[6] E. J. McCluskey and C.-W. Tseng. Stuck-fault tests vs.
actual defects. Proc. International Test Conference, pages
336–342, 2000.

[7] S. M. Reddy, I. Pomeranz, H. Tang, S. Kajihara, and K. Ki-
noshita. On testing of interconnect open defects in com-
binational logic circuits with stems of large fanout. Proc.
International Test Conference, page 83, 2002.

[8] Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda, and
M. Takakura. A persistent diagnostic technique for unstable
defects. Proc. International Test Conference, pages 242–
249, 2002.

[9] S. Spinner, I. Polian, P. Engelke, B. Becker, M. Keim, and
W.-T. Cheng. Automatic test pattern generation for intercon-
nect open defects. Proc. VLSI Test Symp., pages 181–186,
2008.

[10] H. Takahashi, Y. Higami, S. Kadoyama, T. Aikyo, Y. Taka-
matsu, K. Yamazaki, T. Tsutsumi, H. Yotsuyanagi, and
M. Hashizume. Clues for modeling and diagnosing open
faults with considering adjacent lines. Proc. Asian Test
Symp., pages 39–44, 2007.

[11] H. Takahashi, Y. Higami, T. Kikkawa, T. Aikyo, Y. Taka-
matsu, K. Yamazaki, T. Tsutsumi, H. Yotsuyanagi, and
M. Hashizume. Test generation and diagnostic test gener-
ation for open faults with considering adjacent lines. Proc.
International Symposium on Defect and Fault-Tolerance in
VLSI Systems, pages 243–251, Sept. 2007.

[12] K. Yamazaki, T. Tsutsumi, H. Takahashi, Y. Higami,
T. Aikyo, H. Yotsuyanagi, M. Hashizume, and Y. Taka-
matsu. A novel approach for improving the quality of open
fault diagnosis. VLSI Design 2009, 2009. (to appear).

[13] A. Zenteno, V. H. Champac, and J. Figueras. Detectabil-
ity conditions of full opens in the interconnections. Journal
of Electronic Testing: Theory and Applications, 17:85–95,
2001.

96

Efficient Grouping of Fail Chips for Volume Yield
Diagnostics

Lavanya Jagan, Ratan Deep Singh, V. Kamakoti
Reconfigurable & Intelligent Systems Engineering Group,

Department of Computer Science and Engineering,
Indian Institute of Technology-Madras, India.

lavanya@cse.iitm.ernet.in, rataniitm@gmail.com,
kama@cs.iitm.ernet.in

Ananta K. Majhi
Corporate Innovation & Technology,

NXP Semiconductors, Eindhoven
The Netherlands.

ananta.majhi@nxp.com

Abstract— Volume Yield Diagnostics (V Y D) is crucial to
diagnose critical systematic yield issues from the reports obtained
by testing thousands of chips. This paper presents an efficient
clustering technique for V Y D that has been shown to work
successfully both in the simulation environment as well as on
real industrial failure data.

Keywords: Volume Yield Diagnostics, Clustering, Fail Sig-
natures, Systematic Defects, Yield

I. INTRODUCTION
The success of a semiconductor industry crucially depends

upon the number of correct chips it produces (yield) within a
given time window. Yield analysis has thus become a major
issue for the progress of any electronics industry [1], [2]. For
the current nanometer technologies, yield remains very low
during the initial phases of manufacturing. This is mainly
because the manufacturing and lithographic techniques still
remain at 193nm whereas the technology nodes have been
driven below 60nm [3]. These process-design interactions
lead to design rule violations that further results into a
class of faults that are termed in the literature as Systematic
defects [4], [5], [6], [7]. These defects appear over many
failing dies of the same device leading to a drastic decrease in
yield. Such defects are dangerous as they target very strongly
on system’s topology and possess very specific defect
characteristics. Traditional techniques for yield analysis
presented in [8], [9], [10], use memory bit mapping, inline
inspection etc. and does target common systematic defects
in current nanometer technologies that includes source
drain defects, isolation defects, and gate stack defects. The
main drawbacks of these approaches are not only that they
need highly sensitive advanced inspection tools but also
take prohibitively large time for diagnosis making them
non-scalable with increasing volumes of failing chips.

Volume Yield Diagnostics (VYD) presented
in [7], [11], [12] specifically addresses the problem of
scalability. The objective of VYD is to conduct logic
diagnostics over a very large set (thousands) of statistically
significant failed chips of the same device to identify most
critical yield issues. The critical step in VYD is to select
the most statistically significant set of failed dies followed

by a trends analysis on the diagnostic results of them to
precisely identify the cause of failure. If the cause is still
unidentified after this stage, a Precision Yield Diagnostics
(PYD) is done for a few statistically significant chips to find
out the root cause of the failures. Performing VYD as fast
as possible without losing much diagnostic accuracy is the
challenge faced by the EDA industries today. Methods to
reduce the runtime of VYD have been proposed in [13], [14].
The method presented in [13] uses only the first or first few
failing test patterns for each failing device for diagnostic
simulation. A considerable amount of runtime is saved by
following the proposed approach but at the cost of accuracy.
An extensive precision diagnostics would be needed in such
a case to get reasonably good results even after the trend
analysis. The technique proposed in [14] overcomes this by
clustering similarly failing chips on the basis of their fail
signatures [15]. Fail Signatures of each failed die is essentially
a compact representation of the raw failure data of a chip
obtained from an Automatic Test Equipment (ATE). The
failure data can be further supported with various other types
of information like design data, layout data, die coordinates
(in case of spatial wafer signatures) primarily to speedup the
diagnosis step [6].

The paper proposes an effective way of describing the
fail information of the chips (fail signatures) by giving more
importance to the data which are most likely to contribute in
detecting systematic defects. It also presents an algorithm that
uses the proposed fail signatures and has been found to greatly
reduce the run-time of clustering without compromising the
performance. Comparison of the proposed scheme with the
recent one [14] reported in the literature shows the efficiency
of the proposed approach.

The rest of this paper is organized as follows. In section II,
we discuss the motivation for our work. In section III, we
describe our proposed technique. We explain the weight-based
grouping algorithm and the simulation framework in section
IV and V respectively. In section VI, we show experimental
results, and finally in section VII, we conclude the paper.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.59

97

II. MOTIVATION

The main motivation behind the proposed work is the
following drawbacks that were observed in the fail signature
scheme proposed in the most recent VYD [14] reported in
the literature. The test report for a chip, as reported in [14],
comprises of K scan flip flops and N test patterns. It is
represented by a N ×K matrix TEST , such that TEST [i, j]
is a bit which is set to 1 if the ith pattern failed on the jth

scan-flipflop, else it is 0. The method proposed in [14] derives
two types of fault signatures from the TEST matrix, namely,
scan-flop based and pattern based ones. The scan-flop based
signature is a K-bit vector, SCAN, such that SCAN[i] is 1, if
at least one of the N patterns failed on the ith scan flipflop,
else it is 0. Similarly, the pattern-based signature is a N-bit
vector, PAT, such that PAT[i] is 1, if at least one of the K scan
flip flops failed on the ith pattern, else it is 0. The technique
proposed in [14] groups the chips based on how close are the
fail signatures. The commonality measure between two k-bit
fail signatures as defined in [14] is the ratio of the number of
bit positions that have a 1 in both the signatures to the number
of bit positions in which at least one of the signatures has a
1. In other words, it is the ratio of the common failures to the
total number of failures. The major drawbacks of the grouping
technique proposed in [14] are as follows:
Ineffective Fail Signatures: The fail signatures do not attach
any additional importance to probable systematic fault. Con-
sider a simple example of 8-bit pattern-based signatures of
four chips C1, C2, C3 and C4.

C1 = (1, 1, 0, 0, 1, 1, 0, 0)
C2 = (1, 1, 1, 1, 0, 0, 0, 0)
C3 = (1, 0, 0, 0, 0, 0, 0, 0)
C4 = (0, 0, 1, 1, 1, 1, 0, 0)

It is easy to see that the most probable systematic defects
is the one indicated by the first bit of the signature, as they
are common to three out of the four chips. However, the
commonality measure as computed by [14] is 1/3 between
every pair of the three chips C1, C2 and C4. The commonality
measure between C3 and the chips C1 and C2 is 1/4, and,
between C3 and C4 it is 0. By this, we see that C1, C2 and
C4 have more commonness between them than C1, C2 and C3,
which is not desirable from the point of grouping to identify
systematic faults. Hence, the chip C4 which does not have
the probable systematic fault (the first bit of its fail signature
is 0) is grouped with the others which have the systematic
fault. Ironically, the chip C3 which does have the probable
systematic fault is not grouped with C1 and C2.

All the patterns in the fail signature vector are considered
equally likely to detect the systematic faults occurring in them.
Realistically, a test pattern that detects almost 90% of the
chips to be faulty is more significant than the one that detects
only 5% of them and thus the former better describes the
systematic faults present over large volumes of chips. Similar
argument holds for the scan-flops based fail signatures as not
all the scan-flops have the same importance in representing

the systematic faults. Hence, such a type of representation
of fail signatures is however, not a very efficient way of
describing the raw failure data from the ATE. In other words,
quantification of the raw fail data is significantly lost by using
such kind of failure representation.
Tedious Commonality Analysis: The vector size of the fail
signatures varies from few hundreds to few thousand bits
based on the number of test patterns applied during the
test or the scan-flops at which the fault is observed. Due
to this, the commonality measure calculation for every pair
of chip involves sum of product calculation of huge fail
signature vectors making it time-consuming. Also, since the
commonality analysis proposed in [14] is inherently quadratic
in the number of chips, the very purpose of reducing the run-
time of VYD is lost with the presence of large volumes of
chips to be diagnosed.

The major contribution of this paper is a linear time clus-
tering algorithm reducing the run-time significantly. It also
addresses the problem of quantification of the raw fail data
much more effectively than the ones reported in literature,
specifically from the point of view of detecting systematic
faults, which, in turn, is the main goal of VYD.

III. PROPOSED TECHNIQUE
In this paper, we propose an efficient way of clustering the

similarly failing chips by introducing quantification in the fail
signatures for each failed chip. The quantification is provided
by retaining the information regarding the number of chips
that fail for a particular test pattern or at a scan-flop or a
standard cell or node. This modifies the fail signatures from
a fail signature vector as described in [14] to a fractional
number.

We now define an element as a feature of the fail chip that
detects the fault in it. The element can thus be a test pattern
applied to the chip during testing or a scan-flop at which the
fault is observed or a standard cell present in the back trace
cone of the failing scan-flops or any node present in the back
trace cone of the failing scan-flop.

element 1 element 2 ... element M-1 element M
chip 1 1 0 ... 0 1
chip 2 0 0 ... 1 0
chip 3 1 0 ... 1 0
chip 4 0 1 ... 1 0

...

...

...
chip N-2 1 1 ... 1 0
chip N-1 1 0 ... 1 0
chip N 1 1 ... 1 0

TABLE I FAIL CHIP DATA

Consequently, there can be four different types of fail
signatures possible for a faulty chip, namely, pattern based
fail signature, scan-flop based fail signature, standard-cell

98

based fail signature and node based fail signature.
The fail chip data is symbolically represented in the

TABLE I by a N ×M FAIL matrix, where N is the number
of chips that failed and M is the number of instances of the
same element type that detects the failures in the chips. The
columns correspond to one of the four element types. They
can be test patterns, scan flops, standard cells or nodes. The
rows correspond to the chips that have failed during testing.
If an element detects a chip to be faulty, the cell of the table
corresponding to that element and the chip takes a value 1,
otherwise it is 0. For example, the cell e(i, j) is 1 when the
jth element detects ith chip to be faulty during testing. From
this we note that, the row corresponding to a particular chip
in TABLE I is the same as the fail signature vector defined
in the data mining technique proposed in [14]. The vector is
of the form

FVi = {1, 0, ..., 0, 1}, i ε [1, N] (1)

We now derive fail signatures for our technique from these
vectors. In order to overcome the drawbacks of fail signature
vectors explained in the previous section, a weight is assigned
corresponding to every element in the fail data. This weight
refers to the fraction of fail chips that the particular element
detects. In other words, weight Wj of an element is defined as
the number of fail chips that the element detects to the total
number of fail chips obtained during testing.

Wj =
1
N

N∑
i=1

e(i, j), j ε [1,M] (2)

The weight ensures that the element detecting larger number
of chips to be faulty has more significance than the one
detecting fewer number of chips thereby attaching more im-
portance to those elements that contribute to detecting chips
with systematic defects. The new fail signature is defined as
the weighted sum of fail signature vector FVi.

Fi =
M∑

j=1

Wj × e(i, j), i ε [1, N] (3)

The fail signature obtained from equation (3) describes
the fail data of the chip more efficiently in a single number
than the one proposed in [14]. The huge vectors are replaced
by a single floating-point number. The various types of fail
signatures exhaustively describe the fail data of the chip. The
fail signature obtained from all these four types of elements,
namely, pattern, scan-flop, standard-cell and node symbolically
represents the fail chip in a four co-ordinate system. Thus,
with just four attributes describing the fail data of the chip,
clustering of the failed chips can be effectively carried out
for detecting the systematic defects. The systematic defect
can lead to a fault on a net or on a standard cell which are
represented efficiently by the proposed fail signature.

IV. WEIGHT-BASED GROUPING ALGORITHM
Given a set of failed chips of the same design, we now pro-

pose an algorithm that works on the fail signatures proposed in

the previous section. For obtaining the fail signature, firstly the
FAIL matrix needs to be extracted from the fail chip data. After
this, the weight for every element in the matrix is calculated
using equation (2). Finally, the fail signature for each fail chip
is computed using the equation (3). The grouping algorithm
explained here is for a single element type. In other words, the
fail signature is of one dimension namely either pattern based
or scan-flop based or standard-cell based or node-based.

Algorithm 1 Grouping Algorithm

Input: Fail Data of the N chips.
Output: n Clusters

1: N : Number of Chips
2: M : Number of Elements
3: n : Number of Clusters
4: i ε [1..N]
5: j ε [1..M]
6: k ε [1..n]
7: // Step 1: Form FAIL matrix
8: for all chip Ci do
9: for all element Ej do

10: if Ej contributes in detecting the fault in Ci

then
11: e(i, j) = 1
12: else
13: e(i, j) = 0
14: end if
15: end for
16: end for
17: // Step 2: Calculate weight, Wj

18: for all element Ej do

19: Wj = {
N∑

i=1

e(i, j)}/N .

20: end for
21: // Step 3: Obtain fail signature Fi

22: for all chip Ci do

23: Fi =
M∑

j=1

Wj × e(i, j).

24: end for
25: // Step 4: Grouping
26: Obtain the unique fail signature values
27: for all unique fail signature value Uk do
28: for all fail signature value Fi do
29: if Uk = Fi then
30: Put chip Ci in Clusterk
31: Remove chip Ci from the list
32: end if
33: end for
34: end for

The grouping primarily involves clustering all those fail
chips that have the same fail signature value. In order to do
so, we first find the set of unique fail signatures and secondly
cluster all those fail chips corresponding to every fail signature

99

value in the set. The complexity of the algorithm is of the
order of n times N, where n is the number of unique fail
signatures and N is the number of chips. The failure being
systematic, large number of chips tend to cluster toward very
few signature values which leads to n << N and hence the
algorithm is linear in the number of fail chips in the average
case, thereby improving the run-time during experimentation.

V. SIMULATION FRAMEWORK

The simulation framework is developed to mimic the oc-
currence of the systematic faults in the chips. The fault model
for the benchmark circuits is a simple stuck-at fault model.
The stuck-at faults are injected over several design files of the
same benchmark circuit with the help of Mentor Graphics’s
tools.

A block diagram of the experimental flow is depicted in

Induce faults to
several design files
of the same circuit

Generate test patterns
for a fault free design file

Obtain Fail Data in the
Pattern Based Fail Format

for every design file

Extract the Fail Signatures
from the Fail Data

Run the grouping Algorithm

Diagnose using the smaller
 fail set

Mentor Graphic’s Tools used

DFT Advisor

Yield Assist

Fast Scan

FIGURE 1. Experimental Flow

FIGURE 1. After obtaining the scan-based design from the
Mentor’s DFTAdvisor, the test patterns are generated for
the fault-free design using the FastScan. Additionally, over
300 fault-injected design files are simulated for the same
benchmark circuit by injecting stuck-at faults at the randomly
selected nets in the circuit. These fault-injected design files
represent failing chips. The fault distribution over the design
files are shown in TABLE II. The typical value for the number
of faults to be simulated in a design file (representing number
of faults in a defective chip) ranges from 1 to 3 [16] [17].

The simulated faults (stuck-at faults a, b, c, d and e) in
the TABLE II are systematic in the sense, they manifest

Stuck-at fault # Fail Files
a 60
b 30
c 40
d 70
e 50

a,b 10
b,c 15

a,b,c 5

TABLE II FAULT DISTRIBUTION

themselves over a large number of design files. A simulated
fault is said to be random if it manifests itself in small numbers
across design files. Around 5 to 30 such random faults are
injected, the number of faults in a single run also being
random. During simulation, FastScan provides fail data for the
corresponding fault-injected design files. The fail data consists
of the test patterns to be applied to detect the fault as well as
scan flops at which the fault can be observed. The fail data
thus obtained (in the form of fail files) represent the fail data
of the faulty chip from the ATE. The fail data is made realistic
by removing fail patterns from the data.
The proposed technique extracts fail signature from these fail
files and the grouping algorithm is applied. Finally, each group
consists of a set of fail files failed due to the same fault
occurring in them. Hence for diagnostic purposes, a subset of
the fail files are used thereby reducing the run-time of the VYD
methodology. With this simulation framework, our weight-
based grouping algorithm as well as the clustering algorithm
proposed in [14] are compared for all the benchmark circuits.

Cluster Analysis
The quality of the clustering solutions obtained from both

the methodologies are compared using the parameter overall
cluster purity. Let a clustering algorithm when applied on
a dataset D provides n-clusters with the size of the cluster
Clusterj being |Clusterj |. Also, let |Clusterj |class=i denote
the number of items of class i in cluster j. The purity of the
cluster is defined as,

purity(Clusterj) =
max

i
|Clusterj |class=i

|Clusterj |
(4)

The overall purity of a clustering solution is expressed as a
weighted sum of individual cluster purities,

purity =
n∑

j=1

|Clusterj |
|D|

purity(Clusterj) (5)

Cluster efficiency is another parameter that is used to
compare the methodologies which is defined as the fraction
of the chips with systematic defects that is clustered using a
methodology.

VI. EXPERIMENTAL RESULTS

The results of the two clustering algorithms on ITC’99,
ISCAS’85 and ISCAS’89 benchmark circuits are shown in

100

TABLES III, IV and V. The tables compare the average
purity obtained from the two methodologies over 30 runs of
the experimental flow. The tables also show the comparison
between the run-time values. The signatures used by the two
methodologies are pattern-based fail signatures.

It can be observed that the weight-based algorithm

Avg. purity for 30 runs Time for 1 run (µs)
Circuit our approach [14] our approach [14]

b01 0.973 0.963 3220 7420458
b02 0.900 0.893 2695 7515433
b03 0.940 0.940 4052 7513778
b04 0.907 0.900 9324 7418418
b05 0.817 0.807 8430 7425969
b06 0.977 0.967 3098 7403849
b07 0.937 0.897 6279 7512281
b08 0.853 0.833 4777 7605997
b09 0.973 0.917 4446 7543745
b10 0.987 0.957 6046 7403404
b11 0.993 0.980 8964 7302712
b12 0.940 0.920 10532 7399974
b13 0.943 0.940 5080 7375065
b14 0.977 0.967 72612 7460847
b15 0.943 0.930 44554 7292204
b17 0.897 0.897 85760 7501813
b18 0.957 0.920 92231 7538283
b20 0.993 0.923 76903 7397438
b21 0.990 0.893 84775 8462466
b22 0.993 0.937 80456 7603565

TABLE III ITC BENCHMARK CIRCUITS

Avg purity for 30 runs Time for 1 run (µs)
Circuit our approach [14] our approach [14]
s1196b 0.990 0.943 13336 7492025
s1238a 0.923 0.927 13645 7348700
s13207a 0.997 0.933 24494 7428876
s1423a 0.913 0.940 6977 7493458
s1488 0.837 0.817 6739 8237472

s15850a 0.960 0.957 15083 8283926
s27 0.870 0.863 2119 8168263

s298 0.960 0.960 4292 7562654
s344 0.770 0.817 4006 7598608

s35932 0.953 0.933 5960 8638763
s382 0.993 0.957 4927 8380624

s38584a 0.997 0.953 15001 7486959
s386 0.997 0.990 20507 7502573
s400 0.930 0.883 4926 7581175
s444 0.930 0.943 19702 7809367
s510 0.917 0.930 6679 7502994
s526a 0.947 0.917 6752 7982452

s5378a 0.930 0.887 14438 7988727
s641 0.953 0.897 5753 7776690
s713 0.873 0.883 5469 7917087
s820a 0.917 0.983 9958 7618165
s832a 0.960 0.970 17531 7533694
s838 0.853 0.807 12901 7723663

s9234a 0.883 0.883 18285 7843858

TABLE IV SEQUENTIAL ISCAS BENCHMARK CIRCUITS

performs better than or equally good as the Huisman et. al [14]
algorithm in terms of overall cluster purity. For the rest of
the circuits, the purity values obtained from weight-based
closely follows the Huisman et. al [14] cluster purity. In terms
of run-time, weight-based algorithm thoroughly outperforms

Avg. purity for 30 runs Time for 1 run (µs)
Circuit our approach [14] our approach [14]
c1355 0.907 0.870 8300 7470744
c1908a 0.940 0.970 6544 7582367
c2670a 0.967 0.957 9257 7575636
c3540a 0.903 0.907 12112 7985589
c432 0.997 0.987 7185 7423908
c499 0.920 0.920 6347 7644481

c5315a 0.937 0.923 10253 7602392
c6288 0.957 0.960 4716 7631697
c7552 0.953 0.953 15259 7320489
c880a 0.993 0.967 7035 7514399

TABLE V COMBINATIONAL ISCAS BENCHMARK CIRCUITS

the Huisman et. al [14] for all the benchmark circuits. The
proposed linear-time algorithm in terms of number of fail chips
is highly efficient in the sense that it maintains the quality of
the clustering solution even in reduced run-time.

The experimental results shown in TABLES III, IV and
V has been obtained using pattern-based fail signatures. The
same methodology can be followed with the help of other
types of fail signatures. For example, when the weight-based
algorithm provides clusters with large cluster sizes using
standard-cell based fail signature, then we can strongly claim
the presence of failures due to standard cells in them. On the
other hand, when there are no big clusters formed, we can
safely overrule the presence of systematic defects of this type.

Validation on Real Industrial Data
The proposed technique has been proved to give remarkable

results in the simulation environment for all the benchmark
circuits. To validate our scheme, the weight-based grouping
algorithm as well as Huisman et. al [14] algorithm [14] have
been run on fail data of real industry hardware devices. Instead
of clustering the fail chips on the exact signature values, the
clusters are formed when the fail signature value occurs within
a range.

The FIGURES 2, 3 and 4 provide the comparison between

.

FIGURE 2. Case 1

FIGURE 3. Case 2

101

FIGURE 4. Case 3

set of chips clustered using [14]
set of chips clustered using proposed approach
chip having systematic defect
chip not having systematic defect

 .

Lot
No.

#
Fail
Chips

chips clustered run-time (µs)

ours [14] ours [14]

1 43 38 8 4474 822141
2 13 6 3 48659 473486
3 6 5 4 9729 11778

TABLE VI EXPERIMENTAL RESULTS ON REAL INDUSTRIAL FAILURE

DATA

the clusters obtained from the two techniques. In the cases
of lots 1 and 3, the cluster purities of both the algorithms
are 100% in the sense the predominant cluster obtained from
them consists only of the desired fail chips while in case of lot
2, the resultant clusters have few undesired chips. However,
the weight-based algorithm is able to group more number of
the desired chips than the Huisman et. al [14] algorithm. For
example, in lot 1, 88.4% of the desired 43 fail chips are present
in dominant cluster obtained from weight-based whereas only
18.6% of the desired chips are present in the cluster provided
by Huisman et. al [14] algorithm. The efficiency is less in
case of lot 2, even though our algorithm performs better than
Huisman et. al [14].

The TABLE VI reveals the comparison of the run-times
of both the techniques for every lot. Our experimentation
has been carried out using fail chips from 2 to 5 silicon
wafers in a lot. The golden reference for the cluster purity and
efficiency calculations is the clusters obtained from industry’s
in-house diagnosis tool. The tool reveals the presence of single
predominant systematic defect in every lot. The column 2 of
TABLE VI gives the number of fail chips in a cluster with this
predominant defect. The comparison of the run-times clearly
reveals that the proposed technique is faster than the Huisman
et. al [14] algorithm. With the increase in the number of fail
chips that have systematic defects, the difference in the run-
times can be distinctly seen. TABLE VI re-establishes our
claim of reduced run-time by maintaining a better quality of
cluster solutions.

VII. CONCLUSIONS
In this paper, we have proposed a weight-based grouping

algorithm to cluster chips that have failed due to any system-

atic defect occurring in them. In doing so, the paper addresses
an effective way of describing the fail information in the form
of fail signatures. We have demonstrated the superiority of our
approach over an existing technique in literature in terms of
their run-times. Additionally, the methodology presented here
has been proved to provide better quality cluster solutions for
75% of the benchark circuits in the simulation environment. It
has also been shown to be equally effective on real industrial
data.

REFERENCES

[1] H. Goel and D. Dance, “Yield enhancement challenges for 90nm and
beyond,” IEEE/SEMI Advanced Manufacturing Conference, pp. 262–
265, 2003.

[2] M. Karthikeyan, S. Fox, W. Cote, G. Yeric, M. Hall, J. Garcia,
B. Mitchell, E. Wolf, and S. Agarwal, “A 65nm random and systematic
yield ramp infrastructure utilizing a specialized addressable array with
integrated analysis software,” IEEE, pp. 104–109, 2006.

[3] R. Raina, “What is dfm & dfy and why should i care?” International
Test Conference, pp. 1–9, 2006.

[4] H.-P. Erb, C. Burmer, and A. Leininger, “Yield enhancement through
fast statistical scan test analysis for digital logic,” IEEE/SEMI Advanced
Semiconductor Manufacturing Conference, 2005.

[5] B. Kruseman, A. Majhi, C. Hora, S. Eichenberger, and J. Meirlevede,
“Systematic defects in deep sub-micron technologies,” International Test
Conference, pp. 290–299, 2004.

[6] F. Lee, “Advanced yield enhancement: Integrated yield analysis,”
IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.
67–75, 1999.

[7] M. Miller, “Nanometer yield enhancement begins in the design phase,”
Electronic Design Magazine, 2005.

[8] M. Cote and P. Hurat, “Standard cell printability grading and hot spot
detection,” International Symposium on Quality Electronic Design, 2005.

[9] R. Guldi, T. Winter, N. Sridhar, J. Smith, S. PapaRao, J. Garvin,
and B. Metteer, “Systematic and random defect reduction during the
evolution of integrated circuit technology,” IEEE/SEMI Advanced Semi-
conductor Manufacturing Conference, pp. 2–7, 1999.

[10] J. H. Yeh and A. Park, “Novel technique to identify systematic and
random defects during 65 nm and 45nm process development for faster
yield learning,” IEEE/SEMI Advanced Semiconductor Manufacturing
Conference, pp. 54–57, 2007.

[11] A. L. Crouch, P. Burlison, and D. Ciplickas, “Processing high volume
scan test results for yield learning,” International Symposium on Quality
Electronic Design, 2007.

[12] S. Seike, K. Namura, Y. Ohya, A. Uzzaman, S. Arima, D. Meehl,
V. Chickermane, A. Kobayashi, S. Tanaka, and H. Adachi, “Early
life cycle yield learning for nanometer devices using volume yield
diagnostics analysis,” Asian Test Symposium, 2006.

[13] C. Hora, R. Segers, S. Eichenberger, and M. Laousberg, “An effective
diagnosis method to support yield improvement,” International Test
Conference, pp. 260–269, 2002.

[14] L. M. Huisman, M. Kasaab, and L. Pastel, “Data mining integrated
circuit fails with fail commonalities,” International Test Conference, pp.
661–668, 2004.

[15] C. Schuermyer, K. Cota, R. Madge, and B. Benware, “Identification of
systematic yield limiters in complex asics through volume structural test
fail data vizualization and analysis,” International Test Conference, pp.
1–9, 2005.

[16] V. D. Agrawal, S. C. Seth, and P. Agrawal, “Fault coverage requirement
in production testing of lsi circuits,” IEEE Journal of Solid State Circuits,
pp. 57–61, 1982.

[17] H. Hashempour, F. J. Meyer, and F. Lombardi, “Hybrid multisite testing
at manufacturing,” IEEE International Test Conference, pp. 927–936,
2003.

[18] M. Rehani, R. Madge, J. Teisher, D.Abercrombie, and J. Saw, “Ate data
collection - a comprehensive requirements proposal to maximize roi of
test,” International Test Conference, pp. 181–189, 2004.

102

100KHz-20MHz Programmable Subthreshold Gm-C Low-Pass Filter in
0.18μm CMOS

S.Ramasamy, B.Venkataramani, R.Niranjini, K.Suganya
 Dept. of ECE National Institute of Technology, Tiruchirappalli, INDIA

e-mail-bvenki@nitt.edu

Abstract

This paper proposes a modified, inverter based
transconductor using double CMOS pair for
implementation of biquad Gm-C low-pass filter with
bandwidth tunable from 100 kHz to 20 MHz. This
bandwidth range meets the requirements of zero IF
receivers for wireless applications. Major
contributions of this paper are proposal for
operating the Gm stage in sub-threshold region so as
to minimize the power dissipation, proposal for
switching in both dummy stages and load capacitors
(accumulation MOS-Capacitor) to maintain
constant capacitance. The centre frequency of the
filter is varied by switching in different Gm cells.
The proposed filter is designed and implemented on
TSMC-0.18μm CMOS process with 1.8V supply
using Gm/Id design methodology. The simulation
results demonstrate the tunability of the centre
frequency from 100KHz to 20MHz. The power
dissipated by the filter is 12µW and 900µW at
100KHz and 20MHz respectively. The SFDR over
the entire band is 57dB. The proposed approach
guarantees the upper bound on THD to be -40dB for
300mVpp signal swing. The use of inverters with
double CMOS pair results in 34dB higher PSRR
compared to those using push pull inverter.

1. Introduction

Transconductors have a wide range of applications
in the area of analog signal processing [1], [2].
Continuous time filters implemented with
transconductance amplifiers and capacitors are known
as Gm-C or OTA-C filters and are quite popular for a
host of applications such as IF filters, hard disk drive,
linear phase filters, LC-oscillators and RF filters. A
software defined radio (SDR) demands multitude of
standards capable of adjusting their configuration and
reception mode depending on the standard and
demanded quality of service. In this context the
flexible analog baseband filtering is required.

A number of architectures have been proposed in
the literature for implementing the transconductor.
Push-pull inverters are proposed in [3] for realizing the
transconductor. This does not have any internal node
and results in large bandwidth. However, for realizing
programmable filters, this scheme requires the power
supply voltage to be varied. This is not suitable for low
voltage applications and it results in poor power supply
rejection ratio (PSRR). To solve this problem, floating
battery implementation is proposed in [4]. But this
scheme requires a large bias resistor, which introduces
an additional pole in the region of interest. In [5], a
novel switching technique is proposed in Nauta’s
transconductor to change the transconductance and the
input capacitance independently.
 The transconductor using double CMOS pair is
proposed in [6]. A digitally programmable biquad Gm-C
band pass filter for FM application with independent
centre frequency tuning and Q-tuning is proposed in
[7]. The scheme in [7] requires two supply voltages,
one for the filter core and the other for bias voltage
circuitry meant for tuning. In this paper, sub-threshold
Gm stage using double CMOS pair is proposed to
minimize the power dissipation and also to use a single
supply voltage.

This paper is organized as follows. Section 2
explains the structure of a sub-threshold Gm stage
using double CMOS pair. Section 3 presents the
structure of the proposed digitally tunable second order
low pass filter. The F-tuning used are also discussed.
The filter design using Gm/Id method is illustrated in
Section 4. The simulation results are given in Section 5
followed by the conclusions in Section 6.

2. Sub-threshold Gm stage using double
CMOS pair

In this section, the operation of the transconductor

using double CMOS pair is described first. The
operation of the common mode control and dc gain
enhancement of the transconductor is described next.
The two-transistor circuit shown in Fig.1 is referred to

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.19

105

as the CMOS pair. It may be considered to be a single
transistor.

Fig 1. CMOS pair

Assuming that both transistors are operated in weak
inversion saturation (sub-threshold) region, the current
ID for single PMOS/NMOS can be written as [9],

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ
−Φ=

T

DB

T

SB

T

TGB
T

VV
n

VVkn expexp
.

exp....2I 02
D

 (1)

where ‘n’ is sub threshold slope factor, k = β .(W/L)
is transconductance parameter, β = µ.Cox is the process
gain factor, ‘µ’ is mobility and ‘Cox’ is the oxide
capacitance of the transistor. The thermal voltage ‘ΦT’
is 25.9 mV at room temperature, VGB, VSB, VDB are
gate, source, drain voltages w.r.t. bulk respectively,
VT0 is the threshold voltage when VSB is Zero. When
VDB > 5 ΦT and VSB = 0, an approximate expression of
ID for single transistor is given by (2).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ
−Φ=

T

TGS
T n

VVkn
.

exp....2I 02
D

 (2)

The current I1 and I2 in the double CMOS pair is given
by (3) and (4) respectively

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

t

teqGSeq
teff n

vv
nk

φ
φ 112

1 exp2I

 (3)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

t

teqGSeq
teff n

vv
nk

φ
φ 222

2 exp2I
 (4)

where,

K
1

K
1

K
1

pneff

+=

 and | V | V V TpTneq-T +=

Fig. 2. Double CMOS pair

The circuit in Fig.2 shows the double CMOS pair
[6], which acts as a transconductance cell. Assuming
that all the MOS devices are operated in the weak
inversion saturation region and neglecting the channel

length modulation, the output current can be expressed
as,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

=−=

t

teqGSeq

t

teqGSeq

teff

n
vv

n
vv

nk

φφ

φ

2211

2
211D

expexp

*2III

 (5)

where, ig vv −= 1GSeq1v

; 4GSeq2v gi vv +=
;

 211 tptnteq vvv +=
; 432 tptnteq vvv +=

 Assuming that the n-well process is used, the P-
MOS transistors can have their bulks connected to their
own source terminals and this eliminates the body
effect. The bulks of M1 and M3 should be connected to
the most negative supply (Vss), resulting in a rise in
threshold voltage. This bulk effect causes the
relationship between V and I to be non-linear.
However, when the CMOS pair is used in Nauta’s
structure, this problem is eliminated as explained
below.

ID1 and ID2 are the currents coming out of gm1
and gm2 (fig. 4) respectively. The differential current
coming out of the Gm cell I0 = ID1 - ID2 is given by

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

−=

t

teqGSeq

t

teqGSeq

teff

n
vv

n
vv

nk

φφ

φ

2211

2
0

expexp

*4I
 (6)

 and gm can be derived by taking partial derivative of (5)
 w.r.t VGSeq and is given by

t

1D
1 n

I
φ

=mg
 (7)

Thus the gm can be varied by varying the bias
voltage Vg1, Vg4 and the aspect ratio of the MOS
transistors. In order to ensure that all transistors in gm
cell remain in the weak inversion saturation region,
the input voltage Vi and bias voltage VG must satisfy
the inequalities given in (8)

2211 teqgiteqg vvvvv +≤≤−
 (8)

VG- and VG+ should be lesser than or equal to Vss
and Vdd respectively.

2.1. Common mode control and DC gain
enhancement

To operate filters at high frequencies, we need a

transconductor with high DC gain of at least 40 dB and
the parasitic poles should be located far from the cutoff
frequency [3]. To increase the DC gain, the negative
resistance loading is proposed in [3]. Let us consider

106

two transconductance cells which are connected in a
cross coupled manner as shown in Fig. 3.

Fig. 3. Cross coupled gm cell

Applying a common mode voltage V at both

nodes results in output currents i1 = i2 = gmV, yielding
common mode resistance Rocm = 2V/(i1+i2) = 1/gm.
Application of differential voltage at the nodes results
in output currents i1= - gmV, i2= gmV. The differential
mode resistance is Rodm = 2V/(i1-i2) = -1/gm. Thus the
differential signal sees negative load resistance.

The structure of a complete transconductor block
(Gm Block) using CMOS pair (gm cell) with differential
input and output is shown in Fig. 4. This is similar to
Nauta’s transconductor [3], but in this design, each gm
cell is constructed with a double CMOS pair and gm
tuning is done by combining the outputs of multiple
transconductors using the switched transconductance
cell technique [8]. The gm cell 1 and gm cell 2 act as the
main transconductor, gm cells 3-6 provide common
mode control and dc gain enhancement.

Fig. 4. CMOS Pair based balanced Gm block

This transconductor has a differential architecture
made of two identical sub circuits: gm cells 1,5,6 and
gm cells 2,4,3 respectively. Thus all equations which
correspond to the first set of gm cells hold good for the
second set as well, with the indexes in the given order.
The common-mode output resistance at the node I- is,

 Rocm ≅ 1/ (gds1+gds5+gds6+gm5+gm6) (9)

while the differential-mode output resistance at the
node I- is,
 Rodm ≅ 1/ (gds1+gds5+gds6+gm5 - gm6) (10)

where, gmi = 2(gmni * gmpi) / (gmni + gmpi)
 gdsi = 2gdspi + 2gdsni AiDi VI /≈
gmn, gmp denote the gm of NMOS and PMOS transistor
respectively. Similarly gdsp, gdsn denote the output

transconductance of NMOS and PMOS transistors
respectively. IDi and VAi are the drain current and the
early voltage of the ith transistor.

Assuming that for all the transconductance cells,
gdsi = gd and gmi = gm, the common-mode dc gain (Acm)
and differential-mode dc gain (Ad) at the output nodes
are computed to be [3],

m
g

d
g

m
g

23cm
A

+
=

 (11)

d
g
m

g

3
A d = (12)

Since Acm is less than unity, common-mode
stability is maintained. The differential mode gain can
be boosted by choosing gm5 ≅ gm6 - (gds1+gds5+gds6).

3. Digitally tunable second order Butter-
worth low pass Gm-C filter

In programmable continuous time filters, the center
frequency and the quality factor of the filter can be
tuned by varying Gm, which in turn is controlled by
changing either the bias current or the device
dimensions. Unary weighted Gm cells including dummy
elements are connected in parallel to realize a digitally
programmable transconductor. Programmability using a
parallel connection of conventional differential pairs
has been already reported in [8]; however, these
structures are not suitable for low-voltage supply. In
this paper, the centre frequency (fc) of the filter is tuned
by varying the no. of transconductance cells used and
also by varying the value of the capacitor used. A
compact dummy based switching scheme is proposed
to ensure linear frequency tuning and constant dynamic
range irrespective of the no. of gm cells, switched in and
out. This is achieved by maintaining input capacitance
to be constant. Capacitors are realized by operating
MOS transistor in accumulation region. This scheme
dispenses with the need for switches in the signal path.
The transistors M1 and M4 of the double CMOS pair
(Fig.2) acts as switches to include or exclude the gm
cell to achieve the desired programmable
transconductance values.

The differential Gm-C realization of second order
low pass filter structure based on double CMOS pair,
with digitally assisted centre frequency tuning (F-
tuning) is shown in Fig. 5. In this parallel resonance
circuit, Gm1 is the V-I converter, the resistor is realized
by Gm2, the inductor is realized by the Gyrator
(Gm3,Gm4 and C2) and C1 is the capacitor of resonant
circuit.

107

Fig. 5. Schematic diagram of tunable second order low

pass filter
The low pass transfer function of the above biquad
structure [2] is given by,

 H(s) = Gm1/(s2C1C2 + sC2Gm2+ Gm3Gm4) (11)

From (11), the center frequency and the quality factor,
Q, are given by,

21

m4m3
0

CC

GG
ω = (12)

2

143

2

1
C

CGG
G

Q mm

m
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (13)

Fig.6 Programmable transconductor cell with dummies

From (12), the center frequency of the filter can be
varied either by the constant-C or constant-Gm method.
In constant-C technique, the load capacitance is
maintained constant and the value of Gm is changed to
alter the centre frequency of the filter. In constant-Gm
technique, Gm is kept constant and the value of load
capacitance is changed to alter the centre frequency of
the filter. Detailed analysis of these two approaches is
carried out in [8] based on noise, total capacitance
required and power dissipation. It suggests that
constant-C approach is suitable for tunable filter
realizations. We follow the constant-C approach. To
get Butterworth response (Q=0.707), the value of

Gm2 ≈ 2 Gm1 [5]. The value of Gm1 determines the
DC gain of the filter. The transistor level
representation for gm1/gm2 with dummies is shown in
Fig. 6. From Fig.6, it may be noted that when b0=1
(+0.9v) and b0’= 0 (-0.9v) the main transconductor

will be switched on and the dummy will be in off state
and vice versa. Thus capacitance at the input is
maintained constant over the entire bandwidth. In Fig.
5, Gm3 and Gm4 are constructed by fully balanced
architecture as in Fig. 4. Gm1 and Gm2 blocks uses only
main transconductor cells gm1 and gm2 of Fig 4.

3.1. F-tuning

The centre frequency is tuned by suitable switched
transconductance cell. The digital controller generates
the respective bit streams depending on the cutoff
frequency which in turn decides the number of cells to
be switched in. Sixty four unary gm cells are used to
cover the entire bandwidth. The dimensions of M1-M4
transistors (N-MOS / P-MOS) in double CMOS pair
are 1.2µm/0.36µm. The capacitor of 1pF is realized by
MOS capacitor. When all the cells are switched in, the
maximum centre frequency tuned is only 17.6MHz.
The output parasitic capacitance increases with more
number of gm cells. To vary the bandwidth in the range
17.6MHz - 20MHz, the capacitance at the output
terminals is varied by using switchable MOS
capacitors. The source, drain and bulk terminal shorted
together forms one end of the capacitor (gnd). The gate
forms the other terminal of the capacitor. If Vgb>Vt
then the MOS transistor will act as capacitor
(Accumulation).

Table 1 summarizes the F-tuning procedure for the
entire band. Table 2 lists the dimension of transistor
used for realizing the capacitor.

Table.1. F-Tuning Summary

Sl.No No.of
gm cells

Gm
(µS)

fc
(MHz)

1 1 2.8 .102
2 32 70 1
3 48 112 11.2
4 64 188 17.6

Table.2. MOS capacitor
Sl.No Dimension of

Transitor(µm)
Capacitance

(pF)
1 21.6/2.16 0.1
2 21.6/4.32 0.2
3 21.6/6.48 0.3
 4 21.6/8.64 0.4
5 21.6/10.8 0.5
6 21.6/12.96 0.6
7 21.6/15.12 0.7
8 21.6/17.28 0.8
9 21.6/19.44 0.9
10 21.6/21.6 1

108

4. Filter design
Majority of methods used for analytical synthesis

of analog circuits assume that the MOS transistors are
either in strong inversion or weak inversion region.
The design methodology, based on the Gm/Id
characteristics [10] allows a unified synthesis
technique which is valid in all regions of operation of
the MOS transistor. Detailed explanations on Gm/Id
method are given in [10].

The extracted Gm/Id versus Id/(I0W/L) curves for
both NMOS and PMOS transistors of TSMC 0.18µm
process are shown in Fig. 7(a) and 7(b). I0 is the
specific current [10] given by IO = 2nKUT

2
 .

where K is the process parameter(µCOX), UT is the
thermal voltage and n is the slope factor[10].

(a) NMOS (b) PMOS

Fig. 7. Gm/Id Vs Inorm curve for transistor
 Here Gm/Id value (>25) is chosen such that the

transistor is in weak inversion region.
The procedure e used in the design of the Gm stage .

1. Assume the unity gain frequency fT and the
load capacitance CL. The required Gm can be
calculated using Gm=fT2πCL. (At fcmax, based
on noise specification capacitance required is
calculated as 1pF).

2. Assume Gm/Id based on the region of
operation of the transistor and calculate the
value of drain current as Gm /(Gm/Id).

3. Find the value of normalized drain current Id/
(IOW/L) from the Gm/Id curve corresponding
to the assumed Gm/Id.

4. Calculate the W/L corresponding to this
normalized current.

5. Once the W/L values are determined, their
lengths are chosen based on both gain and
area requirement and then the corresponding
width is found. Here the length of the
transistor is chosen as 0.36µm. The transistor
dimension of the unit gm cell is 1.2 µm/0.36
µm.

5. Simulation results
This section presents the pre-layout simulation

results of the low pass filter, obtained using Mentor
Graphics tools, Eldo and ezwave for the TSMC
0.18µm CMOS technology model. Simulated results

are summarized in Table 3. THD of -41dB is obtained
for a signal swing of 300mVpp with PSRR of 55 dB at
20MHz. The DC transfer characteristics (Iod vs Vid) for
the various bias voltages are shown in Fig.8. From this
figure, it can be observed that the output current is
linearly proportional to differential voltage of up to
±100mV. Simulated transconductance values versus
differential input voltage (Vid) for various bias voltages
are shown in Fig.9. PSRR characteristics for the supply
voltage of ± 0.9 V is shown in Fig. 10. Fig. 11 shows
the simulated frequency response of the low pass filter
as the centre frequency is varied from 100 KHz to 20
MHz. The simulated results of MOS capacitor is
shown in Fig 12. SFDR plot for minimum and
maximum frequencies are shown in Fig. 13 for
250mVpp input signal. From the simulation results, the
power consumed by the filter is found to be less than a
1mW which is ten times lesser than that of [5].

A monte Carlo simulation for thousand runs was
carried out for evaluating the sensitivity of common
mode range and centre frequency of the low pass filter
with 5% Gaussian variation simultaneously for
parameters W/L, tox and Vth. The variation of centre
frequency is found to be less than 4%.

Fig 8. DC Transfer characteristics for

Differential input voltage

Fig.9. Transconductance values for three different

transconductance cells

Fig. 10. PSRR characteristics (± 0.9V)

109

Fig.11. Low pass filter response for F-tuning

Fig 12. MOS capacitor in accumulation region

Fig 13. SFDR plot for 100Khz and 20MHz

Table 3. Simulation results summary

Technology TSMC 0.18 μm CMOS
process

Supply voltage ± 0.9V for Filter

Filter type second order, Butterworth

Frequency tuning 100KHz -20MHz
THD @300mVpp -40.7dB

Group delay <2ns
PSRR (± 0.9V) at

20MHz
55dB

Input referred noise
@20MHz

27nv/sqrtHz

SFDR @20MHZ 57dB
Power consumption 15 μW – 900 μW
Load capacitance 0.1pF – 1pF

 6. Conclusions

A tunable second order Gm-C low pass filter
based on double CMOS pair is implemented in TSMC
0.18 μm digital CMOS process. Thanks to the sub-
threshold Gm stage and compact dummy based
switching scheme, more than ten fold reduction in
power and fifteen fold reduction in area are achieved
respectively. The designed low pass filter features a
good center frequency tuning range from 100KHz to
20MHz which covers the frequency range
corresponding to analog baseband filters used in the
physical layer of various the wireless networks such as
WLAN a/b/g , UMTS, Bluetooth, GSM and CDMA.

References
[1] M.Ismail, and T.Fiez, Analog VLSI Signal and Information
Processing, McGraw-Hill, New York, 1994.
[2] David A.Johns, and Ken Martin, Analog Integrated Circuit
Design, Wiley & Sons Inc, 1997.
[3] B. Nauta, “A CMOS transconductance-C filter technique for very
high frequencies”, IEEE J. Solid-State Circuits, vol. 27, pp. 142–
153, Feb.1992.
[4] F. Munoz, A. Torralba, R. G. Carvajal, and J. Ramirez-Angulo,
“Two new VHF tunable CMOS low- voltage linear transconductors
and their application to HF gm-C filter design”, in Proc. ISCAS, May
2000, pp.V-173–176.
[5] P. Crombez, J. Craninckx, Piet Wambacq and M. Steyaert, “A
100-kHz to 20-MHz Reconfigurable Power-Linearity Optimized
Gm–C Biquad in 0.13μm CMOS”, IEEE Transactions on Circuits
and Systems II: EXPRESS BRIEFS, VOL. 55, NO. 3, MARCH 2008, 33,
pp. 224- 228.
[6] C.S. Park, and R.Schaumann, “A High-Frequency CMOS Linear
Transconductance Element”, IEEE Transactions on Circuits and
Systems, 33, pp. 1132- 1137, 1986.
[7] S.Ramasamy, B.Venkataramani, K.Anbugeetha “VLSI
Implementation of a digitaly tunable Gm-C Filter with double
CMOS pair” 21st International Conference on VLSI Design, January
2008, pp. 317-322.
[8] Shanthi Pavan, Yannis.P. Tsividis, and Krishnaswamy Nagaraj,
“Widely programmable high frequency continuous time filters in
digital cmos technology”,IEEE Journal of Solid-State Circuits,Vol-
35,April 2000.
[9] Yannis Tsividis, Mixed Analog Digital VLSI Devices and
Technology, McGraw-Hill, New York, 1995, pp. 66.
[10] Daniel Foty, David Binkley, and Mathias Bucher, “Starting
Over:Gm/Id -Based MOSFET Modeling as a Basis for
Modernized Analog Design Methodologies”, Nanotech 2002, Vol.1,
Chapter 13, pp. 682 – 685.

110

Session 2A

Analog and Mixed Signal I

A 20MS/s 5.6 mW 6b asynchronous ADC in 0.6µm CMOS

Theja Tulabandhula*

HPA, Texas Instruments India, and

Dept. of Electrical Engineering, IIT Kharagpur

t.theja@iitkgp.ac.in

Yujendra Mitikiri

NyADC, High Performance Analog Group

Texas Instruments India

yuju@ti.com

Abstract

The design of an N -comparator based asynchronous

Successive Approximation Analog-to-Digital Converter

(SAR ADC) is described (with N = 6) working at 20 MS/s

and consuming only 5.6 mW for low power high speed

applications like communication systems. Resetting the

comparators in each conversion cycle is avoided (reducing

power consumption compared to [1]) and only N latches

are used overall (incl. comparator latches) for the output

code. Further using only N comparators instead of 2N − 1
as in [2], leads to huge savings in terms of area at compa-

rable power consumption. For example, a saving of ∼90%

comparator area is achieved for the 6 bit ADC design when

compared to the design in [2].

1. Introduction

There is a constant need for high speed data converters

([3],[4]) in communication systems with low power con-

sumption also being a major concern. The resolutions de-

manded are about 4-8 bits (e.g., UWB applications [5] &

[6]). Asynchronous ADC (Analog to Digital Converter) de-

sign seems to be a promising way to meet this goal and has

been pursued actively in the past few years ([7],[8],[9]). Of

particular interest are those architectures which evolve from

the SAR (Successive Approximation) scheme as in [1] and

[2]. Exploring asynchronous conversion in this scheme has

the advantage of retaining some of its simplistic features

and at the same time one can design a class of ADCs whose

performance matches the flash or the folding flash versions.

A flash ADC requires as many comparators in a conver-

sion operation as the number of quantization levels and thus

taxes area and power exponentially with increasing resolu-

tion.

In this paper, an N -comparator based asynchronous

SAR ADC is proposed which strikes a balance between sin-

gle comparator [1] and 2N − 1 comparator [2] based asyn-

chronous designs. The single comparator based ADC needs

its comparator to be reset after every comparison requiring

a complex clock generation block and extra resetting time

as a result. The 2N − 1 comparator based design requires

calibration and trimming to achieve all (2N − 1) embed-

ded thresholds at its comparators and its resolution cannot

be increased without an accompanying exponential increase

in area. On the other hand, the N comparator based ADC

proposed here doesn’t require resetting of the comparators

and thus can be much faster in operation. Also, this asyn-

chronous design scales linearly with resolution facing only

the same problems as a regular SAR ADC. It offers com-

parable performance benefits as the 2N − 1 design with-

out having to lose much area. The proposed design makes

use of minimal number of latches and doesn’t need an en-

coder to output the codes. Note that the maximum input

clock rate required will be the same as the conversion rate,

reducing power and complexity when compared to similar

synchronous designs.

In Section 2, the new asynchronous architecture along

with the single and 2N − 1 comparator architectures is ex-

plained. Section 3 provides the implementation details of

the proposed architecture for N = 6. Simulation results

are briefed in Section 4 and finally Section 5 presents the

concluding remarks.

2. Asynchronous ADC

An N bit synchronous SAR ADC which has a conver-

sion rate of M samples/second generally needs a clock of

at least (N + 1) ∗ M Hz. It works in two phases: signal

track and conversion phases. In the signal track phase (1
cycle), the input is applied to the ADC. In the succeeding

conversion phase (N cycles), each bit of the output code is

resolved in a binary fashion mapping to one of the 2N − 1
quantization levels. It generally has one comparator which

is reused in each of the N comparison cycles of the con-

version phase. At least once in each conversion phase (i.e.

in each ADC operation), the inputs to the comparator will

be so close that they will cause a high resolving time. To

ensure proper functioning, the cycle of the system clock

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.56

111

((N + 1) ∗M Hz) should be greater than this time for min-

imum resolving. This clock period has to be maintained

even if some of the comparisons have settled beforehand

(this happens when the input difference is large) thus losing

potential time savings. This limitation is done away with in

an asynchronous approach, where as soon as each compar-

ison resolves one bit of the output code, it triggers the exe-

cution of the next comparison thereby saving time. A first

order upper and lower limit on the time savings when such

a configuration of dynamic comparators is used is shown

in [1] and elaborated in Section 2.2 where it can be seen

that the order of the savings is almost 1.5 − 2 times. The

asynchronous approach also doesn’t require an input clock

greater than the conversion rate (M) itself. A start signal is

still required for the entire analog to digital conversion pro-

cess to begin in both asynchronous and synchronous cases.

This can be the input clock edge itself in the asynchronous

case.

A flash is a true asynchronous ADC since it generates

the output code in one clock span. But due to the ther-

mometric structure where input is compared with all the

2N−1 reference levels, it consumes more power than a SAR

ADC which does N comparisons over a period of N cycles

(in the synchronous case). Two completely different varia-

tions of the SAR scheme retaining the N sequential compar-

isons/sample feature implemented in an asynchronous way

are reported in [1] and [2]. We also report an architecture

falling into this class. A comparison of [1] and [2] with

the proposed architecture is done next. Such a comparison

is justified even though their architectures might differ in

some aspects because they still take similar times to perform

the conversion (with N sequential comparisons) assuming

all else being same.

2.1. Single, N and 2N − 1 comparator Archi-
tectures

Figure 1 shows the asynchronous SAR ADC proposed in

[1]. In addition to the standard charge-redistribution DAC,

SAR logic block and a comparator, it also has a ready sig-

nal generator, a multi-phase clock generator and additional

latches. Each comparison output is stored in the additional

latches, and a ready signal is generated simultaneously.

This drives the multi-clock generator which apart from re-

setting the comparator also generates the signals used to

control the SAR logic block and prepares the system for

the next comparison.

In [2], the limitation of using a single comparator is over-

come by employing a binary tree of 2N − 1 comparators

with embedded threshold as shown in Figure 2. Input is ap-

plied to all the comparators all the time. The root compara-

tor is turned on by the external start signal (same as the input

clock). Depending on the comparison it enables either the

Figure 1. Single comparator asynchronous

SAR ADC architecture

left child comparator or the right child comparator. Once

one of the child comparators in the tree is turned on, it starts

doing the next comparison making use of the embedded

thresholds and then triggers one of its children. Embedded

threshold in each of the 2N − 1 comparators is achieved by

using intentional transistor mismatch and loading capacitor

mismatch ([5],[10]). The N comparators which are turned

on during the conversion phase are reset together at the start

of the succeeding signal track phase (i.e. next input clock

edge).

Figure 2. 2N − 1 comparator asynchronous

SAR ADC architecture

The architecture proposed in this paper consists of a self

clocked chain of N comparators and a standard charge-

redistribution DAC as shown in Figure 3 (where N = 3).

The DAC is controlled by a latchless SAR logic core. The

input is applied to all the comparators simultaneously and

the first comparator is turned on by the external start sig-

nal (again same as the input clock). Once this compara-

tor resolves, it generates a next-state trigger signal which

turns on the succeeding comparator in the chain. It also

causes a change in the combinational SAR logic and steers

the charge redistribution DAC accordingly. The output of

each dynamic comparator gives one bit of the digital code

112

and no further encoders or additional latches are neces-

sary. The design thus does not require high complexity cal-

ibrations to set voltage thresholds as in the 2N − 1 case

([2]). Since it also doesn’t require its comparators to be

reset right after their comparisons are done, no additional

resetting logic needs to be incorporated along with saving

of resetting time. In [2], power consumption is made the

same as that required by a typical SAR ADC by turning on

only N comparators out of the 2N − 1 in each analog-to-

digital conversion cycle. Though in this case power scales

linearly with resolution, area on the other hand still scales

exponentially. In the proposed N -comparator architecture

however, both power and area scale linearly with resolu-

tion. Note that the ADC in [2] looks closer to a flash

configuration than a SAR configuration at a first glance.

Nonetheless, use of embedded thresholding seems to be the

only diversion from a conventional SAR design too. All

the three configurations described and compared here take

a sum of N comparison times (
∑N−1

i=0
(tithcomparison)) to

do a conversion unlike the flash architecture where con-

version rate is determined by the slowest comparison time

(maxi=0,...,2N−1{tithcomparison}).

Figure 3. Proposed N comparator asyn-

chronous SAR ADC architecture

2.2 Conversion times

If the relation between input voltage Vdiff (= inp−inn)

to a comparator and the resolving time Tc is given as ([1]):

Tc = K ∗ ln
VFS

Vdiff

(1)

Where VFS is the full scale voltage at input, then, one can

write the synchronous and asynchronous conversion times

(Tsyn and Tasyn) as:

Tsyn = N ∗ K ∗ ln
VFS

min(Vdiff (i))
(2)

Tasyn =
N−1∑

i=0

K ∗ ln
VFS

Vdiff (i)
(3)

Their ratio for the best case input (staircase like conver-

gence in each step) can be shown to be

Tasyn

Tsyn

=
1

2
+

1

N + 1
(4)

which means that, for high conversion steps (resolution

N), the speed up is almost 2 times theoretically. For N =

4, 5 and 6 this value is 0.70, 0.67 and 0.64 respectively.

From a different viewpoint, this is same a saying that in

the best case for 4 bits, asynchronous SAR ADCs are only

2.8 times slower than a flash ADC rather than 4 times like

a synchronous SAR. Worst case and average speed up can

also be worked out similarly.

3. Circuit Implementation Details

The asynchronous ADC proposed here is designed for

N = 6. It consists of a passive T/H followed by a charge-

redistribution capacitive DAC. The top plate of the capac-

itor array is connected to one input port of all the 6 com-

parators and the bottom plates of the individual capacitors

are connected to three switches each (which in turn are con-

nected to the output of the T/H (vin), vref and vgnd). The

next stage triggering signal is generated from the ‘less than’

and ‘greater than’ outputs of each comparator using a NOR

gate. In addition to enabling the succeeding comparator,

this trigger signal is fed into the combinational SAR logic.

Bitlines are resolved using the ‘less than’ and ‘greater than’

signals and serve as the only ‘registers’ in this SAR scheme

as shown in Figure 3 (example with N = 3).

3.1. Comparator and Next-Stage Trigger

Each comparator triggers a succeeding comparator in the

chain as soon as it resolves a bit as shown in Figure 4 for

the actual design with N = 6. A capacitive DAC (see 3.2)

connects to the inp and inn terminals of each of the com-

parators. Note that, the input load capacitance is reduced

from being ∝ 2N − 1 to N from the design of [2]. All

the comparators are dynamic with cross-coupled inverters.

A pmos driven implementation is chosen similar to [2],[11]

and [12] with a few variations. The comparator circuit dia-

gram is shown in Figure 6. When the enabling signal φ is

HI, both the latch outputs are pulled down to ground. An

nmos is kept at the top of the comparator as in [2] to pull

that node to a deterministic value and also to linearize the

input capacitance. The pmos pair is kept matched and em-

bedded thresholding is completely done away with. Em-

bedded thresholding is incompatible with the proposed ar-

chitecture and necessitates the use of 2N − 1 comparators

113

like a flash ([5]) or 2N−1 comparators as in folding flash

schemes ([13],[14]). When ‘φ’ goes LO, the pmos at the

top is turned on enabling the latch in the process. Further,

because of the imbalance at the input terminals the currents

through the two branches in the comparator change, and the

latch resolves to a logic state. The comparator in [1] is ac-

companied by a preamplifier which has been dispensed with

in this design, lowering power consumption further. The

Next-Stage Trigger is a logic signal which can differentiate

between the outputs (LO,LO) in the reset phase with any

other state. Note that, if the comparator doesn’t go into

metastable state, its latch outputs will resolve into either

(HI,LO) or (LO,HI) depending on the input voltage imbal-

ance. Even when they have entered into a metastable state

as shown in Figure 5, the input common mode voltage en-

sures that both the outputs of the latch rise from (LO,LO)

to some value above LO determined by circuit conditions.

A NOR gate with input threshold below this value helps in

giving out a trigger signal in this case along with the normal

cases (this is similar to NAND used in [1]). The comparator

may remain unresolved but is prevented from stalling the

chain. The bitline will reflect a previously resolved bit till

the comparator makes a decision. This decision might not

be the same as the decision which was assumed just before

triggering the next comparator (∼ 50% of the times). The

comparator which was sensed to be in metastable state thus

needs to be disabled from taking a decision. This can easily

be done using an additional logic gate (not shown here).

Figure 5. A timing diagram showing the oper-

ating principle of next stage triggering

There are high threshold buffers at the two outputs of the

comparator depicted in Figure 6 to drive the bitline as well

as the succeeding comparator through the NOR gate. High

threshold avoids bus contention or instances where both the

‘bitline nmos transistors’ get turned on. [2] uses additional

OR encoders to get the final bitline (since there are 2N − 1
comparators and only N final bitlines corresponding to a N

bit output code). For a 6 bit design of this type, the OR

encoder ties up 32 bitline nmos transistor pairs of the 32
(2N−1) comparators together at the LSB stage. And only

one comparator’s bitline nmos transistor (either the top or

the bottom one which got switched on) has to drive all the

other 63 transistors (or equivalent load capacitances). This

issue has been avoided in the present architecture since ex-

actly N bitlines are present.

The output code is preserved till the beginning of the

next ADC conversion phase irrespective of resetting be-

cause resetting the comparators in the signal track phase

will make the bitlines float and keep the voltage value un-

changed. Note that the comparator next in the chain is trig-

gered by the one before it after a delay as shown in Figure

7. This delay is to account for DAC settling and the speed

of the combinational SAR logic core.

Figure 6. Circuit schematic of the comparator

Figure 7. Next stage trigger

114

Figure 4. The N comparators connected as a chain

3.2. Binary C-DAC (Capacitor based Digi-
tal to Analog Converter)

Switched capacitor (or charge-redistribution) DAC

([15]) has been used in a straight forward manner here. The

advantage w.r.t a resistive one is that the accuracy and lin-

earity of the DAC (and in turn of the ADC) is achieved

by default by the high-accuracy photolithography process

(which controls the capacitor plate area and capacitance

matching). For higher resolutions however, binary weighted

capacitor array becomes too large for switching. One might

have to go for modified DACs and switching sequences (for

example, by using a multi-stage network [16] or a coupling

capacitor). A dummy capacitor array is connected to the

second input of the comparators to neutralize loading ef-

fects when the input is applied and removed on the bottom

plates of the capacitor array connected to the first input. In-

put capacitance depends on the unit capacitance one uses,

multiples of which will constitute the capacitive DAC. Since

this portion has been implemented in a conventional man-

ner with little optimization in an analog 0.6µm technology,

the total input capacitance turns out to be high (see Section

4 and Table 2).

3.3. Digital Core without Latches

Significant power gains have been achieved by remov-

ing redundant latches/registers in the SAR logic core. The

only latches present are those in the dynamic comparators

which directly set the bitlines. Loading effects on the C-

DAC switch driving lines differ and have been taken into

consideration. For the 6 bit design, 40 basic gates constitute

the SAR logic as listed in Table 1.

4. Results

The 6 bit design was simulated in a 0.6µm 5V analog

CMOS process with a full scale voltage of 2.5V . Power

Gate Count

And 18

Inverter 15

Or 5

Nand 2

Total 40

Table 1. Gates used in SAR Logic

consumption and other features are listed in Table 2 along

with those reported in the literature. The important differ-

ence is that the other two implementations are in digital

∼ 1V CMOS thus giving better performances (e.g., power).

Nonetheless, the performance results of the design using the

0.6µm 5V analog CMOS process (this technology is pre-

ferred for high resolution SAR ADCs) suggest that signif-

icant gains can further be made by voltage and technology

scaling. No specific effort has been made to reduce the input

capacitance (which will require a change in the DAC struc-

ture). The offsets of the comparators due to size mismatch

and loading mismatch limits the resolution of the present

scheme, among other things. Note that the difference in

the offsets of different comparators is avoided in [1], and

at the same time, is purposefully introduced and indispens-

able to the working of the state-of-the-art Asynchronous

ADC in [2]. SFDR (Spurious-Free Dynamic Range) and

PSD plots at simulation stage are not very relevant as post

fabrication metrics can significantly differ and hence have

not been shown here. [1] presents a time interleaved (TI)

ADC housing two single-comparator sub-units and hence

its performance metrics are slightly different (refer Table

2). Time interleaving has not been done here since it is a

standard concept and requires considering analog or digital

calibration to counter offset mismatch, gain mismatch and

phase skew across channels.

115

Architecture Single 2
N

− 1 N

(comparators) ([1]) ([2]) (proposed)

Resolution 6 7 6

Process 130nm 1.2V 90nm 1V 600nm 5V

(CMOS) digital digital analog

Input Cap.(pF) 0.09 0.25 3.2

Conv. Rate (MS/s) 600 (TI) 150 20

Peak SNDR (dB) 34 40 35.2

Efficiency (pJ/step) 0.22 0.01 5.985

Power(mW)

Analog 1.2 0.089 0.75

Digital 4.1 0.044 4.84

Table 2. Comparison of the three asyn-

chronous SAR architectures. Note that [1] is
Time Interleaved.

5. Conclusion

Design of an asynchronous ADC which takes advantage

of faster comparison cycles to perform the conversion has

been detailed. With clock requirement equal to the sam-

pling rate (unlike synchronous SARs), its area and power

consumption scale linearly with resolution. Comparison

with two other similar architectures has been done and a

6bit version has been simulated which works at 20MS/s.

The limitation on the the clocking in synchronous case was

governed by the slowest resolving time. Here, this bottle-

neck has been done away with. This ADC is faster than

synchronous SAR ADCs and can be increasingly relevant

in non-uniform sampling systems in areas like communica-

tion and imaging (e.g. MRI). When compared with a 4 bit

flash for example, such an ADC is about 2.8 times slower

instead of being 4 times slower like a synchronous SAR (see

Section 2.2).

References

[1] S.-W. M. Chen and R. W. Brodersen. A 6-bit 600-ms/s 5.3-

mw asynchronous adc in 0.13-µm cmos. IEEE Journal of

Solid-State Circuits, 41(12):2669–2680, December 2006.

[2] G. V. der Plas and B. Verbruggen. A 150ms/s 133µw 7b

adc in 90nm digital cmos using a comparator-based asyn-

chronous binary-search sub-adc. Solid-State Circuits Con-

ference, 2008. ISSCC 2008. Digest of Technical Papers.

IEEE International, pages 242–243, February 2008.

[3] B. P. Ginsburg and A. P. Chandrakasan. Highly interleaved

5b 250ms/s adc with redundant channels in 65nm cmos.

Solid-State Circuits Conference, 2008. ISSCC 2008. Digest

of Technical Papers. IEEE International, pages 240–610,

February 2008.

[4] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. V. der

Plas, and J. Craninckx. An 82opw 9b 4oms/s noise-tolerant

dynamic-sar adc in 90nm digital cmos. Solid-State Circuits

Conference, 2008. ISSCC 2008. Digest of Technical Papers.

IEEE International, pages 238–239, February 2008.

[5] G. V. der Plas, S. Decoutere, and S. Donnay. A

0.16pj/conversion-step 2.5mw 1.25gs/s 4b adc in a 90nm

digital cmos process. Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers. IEEE Interna-

tional, pages 2310–2319, February 2006.

[6] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and

G. V. der Plas. A 2.2mw 5b 1.75gs/s folding flash adc in

90nm digital cmos. Solid-State Circuits Conference, 2008.

ISSCC 2008. Digest of Technical Papers. IEEE Interna-

tional, pages 252–253, February 2008.

[7] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin. A new

class of asynchronous a/d converters based on time quan-

tization. Ninth International Symposium on Asynchronous

Circuits and Systems, pages 196–205, May 2003.

[8] Y. W. Li, K. L. Shepard, and Y. P. Tsividis. A continuous-

time programmable digital fir filter. IEEE Journal of Solid-

State Circuits, 41(11):2512–2520, November 2006.

[9] B. Schell and Y. Tsividis. A clockless adc/dsp/dac system

with activity-dependent power dissipation and no aliasing.

Solid-State Circuits Conference, 2008. ISSCC 2008. Digest

of Technical Papers. IEEE International, pages 550–551,

February 2008.

[10] A. Nikoozadeh and B. Murmann. An analysis of latch

comparator offset due to load capacitor mismatch. IEEE

Transactions on Circuits and Systems II, 53(12):1398–1402,

2006.

[11] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto. A

current-controlled latch sense amplifier and a static power-

saving input buffer for low-power architecture. IEEE Jour-

nal of Solid-State Circuits, 28(4):523–527, April 1993.

[12] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel. Yield and

speed optimization of a latch-type voltage sense amplifier.

IEEE Journal of Solid-State Circuits, 39(7):1148–1158, July

2004.

[13] U. Fiedler and D. Seitzer. A high-speed 8 bit a/d converter

based on a gray-code multiple folding circuit. IEEE Journal

of Solid-State Circuits, SC-14(3):547–552, June 1979.

[14] J. C. Bob Verbruggen, M. Kuijk, P. Wambacq, and G. V. der

Plas. A 2.2mw 5b 1.75gs/s folding flash adc in 90nm digital

cmos. Solid-State Circuits Conference, 2008. ISSCC 2008.

Digest of Technical Papers. IEEE International, pages 252–

253, February 2008.

[15] J. McCreary and P. Gray. All-mos charge redistribution

analog-to-digital conversion techniques. i. Solid-State Cir-

cuits, IEEE Journal of, 10(6):371–379, Dec 1975.

[16] Y. Yee, L. Terman, and L. Heller. A two-stage weighted

capacitor network for d/a-a/d conversion. IEEE Journal of

Solid-State Circuits, 14(4):778–781, Aug 1979.

116

Design of a Low Power, Variable-Resolution
Flash ADC

Sreehari Veeramachanen, A. Mahesh Kumar, Venkat Tummala* ,M.B. Srinivas
Centre for VLSI and Embedded System Technologies(CVEST),

International Institute of Information Technology (IIIT),
Gachibowli, Hyderabad, 500032, India.

* San Jose State University
Email: srihari@research.iiit.ac.in, maheshkumar_a@research.iiit.ac.in, ven646@gmail.com

srinivas@iiit.ac.in.

Abstract: In this paper, a low power and variable resolution
(adaptive) flash ADC is proposed. The ADC enables
exponential power reduction while the reduction in resolution
is linear. In the proposed design, unused parallel voltage
comparators are switched to standby mode leading to
consumption of only the leakage power. The ADC, capable of
operating at 4-bit, 5-bit, and 6-bit precision, dissipates 6mW at
4-bit and 12mW at 6-bit, and operates at a sampling frequency
of 1 to 2 GSPS. The ADC has been designed and simulated in
standard 65nm CMOS technology using Cadence tools.

1. INTRODUCTION

Analog-to-digital converter (ADC) is a fundamental block
in mixed-signal VLSI circuits. For high-speed applications,
a flash ADC is often used. Resolution, speed, and power
consumption are the three key parameters for an analog-to-
digital converter (ADC). These parameters cannot be
changed once an ADC is designed. While one can use 6-bit
precision from an 8-bit ADC, it is non-optimal resulting in
slower speed and extra power consumption due to full 8-bit
internal operation.

In this paper, a new flash ADC design is proposed that is a
true variable-power and variable-resolution ADC. It can
operate at higher speed and will consume less power when
operating at a lower resolution. Such features are highly
desirable in many wireless and mobile applications. For
example, the strength of a radio frequency (RF) signal varies
greatly depending on geographic location. Optimally, the
ADC resolution can be reduced upon the reception of strong
signal and can be increased upon the reception of weak
signal. Substantial reduction in power consumption at lower
resolution will prolong the battery life.

2. Background
Low power ADC architectures are implemented with
pipelined, successive approximation, and sigma-delta
modulators. These are all useful for the medium speed
conversion and high resolution applications. On the other
hand, the flash architecture is suitable for high speed
conversion and low resolution applications due to its parallel
architecture. Figure 1 represents the conventional flash
ADC with dc characteristics, which requires many analog
comparators and the complexity and power dissipation
become very high. Moreover, the accuracy of dividing
resistors requires high value for reference voltage if the

conversion resolution is high. Because many comparators
compare the reference voltage with input voltage at the
same time, power consumption in the flash architecture is
much larger than for the others. Controlling the power
consumption in the comparator is the key to reducing the
overall power consumption in a flash ADC.

V

Vout

Vref

V in

C 1

C 62

C 63

V in

 (a) (b) (c)

Figure 1: Differential voltage comparator

In this work, the authors propose a new, low-power and
low-voltage flash ADC based on an existing approach [1-3,8]
of TIQ-based ADC in which the ratio of channel length and
width are designed by which the transition threshold of the
CMOS inverters is varied to detect input analog signal. The
values are then encoded into the digital code. The
advantages are that the ADC circuit does not need any
resistor and uses simple CMOS inverters rather than analog
comparators.

3 Proposed ADC Design

The key feature of the comparator in the proposed design is
the fact that the comparator can easily and quickly switch
from active mode to standby mode. It consists of following
four sub blocks followed by their integration.

3.1 Bias block
3.2 Peak detector
3.3 comparator
3.4 Decoder block

3.1 Bias block

Bias block consists of band-gap reference and voltage
regulator generating reference voltages as shown in the
figures 2. The band-gap reference block generates 0.7V and

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.62

117

voltage regulator generates reference voltages V1=1.1,
V2=0.9 and V3=0.7 in this application.

V1

V2

V3

Voltage
Regulator

Band-Gap
Reference

Vref
Block

Figure. 2. Bias block
3.2 Peak detector

 The function of the peak detector is to compute the peak
value of the input. The circuit follows the voltage peaks of a
signal and stores the highest value on a capacitor. If a higher
peak value signal comes along, this new value is stored. The
highest peak value is stored until the capacitor is discharged.

Consider the circuit of figure 3. When input Vin exceeds Vc,
the voltage across capacitor, the diode D is forward biased
and the circuit becomes a voltage follower. Consequently,
the output voltage Vo follows Vin as long as Vin exceeds
Vc. When Vin drops Vc, the diode becomes reverse-biased
and the capacitor holds the charge till input voltage again
attains a value greater than Vc. Figure 4 shows the different
voltage wave shapes for the peak detector. The advantage of
peak detector is self-triggering, self-sparsifying and timing
output.

+

 _
V C

C

Vin

A
D V 0

Figure. 3. Peak detector

Figure. 4. Different Voltage wave shapes for the peak
detector

3.3 Comparator

The comparator is the most important component in the
ADC architecture. Its role is to convert an input voltage
(Vin) into a logic `1' or `0' by comparing a reference voltage
(Vref) with the Vin. If Vin is greater than Vref, the output of
the comparator is `1', otherwise `0'.

The proposed comparator uses two cascading CMOS
inverters as a comparator for high speed and low power
consumption. This is a modification of Tangel [1-3] who
used TIQ comparator for implementing a high speed flash
ADC.

 3.3.1 CMOS Inverter as a Comparator

The inverter threshold (Vm) is defined as the Vin = Vout in
the VTC of an inverter. Mathematically,

 (3.1)

(a) Inverter schematics diagram (b) Inverter VTC

Figure. 5. Inverter schematic and VTC

Where VTp and VTn represent the threshold voltages of
PMOS and NMOS devices, respectively. Figure 5 shows the
schematic of an inverter and its VTC from the simulation.

The first inverter consists of controllable inputs Vctrlp and
Vctrln to operate inverter in stand-by mode or active mode
as shown in figure 5(a). At the input the analog signal
quantization level is set by Vm depending on the W/L ratios
of PMOS and NMOS, the control voltages Vctrlp=0 and
Vctrln=1 for active mode and Vctrlp=1 and Vctrln=0 for
stand-by mode . The second inverter is used to increase
voltage gain and to prevent an unbalanced propagation delay.
In Figure 5(b), the slope of Vout is shown larger than the
one of Vout1. The inverter threshold depends on the
transistor sizes. The inverter VTC Va and Vb show the
difference from the VTC of Vout. With a fixed length of the
PMOS and NMOS devices, we can get desired values of Va
and Vb by increasing only the width of the PMOS and
NMOS transistors, respectively.

This result can be confirmed by the following equation of
the inverter threshold

(3.2)
where µp and µn are the electron and hole mobility,
respectively. To derive above Equation, we assume that both

118

transistors are in the active region, the gate oxide thickness
(Cox) for both transistors is the same, and the lengths of
both transistors (Lp and Ln) are also the same. From
Equation 3.2, we know that Vm is shifted depending the
transistor width ratio (Wp/Wn). That is, increasing Wp
makes Vm larger, and increasing Wn results in Vm being
smaller on the VTC. This changing of the widths of the
PMOS and NMOS devices with a fixed transistor length is
the idea of the TIQ comparator[1-3]. We can use the
inverter threshold voltage as an internal reference voltage to
compare the input voltage. However, to use the CMOS
inverter as a voltage comparator, we should check the
sensitivity of Vm to other parameters, which are ignored in
Equation 3.2, for correct operation of the proposed flash
ADC.

3.4 Decoder block

A decoder for flash analog-to-digital converter with short
critical path, regular structure, and small area has been
suggested earlier [4]. In this work, it has been modified to
make its operation efficient.

The decoder is based on 2:1 multiplexers connected as a tree.
Each level of the tree divides the input thermometer scale in
two and calculates one of the bits in the binary output. In
comparison with the Wallace tree decoder and the folded
decoder the length of the critical path is approximately
reduced to one third and one half, respectively. The amount
of hardware is also reduced, which will translate to a power
saving, compared with the Wallace tree decoder and the
folded decoder.

 The multiplexer-based encoder can be found by observing
that the most significant bit (MSB) of the encoder output is
equal to the middle digit in the thermometer code. The
second highest bit is found in the same way, but only
considering a part of the whole thermometer code. The
lower half if the middle digit is zero, otherwise the upper
half. This is continued until all output bits are found. The
algorithm is illustrated by the figure 6 below to the left and
can be realized by the circuit below to the right, which
entirely consists of 2-to-1 multiplexers. Hence, it has a
regular structure, which is an advantage during layout [5]. A
comparison between different types of encoders as shown in
table 1, also indicate that this encoder has the lowest
hardware cost among all and shortest critical path. Hence, it
is probable that it also is the fastest encoder. In the
following figure 6, block diagram is shown with an
example.

Type of encoder N.o. MUX's Critical path

Wallace tree 171 MUX 18 tmux

4-level folded 81 MUX 12 tmux

Multiplexer based 57 MUX 5 tmux

Table 1 Different types of encoders

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1

b 3
1
1
1
1
1
1
1

1
1
1

b 2

b 1 1 b 0

0
0

0
0
0

0
0

0
1
1
1
1
1
1
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

b 3

b 2

b 1
b 0

(a) (b)

S

S

S

S

A

B

B

A

(c)

Figure 6 Decoder block diagram with example

Figure 6 (c) represents the CMOS based 2-to-1 multiplexer.
The advantage of this multiplexer are

1. Acts as gain booster in the ADC.
2. Low leakage operation
3. Two legs are symmetrical
4. Layout area of the MUX is less and symmetry
5. Power dissipation is less

3.5 Integration of Blocks

The proposed flash-ADC features modified threshold
inverter quantization (TIQ) technique [1-3] for low power
and variable resolution using standard CMOS 65nm
technology. Figure 7(a) and 7(b) shows Peak Detector for
Reconfigurability and block diagram of the proposed ADC .
The proposed ADC consists of bias block generating
reference voltage V1, V2, V3 (V1>V2>V3) which are used
as reference levels to determine the voltage levels of the
analog input signal, peak detector for determining the
voltage levels, 63 inverters, decoder s (4-bit, 5-bit and 6-bit),
digital block and output multiplexer.

The analog input signal Vin is given to the peak detector
and the inverters. Peak detector consists of an amplifier,
three diodes D1, D2, D3, comparators and multiplexers.
When the input signal Vin applied to the peak detector the
comparator output comp1 is high and mux1 is short
circuited. when Vin exceeds Vk1 then diode D1 is forward
biased and the circuit becomes a voltage follower.
Consequently, the output Vk1 follows Vin as along as Vin
exceeds Vk1. When Vin drops below Vc, the diode becomes
reverse biased and the capacitor holds the charge till input
voltage again attains a value greater than Vc. when diode
D1 is reverse biased and the voltage Vk1=Vc is greater than
V1 then comparator Comp1 triggers and output is ‘0’. In
this case mux1 open circuited and the peak voltage is stored
on to the capacitor (Vc). The control signals C1=0 and
C2=C3=1 and hence peak detector acts as V1 voltage peak
detector.

The control voltages C1, C2 and C3 are given to a digital
block to generate control voltages (A1, A2 and A3) for
decoders as shown in table 2.

119

INPUTS OUTPUTS
C1 C2 C3 A1 A2 A3
0 1 1 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0

Table 2. Control Signals for inverters, Decoders and

Multiplexer

6-bit inverters are designed with different threshold voltages
i.e., for highest input peak voltage signal the control signal
values are C1=0, C2=C3=1 which will turn on (active mode)
LSB inverters from 0 to 15 and turn off (stand-by mode)
from 16 to 63. In the decoder section we have 4-bit, 5-bit
and 6-bit decoders separately. The control signal A1=0,
A2=A3=1 which will select 4-bit decoder and output
multiplexer such that proposed ADC operates as 4-bit ADC
with highest input analog signal.

For the second highest peak input analog signal, the signal is
compared with reference voltage V2. During this
comparison if Vk2=Vc is greater than V2 then comparators
Comp1, Comp2 triggers and outputs of comparators go to
‘0’ therefore C1=C2=0, C3=1 and digital block outputs are
A1=A3=1, A2=0. Hence peak detector acts as V2 voltage
peak detector. The control signals C1, C2, C3 will turn on
(active mode) inverters from 0 to 31 and turn off (stand-by
mode) from 32 to 63. The control signals A1, A2 and A3
will select 5-bit decoder and output multiplexer such that
proposed ADC operates as 5-bit ADC.

For the Lowest peak input analog signal, the signal is
compared with reference voltage V3. During this
comparison, if Vk3=Vc is greater than V3 then comparators
Comp1, Comp2, Comp3 triggers and outputs of comparators
go to ‘0’ therefore C1=C2=C3=0 and digital block outputs
are A1=A2=1, A3=0. Hence peak detector acts as V3
voltage peak detector. The control signals C1, C2, C3 will
turn on (active mode) inverters from 0 to 63. The control
signals A1, A2 and A3 will select 6-bit decoder and output
multiplexer such that proposed ADC operates as 6-bit ADC.

The programmable resolution based upon analog input peak
voltage and its corresponding power consumption values
and performance parameters are given in table 3.

V1

+

_

+

_

V2 V3

D1 D2 D3K1 K2 K3

MUX1 MUX2 MUX3

Digital Logic

C1 C2 C34 bit 5 bit 6 bit

A1 A2 A3

Vin

Vc

+

_

+

_

comp1 comp2 comp3

Figure 7(b) Peak Detector for Reconfigurability

Figure 7(b) Block diagram of Proposed ADC

4 Simulation Results

This section describes the functional simulation of the
proposed ADC and characterization to verify that is suitable
for high speed, low voltage application.

4.1 Functional simulation

A transient and DC analysis of the ADC is done by giving a
ramp input going from 0.264V to 0.888V (which is full
scale range of the ADC) and with each LSB voltage level
(VLSB) of 10mv. The digital codes were obtained correctly
going from 0 to 63 at the output with one VLSB of 10mv,
indicating that the ADC was functionally correct. The
simulation results are shown in figure 8(a) and figure 8(b).

Figure 8(a) Transient analysis of the 6-bit ADC to prove
functional correctness

120

Figure 8(b) Inverter threshold levels

4.2 Characterization

The proposed ADC (4-bit, 5-bit and 6-bit) is designed in
65nm technology, characterized for parameters like
differential non-linearity (DNL), integral non-linearity (INL)
(Static performances), signal-to-noise ratio (SNR) , signal to
noise and distortion ratio (SNDR) and effective number of
bits (ENOB) (Dynamic performances) [6-8] as shown in
table 3.

 4-bit 5-bit 6-bit
DNL (LSB) 0.3 0.36 0.4
INL (LSB) 0.28 0.32 0.35

Input frequency 1.2Gs/sec 1Gs/sec 800Ms/sec
SNR 30dB 30dB 34.5dB

SNDR 29.5dB 29.5dB 34dB
ENOB 4.6 4.6 5.34

Avg.Power(mw) 6mw 9mw 12mw
Layout Area (um2) 320x320 400x400 500x500
Power supply (v) 1.2 1.2 1.2

Table 3 Proposed ADC features for 4-bit, 5-bit and 6-bit.

The proposed ADC designed for 6-bit is compared with
conventional 6-bit comparator based ADC for static
performance, dynamic performance and power consumption
as shown in table 4.

Comparator
based ADC

Design

Proposed

ADC
Design

DNL (LSB) 0.8 0.4
INL (LSB) 0.5 0.35

Input frequency 800Ms/sec 800Ms/sec
SNR 32.3dB 34.5dB

SNDR 31.86dB 34dB
ENOB 5.0 5.34

Avg.Power(mw) 70mw 12mw
Layout Area(um2) 900x900 500x500

Power supply 1.2V 1.2

Table 4 Comparison of 6-bit comparator based and
Proposed ADC design

DNL and INL testing is done by including verilog-A block
which generates a slowly varying full scale range ramp is
given as input to the proposed flash ADC, which completes
the full scale range in 63 steps for transistor level
implementation. The values of the each code are compared
with ideal value and store the difference value. The results
show that the ADC exhibits a maximum DNL of 0.4LSB.
and INL of 0.35LSB as shown in the Fig 9 and Fig 10
respectively.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

OUTPUT CODE

D
NL

(L
SB

)

Figure 9: DNL plot of the 6-bit ADC

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

OUTPUT CODE

IN
L

(L
SB

)

Figure 10 INL plot of the flash ADC

The SNR and SNDR of the designed ADC have been
measured at an input frequency of 400MHz. The flash ADC
is fed a sinusoidal input which covers the entire full scale
range, and the output is fed to an ideal DAC is a
reconstructed, digitized sine wave, at 400MHz. The FFT of
this sine wave is plotted, from which SNR and SNDR
values at different input frequency range is shown in the
figure 11. The SNR and SNDR was found to be 34.5 dB and
34.0 dB.

Figure 11 SNR and SNDR plot

The effective number of the bits (ENOB) shows an ADC’s
performance at a specific input frequency. The ENOB is
really related to the input frequency. If the input frequency
is increased, then the ENOB degrades. The ENOB can be
calculated with SNDR as shown in equation.

ENOB = (SNRD – 1.76) / 6.02

121

ENOB for five different frequencies is shown in the table 4.

Table 4 Different ENOB values with respect to frequency.

I/P Frequency No of bits ENOB

100MHz 6-bit 5.6

200MHz 6-bit 5.5

300MHz 6-bit 5.4

400MHz 6-bit 5.34

800MHz 6-bit 5.2

4.6 Power simulation

Figure 12 shows the comparison of power consumption for
conventional 6-bit flash ADC and proposed 6-bit ADC
design. We observe that peak powers are 70mW and 12mW
for conventional ADC and proposed ADC respectively.

Figure 12 Instantaneous power plot of the flash ADC

The flash ADC is fed a sinusoidal input operating at a
frequency of 800MSPS which covers the entire full scale
range, and the output is fed to an ideal DAC is a
reconstructed, digitized sine wave, at 800Ms/sec is shown in
the figure 13 .

Figure 13 800Msamples/sec 6-bit ADC Input and output
waveform.

Figure 14 Layout of Proposed ADC

Figure 14 represents the layout view of the Proposed ADC.
ADC footprint is made such that all input pins are brought
on to the left side and output pins are on the right side of the
layout.

Conclusion

The proposed low power and variable resolution flash ADC
design operates at high speed with programmable resolution
based upon analog input peak voltage. It operates at higher
speed, lower resolution and consumes less power. The
advantage of proposed ADC is built in peak detector which
will detect the peak level of the analog input signal and
provides programmable feature (i.e., at highest input voltage
peak level ADC will operate as 4bit and for lowest input
voltage peak level ADC will operate as 6-bit).

References

[1] A. Tangel, "VLSI implementation of the threshold
inverter quantization (TIQ) technique for CMOS flash
A/D converter applications." Ph.D. Dissertation, The
Pennsylvania State University, Aug. 1999.

[2] J. Yoo, "A TIQ Based CMOS Flash A/D Converter for
System-on-Chip Applications", Ph.D Thesis, The
Pennsylvania State University, May 2003.

[3] Tangel, A.; Choi, K, “'The CMOS Inverter as a
Comparator in ADC Designs”, spinger Analog
Integrated Circuits and Signal Processing, Vol.39,
pp.147-155,2004.

[4] E. Säll, "Implementation of Flash Analog-to-Digital
Converters in Silicon-on-Insulator Technology,"
Linköping Studies in Science and Technology, Thesis
No. 1213, ISBN 91-85457-79-5, Linköping, Sweden,
Dec. 21, 2005.

[5] J. M. Rabaey, A. Chandrakasan, and B. Nikolic′,
“Digital Integrated Circuits”, 2nd Edition, 2003.

[6] Maxim Integrated Products, INL/DNL Measurements
for High-Speed Analog to-Digital Converters (ADCs).

[7] Maxim Integrated Products. Defining and Testing
Dynamic Parameters in High-Speed ADCs, 2001

[8] Rudy J. van de Plassche, “CMOS Integrated Analog-to-
Digital and Digital-to-Analog Converters”, 2nd
Edition,2005.

122

Session 2B

Floorplanning and Analog Layout

Floorplanning for Partial Reconfiguration in FPGAs

Pritha Banerjee
Indian Statistical Institute

ACMU, Kolkata, India
pritha r@isical.ac.in

Megha Sangtani
Nvidia Graphics Pvt. Ltd.

Pune, India
meghasangtani@gmail.com

Susmita Sur-Kolay
Indian Statistical Institute

ACMU, Kolkata, India
ssk@isical.ac.in

Abstract

Partial Reconfiguration on heterogeneous Field Pro-
grammable Gate Arrays (FPGA) with millions of gates
yields better utilization of resources by swapping in and out
the active modules of one or more applications at an in-
stant of time. Given a schedule of sub-task instances with
each instance having a netlist of active modules, a global
floorplanning method is essential to reduce the reconfigu-
ration overhead by fixing the position and shapes of com-
mon modules across all instances, while optimizing the per-
formance. Here we propose a global floorplan generation
method to obtain same positions for the common modules
across all instances such that the heterogeneous resource
requirements of all modules in each instance are satisfied,
and the total wirelength (HPWL) over all instances is min-
imal. We also provide experimental results in support.

1. Introduction

Modern FPGA architectures like Xilinx’ Virtex series al-
low partial dynamic reconfiguration, i.e., inactive parts of
a design implemented on FPGA chip can be replaced by
other designs while the remaining part of FPGA continues
to execute. Thus, partial reconfiguration helps executing a
large application in the same piece of hardware by swapping
in and out the active and inactive parts of design when the
whole application does not fit completely on the chip. This
incurs an additional partial reconfiguration overhead each
time a new part is swapped in and out of the FPGA chip.
Hence an appropriate scheduling of task/application/design
is necessary to reduce the partial reconfiguration overhead
such that common tasks/designs need not be swapped in and
out again and again. Given a schedule of instances consist-
ing of a set of common as well as other tasks, the resources
on the chip may get fragmented due to arbitrary placement
of tasks on the chip. The tasks of the consecutive instances
might not fit contiguously in the fragmented resources scat-
tered across the chip. This might lead to reconfiguration of
the whole chip to make contiguous space for each task in-
curring reconfiguration overhead defeating the whole pur-

pose of partial reconfigurability. As modern FPGAs are
heterogeneous in nature with preplaced blocks like RAM,
Multipliers along with array of CLBs, the mapping of tasks
for each instance allocating heterogeneous resources con-
tiguously to each task while meeting the performance ob-
jective, becomes more complex. In this paper, we propose a
fast performance aware global floorplan generation method
for the tasks/modules of each instance of a given sched-
ule such that the common tasks/modules across instances
take same position and shape on the target FPGA chip re-
sulting in minimal reconfiguration overhead and the total
semi-perimeter wirelength over all instances is optimized
by placing the other modules considering their connectivity
and position of common modules.

In the rest of the paper, Section 2 reports related earlier
works. While Section 3 has the problem formulation, the
steps of the proposed method are detailed in Section 4, 5 and
6 respectively. Section 7 reports the experimental results
with concluding remarks in Section 8.

2. Previous works

In the FPGA literature, floorplanning a set of modules in
a single instance itself is only a handful. Cheng and Wong
[4], Feng and Mehta [5] have proposed simulated annealing
based methods whereas Banerjee et. al. [2] have proposed
deterministic topology generation and node sizing for floor-
planning the heterogeneous FPGAs. The earliest work on
floorplanning for partial reconfiguration was formulated as
a 3D template placement problem in [3]. Singhal and Bo-
zorgzadeh [12] have introduced a new multi layer sequence
pair representation based floorplanner which maximizes the
overlap of common components of multiple designs thereby
reducing reconfiguration overhead. The commercial tool
like Xilinx’ Planahead [8] requires manual placement of
the common modules beforehand. Ahmadinia et. al [1]
have proposed an algorithm for on-line optimal free space
management and routing conscious dynamic placement for
reconfigurable devices. Our fast deterministic global topol-
ogy generation is based on slicing tree and its sizing unlike
[12] which minimizes reconfiguration overhead by placing

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.36

125

Phase I:
For each instance, find linear arrangement of modules

by recursive min-cut bi-partition of module netlist

Phase II:
Global topology generation and node sizing with
static modules placed at bottom-left and top-right

corners of the chip for all instances

Phase III:
(a) For each slicing tree of each instance

 reallocation of cut lines satisfying CLB requirement
(b) pruning the set of slicing trees

(c) grouping slicing trees across instances
(d) postprocessing for allocation of all resources

Choose a group with
minimum overall wirelength

Partition trees

Sets of slicing trees

Netlist Hypergraph with
V: Modules,
Wt (V) : resource
requirement, E: Net

A list of groups, having one
floorplan from each instance

(a)

(0,0)

(87,103)

1

2

3

13

26

Basic Tile

CLB

RAM

MUL

(b)

Figure 1. (a) Flow of the proposed method; (b) Spartan-3 XC3S5000 FPGA Architecture, tessellated
with a basic tile.

the common modules of same shape across all instances at
specific position on the chip.

3. Floorplanning for partial reconfiguration

Definition 1 Resource Requirement Vector [4]: A 3-tuple
vector Rm = (mclb, mram, mmul) represents the number
of CLBs, RAMs and MULs required by a module m.

Definition 2 Static and Dynamic modules: Given a sched-
ule of instances, modules which are common and remains
active in all instances are called static modules. The rest of
the modules which are swapped in and out of an instance,
are called dynamic modules.

Floorplanning problem for partial reconfiguration is es-
sentially the generation of a global floorplan where each
floorplan corresponding to each instance of a schedule is
a feasible floorplan and the common modules are placed
at the same location with same shape in each of the in-
stances, while the total HPWL across all instances is mini-
mal. We build upon the single instance floorplanning prob-
lem for heterogeneous FPGAs of [2] as follows. In a
given schedule, let there be k instances I1, I2, · · · Ik . Let
s1, s2, · · · sm ∈ SM , be m static modules that remain ac-
tive in all instances. For each Ii, 1 ≤ i ≤ k, let there be
ni modules di1, di2, · · · dini . The connectivity of the mod-
ules Ci, in each instance i is also given. The objective is
to find floorplans for all instances, such that (i) the resource
requirement of a module Rmi is satisfied within a region
(xmin, ymin, xmax, ymax) in each instance without overlap,
(ii) the location and shape (i.e., width and height) of each
static module is same across all instances, (iii) the half-
perimeter wirelength (HPWL) of netlist for all instances is
minimized.

Our method consists of three phases as shown in Fig. 1.
In the first phase a linear arrangement of modules for each

instance is obtained such that the static modules are fixed
to the same position across instances. In the second phase,
a list of global slicing topologies is generated for each in-
stance such that the positions of static modules are fixed
at diagonally opposite corners of all floorplans leaving the
maximal contiguous space for dynamic modules. Finally,
on the basis of similarity between slicing trees of different
instances, a set of groups, each having a set of slicing trees
is generated. For each slicing tree in each group, a rect-
angular region is assigned to every module, which respects
the cut direction and the actual resource requirement of the
modules. The group with least total wirelength is the final
solution.

For soft modules with homogeneous resource require-
ment such as only CLBs, the requirement can be factor-
ized to generate a set of possible shapes (i.e, width and
height), which can be later used for node sizing in tradi-
tional topology generation when floorplans are represented
as slicing trees [11]. For heterogeneous resource require-
ments, where each resource type have specific location on
the board, shapes can not be generated from the resource
requirement vector Rm. Thus, basic tile [2], an uniform en-
tity is defined to compute the resource requirement of each
module, which could be easily adapted for generation of
shapes during node sizing. Thus the chip is composed of
Tw × Th basic tiles arranged in h rows and w columns. In
Fig. 1(b), The basic tile A = (80, 1, 1) consists of 20 × 4
CLBs, 1 RAM and 1 MUL and Tw × Th is 4 × 26.

4. Linear arrangement of Modules

In order to minimize the wirelength [2], we obtain a lin-
ear arrangement of modules, taking the left to right order
of the leaves of a partition tree obtained by recursive par-
titioning of module netlist. The partition tree is the base-
line of slicing tree generation in the next phase. For every

126

c

SL SR
SL SR

a

b c

e f

d
a

b

d

ef

Before Swapping After Swapping

Figure 2. Swapping of static super modules
to extreme ends of the partition tree; the ar-
row shows the partitions to be exchanged

instance of the given schedule, we use a balanced mincut
bi-partitioning tool hMetis [6] to partition the modules of a
netlist (represented as hypergraphs) by extending the parti-
tioning of [2]. The weight associated with a vertex is the
number of basic tiles required to satisfy the resource re-
quirement of the corresponding module.

As static modules must have the same shape and location
across all instances, it is beneficial to place all the static
modules at two diagonally opposite corners of the floorplan.
This provides the maximal contiguous space to place the
rest of the dynamic modules.

Observation 1 In a slicing tree representation of a floor-
plan, the modules at left most and right most leaves in a
slicing tree always correspond to the two diagonally oppo-
site corners of the floorplan.

From Observation 1, if the static modules are placed at the
left most and right most ends of the partition tree, the mod-
ules will definitely be on the opposite corners on the floor-
plan. If the netlist of modules of each instance is considered
separately for linear arrangement, the static modules might
go anywhere in the linear arrangement of each instance. We
formulate a constrained linear arrangement of modules of
each instance such that, in every instance, the positions of
static modules are same in the partition tree and thus in lin-
ear arrangement.

First we extract the static modules and the correspond-
ing netlist from the given schedule. Then we bi-partition
the static modules into two partitions SL and SR and call
each of them a super module. For each instance, the two su-
per modules along with dynamic modules and their netlist
is bi-partitioned recursively based on balanced min-cut un-
til each partition contains at most one module/super module
per partition. In the first level of recursive bi-partitioning,
we force SL and SR to be in different partitions for every
instance, so that they can be pushed to extreme left and
right positions respectively during further recursive parti-
tioning. Since swapping of partitions in a partition tree does
not affect the min-cut in the tree, during each recursive bi-
partition the left and right partitions are swapped such that
partitions SL and SR are always pushed to the extreme left
and extreme right of the partition tree. The swapping of

partitions with static super modules is shown in Fig. 2.
Thus we get one partition tree for each instance of the given
schedule where the static super modules are at the extreme
left and right leaves of each partition tree.

5. Global floorplan topology generation

In this step a set of sliceable floorplan topologies is gen-
erated for each instance simultaneously by appropriate hor-
izontal and vertical node sizing starting from a set of possi-
ble shapes (in terms of tiles) of each module.

A list of irredundant shapes are generated [2] for every
module and the super modules mi, of all instances by fac-
torizing Tmi . Thus, each leaf node of the partition tree cor-
responding to a module contains a list of possible shapes,
i.e., (width, height) pair in terms of tiles. For all instances,
the corresponding partition trees are traversed simultane-
ously bottom-up, level by level, generating a set of irredun-
dant sub-floorplans by combining the available shapes of its
left and right children with vertical or horizontal cut. To
generate irredundant shapes at the parent node of static su-
per modules, a particular shape of static super modules may
be thrown out in some of the instances when combined with
its neighboring dynamic modules by a cut. We discard such
shapes of static super modules from all the instances when
a particular shape is eliminated from any of the instances
to maintain same list of shapes of static super modules in
all the instances. If at any level of simultaneous processing
of slicing tree generation for all instances, we end up with
an empty list of shapes for any of the static super modules,
then we can directly report that no floorplan is possible for
the set of instances on the given target board for the linear
arrangement of modules/super modules obtained in the first
phase. We might have to iterate the process with a different
linear arrangement of modules. At the end of this phase a
set of slicing trees for each instances is generated with static
super modules at two opposite corners of the floorplan. The
final shape (width, height) of the floorplan may not fit the
target FPGA chip when the shapes are considered in terms
of tiles. All shapes that are either wider or longer than the
target chip may not result in a feasible floorplan satisfying
all its resource requirements[2]. Thus we select only those
slicing trees with final shape of width between 3 and 6 tiles
for a target chip of 4× 26 tiles, as there is a high possibility
of obtaining a feasible floorplan on this chip in third phase.

6. Realization of Slicing Trees on the chip

For the selected slicing trees of every instance, coordi-
nate positions are assigned to each module and static su-
per modules respecting the cut lines and satisfying the exact
CLB and RAM/MUL requirements. Thus a set of feasible
floorplans for each instance is generated.

127

t11 t12 t1n1

 t21 t22 t2n2

tk1 tk2 tknk

w
t(

t 1
1,t

21
) wt(t1n1,t21

)I1

I2

Ik

wt(a,b) : distance between
slicing trees a and b

(a)

sN
tN

LN
RN

u1

u2

un

v1

v2

vm

cap: available(v1)

cost: length (u1,v1) in RD cap: available(v1)

cost: 1

cap: deficit (
u1)

cost:
1

(b)

Figure 3. (a)Grouping of slicing trees by finding shortest pathin the associated digraph; (b) postpro-
cessing by min-cost network flow graph for satisfying CLB requirement

Allocation of rectangular region to a module: Each se-
lected slicing tree of every instance is traversed top-down
and a rectangular region is assigned to every node using the
cut direction at its parent and the number of CLBs required
at that node. The root node of the slicing tree corresponds to
the target board with 80 CLB columns and 104 CLB rows in
it. Let the region (xmin

p, ymin
p, xmax

p, ymax
p) allocated

to a parent node p contains rclb rows and cclb columns of
CLBs. Let the CLB requirements at node p, its left child
l and its right child r be pclb,lclb and rclb respectively. Let
the number of CLB columns (rows) allocated to a node p
is pcol (prow), then lcol (lrow) and the rectangular region
(xmin

l, ymin
l, xmax

l, ymax
)assigned to the left child l of

parent p is computed as follows. For a horizontal cut at
p, lcol = lclb/prow; xmin

l = xmin
p; ymin

l = ymin
p;

xmax
l = xmin

p + lcol − 1; ymax
l = ymax

p. For a vertical
cut at p, lrow = lclb/pcol; xmin

l = xmin
p; ymin

l = ymin
p;

xmax
l = xmax

p; ymax
l = ymin

p + lrow−1. For right child
r, rcol = rclb/prow for horizontal cut and rrow = rclb/pcol

for vertical cut. The coordinate position for the right child r
is computed similar to the left child l. As a convention, the
vertical cut line is positioned by counting the CLB columns
from left to right for the left child and right to left for the
right child. Similarly for horizontal cut, it is positioned by
counting the rows from bottom to top for the left child and
top to bottom for the right child. Positioning of cut lines
in this fashion generates two types of regions; (i) two non
overlapping regions corresponding to two modules at oppo-
site sides within the rectangle assigned to the parent node
(ii) an overlapping or free region at the middle of the parent
region. The overlapped region is generated when a column
or row has to be shared by both modules and a free rect-
angular region is generated when resource requirement of
both modules are much lesser than the avilable resources in
the parent region. We allocate the CLBs required by a mod-
ule to the non overlapping region of the rectangles assigned
to the corresponding module. The remaining CLB require-

ment of each module, called deficit, has to be satisfied either
within the overlapping rectangle or in the neighboring rect-
angles assign to other modules. The deficit of any module
is satisfied during post processing described later.

At the end of this step, a set of floorplans are generated
corresponding to each selected slicing tree of each instance
by allocation of rectangular regions to each module / super
module satisfying the CLB requirements either completely
or partially. The process of allocation generates three types
of rectangular region; (i) non overlapping part of parent
rectangle assigned to a module either with no free CLBs
within it or with some free CLBs in it (ii) overlapping rect-
angle in the middle, where conflicts for CLB requirements
of more than one module needs to be resolved, (iii) free
rectangular region in the middle due to the convention fol-
lowed to assign rectangles and lesser resource requirement
of a module than the available.

Pruning the set of slicing trees: While allocating the
rectangular regions to modules in different instances, their
RAM/MUL requirements are not considered. To check
whether the RAM/MUL requirement of each module and
super modules are satisfied within the rectangular region al-
located, we define the following.

Definition 3 Major Violation : If a module has RAM/MUL
requirement and has been assigned the rectangular region
such that no RAM/MUL column passes through it, then the
module is said to have the major violation.

We discard all the floorplans from each instance if there is
atleast a single module with major violation. These floor-
plans are discarded because a module with major violation
has to borrow the RAM/MUL resources from its neighbour-
ing regions allocated to different modules. This might make
a module non-contiguous and the shape of the module can
be severely affected.

Grouping slicing trees across instances: The set of
pruned floorplans in each instance have static modules

128

placed in the same location but might not have the ex-
act shape after the rectangular region allocation. Thus the
question of selecting a single floorplan from each instances
arises where not only the position but the shapes of each
static modules matches. Thus we find a set of groups, where
each group consists of a slicing tree for each instance and
the floorplans in each group are similar with respect to their
cut lines or aspect ratios of static modules.

We calculate the aspect ratios of static modules in each
floorplan for each instance. We group the floorplans from
each instance on the basis of nearly equal aspect ratios of the
static module such that a group contains at least one floor-
plan from each instance. If there is more than one candidate
floorplan for an instance in the group, we need to select a
single floorplan for that instance. We choose that particular
floorplan from each instance which are similar with respect
to their cut lines

Definition 4 Distance between two slicing trees: Let a and
b be the strings representing level order traversal of nodes
from root till one level above the leaves of the two slicing
trees respectively, with horizontal (vertical) cut represented
as 0 (1). Let l = min{length(a),length(b)} and length of
the longer string be truncated till l from right. Then the
distance between these trees is the number of ones in a⊕ b.

This measures the closeness among two slicing trees in
terms of slicing topology. In the context of partial reconfig-
uration, a schedule implies the ordering of the instances on
the time line. To have same shapes of static modules from
one instance to the consecutive one, the change in slicing
tree must be minimum. Let, t1 < t2 < · · · tk be the k sets
of slicing trees for the k instances in a given schedule, where
t1 and tk are the trees for the first and the last instances in
the schedule. An associated distance digraph G = (V, E)
is defined with v ∈ V corresponding to a slicing tree for
some instance as shown in Fig. 3(a). There is a weighted
edge e ∈ E from u to v, if u and v correspond to the slicing
trees in consecutive instances. The weight is the distance
between u and v as in Definition 4. If there are k instances,
we find a minimum weighted k-length path starting from
the nodes corresponding to t1 to those for tk. The floor-
plans corresponding to the trees in the minimum weighted
path are selected as the final floorplans for a group. There
may be more than one minmum weighted k length path.
Each of them correspond to a group of floorplans that can
be considered as global floorplan.

Postprocessing for satisfying resource requirements: The
slicing trees selected from each instance in a group have
static modules with nearly equal aspect ratios but not ex-
actly the same shape. We consider all pair of shapes, tak-
ing one from the list of SL and the other from SR. For all
instances, we impose the respective shape in a shape pair
to static modules at bottom-left and top-right corner of the

floorplan. This requires reallocation of CLBs of some of the
dynamic modules which are neighbours of static modules
in each floorplan due to new overlaps generated by imposi-
tion of the exact shape of static modules. Now we reallocate
CLBs of such modules along with the deficits generated ear-
lier using the free regions available on the chip. We formu-
late a minimum cost maximum flow (MCMF) problem for
each floorplan corresponding to a slicing tree in the group to
resolve the deficit of CLBs in all instances. A network flow
graph N = (VN , EN) for each floorplan corresponding to
a slicing tree of the group is defined, where N is a bipartite
graph having a source node sN and a sink node tN . Let
VN = LN ∪ RN . Each v ∈ LN corresponds to a mod-
ule that is deficient of CLBs. Each v ∈ RN corresponds
to the rectangular region if they have any free CLBs. Let
EN = Es∪Euv∪Et. For each u ∈ LN there exists an edge
e ∈ Es, e = (sN , u) with capcity as the remaining number
of CLBs of a module to be reallocated, i.e., the deficit, cor-
responding to u and cost as 1. For each v ∈ RN there exists
an edge e ∈ Et, e = (v, tN) with capacity as the number
of free / unallocated CLBs in the rectangle corresponding
to v and cost as 1. For each floorplan, a rectangular dual
graph RD [11] is generated from the adjacency relation-
ship of rectangles. For each u ∈ LN , and for each v ∈ RN ,
there exists an edge e ∈ Euv with capacity equal to the
number of free CLBs in rectangle corresponding to v. The
cost is the length of the shortest path in RD from the vertex
in RD corresponding to u to the vertex in RD correspond-
ing to v. Figure 3(b) shows one such network flow graph.
By solving MCMF, if the amount of flow is equal to the to-
tal deficit of CLBs, then these deficit CLBs corresponding
to each u ∈ LN is satisfied by its neighbouring rectangles.
For each edge e = (u, v) ∈ Euv having a positive flow f
and cost c implies that module corresponding to u borrows
f CLBs from the rectangle corresponding to v following the
c length path in RD, from the vertex in RD corresponding
to u to the vertex in RD corresponding to v. This results in
rectilinear shape of a module in a floorplan. If MCMF does
not give a solution for any one of the floorplan in a group,
this group is rejected as a candidate solution for the partial
reconfiguration problem.

Finally, the RAM/MULs of each module are allocated
by minimum weighted bipartite matching formulation as
described in [2] for that group of floorplans, where each
floorplan is feasible in terms of CLBs. This gives the final
floorplans for each instance in partial reconfiguration prob-
lem. Since there may be more than one group with feasible
solution, we choose a group with feasible floorplans of all
instances with minimum sum of HPWL over all instances.
The proposed method is illustrated with an example in [7].

If k is the number of instances, and h, the maximum
number of signal nets in any instance, the time complex-
ity of first phase is O(kh) [9]. If q is the maximum num-

129

Table 1. Floorplans of individual instance vs. global floorplan; SM: Static modules
Benchmark details HPWL CPU time(s) Overlap of SM (%)

ckt # inst. # SM max # modules, nets Global Indiv Avg. Incr.(%) Global Indiv. Global Indiv.
b1 5 4 31,660 268184 212094 26 6.5 5.3 100 2

b2 5 2 31,527 186247 141391 31 6.6 5.0 100 0

b3 6 3 33,510 285659 232910 22 7.9 6.5 100 9

b4 6 4 29,486 223642 180048 24 7.6 5.8 100 8

b5 6 2 31,450 264308 200501 31 7.9 5.9 100 1

b6 7 3 30,510 308010 247481 24 8.9 6.9 100 7

b7 8 3 34,500 330114 237856 38 9.8 8.3 100 7

b8 9 5 30,420 379354 287604 31 11.4 9.2 100 1

b9 10 3 29,544 326026 257314 26 12.2 8.6 100 17

ber of shapes generated for a module and n, the maximum
number of modules in any instance, the time complexity of
second phase is O(kqn2) [2]. The time complexity of the
third phase is O(kn3). Thus, total time complexity of the
proposed method is O(k(h + n3)).

7. Experimental Results

We implemented the proposed method in C on Unix
using hMetis[6] and LEDA [10] library on 1.2 GHz Sun-
Blade 2000 workstation and obtained results for 9 synthetic
benchmarks. The first four columns of Table 1 shows the
number of instances, number of static modules, maximum
number of modules and signal nets in each benchmark.

The total wirelength obtained by summing up the HPWL
over all instances is compared with the total wirelength ob-
tained if each individual instance is floorplanned optimally.
Column 7 shows the average increase in wirelength. Over
nine benchmark circuits, the average increase in wirelength
is 28%, while the time taken to generate the global floor-
plans for all instances is 1.27× of the total time taken for
floorplanning each instance individually. These CPU times
are shown in columns 8 and 9 for global and individual
floorplan generation respectively. Our global floorplan gen-
eration method places the static modules of same shape at
same location thereby yielding the overlap of static mod-
ules of consecutive instances to 100%. Whereas, in case of
floorplanning individual instances consecutively, the over-
lap for static modules is only about 5.8% on the average.
This shows that, with little increase in wirelength and with
little extra time, it is possible to generate a set of floorplans
for a given schedule satisfying all its resource requirement
and yet causing least partial reconfiguration overhead. This
shows the suitability of our fast deterministic floorplanning
method for partial reconfiguration.

8. Conclusion

In this paper, we proposed a fast deterministic floorplan-
ning method in the context of partial reconfiguration for FP-

GAs with heterogeneous resources. To reduce the reconfig-
uration overhead the static modules are placed on the board
at a fixed location with same shapes at each instance of a
given schedule, while remaining contiguous space is used
for placing the dynamic modules. Experiments on a set of
benchmark shows that being a deterministic method it is fast
and it generates feasible floorplans for each of the instances
of each benchmark with a small increase in wirelength com-
pared to the optimal floorplan of individual instances.

References

[1] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C.
van der Veen. Optimal free-space management and routing-
conscious dynamic placement for reconfigurable devices.
IEEE Trans. Comput., 56(5):673–680, 2007.

[2] P. Banerjee, S. Sur-Kolay, and A. Bishnu. Floorplanning in
modern FPGAs. In Proc. of the 20th Intl. Conf. on VLSI
Design and 6th Intl. Conf. on Embedded Systems Design,
pages 893–898. IEEE Computer Society, 2007.

[3] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template
placement for reconfigurable computing systems. IEEE Des.
Test, 17(1):68–83, 2000.

[4] L. Cheng and M. D. F. Wong. Floorplan design for mul-
timillion gate FPGAs. IEEE Trans. on CAD of Integrated
Circuits and Systems, 25(12):2795–2805, 2006.

[5] Y. Feng and D. P. Mehta. Heterogeneous floorplanning for
FPGAs. In Proc. of the 19th Intl. Conf. on VLSI Design and
5th Intl. Conf. on Embedded Systems Design, pages 257–
262. IEEE Computer Society, 2006.

[6] http://www-users.cs.umn.edu/ karypis/metis/hmetis.
[7] http://www.isical.ac.in/̃ pritha r/BSS partialfloorplan.pdf.
[8] http://wwww.xilinx.com.
[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Mul-

tilevel hypergraph partitioning: Applications in VLSI do-
main. IEEE Trans. on VLSI Systems, 7(1):69–79, 1999.

[10] http://www.algorithmic-solutions.com/.
[11] M. Sarrafzadeh and C. Wong. An Introduction to VLSI Phys-

ical Design. Mcgraw Hill, 1996.
[12] L. Singhal and E. Bozorgzadeh. Multi-layer floorplanning

on a sequence of reconfigurable designs. In Field Pro-
grammable Logic and Applications, pages 1–8, 2006.

130

Efficient Synthesis of a Uniformly Spread Layout

Aware Pareto Surface for Analog Circuits

Almitra Pradhan, Ranga Vemuri

Dept. of ECE, University of Cincinnati, Cincinnati, OH 45219

{pradhaa,ranga}@ececs.uc.edu

Abstract— Accurate and fast optimization of analog circuits is
an important requirement of current synthesis methods. Obtain-
ing the entire pareto optimal surface for conflicting performance
objectives is essential for design space exploration as well as
circuit sizing. Layout parasitics prevent the circuit from realizing
the estimated optimal performance values but are not considered
in most existing pareto-front generation methods. We develop
a layout-aware circuit matrix modeling method along with an
efficient multi-objective optimizer to synthesize the parasitic
inclusive pareto-optimal performance surface. The algorithm
achieves a pareto surface with points spread uniformly in all re-
gions. The sensitivity of critical performance to candidate design
points is used to select the best sizing solution during synthesis.
Experiments on benchmark circuits show the effectiveness of the
proposed method in obtaining a speedup of an order of 103 with
negligible loss of accuracy as compared to SPICE.

I. INTRODUCTION

Automated design and optimization of analog circuits is

an important requirement during the synthesis process. Many

tools developed for analog cell level design use a single

objective optimization algorithm such as Simulated Annealing

(SA), Genetic Algorithms (GA), Convex Programming (CP)

at its core [1], [2]. An analog circuit is required to meet

several performance specifications which are often conflicting

in nature. Deriving the entire set of performance curves, called

pareto surfaces, for a given circuit topology helps in analyzing

performance tradeoffs at various design points.

Pareto surface generation is essentially a problem of multi-

objective optimization and both stochastic and deterministic

methods have been proposed for its solution. Watson [3],

a tradeoff analysis tool for analog circuits, uses a GA and

simulation to find the pareto-optimal performances. Tiwary

et al. [4] use epochs of GA-SA along with simulation. A

large number of iterations are required for a converged pareto-

optimal performance set which makes simulation based tech-

niques expensive. Yu et al. [5] avoid simulation by using a

Kriging based performance model. However, their converged

pareto-front is obtained by a local search in the vicinity of an

initial front generated by a random sampling. It is possible

to miss several performance vectors using a local search.

Deterministic methods such as Normal Boundary Intersec-

tion [6] have been applied, however they suffer from high

computational complexity.

Generating pareto-optimal tradeoff surfaces of analog cir-

cuits finds application in performance space exploration as

well as in a bottom up design approach. Performance space

Multi-Obj optimizer:

Propose new sizes (x’)

For all m M: Query Hash Table
for (x’m)

Generate Layout Aware

Matrix Models

For all m M, find xm

(Predictor variable subset)

Uniform Random Samples

for Matrix Elements
Topology

Layout

Tool

 HT Hit?

Solve M, Obtain P Performances

Update Archive of Non-dominated

Points if P is Pareto-Optimal

Pareto-Front

Frozen?

NoYes

Converged

Front

Stored Model Parameters
 (M directly from hash table)

 (evaluate models)

Y

N

(M by model eval.)

Design Points
for Pareto-opt.

Performance

Pareto-opt.

Performance

Points

Performance
Specs Find closest

Performance Point

from Archive

Find design point

using sensitivity
critereon

Sizing Solution

Fig. 1. Overview of the Proposed Approach

exploration attempts to find the boundaries of achievable

performance values for a given circuit topology. During a top-

down design procedure, constraints are propagated to lower

level blocks. The appropriate topology (e.g. cascode or miller

topology for an amplifier) can be selected based on the limits

of attainable performance which is characterized by its pareto

surface. Gielen et al. [7] use a pareto surface for circuit sizing.

Layout parasitics adversely affect the circuit performance

and need to be accounted early during the synthesis flow.

The pareto surface generated should be inclusive of layout

effects so that the performance boundary predicted by it is syn-

thesizable post layout. Generating the pareto surface requires

the order of 106 iterations for convergence. Synthesizing the

layout at each iteration is expensive and most of the existing

pareto surface generation methods do not consider the effects

of layout parasitics during curve generation.

The focus of this paper is the development of a procedure

for the layout aware pareto front of analog circuits. We use

an SA based multi-objective optimization algorithm due to

its lower memory and cpu requirements. SA methods avoid

sorting and ranking of the solution population as required by

EAs and have been experimentally shown to find a larger set of

non-dominated solutions [8], [9]. The pareto front generation

algorithm has been modified to make use of sub-solution

hashing to improve its efficiency. Layout aware circuit matrix

models developed predict circuit performance accurately. This

method is 3-4 orders of magnitude faster than layout and

simulation which makes it practical. The improvement in

speed is obtained with only about 1% loss in accuracy on

average. Moreover, the proposed method generates a pareto

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.67

131

Vdd

Vss

M1
M3

M22 M21

M23

M9

M20

M6

R0

M17

M16

M18

Vout

Vin-

M15M19

M5

Vin+

M0

Fig. 2. An Operational Amplifier Circuit (SEO)

surface with points distributed in all its regions which is

essential for sizing the circuit using the generated front. Fig. 1

shows an overview of the proposed approach.

This paper is organized as follows. Section II outlines the

parasitic aware matrix model development while section III

describes the pareto surface generation procedure. section IV

presents experiments and results and section V concludes the

paper.

II. CIRCUIT MATRIX MODEL GENERATION

In [10], the authors have proposed matrix models for

accurately predicting the performance of analog circuits in the

design space. In this section we will briefly review the concept

of circuit matrix models and also describe the method to

extend these models to predict circuit performance considering

layout parasitics.

(G + s ∗ C)x = B

y = L
T ∗ x

(1)

Any linear(ized) circuit can be represented mathematically

by its modified nodal analysis (MNA) formulation (eq. 1). The

elements of conductance matrix G are a linear combination

of small signal values of active devices such as gm, gds and

passive resistances. The matrix C elements are a combination

of Mosfet capacitances and other capacitive elements in the

circuit. For each unique matrix element g ∈ G and c ∈ C, data

is gathered by spice simulation using a uniform random distri-

bution in the circuit design space. Design variables affecting

each matrix element are identified. Higher order polynomial

response surface models are generated to predict the relation

between a matrix element and design variables. For further

details about model generation the reader is referred to [10].

Predicting performance with circuit matrix models is about an

order faster than simulation.

The circuit matrix values as well as performance predicted

by this method is very accurate and comparable to a Spice

model. For the operational amplifier circuit shown in fig. 2, all

the circuit matrix elements could be modeled accurately with a

mean error of about 1%. The results for worst case errors over

all circuit matrix element models (M) as well as the estimated

performance parameters are reported in Table I. The accuracy

results reported are on an independent 4000 point validation

dataset.

To study the effect of parasitics on circuit performance

we plot the bandwidth versus unity gain frequency for the

1050 1100 1150 1200 1250 1300
20

22

24

26

28

30

32

SEO: UGF v/s Bandwidth

Bandwidth (KHz)

UG
F

(M
Hz

)

Without Parasitics
After Parasitics

Fig. 3. Effect of layout parasitics on Pareto-optimal performances

amplifier as shown in Fig. 3. The red points (o)are on the

front obtained when layout parasitics are ignored. Post-layout

values for bandwidth and ugf corresponding to the points on

the pareto-surface are shown by the blue points(⋄). Thus, the

achievable performance predicted for this circuit cannot be

attained in practice due to the presence of layout parasitics.

Layout-inclusive circuit matrix models are obtained as fol-

lows. Sample layouts are generated for a uniform random

distribution of design points in the circuit parameter range.

We have used a procedural layout generator (PLG) using the

MSL package [11] as the layout tool. The PLG generates

layouts using rules for device placement, spacing given by the

user. Circuit parasitics are divided into two types (i) device

parasitics (ii) non-device parasitics and models are developed

for them separately.

(i) Device parasitics include the bulk capacitance such

as csb, cdb of analog devices. These are dependent on the

operating point as well as device size. They can be estimated

using polynomial models with the bias, diffusion area As,Ad

and perimeter Ps,Pd as predictor variables. Since diffusion

area and perimeter are highly correlated, they are centered

and normalized before model fitting. For analog modules,

functions for the diffusion area and perimeter are written

using the PLG properties. A library of such functions is pre-

developed for and used in the estimation of parasitics without

actual layout generation.

TABLE I

VALIDATING MODEL ACCURACY

Relative Error (%) Max Mean Std.

Dev.

Worst Case Errors (∀M) 1.4 0.27 0.43

Worst Errors (∀Parasitics) 3.0 1.8 1.9

Using Circuit Level Models

Gain 0.14 0.0015 0.0052

Bandwidth 0.57 0.013 0.04

UGF 0.33 0.0057 0.02

Phase Margin 1.76 0.013 0.05

Using Layout Aware Models

Gain 0.6 0.18 0.1

Bandwidth 1.2 0.46 0.3

UGF 2.4 0.56 0.5

Phase Margin 3.4 0.96 0.9

(ii) Non-device parasitics include various area and coupling

capacitances extracted from the layout. These are dependent

on the device width and also the final routing achieved. These

132

parasitics cannot be predicted exactly like device parasitics,

however linear models generated using device widths and

placement rules give acceptable accuracy.

Parasitic models for device and interconnect parasitics are

developed as described above. Gate level matrix elements are

modeled as given in [10]. A unified parasitic matrix element

model is generated based on MNA equations. The circuit

matrix model thus obtained now predicts the parasitic-aware

performance. Table I shows the accuracy of the layout aware

performance prediction for the op-amp circuit using models

developed by the proposed approach. Average error is less

than 1% while the worst case error is about 3.4%.

III. EXTRACTING THE PARETO-OPTIMAL PERFORMANCE

CURVES

The notion of pareto-optimality exists in multi-objective

optimization problems. Here several objectives need to be

max(min)imized simultaneously. However, these objectives

may be contradictory and it is not possible to obtain a single

best solution. Instead we may obtain several pareto-optimal

solutions, each of which is best with respect to a certain

objective.

A. Problem Formulation

For an analog circuit, measures such as gain, bandwidth,

phase margin are the performance parameters of interest.

These performance parameters are often conflicting and it

is not possible to improve a single performance objective

without deteriorating some others. The general multi-objective

optimization problem with N objectives is formulated as

given by eq.(2). Here, P (x) is the objective vector of N

performance parameters that have to be maximized and x is a

k-dimensional vector representing the design variables within

a parameter space R.

Maximize P (x) = [P1(x), P2(x), ..., PN(x)]

x = [x1, x2, ..., xk] ∈ R
(2)

Pareto-dominance and pareto-optimality are used to com-

pare performance vectors and find the optimal performance

values. A performance vector Pa = [Pa1(x), Pa2(x), ... ,

PaN (x)] is said to dominate the performance vector Pb =

[Pb1(x), Pb2(x), ..., PbN (x)], i.e. Pa ≻ Pb in a maximization

context, if and only if:

35 36 37 38 39 40 41 42 43
40

60

80

100

120

140

160

180

200

220

Pareto−Optimal Performance Set

BW
 (K

Hz
)

Gain (dB)

All Performances
Pareto−Optimal Performances

Fig. 4. Pareto-Optimal performance sets

35 36 37 38 39 40 41 42 43
60

80

100

120

140

160

180

200

220

SEO: Gain v/s Bandwidth

B
a
n

d
w

id
th

 (
K

H
z
)

Gain (dB)

Nam−Park
S−MOSA
A−MOSA

34

36

38

40

42

44

50

100

150

200

250

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

Gain (dB)

SEO: Gain − Bandwidth − UGF

Bandwidth (KHz)

U
G

F
 (

M
H

z
)

Nam−Park
S−MOSA
A−MOSA

Fig. 5. Pareto front generated by the three MOSA methods

∀i ∈ {1, .., N}, Pai ≥ Pai, and

∃j ∈ {1, .., N}, Paj > Paj

(3)

A performance vector is pareto-optimal if there does not

exist any other set of performance values that dominate it.

The pareto-surface typically does not have a closed form and

is described by the set of points that represent the multi-

objective tradeoffs. Fig. 4 shows the set of pareto-optimal

points among the achievable performance for the operational

amplifier circuit.

B. Front Generation Methods

We use a Multi-Objective SA (MOSA) for pareto surface

generation. We tested three MOSA based methods, Nam-

Park [12], S-Mosa [13] and A-Mosa [9] to find their suitability

for the analog circuits domain. Table II shows the number of

performance points and fig. 5 shows the actual pareto-optimal

surfaces generated by each method for the amplifier.

The front coverage index (fci) metric is developed to mea-

sure uniformity of pareto point distribution along the surface.

Each dimension of the pareto surface is divided into small and

equally spaced intervals. The fci is a fraction of the number

of populated intervals to the total number of intervals. An fci

of 1.0 indicates a uniform spread of points. For analog circuit

optimization, the S-Mosa gave better results both in terms of

the number and spread of points found.

δE(x, x′) =
| Fx | − | Fx′ |

| F |
(4)

S-Mosa uses eq.(4) as the energy function where F is the

front and Fx is the dominated set. Candidate solutions (x′) that

are dominated by fewer points have a lower energy level and

are more likely to be accepted into the surface (archive). This

favors discovery of pareto-optimal points belonging to less

explored regions of the front [13]. We require a good spread

of points along the entire front to be able to use it during the

synthesis process.

C. Improving Efficiency of Pareto Curve Generation

We have improved the existing S-Mosa algorithm to incor-

porate hashing of circuit matrix element values during pareto

front generation. An optimizer like S-Mosa visits various

133

TABLE II

COMPARISON OF THREE MOSA ALGORITHMS

Number of Pareto-Optimal Points Found

Nam-Park S-MOSA A-MOSA

Gain-Bw 72 3081 72

Gain-Bw-UGF 72 4692 78

Front Coverage Index (fci)

Nam-Park S-MOSA A-MOSA

Gain-Bw 0.42 0.98 0.43

Gain-Bw-UGF 0.45 0.99 0.42

points in the design space and evaluates the circuit matrix and

performance at each point. Although a good optimizer does

not visit the same design point repeatedly, hashing is possible

in our models due to two important properties of the matrix

elements:

• Each element is dependent on only a subset of design

variables

• Multiple elements depend on a given variable subset

In any SA, candidate solutions are proposed by perturbing

one of the design variables of the current solution. During an

SA run, although the proposed solutions are unlikely to be re-

peated, common subsets of variable values often occur among

the proposed solutions. As matrix elements are functions of

only a subset of design variables, their values once calculated

can be reused whenever such variable subsets are repeated

during optimization.

Hash tables are used for the storage and reuse for circuit

matrix element values. Hash tables are implemented efficiently

by building a single table for all matrix elements that are

functions of a common variable subset. Such a hashing scheme

can avoid many recomputations and make the SA faster.

Without hashing all matrix elements have to be evaluated in

each iteration, whereas with our method only the hash table

misses have to be evaluated.

Obtaining the pareto front requires a large number of opti-

mizer iterations within the circuit’s design space. A hashed-SA

is expected to give increasing returns, as greater exploration

of the design space results in a large number of common

sub-solutions (for which matrix element values are obtained

directly from the hash table). Fig. 6 shows the reduction in

hash table misses with increasing iterations of the optimizer

which supports our expectation.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

Reduction in Percentage Misses

Ha
sh

 T
ab

le
 M

is
s

(%
)

MOSA Iterations (x10000)

Fig. 6. Reduction in Hash Table Misses for MOSA run on SEO

Along with the pareto front as stored by S-Mosa we also

save (i) the design points that achieve the pareto-optimal

Algorithm 1 Hashed-MOSA

Input: Circuit Topology(SPICE), Design Variables x, Performance of
Interest {P}
Output: Pareto-optimal vectors for {P}

Model Generation

{U} ← Uniform random values for design variables
∀ u ∈ {U} :

Sample layout
Get layout-aware matrix element values
∀ m ∈ {M}:

Identify predictor variable subset
Fit polynomial regression models
Initiate hash tables HM

Pareto Surface Generation

while (Pareto-set ! frozen) do

while (T != Equilibrium) do

x′ = perturb(x)
for m ∈ {M} do

x′m = predictor subset(x′)
if (x′m ∈ HM) then

m(x′) ← HM

else
m(x′) ← Model Evaluation
Add computed m(x′) value to HM

end if
end for

P(x′) = [P1(x′) · · · PN (x′)] ← Solve M(x′)
F(x′) ← Archive pts dominated by x′

F(x) ← Archive pts dominated by x
∆ E = | F(x′) - F(x) | / | F |
if (random ≤ - ∆ E / T) then

x′ = x
end if

Update Archive
end while

T ← α * T

end while

performance (ii) performance sensitivity value. The sensitivity

of a performance parameter at a design point is given by

the percentage change caused by small perturbations in the

circuit variables at that point. In our application we choose the

least sensitive design point for implementing the final sizing

solution.

D. Algorithm

This section summarizes the layout-aware pareto front gen-

eration of analog circuits using a hashed-MOSA approach.

First, parasitic-aware matrix element models are generated

from layout samples. Optimization uses these models instead

of evaluating performance by simulation and layout synthesis.

When a new candidate (x′) is proposed, solution subsets corre-

sponding to predictor variables of matrix elements are formed.

If the matrix element value at this subset was computed earlier

it is simply fetched from the hash table else it has to be

obtained by model computation. The candidate solution is

accepted if it dominates more points in the archive. The archive

is updated so that it only contains non-dominating performance

vectors. The procedure converges when no new pareto-optimal

points can be detected (frozen state).

134

E. Sizing procedure using a generated Pareto Front

Using the above algorithm we obtain an archive of pareto

optimal performance vectors and corresponding design points.

During synthesis, block level specifications are derived by

propagating top-level specifications. Once these are obtained,

the appropriate cell topology is chosen by referring to its

performance space boundary. The performance vector from

the archive that is closest to the cell specification is selected

using a fast nearest neighbor approach.

Several design points can meet the performance require-

ments and may be saved as candidates for a particular perfor-

mance objective. We use the sensitivity of critical performance

parameter to the design point to choose the correct design

point. For an application where realizing a high gain is critical

a design point to which gain is least sensitive is chosen. The

user indicates critical parameters based on the application by

a weight assignment.

IV. EXPERIMENTS AND RESULTS

In this section we present results for accuracy, speed and

parasitic aware pareto front generation for three benchmark

analog circuits. An improved archive based optimization al-

gorithm that uses dominance set cardinality as the acceptance

measure is selected for the pareto front generation. Layout

aware circuit matrix models are used for fast and accurate per-

formance calculation whereas hashing improves the optimizer

efficiency. A C++ based tool that incorporates these features

has been developed. Experiments are run on a 2048 Mb, 2 ×
750 MHz Solaris Sunblade 1000 workstation.

35 36 37 38 39 40 41 42 43
60

80

100

120

140

160

180

200

220

SEO: Gain v/s Bandwidth

B
a
n

d
w

id
th

 (
K

H
z
)

Gain (dB)

Estimated
Using Simulation

39.5 40 40.5 41 41.5 42 42.5 43
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

SEO: Gain v/s UGF

U
G

F
 (

M
H

z
)

Gain (dB)

Estimated
Using Simulation

Fig. 7. Accuracy comparison - Model v/s Simulation based Front

Expt I - Single Ended Op-amp: The first benchmark

circuit used is the Single Ended Op-amp (SEO) as shown in

fig. 2. This circuit has 15 transistors. Six design variables are

identified for the circuit after applying matching requirements.

The design variables include widths of various transistors and

have values ranging from 25u-300u. The results of pareto

front generation using the proposed method is compared to

a competing simulation based method.

Fig. 7 shows the pareto front generated using the developed

circuit matrix models (red - ⋄) and also by simulation (blue

- o). The estimated and actual performance points are almost

overlapping with a negligible relative error. Thus, the pareto

front generated is of a comparable accuracy as that obtained

using simulation. Performance is calculated from the estimated

TABLE III

SPEEDUP USING PROPOSED METHOD (COMPARED TO SIMULATION)

Circuit Speedup

(model)

Speedup

(hashing)

Total Speedup

SEO 4000x 3x 12000x

DA 2400x 2.6x 6240x

BPF 2800x 2.5x 7000x

circuit matrix values and numerical simulation is avoided, the

proposed approach is also faster. The total speedup achieved

by our approach is about 12000 × compared to simulation as

shown in table III.

74 76 78 80 82 84 86 88
16

18

20

22

24

26

28

30

32

SEO: PM v/s UGF

U
G

F
 (

M
H

z
)

PM (deg)

Without Parasitics
Parasitic Inclusive

1050 1100 1150 1200 1250 1300
20

22

24

26

28

30

32

SEO: UGF v/s Bandwidth

Bandwidth (KHz)

U
G

F
 (

M
H

z
)

Without Parasitics
Parasitic Inclusive

Fig. 8. SEO: (i) PM (deg) vs UGF (KHz) (ii) BW (KHz) vs UGF (KHz)

Fig. 8 shows the pareto front obtained by using the layout-

level models for the circuit matrix elements. The figure also

shows the pareto front generated using the original transistor-

level circuit models of [10]. The pareto fronts (i, ii) have

326 and 2000 points respectively and are generated in 11.7

minutes. The layout-aware front varies from the one obtained

when parasitics were ignored. In the Phase Margin versus

Bandwidth plot some performance values are not realizable

due to the effect of parasitics. This behavior cannot be pre-

dicted if only the transistor models are used. For the SEO,

front (i) had an front coverage index (fci) of 93% and front

(ii) had 65% coverage.

VB6

VB7

VB4

VB3

VB4

VB7

VB6

VB3

Vss

M20

VB1

M1 Vin-M2Vin+

Vss

VB2

M7

M9

M8

M10

M17 M18

Cl Cl

M19

M15

M6

M16

M3 M4

Cc Cc

M5

M13 M14M11 M12

VB5

Vdd

Vdd

Vss

B5

B7 B6

B4

B3

B2 B1

I3

I1I2

Fig. 9. Differential Amplifier Schematic

Expt. II - Differential Op-amp: The second benchmark

circuit is a differential amplifier (DA) as shown in Fig. 9. This

circuit has 33 transistors and five variables. They include four

device lengths varying from 40u-200u and a coupling capacitor

having range 10pF-50pF. The pareto optimal performance

135

points obtained for this circuit are shown in fig. 10. The fronts

(i, ii) have 367, 152 points respectively and required 10.5 min-

utes for synthesis. Generating the pareto front using models

is about 6240 × faster than obtaining it using simulation. For

the DA, front (i) is generated with 57% coverage and front

(ii) with 52% coverage.

78 80 82 84 86 88 90 92
1

2

3

4

5

6

7

8

9

10

11

DA: PM v/s BW

B
W

 (
K

H
z
)

PM (deg)

Without Parasitics
Parasitic Inclusive

0 2 4 6 8 10 12
10

12

14

16

18

20

22

DA: UGF v/s BW

BW (KHz)

U
G

F
 (

M
H

z
)

Without Parasitics
Parasitic Inclusive

Fig. 10. DA: (i) BW (kHz) vs PM (deg) (ii) UGF (KHz) vs BW (KHz)

Vb

AC

Vdd

Vss

Vo

M1

R1

C1

R2

R4
R5

R3

C2

M5

M3

M8

M9

M7

M6

M2

M4

Fig. 11. Bandpass Filter Schematic

Expt. III - Bandpass Filter: The third circuit is a second

order Sallen-Key bandpass filter (BPF) as shown in Fig. 11.

This circuit has 9 transistors and 4 variables. The layout-

inclusive pareto optimal performance points obtained for this

circuit are shown in fig. 12. The pareto fronts (i, ii) are

generated with 440, 370 points respectively in 16 minutes.

As the Q factor is being optimized for minimization it has

been included with a negative sign. For the BPF, the proposed

method was about 7000 × faster than SPICE and layout

generation. For the BPF, front (i) is generated with 53%

uniform coverage and front (ii) with 50% uniform coverage.

0 5000 10000 15000
0

5

10

15

20

25

30

BPF: Gain v/s BW

BW (Hz)

G
a

in
 (

d
B

)

Without Parasitics
Parasitic Inclusive

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

10

20

30

40

50

60

70

BPF: Q factor v/s Gain

G
a

in

Q factor

Without Parasitics
Parasitic Inclusive

Fig. 12. BPF:(i) Gain (dB) vs BW (Hz) (ii) Gain (dB) vs Q

Expt. IV - Sizing from generated Pareto front: The pareto

optimal performance curve generated is then used for sizing

the circuit from its specifications. The closest pareto optimal

point to the target specification is chosen through a closest

neighbor searching method. Table IV shows the specification

TABLE IV

CIRCUIT SIZING FROM PARETO CURVE (SEO)

Specification Estimated Verified (Hspice)

Gain ≥ 40 dB 40.5 40.55

UGF ≥ 14 MHz 14.1 14.06

Bandwidth ≥ 120 KHz 124.53 124.85

Design point: 300u, 250u, 300u, 145u, 131u, 80u

provided, performance achieved and verified for the SEO. In

the design point archive, 11 points were able to meet this

performance. The final design point chosen for synthesis was

the one for which bandwidth (chosen critical performance)

was least sensitive.

V. CONCLUSION

This paper developed a pareto-surface generation algorithm

based on the multi-objective simulated annealing and parasitic

aware circuit matrix models. The method is successful in

generating pareto-optimal performance curves with a uniform

spread of points. The entire pareto optimal surfaces were

generated about 6000x to 12000x faster than using a simu-

lation based method. Using layout aware pareto curves during

topology selection or sizing leads to designs with parasitic

closure.

REFERENCES

[1] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE Trans. CADICS,
vol. 22, no. 2, pp. 198–212, 2003.

[2] F. D. Bernardinis, M. I. Jordan, and A. S. Vincentelli, “Support vector
machines for analog circuit performance representation,” in Proc. DAC

’03, 2003, pp. 964–969.
[3] B. De Smedt and G. Gielen, “Watson: design space boundary exploration

and model generation for analog and rfic design,” IEEE Trans. CADICS,
vol. 22, no. 2, pp. 213–224, Feb. 2003.

[4] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar, “Generation of yield-
aware pareto surfaces for hierarchical circuit design space exploration,”
in Proc. DAC, 2006, pp. 31–36.

[5] G. Yu and P. Li, “Yield-aware analog integrated circuit optimization us-
ing geostatistics motivated performance modeling,” in Proc. of ICCAD,
2007, pp. 464–469.

[6] G. Stehr, H. Graeb, and K. Antreich, “Performance trade-off analysis
of analog circuits by normal-boundary intersection,” in Proc. of DAC,
2003, pp. 958–963.

[7] G. Gielen, T. McConaghy, and T. Eeckelaert, “Performance space
modeling for hierarchical synthesis of analog integrated circuits,” in
Proc. of DAC, 2005, pp. 881–6.

[8] B. Suman and P. Kumar, “A survey of simulated annealing as a tool for
single and multiobjective optimization,” Jnl of the Operational Rsrch

Soc., vol. 57, pp. 1143–60, 2006.
[9] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated

annealing-based multiobjective optimization algorithm: AMOSA,” IEEE

Trans on Evol. Comp., vol. 12, no. 3, pp. 269–283, 2008.
[10] A. Pradhan and R. Vemuri, “Regression based circuit matrix models for

accurate performance estimation of analog circuits,” in Proc. of IFIP

VLSI-SOC, 2007, pp. 48–53.
[11] H. Sampath and R. Vemuri, “MSL a high level language for parame-

terized analog and mixed signal layout generators,” in Proc of the 12th

IFIP VLSI Conf., 2003, pp. 416–421.
[12] D. Nam and C. Park, “Multiobjective simulated annealing: a comparative

study to evolutionary algorithms,” Int. J. Fuzzy Systems, vol. 2, no. 2,
pp. 87–97, 2000.

[13] K. Smith, R. Everson, and J. Fieldsend, “Dominance measures for multi-
objective simulated annealing,” Evol. Comp., Cong. on, vol. 1, pp. 23–30,
2004.

136

Efficient Analog/RF Layout Closure with
Compaction Based Legalization

Subramanian Rajagopalan, Sambuddha Bhattacharya, Shabbir H. Batterywala
ATG, Synopsys (India) Pvt. Ltd., Bangalore, 560016, India

{rsubbu, sbb, battery}@synopsys.com

Abstract—
Advancements in process technology have resulted in tremendous in-

crease in the number of design rules. This has greatly complicated the
task of building design rule clean layouts. While EDA tools aid in layout
creation for standard cell based ASICs, the problem remains unsolved for
custom, analog and RF circuits. For such circuits, layout designers spend
lot of time converting functionally correct schematic circuits into acceptable
design rule clean layouts. While techniques have been proposed to remove
Design Rule Violations (DRVs) with minimum perturbation to hand crafted
layouts, designers still spend lot of time to get to layout closure. In the pro-
posed methodology, designers can quickly draw sparse and possibly design
rule unclean layouts and then use a compaction based layout legalization
to clean up the DRVs and reduce area. This increases the productivity of
layout designers and reduces the turnaround time for layout closure. The
proposed technique achieves close to best possible area for a given sparse
layout, keeps hard macros unaltered, respects relative positions, and re-
moves all violations of modeled design rules. Reported experimental results
suggest that this method can be used to automate layout creation process.

I. INTRODUCTION

Advancements in fabrication processes have facilitated IC
manufacturing in two key ways. One, the scaling in device
geometry. And other, the capability to put heterogeneous de-
vices on the same die. While the former is achieved with sub-
wavelength lithography the later is facilitated by process recipes
which allow devices of different threshold voltages (Vth), sup-
ply voltages (Vdd) etc. The result of these advancements is that
the number of design rules have increased significantly. Simple
width and spacing rules have changed into complex width based
spacing rules, length based width rules, forbidden spacing rules,
etc. These rules are primarily there due to the inability to print
various patterns with sub-wavelength lithography. In order to
facilitate low threshold, high threshold, and ultra high thresh-
old NMOS/PMOS transistors, foundries have introduced several
implant layers. Different width specifications for polysilicon
gates are specified to support devices of different supply volt-
ages. Consequently, the number of rules that layout designers
must comply with has increased tremendously.

Increased number of design rules, particularly the context de-
pendent rules, pose a major challenge to correct layout construc-
tion. EDA tools have constantly tried to cope up with this chal-
lenge. Digital ASIC designers have access to lot of commer-
cially available tools to build layouts and fix DRVs to get to
layout closure. Tools [1][2] are available for creating design
rule compliant standard cell layouts, which are used as building
blocks in ASICs. Placement and routing tools [3][4] are con-
stantly extended to support new design rules which come out of
fabrication houses.

Unlike digital ASICs, the task of creating design rule clean
layouts is especially difficult for analog/RF and custom digital
designs as they are usually drawn manually using layout editors.

Furthermore, there are several iterations between circuit sizing
and layout construction. Thus, at each stage a designer needs
to ensure a design rule clean layout through tedious manual ed-
its. Clearly there is a need for automation in layout creation. To
this end, most of the layout solutions are available within Lay-
out Editors. These editors allow reuse through foundry supplied
layout components as Foundry Tool Kit / Process Design Kit
(FTK/PDK)[5], design rule aware editing, sophisticated edit-
ing features to create arrayed instances and align layout shapes,
etc. Commonly used Pcell [6] based methodology also aids by
providing automatic creation and modification of layout compo-
nents.

Despite these techniques, designers still spend a lot of time
building minimum area design rule clean layouts. Updating
these area optimized layouts is also time consuming. For ex-
ample, to fix a spacing violation in a tight neighborhood would
require moving lots of adjacent geometry to create extra space.
An automation tool which allows designers to connect the com-
ponents without worrying about area and complex design rules
would be useful. Such a tool should however be able to remove
most of the DRVs and minimize area. An illustration of this
feature is provided in Figures 1 and 2. In Figure 1, a sparsely
drawn layout is presented that connects four layout instances or
macros. Figure 2 shows the same layout after running the com-
paction based layout legalization proposed in this paper. While
the original layout had three DRVs in the interconnects, the final
output had none.

Layout legalization is defined as the automatic correction of
design rule violations. It is usually modeled as modified com-
paction problem [7]. The idea is to perform line sweep on lay-
out geometry to capture applicable design rules as constraints,
and solve these constraints to remove DRVs. These constraints
are linear and can be modeled through either constraint graphs
or linear programs (LP) [8]. If the objective is to minimize only
the area this results into standard compaction. Reference [9] sur-
veys’ techniques for area minimization of layouts while obeying
simple design rules.

In contrast to traditional compaction, [7] proposed a lay-
out legalization technique that minimizes perturbation of lay-
out edges. It is particularly effective in the presence of contex-
tual design rules that are often approximated with a collection
of simpler rules. Minimizing perturbations avoids inadvertent
introduction of context dependent DRVs. The work in [10] pro-
posed ‘geometric closeness’ objective that removes DRVs by
doing minimum perturbations of widths of layout tiles and white
spaces. The techniques in [11] and [12] focus on compaction
under restrictive design rules such as coarse grids for transistor

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.61

137

gates. In general, reported methods either remove white spaces
by moving layout geometry or remove DRVs by minimum per-
turbation, but do not do both.

In this paper, a systematic framework for simultaneously per-
forming compaction and legalization is presented. A novel ob-
jective function, spCompact (structure preserving compactor), is
proposed that minimizes the bounding box area and minimizes
perturbation on width, extension, overlap, and connectivity con-
straints. Thus it retains layout structure and avoids introduction
of context dependent DRVs. White space is reduced indirectly
to achieve compaction since a direct minimization of spacing
between layout rectangles can destroy the structure of layout.
Any user specified layout component (or macro) is kept unal-
tered during legalization. Specifically, the spCompact objective
function tries to achieve simultaneous compaction and legaliza-
tion by using a subset of the generated constraints to build the
objective function.

Fig. 1. Sparsely drawn layout

Fig. 2. Post compaction of sparsely drawn layout in Figure 1

The paper is organized as follows. Section II gives a back-
ground on compaction, including constraint generation and prior
work on objective functions. Section III describes the proposed
objective function, spCompact. Section IV provides some ex-
perimental results and comparison with other objective func-
tions. Finally, section V concludes the paper.

II. BACKGROUND

This section provides a brief overview of layout compaction.
Layouts consist of a set of mask layers each with a collection
of rectangles. A Compactor perturbs the set of rectangles in the

layout to achieve the desired objective while obeying technology
design rules. Each rectangle edge is considered as a positional
variable. Constraints are imposed on the rectangle edges accord-
ing to the design rules and layout connectivity. The constraints
are of the form xi − xj ≥ val, where xi and xj are the posi-
tional variables corresponding to two rectangle edges, and val

corresponds to the particular rule value. If all rectangle edges,
horizontal as well as vertical, are considered together this results
into a two dimensional (2D) compaction. Typically, for reduc-
ing problem sizes and having acceptable run-times, compaction
is done in one dimension at a time.

One dimensional (1D) layout compaction decouples con-
straints between horizontal and vertical edges of rectangles. The
usual approach for 1D compaction is to generate constraints
in horizontal direction, solve them, update the layout, repeat
the same in vertical direction, and iterate till convergence is
achieved. Minimizing the layout area is the common objective
and that is achieved by minimizing the height and width of the
layout. The problem can be modeled as a standard Linear Pro-
gram (LP) formulation given in equations 1 and 2 where, x
is a column vector consisting of the variables corresponding to
rectangle edges, the vector b represents the rule values, and the
vector c represents the objective function to be minimized.

minimize c
T
x (1)

subject to : Ax >= b (2)

The matrix A in equation 2 is the coefficient matrix for the
constraints, where each row Ai represents a single constraint.
If all constraints are difference type and objective function is
also a difference of two variables then graph based longest path
solvers can be used for quick solution [9]. However, the ob-
jective function is typically a general linear function, in which
case an LP solver (either general simplex, or network simplex)
is used. Moreover, since layouts typically are drawn on inte-
ger grid, it is required to have an integral solution. Method re-
ported in [12] suggests techniques to achieve this without using
slow integer linear program solvers. Furthermore, often layouts
are assembled bottom-up (either from FTK/PDK components
or pre-done macros) which necessitates the instances to remain
unmodified during compaction. The technique proposed in [13]
addresses this problem by replacing edge variables inside these
macros by constants. This not only ensures difference type con-
straints but also reduces number of variables.

Layout legalization consists of three major steps: (a) con-
straint generation (b) objective function selection, and (c) con-
straint solution. Constraint generation is generally achieved by
sweeping an imaginary line across the input layout. Algorithmic
aspects of constraint generation are described in [14]. The work
in [15] presents methods for modeling conditional design rules.
Techniques for edge based modeling of some context dependent
rules were reported in [16].

A key component of constraint solution is the objective func-
tion used in the LP. The objective function provides better con-
trol over the final layout. Even though layout legalization tech-
niques are derived from a compaction formulation the objective
need not be restricted to minimizing widths/heights of layouts.

138

This is specifically true for manually drawn analog layouts. Of-
ten the legalized layout is required to inherit all the structural
properties of input layout. These properties include, symmet-
rically drawn components, aligned transistors and interconnect
lines, geometry that is wider than minimum width, pre-done
macros, etc. A legalized layout with pure compaction as ob-
jective could end up disturbing symmetry, resizing all geometry
close to minimum width, modifying macro geometry etc., which
is unacceptable. The general technique then is to add constraints
to capture the designer’s intent and then use a suitable objective
function in LP optimization. In the past several objective func-
tions have been proposed. These are briefly mentioned here.

• Minimum-Area objective function [9] is one of the earliest
proposed objectives. When the constraints are all of differ-
ence type, longest path on the constraint graph built with
the constraints as edges gives the minimum width of layout
in 1D. While this solution is very fast, it does not offer a
control over the structure of the layout and the longest path
approach is not applicable directly in the presence of non-
difference linear constraints like symmetry constraints.

• Minimum-Perturbation objective function [7] is used in le-
galization to remove DRVs in a layout by moving edges
minimally. This approach retains the output layout very
similar to the input layout. However this is not very effec-
tive in reducing the area of the layout.

• Geometric Closeness objective function [10] was proposed
as a strategy for migration of layouts from one technology
to another technology while retaining the structure of the
layout. It penalizes any change to a layout tile, metal and
space tiles alike, as opposed to a layout edge in minimum
perturbation approach.

• Wire Length Minimization objective function [9] mini-
mizes the sum of the lengths all the wires in the layout.
While this objective is good for parasitics and often for
area, the output layout typically is structurally very dif-
ferent from the input layout as the shape of polygons are
minimized.

While the objective functions proposed in the past are good
at minimizing one particular objective, they often sacrifice on
other fronts. In this work, spCompact, an objective function that
minimizes the area while preserving the structure of the layout
is proposed. The key difference between this approach and the
other approaches in the past are as follows.

• The proposed objective minimizes area while preserving
the structure of the layout.

• All layout constraints generated by line sweep are used to
guide construction of the objective function. This is un-
like previous techniques, where only rectangle widths and
spacings were used in objective function.

III. SPCOMPACT OBJECTIVE FUNCTION

The aim of this work is to build an objective function for LP
that makes the output layout design rule clean, reduce the area
of the layout, and keep the output layout structurally similar to
the input layout. This section describes how such an objective
function, spCompact, can be built using the layout constraints
for 1D compaction. Section III-A gives the basis for setting up
the objective, section III-B describes the proposed spCompact

objective function, and finally, section III-C describes how to
estimate the minimum achievable layout area.

A. Formulation
The input layout is constituted of macro instances, intercon-

nects and other layout components. Macros are kept unaltered
during compaction and are referred as fixed-instances. So the
input layout is constituted of a set of fixed-instances and flex-
ible rectangles. Each fixed-instance in-turn is a set of fixed
rectangles. A flexible rectangle is free to be modified, whereas
a fixed rectangle can only be translated as determined by the
translation of the fixed-instance to which it belongs. Let the
input layout, L, be constituted of a set of flexible rectangles,
R = R1, R2, . . . , Rn, n ∈ N , and a set of fixed-instances
F = f1, f2, . . . , fm, m ∈ N . Let Rf be the set of all fixed
rectangles in the layout. Let each fixed-instance, fi ∈ F be a set
of fixed rectangles R

f
i , such that, R

f
i ⊂ Rf , R

f
i ∩ R

f
j is empty

∀i 6= j, and ∀i, R
f
i ∩ R is empty.

Each flexible rectangle edge is assigned an id, xi, 1 ≤ i ≤ 2n,
and each fixed-instance is assigned an id, xj , (2n + 1) ≤ j ≤
(2n+m), that corresponds to the position. For a fixed-instance,
the variable can be assumed to correspond to the location of the
origin of the design that has been instantiated. Let x0

i represent
the original layout position of xi. The position of a fixed rect-
angle edge can then be represented as xj + cj , (2n + 1) ≤ j ≤
(2n + m) where cj is an integer constant decided by the po-
sition of the fixed rectangle in its corresponding fixed-instance.
Figure 3(a) shows a design with a single rectangle which is then
instantiated in Figure 3(b). In Figure 3(b), the two edges of the
flexible rectangle are assigned variables x1 and x2 and the po-
sition of the origin of fixed-instance of design in Figure 3(a) is
assigned x3. Hence the position of left edge of the fixed rectan-
gle can be computed as x3 + 100.

100 350

100

250

0

x3

x1 x2

spacing

(a)

(b)

Fig. 3. Fixed-instance formulation example: (a) Design to be instantiated (b)
Design with a flexible rectangle and a fixed rectangle from a fixed-instance

Consequently, the position of any rectangle edge can be writ-
ten in the form xk + ck, where ck is 0 for 1 ≤ k ≤ 2n. As stated
in Section II, each constraint that is generated is applied between

139

two rectangle edges. Hence any constraint can be written as a
difference constraint even in the presence of fixed-instances as
shown in equation 3. For example, if the spacing rule between
the two rectangles in Figure 3 is 200, then the actual spacing
rule can be computed as shown in equation 4.

xi − xj ≥ C, i 6= j (3)
(x3 + 100)− x2 ≥ 200

x3 − x2 ≥ 100 (4)

Each difference constraint of the type shown in equation 3
arising from the line-sweep constitutes a row in equation 2.

B. spCompact
In order to minimize area and also preserve the structure of

the layout, three things are important. First, it is important to
keep clusters of rectangles together, i.e., clusters of packed rect-
angle edges should try to move as a unit and not independently.
Second, the length of long connecting lines need to be reduced.
Third and finally, the area of the layout must be reduced. Con-
sequently, spCompact must penalize disturbance of relative po-
sitions of edges within a cluster, not penalize reduction of spac-
ings of rectangles, and minimize the bounding box.

It can be observed that if a sufficiently large number of pairs
of clustered edges are kept relatively unperturbed at the end of
compaction, then all the clustered edges together would remain
relatively unperturbed. Using this observation as the basis, the
set of constraints generated by the constraint generator is used
as the guiding heuristic to build spCompact. This is done by ob-
serving the different types of constraints generated by the con-
straint generator and identifying the subset that would help pre-
serve the layout structure. The generated constraints broadly
fall into six types of constraints, namely, width, spacing, clear-
ance, overlap, extension, and connectivity constraints. It is often
the case in compaction that a cluster of rectangle edges gen-
erates more constraints than sparsely spaced edges, predomi-
nantly due to the extension, overlap and connectivity constraints
that have to be enforced. Consequently, if the pairs of edges
constrained by overlap, extension, and connectivity constraints
can be kept relatively unperturbed through penalty functions,
this would achieve the objective to keep clusters of rectangles
together. This is achieved in spCompact using the Geometric
Closeness metric proposed in [10].

From equation 3, any overlap, extension or connectivity con-
straint can be represented as a difference constraint. Geometric
Closeness metric keeps two edges relatively unperturbed by pe-
nalizing any change to the difference in positions, but allowing
them to be translated without any penalty. Since a change in the
difference between the two variables represented by xi and xj

has to be penalized, equation 5 has to be added to spCompact.

|(xi − xj) − (x0

i − x0

j)| (5)

This is linearized similar to [10] by introducing two new vari-
ables Rk and Lk as shown in equation 6.

Rk ≥ xi − x0

i

Rk ≥ xj − x0

j

Lk ≤ xi − x0

i

Lk ≤ xj − x0

j (6)

The set of equations 6 is added to the set of constraints and
minimize (Rk − Lk) is added to the objective function. The
similarity with Geometric Closeness is only in the metric used
in the objective function. Constraints are used to construct the
objective function in this work whereas the layout metal and
space tiles are used to build the objective function in [10]. The
linearization constraints in equation 6 are all difference type,
since x0

i and x0

j are constants, unlike those in [10] which are
linear.

Since reducing the layout area is the desired objective and
not reducing the layout white space, the spacing and clearance
constraints are not used in the penalty functions. It is important
to note that the objective of minimizing area does not translate
directly to minimizing the spacing between rectangles. For ex-
ample, if a layout has achieved its minimum possible width dur-
ing x compaction, minimizing white space can make the layout
rectangles larger to reduce white space, thereby destroying lay-
out structure. Hence, in order to minimize the area, spCompact
minimizes the bounding box.

The bounding box is minimized as follows. Two variables
xl and xr are introduced to compute the bounding box of the
layout. xl, the left boundary variable, is constrained to be ≤
the left edge of all layout rectangles. Similarly, xr , the right
boundary variable, is constrained to be ≥ the right edge of all
layout rectangles. Equation 7 is added to the objective function
to be minimized where Cb ∈ N is a cost parameter.

Cb · (xr − xl) (7)

If Ccnst is the set of constraints used to build the objective
function and Rk and Lk are linearization variables introduced
for each constraint as shown in equation 6, then spCompact can
be written as shown in equation 8.

minimize : Cb · (xr − xl) +
∑

Ccnst

(Rk − Lk) (8)

The two components of spCompact actually oppose each
other. While the first part tries to reduce the layout size, the
second tries to retain the layout. So, higher the cost, Cb, more
will be the weight to reduce area.

C. Estimating minimum area
In order to find out the effectiveness of spCompact in reducing

area, it is desirable to get a lower bound on the bounding box of
the layout. This section describes how to compute a lower bound
on the bounding box for the layout.

From Equation 3, it can be seen that any constraint can be
represented as a difference constraint in fixed-instance com-
paction. This suggests using a compaction technique using
longest paths [9]. A directed constraint graph G is built with
2n + m + 2 vertexes, corresponding to the 2n + m variables
xi, 1 ≤ i ≤ 2n + m and the two boundary variables xl and
xr. All the layout constraints that were generated are added as
weighted edges. For example, the equation 3 would result in

140

a directed edge, e(vj , vi), with a weight C from vertex vj to vi

corresponding to the variables xj and xi respectively. Hence the
longest path distance between vl and vr in G, corresponding to
the boundary variables xl and xr respectively, gives the lower
bound on the width of the bounding box.

The bound on the bounding box area is computed as follows
assuming compaction is done along x dimension first, followed
by compaction in y. Prior to compacting along x, the bounding
box width Wx is estimated. Compaction is performed along x

and the layout is updated. Similarly, prior to compacting along
y, the bounding box height Hy is estimated. The lower bound
on area is then computed as Wx ·Hy. While a true 2D technique
can produce a lower bound on the area, in practice, since two
successive 1D runs are performed, this gives a good estimate of
the lower bound on the layout bounding box area.

IV. EXPERIMENTAL RESULTS

A layout legalization engine has been written in C++. The
engine takes in an input layout with DRVs and corrects them
automatically. The legalizer can be configured towards different
objectives such as wire length minimization (WLM)[9], mini-
mum perturbation (minPert) [7] and the new objective spCom-
pact presented in this paper. This section presents the results
of experiments carried out with the different objective functions
during legalization.

Designs from an industrial analog library are used in the
experiments. These include comparator, voltage reference,
voltage-controlled oscillator etc. in a 90nm technology. The
actual design names are omitted here due to confidentiality rea-
sons. Many of the designs have DRVs. The legalizer is run on
each design with three different objectives. The first objective
is traditional compaction with wire length minimization. The
second objective is to legalize the layout while minimizing the
perturbation in the layout. The third objective is the spCompact
objective proposed in this paper. The experiments are run on a
2.2GHz Linux machine with 8GB RAM.

Table I presents a comparison of legalization with the three
objectives. Column 2 presents the number of DRVs in the input
layouts. For example, the input layout for Design6 has 70 de-
sign rule violations while Design9 has 0 violations. Both WLM
and spCompact aim to legalize the layout while also attempting
to minimize the output area. The minPert objective attempts to
legalize without minimizing area. Columns 3 – 5 presents the
ratio of input area to output area. Area ratio greater than 1 in-
dicates a smaller layout after legalization. Column 3 reports the
area ratio for WLM, column 4 for minPert and column 5 for
spCompact.

Both WLM and spCompact result in smaller layout area after
legalization. The minPert objective produces layouts that are of
equal or slightly larger area after legalization. The best achiev-
able area was computed for each one of these designs using the
technique presented in Section III-C. Both WLM and spCom-
pact consistently achieved the minimum area, whereas minPert
did not. Since the area ratio for minPert is close to 1.0, it is as far
away from the minimum as the area ratio of WLM and spCom-
pact. For example, spCompact achieves 1.6x reduction in area
for Design5, and 1.15x reduction in area on average. As can be
observed from Column 5, spCompact can be used to recover sig-

nificant area even if there are no input DRVs. For Design2, the
layout had to be expanded to remove the DRVs. For Design10,
the fixed instances determine the minimum area and hence it is
the same for all objective functions.

Columns 6 – 8 in Table I present the number of DRVs in the
output layout. Column 6 reports the number of DRVs with the
WLM objective, column 7 reports DRVs for minPert and col-
umn 8 presents the number of DRVs for spCompact. Interest-
ingly, WLM consistently reports more DRVs in the output com-
pared to both minPert and spCompact. For example in Design2,
WLM reduces DRVs from 16 to 2, while both minPert and sp-
Compact clean up all DRVs. For Design7 WLM actually in-
troduces 12 new DRVs while minPert and spCompact clean up
all violations. This is because both minPert and spCompact at-
tempt to retain layout structure thereby avoiding introduction of
context-dependent DRVs that are hard to model accurately with
linear constraints. An extreme case is presented in Design10
where WLM introduces 111 context dependent violations for a
completely design rule clean input layout. Hence minimizing
area alone is not sufficient, it is important to preserve the layout
structure for effective DRV removal.

The results in Table I substantiates an important point. The
spCompact objective presented in this paper combines the good
properties of both WLM and minPert. Thus, it reduces area like
WLM while also removing DRVs like minPert. Therefore, sp-
Compact can be used to recover area for even DRV clean lay-
outs. This is illustrated for Design3 and Design9.

Table II presents the runtime and problem size data for the
three objectives. Column 2 reports the number of rectangles in
the layouts. Columns 3 – 5 presents the number of variables nor-
malized with respect to WLM. Column 4 reports that minPert
involves more than 2x of the number of variables compared to
WLM. Column 5 shows that spCompact introduces close to 22x
the number of variables used by WLM on the average. This is
because spCompact uses lot of constraints to guide the objective
function. Each constraint linearization introduces new variables.
Columns 6 – 8 reports the total runtime in seconds for WLM,
minPert and spCompact respectively. As the results indicate,
spCompact takes longer to legalize/compact layouts compared
to WLM and minPert. It should be noted that the time taken to
achieve closure for a layout design is significantly larger than
the run-time of spCompact. As illustrated in Table I spCompact
generally has much better quality of results in terms of both min-
imizing area (1.15x) and removing DRVs. Hence the run-time
of spCompact, though larger than WLM and minPert, is still ac-
ceptable. Particularly, from Table II, it can be observed that for
large designs, Designs 9 and 10, the runtime for spCompact is
less than 2x of WLM.

V. CONCLUSIONS

In this paper, a compacting legalizer, spCompact, was pre-
sented that preserves layout structure while removing design
rule violations in the layout and minimizing the layout area. The
layout area is minimized through a bounding box approach as
opposed to direct minimization of spacing and clearance con-
straints which can otherwise destroy the structure of the layout.
It can consistently match the estimate of the minimum achiev-
able area similar to wire length minimization, effectively remove

141

TABLE I
COMPARISON OF AREA AND DRVS FOR DIFFERENT OBJECTIVE FUNCTIONS

Ratio of Input-Area to Output-Area Output DRVs
Design Input DRVs WLM minPert spCompact WLM minPert spCompact
Design1 3 1.24 1.00 1.24 1 0 0
Design2 16 0.92 0.91 0.92 2 0 0
Design3 0 1.06 1.00 1.06 4 0 0
Design4 3 1.46 1.00 1.46 0 0 0
Design5 0 1.46 1.00 1.59 0 0 0
Design6 70 1.02 1.00 1.02 8 2 1
Design7 1 1.02 1.00 1.02 12 0 0
Design8 37 1.02 0.99 1.02 3 2 1
Design9 0 1.17 0.99 1.17 0 0 0
Design10 0 1.00 1.00 1.00 111 0 0

TABLE II
COMPARISON OF PROBLEM SIZE AND RUNTIME WITH DIFFERENT OBJECTIVES

Variables normalized wrt WLM Runtime (s)
Design Rectangles WLM minPert spCompact WLM minPert spCompact
Design1 1378 1 2.78 15.32 8 9 36
Design2 1538 1 2.70 13.41 6 10 146
Design3 1548 1 2.91 15.66 14 16 52
Design4 2189 1 2.76 15.83 8 7 10
Design5 4447 1 2.70 18.16 13 14 26
Design6 5143 1 2.78 23.36 72 79 354
Design7 5464 1 2.77 17.57 95 89 497
Design8 5846 1 2.87 34.34 114 130 1468
Design9 9662 1 2.79 23.59 89 84 156
Design10 35007 1 2.83 59.43 1108 1082 1739

design rule violations like minimum perturbation, and not intro-
duce any new violations. In the future work, pruning the con-
straints used to construct the objective function by using the con-
straint graph is being explored. The reduction in area, 1.15x on
average, and removal of design rule violations while preserving
the layout structure is a significant aid to achieve design closure.

REFERENCES

[1] Cadabra User Guide, Synopsys Inc., 2007.
[2] ProGenesis User Guide, Prolific Inc., 2006.
[3] IC Compiler User Guide, Synopsys Inc., 2007.
[4] Soc Encounter User Guide, Cadence Design Systems, 2007.
[5] MOSIS, TSMC Design Kits, World Wide Web,

http://www.mosis.com/products/fab/vendors/tsmc/tsmc-kits.html.
[6] OpenAccess Release 2.2 Standard, Silicon Integration Initiative Inc., 2005.
[7] F-L. Heng, Z. Chen, and G. Tellez, “A VLSI artwork legalization tech-

nique based on a new criterion of minimum layout perturbation,” Proc.
Int. Symp. Physical Design, pp. 116–121, Apr. 1997.

[8] L. Luenberger, Linear and Nonlinear Programming, Addison-Wesley,
Reading, MA, USA, second edition, 1984.

[9] D. Boyer, “Symbolic layout compaction review,” Proc. IEEE/ACM Design
Automation Conf., pp. 383–389, Jun. 1988.

[10] J. Zhu, F. Fang, and Q. Tang, “Calligrapher: A new layout-migration
engine for hard intellectual property libraries,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1347–
1361, Sep. 2005.

[11] X. Yuan, K. McCullen, F-L. Heng, R. Walker, J. Hibbeler, R. Allen, and
R. Narayan, “Technology migration technique for designs with strong
RET-driven layout restrictions,” Proc. Int. Symp. Physical Design, pp.
175–182, Apr. 2005.

[12] X. Tang and X. Yuan, “Technology migration techniques for simplified
layouts with restrictive design rules,” Proc. Int. Conf. Computer Aided
Design, pp. 655–660, Nov. 2006.

[13] S. H. Batterywala, S. Bhattacharya, S. Rajagopalan, H. K. T. Ma, and
N. V. Shenoy, “Cell swapping based migration methodology for analog
and custom layouts,” Proc. Int. Symp. Quality Electronic Design, pp. 450–
455, Mar. 2008.

[14] J. Doenhardt and T. Lengauer, “Algorithmic aspects of one-dimensional

layout compaction,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. CAD-6, no. 5, pp. 863–878, Sep. 1987.

[15] J-F. Lee, “A new framework of design rules for compaction of VLSI lay-
outs,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 7, no. 11, pp. 1195–1204, Nov. 1988.

[16] M. Riepe and K. Sakallah, “The edge-based design rule model revisited,”
ACM Trans. Des. Autom. Electron. Syst., vol. 3, no. 3, pp. 463–486, Jul.
1998.

142

Session 2C

Network on Chip

Improving Scalability and Per-core Performance in Multi-cores through
Resource Sharing and Reconfiguration

Tameesh Suri and Aneesh Aggarwal
Department of Electrical and Computer Engineering

State University of New York at Binghamton
Binghamton, NY 13902

{tameesh, aneesh}@binghamton.edu

Abstract

Increasing the number of cores in a multi-core processor
reduces per-core performance. On the other hand, provid-
ing more resources to each core limits the number of cores
on a chip. In this paper, we propose a mechanism to improve
the per-core performance while maintaining the scalability.
In particular, we integrate a Reconfigurable Hardware Unit
(RHU) in the resource-constrained cores to improve their
performance. The RHU executes the frequently encountered
instructions to increase the core’s overall execution band-
width, thus improving its performance. The RHU has low
area overhead, and hence has minimal impact on scalabil-
ity of the number of cores. To further limit the area over-
head of this performance improving mechanism, generation
of the reconfiguration bits for the RHUs of multiple cores is
delegated to a single core. Our experiments show that the
proposed architecture improves the per-core performance
by an average of about 23% across a wide range of appli-
cations, while incurring a small per-core area overhead.

1. Introduction

In any technology generation, increasing the number of
cores in multi-core processors requires reducing resources
in each core, which is further exacerbated by the increasing
die area requirement for peripheral hardware such as inter-
connects, snoopy logic, etc [20]. Fewer per-core resources
degrades the performance of each thread of execution [12].
In this paper, we propose a mechanism that improves the
per-core performance while maintaining the scalability of
the number of cores. We build on prior work [30], where
a core’s performance is improved by integrating an off-the-
critical path reconfigurable hardware unit (RHU) in its data-
path. Speed-up is obtained by executing frequently executed
instructions on the RHU. These instructions do not consume

the core’s resources, effectively increasing the per-core per-
formance.

In this paper, we use the approach for a multi-core pro-
cessor. We also extend the approach by including memory
instructions, as it was a limiting factor in [30]. The reconfig-
uration bits for the RHU are generated at run-time and each
core consists of a hardware/software co-design methodol-
ogy to generate reconfiguration bits along with the RHU.
Furthermore, we propose a innovative methodology of dele-
gating the reconfiguration bits generation for multiple cores
to a single core. The reconfiguration bits are arranged as
reconfiguration instructions. We term the hardware used
for reconfiguration instruction generation as RIG-hardware
and the cores with RIG-hardware as RIG-cores. Separating
the RHU- and RIG-cores limits the per-core area overhead,
maintains the scalability, and reduces the opportunity cost
of integrating other resources. The proposed architecture
also better utilizes the RIG-hardware because if the RIG-
hardware is included in each core, it will be idle for the ma-
jority of cycles; traces are formed once and executed many
times. With this approach, there will be no performance im-
pact of trace generation if the number of threads is smaller
than the number of cores because the RHU-cores do not in-
cur any overhead for generating the reconfiguration instruc-
tions. Providing the RIG-hardware in each core may forfeit
this benefit. If the number of threads concurrently execut-
ing is more than the number of cores, then only the thread
scheduled on the RIG-core may have some performance im-
pact.

Our experiments show that the RHU-core performance
improves by about 23% across a wide variety of applica-
tions. The performance of the RIG-core lowers by an aver-
age of only about 0.4% to achieve the performance gains in
the RHU-cores. Our studies show that our approach incurs
a small per-core area overhead.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.58

145

2 Proposed Multi-core Architecture
There are two main themes of the proposed architecture

– reconfiguration to improve performance and division of
cores into RIG-cores and RHU-cores to maintain scalability.
The RHU is reconfigured through dynamically generated re-
configuration instructions, consisting of a 6-bit specialized
operation code (opcode).

A RIG-core generates the reconfiguration instructions for
RHUs of multiple RHU-cores. When a RHU-core detects a
frequently executed trace of instructions, it requests a RIG-
core for reconfiguration instructions. We do not provide the
RIG-cores with a RHU, to somewhat equalize the per-core
transistor budget. The number of RHU-cores served by a
single RIG-core is a design choice. For instance, in a 16-
core processor, each four-core cluster may include one RIG-
core serving the remaining three RHU-cores.

2.1 RHU-Core and trace execution

The RHU-core organization is mostly the same as that
in [30]; we do not discuss it in detail here for want of space.
Furthermore, the execution of a trace is also the same as ex-
plained in [30]. The differences are the following: Trace
buffer – which is used to generate reconfiguration instruc-
tions in [30] is now a part of the RIG-core datapath, as
shown in figure 1. Also, once a trace is detected by the
RHU-core, reconfiguration instruction generation request is
sent to a RIG-core. When the reconfiguration instructions
are received back from the RIG-core, they are stored at the
end of the RHU-core thread’s code section.

In our implementation, a maximum of one memory in-
struction can be placed in a specific column in each row. An
address bus is extracted from that column in each row to out-
put the memory address. For a store instruction in the RHU,
the value to be stored is also extracted as a live-out from
the same row in which the store instruction is present. The
memory addresses output from the RHU are multiplexed
into the existing load/store buffer (LSB). For this, LSB en-
tries, equal to the number of RHU rows, are allocated for the
trace memory instructions. The relative program order of
stores and that of loads and stores is maintained, i.e. a store
preceding other stores and loads is placed in a row prior to
them, to maintain the correct order in the LSB. However,
the relative program order between loads may not be main-
tained.

2.2 RIG-Core
Exclusive hardware mechanisms to generate reconfigu-

ration instructions may have a large area overhead. In this
paper, we propose a hardware/software co-design for re-
configuration instructions generation, where the reconfig-
uration bits are generated in hardware and then converted
into reconfiguration instructions using an embedded soft-
ware. Figure 1 shows the schematic diagram of the RIG-
core datapath. The RIG-core fetches instructions for the

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

 Decode

I − Cache

 Modified)
 (Slightly

Additional Hardware

Trace
Buffer

FU

Commit

FU

OperandsForwarded

R
eg

is
te

r
O

p
er

an
d

s

th
re

ad
 in

st
rs

R
H

U
−

co
re

D
ec

o
d

ed

Figure 1. Schematic diagram of the Recon-
figuration Instructions Generation core data-
path

RHU-core thread using the existing fetch datapath. While
fetching the RHU-core thread instructions, RIG-core stalls
the fetch of the current thread running on it. The RIG-core
thread is not context-switched out of the core, and its in-
structions already in the pipeline continue to execute. The
RHU-core thread instructions are decoded and forwarded to
the trace buffer [30], as shown in Figure 1.

Trace buffer hardware and operation is identical as used
in [30] However, to optimize the hardware for reconfigura-
tion bits generation, only one RHU-core thread is fetched
and analyzed at a time.

In trace formation, we use an innovative method of for-
warding instructions (FIs) to forward values across rows, in
order to obtain larger traces for the RHUs. Trace sizes were
limited in [30] due to unavailability of column or row in the
RHU. FIs provide a cost-effective method to obtain larger
traces than having more live-ins, live-outs or ALUs. As
more live-ins are available in the top row and more live-outs
are provided in the bottom-most row, FIs can be included to
forward the values, and allow more flexibility in placing an
instruction. FIs are also used to forward values across rows,
for instance, if value produced in row one is required in row
three, then a FI is inserted in row two to forward the value.
A FI is treated as any regular RI.

The RHU reconfiguration bits are generated in two
phases, as detailed in [30]. However, phase 1 and 2 are mod-
ified to incorporate FIs. We briefly go over the operation of
reconfiguration bit generation. In phase 1, the dependen-
cies are resolved by comparing the operands and destina-
tions of instructions. In this phase, the rows and columns
are also allocated to instructions depending on the availabil-
ity of operands. FIs are inserted in phase 1 if operands of an
instruction are available in different rows. If an instruction
cannot be assigned a row, its entry is invalidated and phase
1 is halted. Phase 1 for each instruction requires 3 cycles.

Phase 2 starts after phase 1 and operates only on the in-
structions in the instruction buffer. Hence, the RIG-core
thread instructions can be fetched and executed in parallel
to phase 2. Phase 2 has a forward pass and a reverse pass
through the instruction buffer. In the forward pass, the live-

146

outs are determined. If a live-out port is not available, then
FIs are inserted, and if even that fails, then the forward pass
is halted. The forward pass of phase 2 requires three cycles
per instruction.

The reverse pass is used to remove any live-out violations
in the forward pass and remains the same as in [30]. The
reverse pass requires four cycles per instruction.

We also experimented with simpler trace formation tech-
niques, but the experiments showed that this technique
forms the largest traces, at the expense of higher trace for-
mation latency.

Once phase 2 completes, the RIG-core thread fetch is
stalled and embedded software [30](part of the operating
system) instructions are fetched and executed to form the
reconfiguration instructions. The embedded software reads
each instruction buffer entry and generates the reconfigura-
tion instructions. The embedded software instructions are
fetched when the all in-flight RIG-core thread instructions
have committed, and executed in-order. These instructions
use only the speculative register file; they do not update the
architectural register files. These instructions do not access
the memory as well. Hence, the context of the RIG-core
thread is intact in the core. The operation of the embedded
software is detailed in [30], and remains the same. The re-
configuration instructions are forwarded to the RHU-core as
they are formed.

3 Experimental Results
3.1 Experimental Setup

We experiment with a quad-core processor with three
RHU-cores and one RIG-core. In this paper, we experiment
with non-data-sharing threads scheduled on the cores. The
hardware features and default parameters of each core are
given in Table 1. The per-core resources are constrained to
depict a core in a multi-core processor with large number
of cores, and are similar to those in the current multi-core
implementations. For instance, Hydra [24] has four 2-issue
cores.

For benchmarks, we use a collection of Spec2K and
MiBench [11] benchmarks. The statistics are collected
for 200M instructions after skipping 1B instructions for
Spec2K benchmarks and 50M instructions for the rest. For
better legibility, we present the individual results of a rep-
resentative set of nine benchmarks (art, equake, mesa,
mgrid, vpr, sha, susan, CRC32, and FFT). We evaluate the
performance of each benchmark on an RHU-core after aver-
aging its performance in all its runs on an RHU-core. Simi-
lar approach is used to evaluate the performance of a bench-
mark on an RIG-core.
3.2 Area Results

We integrated a 36-ALU RHU (in particular a 4x9 RHU)
with one SUN T1 OpenSource core [25] of an eight-core
processor, to estimate the area overhead of RHU- and RIG-
hardware. The design for the RHU and RIG-hardware

was synthesized using Synopsys Design Compiler using a
TSMC 90nm Standard cell library [31], and was placed and
routed using Cadence SoC Encounter. After integrating the
RHU, the core area increased by about 2.5%. The RIG-
hardware adds about 3% to the core area. Figure 2 shows
the die image of the RHU and the RIG cores. If the RHU
and the RIG-hardware are included in every core, the per
core area overhead would have increased by about 5.5%, in-
stead of 3% and 2.5%. Furthermore, our experiments show
that integrating the RHU and RIG-hardware in each core
does not give any noticeable performance benefits over our
approach.

Figure 2. Die image of RHU Core and RIG
Core

The per core resources of the SUN T1 Opensource core
may not exactly match the per core parameters in Table 1.
However, integration of the additional hardware into the
SUN T1 core gives a reasonably accurate measure of the
per-core area overhead of our approach in an eight-core pro-
cessor. Previous studies [22, 24] suggest that a slight in-
crease in the width of a core will easily increase the core
area much more than the RHU. Hence, issue-width of a
core is constrained while scaling the number of cores in
a CMP. Figure 2 shows that the RHU is placed close to
the functional and the load/store units as the RHU interacts
with them, whereas the RIG-hardware is placed close to the
fetch/decode and the functional units.

147

Parameter Value Parameter Value
Fetch/Commit Width 4 instructions Instr. Window Size 8 Int/8 Mem/16 FP instructions

ROB Size 96 instructions Issue Width 1 Int/1 Mem/2 FP
Speculative Register File 48 Int/48 FP Int. Functional units 1 ALU, 1 Mul/Div, 1 AGU

Load/store buffer 40 entries FP Functional Units 2 ALU, 1 Mul/Div
Branch Predictor gshare 4K entries L2 - cache unified 2M,

(shared by 4-cores) 8-way assoc., 20 cycles
L1 - I-cache 16K, direct-mapped, L1 - D-cache 16K, 4-way assoc.

1 cycle latency 64 bytes block, 1 cycle latency

Table 1. Experimental parameters for each core

3.3 Trace Results

We experiment with 36-ALUs, investigating 6x6, 5x7
and 4x9 RHUs. The 4x9 RHU performed the best with
an overall average trace size of about 15 instructions. We
observed that trace terminations due to column and row un-
availability are almost balanced for the 4x9 RHU. We fur-
ther observed that most of the original instructions are con-
centrated in the top two rows, whereas most of the FIs are
concentrated in the bottom two rows. Overall, our experi-
ments suggested that more columns and live-out ports are
required in the top two rows.

To further increase the trace sizes, we also investigate
an asymmetrical RHU structure – AsymmRHU – for the 36
ALUs. AsymmRHU is provided 11 columns in the first and
second rows, six columns in the third row, five columns in
the fourth row, and three columns in a fifth row. A fifth row
is added to reduce the trace terminations due to row unavail-
ability. However, the live-ins and live-outs per intermediate
row are kept at two. All the ALUs in rows four and five are
provided with live-outs. In AsymmRHU, each ALU output
is still forwarded to four ALU-inputs in the next row.

Figure 3 compares the trace sizes, excluding the FIs, of
AsymmRHU with the 4x9 RHU. Figure 3 shows that the
trace sizes increase with AsymmRHU, with the overall av-
erage reaching almost 17 instructions. Our experiments also
showed that the RIs formed a considerable fraction of the
overall instructions executed in the applications, about 33%
for 4x9 RHU and 37% for AsymmRHU.

art equake mesa mgrid vpr sha susan CRC32 FFT average
0

2

4

6

8

10

12

14

16

18

20

22

24

Av
er

ag
e T

ra
ce

 S
ize

4x9 RHU
AsymmRHU

Figure 3. Average trace sizes for 4x9 RHU and
AsymmRHU

3.4 RIG-core performance impact
In our experiments, we observed that the hardware takes

an average of about 180 cycles, across the benchmarks, for
generating the RHU reconfiguration bits. The embedded
software takes an average of about 428 cycles for convert-
ing the reconfiguration bits into reconfiguration instructions.
Our experiments showed that the average performance over-
head in the RIG-core is less than 0.1%.

The low performance impact in the RIG-core is because
of infrequent trace generations. Figure 4 presents the aver-
age number of cycles between successive trace generation
requests and between successive RHU reconfigurations. On
an average, only about 300 traces are generated, in the pro-
cess of committing 500 million instructions, per benchmark.
Hence, the average number of cycles between successive re-
quests is high, about 2 million cycles as shown in Figure 4.
The RIG-core, thus, receives only a small number of re-
quests and spends minimal time in generating the reconfig-
uration instructions for the RHU-cores.

art equake mesa mgrid vpr sha susan CRC32 FFT average

0.0

0.2

0.5

0.8

1.0

Av
er

ag
e n

um
be

r o
f C

yc
les

 (i
n

m
ill

io
ns

)

Between successive reconfiguration instructions generation requests
Between successive RHU reconfigurations

7,099,449 6,580,893 12,992,369 2,300,0004,324,9121,700,090 2,006,756

Figure 4. Average number of Trace generation
requests and RHU reconfigurations
The low frequency of requests also results in negligi-

ble impact on the interconnect pressure from the trace-
generation-related communication between RHU- and RIG-
cores for reconfiguration instructions generation. We ob-
served that an average total of only about 49 words are com-
municated per trace between the RIG-core and the RHU-
cores.
3.5 RHU-core Performance Results

Figure 4 shows that an average of about 800,000 cycles
elapse between successive RHU reconfigurations. Hence,

148

the overhead of executing the reconfiguration instructions
to reconfigure the RHU for the first time is also negligible.

Next, we present the performance (IPC) improvement of
RHU-cores, with 6x6 RHU, 4x9 RHU, and AsymmRHU,
over the base core, in Figure 5. Figure 5 also shows the IPC
speedup of cores with double-sized memory scheduler and
with double-sized integer and memory scheduler. A double-
sized scheduler doubles the issue queue size and issue width
of the base case shown in Table 1. The number of functional
units are accordingly increased. The maximum average IPC
speedup of about 15% is obtained with AsymmRHU. The
4x9 RHU achieves about 12% IPC speedup.

art equake mesa mgrid vpr sha susan CRC32 FFT average

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

IP
C

Sp
ee

du
p

Base
6x6 RHU
4x9 RHU
AsymmRHU
Double-sized memory scheduler
Double-sized integer and memory scheduler

1.3871 1.4013 1.6509 1.6708 1.3008

1.2212

Figure 5. IPC speedup of RHU-cores com-
pared to the base core configuration and that
of cores with double-sized schedulers
Interestingly, our approach performs significantly better

than all the double-sized scheduler configurations for art
and mgrid. This is because the double-sized scheduler is
still limited by other resources such as the fetch width, reg-
isters, etc., the pressure on which is somewhat relieved by
the RHU. Additionally, when instructions are executing on
the RHU, the effective issue queue size and issue width
may more than double during that time. Our approach al-
most always performs better than the double-sized memory
scheduler configuration. However, the average performance
of AsymmRHU is about 14% lower than the double-sized
integer and memory schedulers. This is because the RHU
only speeds up a part of the loop. The rest of the applica-
tion runs with the narrow width. It is important to note that
doubling the schedulers for better performance may have
much higher impact on the scalability than our approach
because of the increased scheduler size and additional func-
tional units, forwarding paths and register file ports. Our
experiments showed that the average number of instructions
issued per cycle in the integer and memory schedulers in-
creased from about 0.48 in the base configuration to about
0.65 in AsymmRHU, but fell short of 0.76 observed in the
double-sized integer and memory scheduler configuration.

3.6 Two RHUs per-core
To further improve the RHU-core performance, we ex-

perimented with two RHUs in each RHU-core. Two traces

are formed from each innermost loop. The RIG-core datap-
ath is not modified. We observed that the RIG-core perfor-
mance impact increases to about 0.4% due to forming more
traces. The first trace starts from the first instruction of the
innermost loops. The second trace starts from an instruction
that is approximately at the middle of the loop, provided
that that instruction is not included in the first trace. This
approach maximizes the distance between the traces, thus
exploiting local ILP within each RHU and distant ILP in the
two RHUs.

Figure 6 compares the speedup of two AsymmRHUs
per core with that of a single AsymmRHU per core. Fig-
ure 6 shows that speedup increases for two AsymmRHU
from about 15% to about 23%. We do not observe dou-
ble performance improvement with two RHUs because two
traces could not be formed in some loops, and there was
not enough distant ILP to be exploited in some other cases.
The area overhead of two RHUs is increases to about 5% in
Figure 2.

art equake mesa mgrid vpr sha susan CRC32 FFT average
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

IP
C

Sp
ee

du
p

Base
AsymmRHU
Two AsymmRHU

Figure 6. IPC speedup of one AsymmRHU per
core and two AsymmRHUs per core

4 Related Work
Previous studies integrate FPGA modules with a pro-

cessor to improve performance. PRISM [1], Spyder [16],
Piperench [5], and Garp [4] use a loosely coupled FPGA as
a co-processor. Similar co-processor based proposals [18]
[23] [32] [27] [29] target application specific architectures.

Chimaera [13], PRISC [26], and OneChip [33] integrate
the FPGA as a functional unit (RFU) in the processor datap-
ath with direct access to the processor register file. The com-
piler statically generates the RFU instructions and FPGA
reconfiguration bit-streams, which are used to dynamically
reconfigure the FPGA. FPGAs have high area overhead, are
considerably slower, and have higher energy consumption
as compared to the ICs. Furthermore, FPGAs incur exten-
sive overhead in generating and communicating the huge
bit-streams required for reconfiguring them.

Other approaches execute aggregated instructions on
custom functional units, for instance, [14] [15] [17] [19]
fuse x86 micro-op pairs. These approaches target pairs of
ALU instructions. Dynamic strands [28] extend beyond

149

pair-wise aggregation still targeting Integer ALU instruc-
tions. The authors in [2] [3] [9] fuse a dependence chain to
form a special instruction, which is then executed on non-
reconfigurable custom functional unit.

Clark et al. [8] propose a restrictive reconfigurable cus-
tom compute accelerator (CCA) that has a maximum of four
inputs and two outputs, executing subgraphs of a small num-
ber of instructions terminating at branch and memory in-
structions. The authors acknowledge the performance lim-
itations of terminating at branch and memory instructions
in [6], a restriction not present in our approach. Hence,
in [6], they also propose execution of more arbitrary acyclic
sub graphs that cross branch boundaries and include mem-
ory instructions. This approach requires store-load collaps-
ing within the sub-graph, and is targeted for single-issue in-
order embedded processors.

Authors in [30] execute memory instructions as PIs to
simply memory disambiguation. Trace generation hardware
and RHU are included in each core, resulting in a large per-
core area overhead.

Commit time trace formation has also been proposed to
improve the fetch bandwidth and perform dynamic opti-
mizations in superscalar processors [10]. However, the re-
configuration instruction generation in our approach is sig-
nificantly different from the trace formations for superscalar
processors.

5 Conclusion
In a multi-core processor, scalability of the number of

cores and per-core performance conflict one another. The
design choice is between having more cores with poor per-
core performance and having good per-core performance
but with fewer cores. In this paper, we explore a multi-
core architecture that improves per-core performance, while
maintaining the ability to scale the number of cores. In
the architecture, the cores are divided into two categories –
RHU-cores and RIG-cores. RHU-cores have integrated re-
configurable hardware unit (RHU) to improve their perfor-
mance. The reconfiguration instructions for multiple RHU-
cores are generated by a single RIG-core, thus reducing
RIG-hardware overhead and improving its utilization. We
propose innovative mechanisms to integrate the RHU in the
core’s datapath, to generate reconfiguration instructions us-
ing a hardware/software co-design, and to reconfigure the
RHU. These mechanisms keep the area of the additional
hardware requirement to a minimum, and have a small im-
pact on the scalability of the number of cores. The proposed
architecture improves the average per-core performance of
RHU-cores by about 23%. The approach has a 0.4% impact
on the RIG-core performance to achieve the performance
gains in the RHU-cores.

References

[1] P. Athanas et al., “Processor reconfiguration through instruction-set
metamorphosis,” IEEE Computer,26(3), 1995.

[2] A. Bracy et al., “Dataflow Mini-Graphs: Amplifying Superscalar Ca-
pacity and Bandwidth,” Proc. MICRO, 2004.

[3] A. Bracy et al., “Serialization-Aware Mini-Graphs: Performance with
Fewer Resources,” Proc. MICRO, 2006.

[4] T. Callahan et al., “The garp architecture and c compiler,” IEEE
Computer,33(4):62-69, April 2000.

[5] Y. Chou et al., ”Piperench implementation of the instruction path co-
processor” Proc. MICRO, 2000

[6] N. Clark et al. “An architecture framework for transparent instruction
set customization in embedded processors,” Proc. ISCA, 2005.

[7] N. Clark et al., ”Processor acceleration through automated
instruction-set customization” Proc. MICRO, 2003

[8] N. Clark et al. ”Application Specific Processing on a General Purpose
Core via Transparent Instruction Set Customization”Proc. MICRO,
2004

[9] M. L. Corliss et al., ”DISE: A Programmable Macro Engine for Cus-
tomizing Applications”, Proc. ISCA, 2003

[10] B. Fahs et al., ”Performance characterization of a hardware mecha-
nism for dynamic optimization” Proc. MICRO, 2001

[11] M. R. Guthaus et al.”MiBench: A free, commercially representa-
tive embedded benchmark suite”, Work. Workload Characterization,
2001

[12] L. Hammond et al., “A Single-Chip Multiprocessor,” IEEE Com-
puter, Volume 30, No. 9. Sept. 1997.

[13] S. Hauck et al., “The chimaera reconfigurable functional unit,” Proc.
FCCM, 1997.

[14] S. Hu et al. “An Approach for Implementing Efficient Superscalar
CISC Processors,” Proc. HPCA, 2006.

[15] S. Hu and J. Smith, “Using Dynamic Binary Translation to Fuse De-
pendent Instructions,” Int. Symp. on CGO, 2004.

[16] C. Iseli and E. Sanchez, “Spyder: a sure (superscalar and reconfig-
urable) processor,” Journal of Supercomputing, 9(3):231-252, 1995.

[17] Intel Corporation, “Mobile Intel Pen-
tium 4 M-Processor Datasheet,” Jun. 2003.
http://www.intel.com/design/mobile/datashts/250686.htm.

[18] J. A. Jacob and P. Chow, “Memory interfacing an instruction specifi-
cation for reconfigurable processors,” Symp. FPGAs, 1999.

[19] I. Kim and M. Lipasti, “Macro-op Scheduling: Relaxing Scheduling
Loop Constraints,” Proc. MICRO, 2003.

[20] R. Kumar et al., “Interconnections in Multi-Core Architectures: Un-
derstanding Mechanisms, Overheads and Scaling,” Proc. ISCA, 2005.

[21] C. Lee et al., ”MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems”, Proc. MICRO, 1997

[22] J. Lotz et al., “A Quad-Issue Out-of-Order RISC CPU,” Proc. Int’l
Solid-State Circuits Conf., 1996.

[23] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia
array co-processor,” IEICE Trans. on information and systems, E82-
D(2):389-397, 1999.

[24] K. Olukotun et al., “The Case for a Single-Chip Multiprocessor,” AS-
PLOS, 1996.

[25] Sun Microsystems, Inc. “OpenSPARC T1 Micro Architecture Speci-
fication,” Sun Microsystems, Inc., 2006.

[26] R. Razdan and M. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” Proc. MICRO, 1994.

[27] C.R. Rupp et al., “The napa adaptive processing architecture,” Proc.
FPGAs for computing machines, 1998.

[28] P. Sassone and D. Wills, “Dynamic Strands: Collapsing Speculative
Dependence Chains for Reducing Pipeline Communication,” Proc.
MICRO, 2004.

[29] H. Singh et al.,“Morphosys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
on Computers, 49(5): 465-481, 2000.

[30] T. Suri and A. Aggarwal,“Scalable Multi-cores with Improved Per-
core Performance using Off-the-critical Path Reconfigurable Hard-
ware,” Proc. HiPC, 2008.

[31] ”TSMC 90nm Core Library - TCBN90GHP”, App. Note - Revision
1.2, 2006

[32] S. Vassiliadis et al. “The molen polymorphic processor,” IEEE Trans.
on Computers, Vol. 53, Issue 11, 2004.

[33] R. Wittig and P. Chow, “Onechip: An fpga processor with reconfig-
urable logic,” Proc. FCCM, 1996.

150

Forecasting-based Dynamic Virtual Channels Allocation for Power Optimization of
Network-on-Chips

Amir-Mohammad Rahmani, Masoud Daneshtalab, Ali Afzali-Kusha, Saeed Safari, Masoud Pedram†

Nanoelectronics Center of Excellence

School of Electrical and Computer Engineering
University of Tehran

 {am.rahmani, m.daneshtalab}@ece.ut.ac.ir,
{afzali, saeed}@ut.ac.ir

†Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

pedram@usc.edu

Abstract

In this paper, we present a dynamic power

management technique for optimizing the use of virtual
channels in network on chips. The technique which is
called dynamic virtual channels allocation (DVCA)
makes use of the traffic conditions and past buffer
utilization to dynamically forecast the number of virtual
channels that should be active. In this technique, for low
(high) traffic loads, a small (large) number of VCs are
allocated to the corresponding input channel. This
provides us with the ability to reduce the power
consumption of the router while maintaining the data
communication rate. To assess the efficacy of the
proposed method, the network on chip has been
simulated using several traffic profiles. The simulation
results show that up to 35% reduction in the buffer power
consumption and up to 20% savings in the overall router
power consumption may be achieved. Finally, the area
and power overheads of the technique are negligible.

1. Introduction

Reducing feature sizes into the nanoscale regime and
the trend towards integrating more functionality onto a
single chip led to the rise of the System-on-Chip (SoC)
paradigm which could have area, power, and delay
problems [1] [2] [3] [4]. The architecture used for the data
communication in these systems is one of the components
strongly affecting the area, power, and delay as three
critical design parameters. Networks on Chip (NoCs)
were proposed as a solution for the SoC interconnect
power and delay problem. Among different components
of routers, buffers consume a large amount of dynamic
power which increases rapidly as the packet flow
throughput increases [5] [6]. Increasing the buffer size
improves the performance of the interconnection network
significantly at the price of a higher power consumption
and, hence, the buffer size should be optimized [6]. One
of ways to reduce the buffer size is to use the wormhole
routing [7]. The latency of data communication in NoCs
is one of the key design parameters which should be
minimized. One of the ways to minimize the latency is to
use virtual channels (VCs) which provide virtual

communication path between routers as the main
elements for the data communication in NoCs. Virtual
Channel (VC) [8] decouples buffer resources from
transmission resources. This decoupling allows active
message to pass blocked messages using the available
network bandwidth that would otherwise be left idle. In
addition to avoiding deadlock situations [9], virtual
channels increase network throughput by up to 40% over
a wormhole router without VCs and reduce the
dependence of throughput on the depth of the network
 [8]. The use of VCs, which increases the communication
throughput, increases the power consumption of NoCs.
The power consumption is also a crucial parameter in
NoCs which should be minimized. To optimize the
power, one ought to employ power efficient designs for
routers.

In this paper, a dynamic power management technique
for reducing the power consumption of the NoCs with
virtual channels is proposed. The technique optimizes the
number of active VCs for the router input channel based
on the traffic condition and past link utilization. The rest
of the paper is organized as follows. Section 2 presents
the switch structure in NoCs while Section 3 describes
the proposed forecasting-based dynamic virtual channels
allocation architecture while the simulation results are
discussed in Section 4. Finally, Section 5 concludes the
paper.

2. Switch Structure

In this work, we make use of a switch whose main
structure is based on RASoC switch [10]. We have made
some modifications to its buffering, routing and flow
control parts and added support for Virtual Channels
(VCs) based on [8] was needed. The switch contains two
generic modules, namely, input channel and output
channel parts. In this section, we describe the details of
the switch.

2.1 Communication Model

The switch utilizes a handshake mechanism for its
communication model. Switch communicates with its
neighbor switches or cores by sending and receiving
request and response messages. Each link includes two

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.87

151

unidirectional channels in opposite direction to each other
used to transmit data, framing and flow control signals. In
addition to n bits for the data, there are two bits used for
the packet framing which are bop and eop. The bop
(begin-of-packet) is set only at the packet header, and eop
(end-of-packet) is set just in the last payload word, which
is also the packet trailer. Therefore variable packet length
was supported.

2.2 Switching

The switch uses the wormhole packet switching
approach [11] where messages are sent by means of
packets composed of flits. A flit (flow control unit) which
is equal to the physical channel word (or phit – physical
unit) has n+2 bits. It is the smallest unit over which the
flow control is performed.

Fig. 1. Input channel architecture.

2.3 Routing and arbitration

The proposed switch supports different deterministic
or adaptive routing algorithms such as XY [10], DyXY
 [12], and Odd-Even [13] used in the 2-D mesh topology.
In addition, exhaustive round-robin [14] and priority-
based [15] arbitration schemes are supported by the
switch. Note that the switch supports locking mechanism
required for the wormhole packet switching.

2.4 Flow control and VCs management

Since the handshaking mechanism is used for the
communication, when a sender puts a data on the link, it
activates the val (valid) signal. When the receiver
receives the data, it activates the ack (acknowledge)
signal. In our VC management approach, after the
reception of each packet, VC Controller unit allocates
one of the free VCs to this packet and locks this VC until
the packet leave the VC.

2.5 Input channel and Output channel modules

The input channel module shown in Fig. 1 consists of
four important units which are VC Controller, IB (Input
Buffer), IC (Input Controller), and IRS (Input Read
Switch). In this figure, four VCs are used for each input
channel. The VC Controller exploits handshaking

protocols for the flow control, allocation/deallocation of
each VC to the input flow, and DVCA (Dynamic Virtual
Channels Allocation) mechanism which will be in
Section 3. The IB block is a p × (n+2)-bit FIFO buffer
which is responsible to store the flits of the incoming
packets while they can not be forwarded to an output
channel. The number of the VCs is p. The IC block
performs the routing function while IRS is responsible to
deliver the read signal form the output channel to its
connected IB.

Fig. 2. Output channel architecture.

The output channel architecture of the proposed

switch which is similar to RASoC switch [10] is depicted
Fig. 2. It is composed of four blocks which are OC
(Output Controller), ODS (Output Data Switch), ORS
(Output Read Switch), and OFC (Output Flow
Controller). The OC block runs the arbitration algorithm
to select one of the requests sent by the VCs. Then, it
activates the grant line of the selected request which
induces proper switching of the ODS and ORS blocks.
They connect the x_din and x_rok signals of the selected
input channel to the external output channel interface.
ODS and ORS blocks respectively connect the x_din and
x_rok signals of the selected input channel to the external
output channel interface However, before being
connected to out_val, the x_rok signal pass through the
OFC block.

3. Forecasting-based Dynamic Virtual

Channels Allocation (DVCA) Architecture

Buffers are the single largest power consumer for a
typical switch in an on-chip network [17] such as the
Alpha 21364 router [17] the input buffers contribute 46-
61% of the total power in a switch. This provides the
motivation for us to analyze and optimize the power
consumption of VCs without degradation in performance
in the context of input channel switches for an on-chip
network. In this work, we propose to use a dynamic
power management (DPM) technique to dynamically
determine the number of active VCs. The DPM technique
has the objective of minimizing the power consumption
with a minimal impact on the throughput. It also provides
us with flexibility of adjusting the trade-off between the
power and performance. The technique is based on a

152

distributed forecasting-based policy, where each router
input port predicts its future communication workload
and required virtual channels based on the analysis of the
prior traffic.

3.1 Communication Traffic Characterization

The characteristics of the communication traffic in an
input channel may be captured using several potential
network parameters. Different traffic parameters such as
link utilization, input buffer utilization, and input buffer
age have been proposed for simple input channels
(without VCs) [18]. None of these parameters (indicators)
alone may correctly represent the communication traffic
in VC-based input channels. Thus, we need a
combination of these parameters to explore suitable
indicators that are useful for predicting the network load
in VC-based input channels. In this work, we use the link
utilization and the virtual channel utilization as explained
here.
This Link Utilization parameter is defined as

LU =
N

tAH
t∑ =1

)(
, 0 ≤ LU ≤ 1 (1)

where A(t) is equal to 1, if the traffic passes through the
link i in cycle t and 0 otherwise, and N is the number of
clock cycles, which is sampled within a history window
with the size of H defined in clock cycles. The link
utilization is a direct measure of the traffic workload.

Regarding this parameter, it should be noted that when
the network is lightly loaded or highly congested, the link
utilization is low [18]. At low traffic loads, the link
utilization is low due to the fact that the flit arrival rate is
low. When the network traffic increases, the flit arrival
rate between the adjacent routers and the link utilization
of each link increases. When the network traffic
approaches the congestion point, the number of free
buffer spaces in the upstream router will become limited.
This causes the link utilization to start to diminish. This
observation reveals that the link utilization alone will not
be sufficient for assessing the network traffic. The
forecasting-based DVCA policy, therefore, requires more
information for making a right decision. In this work, we
use the utilization of each virtual channel to complement
the link utilization indicator for the proposed forecasting
policy.

As mentioned earlier, after receiving each packet the
VC Controller allocates one available VC to the
corresponding received packet and locks the VC (L = 1).
When the packet completely leaves the router, the
controller releases the VC (L = 0). The virtual channel
utilization tracks how many locks of VC in the router
input channel occurs.

Let us denote the number of cycles that each packet
uses a VC if it is sent without interrupt by s. L(s) is set
when the corresponding VC is occupied during s cycles,
n is the number of VC per input channel and H is the
window size. We denote the virtual channel utilization by

VCU and define it as the lock rate of each VC through H
cycles obtained from

VCU =
H

sLH
s∑ =1

)(
, 0 ≤ VCU ≤ 1 (2)

Also, the overall VCU, denoted by OVCU, is defined as
the sum of VCUs of each input channel obtained from

OVCU =
n

VCUn
i∑ =1 , 0 ≤ OVCU ≤ 1 (3)

Table 1 shows a simple example of calculating the
virtual channel utilization. In this example, H is equal to
5s, the number of virtual channels per input channel is
four (n = 4), the numbers in the VCx columns are the
packet number that uses a given VC at cycle i, and the
numbers in Lx columns show the locking status of VCx at
cycle i. The VCU of each VC in the window is given in
the last shaded row. For this input channel, the OVCU is
equal to 15/20 or 3/4 and LU is equal to 7/20.

Table 1. An example of calculating VCU

cycle VC1 VC2 VC3 VC4 L1 L2 L3 L4
1 1 2 - - 1 1 0 0
2 1 3 4 - 1 1 1 0
3 1 3 5 - 1 1 1 0
4 6 3 5 7 1 1 1 1
5 - 3 5 7 0 1 1 1

Total 2 2 2 1 4 5 4 2

We use the link utilization as the primary traffic
indicator, while the virtual channel utilization is used as a
litmus test for detecting the network congestion. Next, we
will show the usage of these indicators for DVCA policy.

3.2 Forecasting-based DVCA Policy

In the proposed technique, the DVCA unit uses the
LU and OVCU parameters for measuring the past
communication traffic. Based on this, the communication
traffic of the next period, the number of required active
VCs is adjusted. To reduce the area and power overheads
of the proposed unit, we should simplify the forecasting
equation. For this, we combine the two measures using a
simple weighted equation given by

CT = LU + W × (OVCU – OVCUmin),
0 ≤ W ≤ 1, 0 ≤ CT ≤ 1 (4)

where W is forecasting weight, CT is the communication
traffic parameter, OVCUmin is the sum of all VCUmin for
each input channel in each history interval, and VCUmin is
the smallest possible lock rate for each VC. VCUmin
occurs when there are no stalls for the packets to leave
the corresponding VC and, hence, OVCUmin is equal to
LU. In this equation, we set W to 0.5 which simplify Eq.
(4) to a straightforward average equation (because
OVCUmin = LU). As this equation implies, the
communication traffic is a function of LU and the
network load. The network load is proportional to the

153

extra locks of VCs multiplied by the coefficient of W.
The latter will be added to the link utilization when the
congestion happens in VCs.

To make the forecasting formula reliable, we use an
exponential smoothing function. This is simple and
popular forecasting formula which is used in
programming and inventories control science and defined
as [19]:

CTpredict = CTpast + α × (CTactual – CTpast) or
CTpredict = α× CTactual + (1 – α) × CTpast (5)

where α is the forecasting weight CTpredict is the predicted
communication traffic, CTactual is the actual
communication traffic in the current history period, and
CTpast is the predicted communication traffic in the
previous history period (H). The accuracy of the
prediction is a strong function of α and hence its value
should be selected such that the error may be minimized.

The network traffic profile has short-term and long-
term fluctuations. The proposed technique in this work
filters out the short-term traffic fluctuations adapting the
number of active VCs based on long-term traffic
transitions. Based on the prediction, the controller
decides to increase, decrease, or keep the same the
number of active VCs. The pseudo-code of our proposed
Forecasting-based DVCA policy for the case of four
virtual channels per input channel is shown in Algorithm
1.

3.3 Hardware Implementation

Figure 3 shows the hardware realization of the
proposed forecasting-based DVCA policy which relies on
the local link and buffer information. Since the
communication overhead of relying on global
information is avoided, a simple hardware
implementation may be used. To measure the link
utilization (LU), a counter at each input port gathers the
total number of packets that are passed from the link in
each history interval. Similarly, there is a counter for
each VC calculating the number of occurred locks
(VCU). For computing the OVCU, an adder block is used
to sum up the VCUs in each input channel. The CT
Calculator carries out CT using Eq. (4). The Forecasting
Unit uses the calculated CT and previous predicted CT
from the previous interval (CTpast) to predict the new CT
(CTpredict) for the next H period intervals. A register stores
the CTpredict to be used as the CTpast in the next interval.

To reduce the hardware overhead, we set α to 12/16,
which is very close to the optimal values for this
parameter for the traffic profiles used in this work. We
implemented the division and multiplication operations
by right and left shifts, respectively.

The Decision Logic unit determines the number of
required active virtual channels (Required_VCs) using
CTpredict, CTpast and required number of the virtual
channels for the previous H period. Based on the
Required_VCs value, the number of virtual channels in

each input channel may be changed. The change in the
number of active VCs is performed via clock gating
technique. Finally, note that we simplify the division and
multiplication operations by setting H and H×n values as
power-of-two. For example, we set both n and H to 4.

Algorithm 1 Forecasting-based DVCA
CTactual = LU + (W × (OVCU - LU))
CTpredict = CTpast + α × (CTactual - CTpast)
if (CTpredict > CTpast) then
 if (required_VCs = 1 and CTpredict > (

nH
H

×
−× 1)1()) then

 required_VCs = required_VCs + 1
 else if (required_VCs = 2 and CTpredict > (

nH
H

×
−× 1)2()) then

 required_VCs = required_VCs + 1
 …
 …
 else if (required_VCs = n -1 and CTpredict >

nH
nH
×

−−× 1)1(

)then
 required_VCs = required_VCs + 1
 end if
else if (CTpredict < CTpast) then

 if (required_VCs = n and CTpredict <
n

n 1−) then

 required_VCs = required_VCs – 1

 else if (required_VCs = n-1 and CTpredict <
n

n 2−) then

 required_VCs = required_VCs - 1

 …
 …
 else if (required_VCs = 2 and CTpredict >

n
1) then

 required_VCs = required_VCs - 1
 end if
end if
CTpast = CTpredict

4. Results and Discussion

To assess the efficiency of the proposed technique to,

we have compared NoCs with the forecasting-based
DVCA and conventional virtual channel controllers. The
comparison is performed in terms of power and latency
for different traffic profiles. We used VHDL to develop
six switches based the XY routing algorithm with 2, 4
and 8 virtual channels based on the conventional (non-
DVCA) and DVCA and. They are labeled as XY-2VCs,
XY-2VCs-DVCA, XY-4VCs, XY-4VCs-DVCA, XY-
8VCs and XY-8VCs-DVCA, respectively. The
simulations were carried out for a 5×5 mesh NoC using
these six switch models. Also, we set W, α, and H to 1/2,
12/16 (75%), and 4, respectively. The performance of the
network is evaluated using latency curves as a function of
the packet injection rate (i.e., the number of packets
injected to the network per cycle). The packet latency is
defined as the duration from the time when the first flit is
created at the source core to the time when the last flit is

154

delivered to the destination core. For each simulation, the
packet latencies are averaged over 250,000 packets.
Latencies are not collected for the first 30,000 cycles to
allow the network to stabilize. It is assumed that the
packets have a fixed length of five flits, the buffer size of
each virtual channel is five flits, and the data width is set
to 32 bits. To perform simulations, we used uniform and
transpose traffic patterns [20]. In the uniform traffic
pattern, a core sends a packet to any other cores with an
equal probability while in the transpose traffic pattern, a
core at the position (i, j) only send packets to the core at
the position (5 – j, 5 – i).

Fig.3. The hardware implementation of the forecasting-

based DVCA policy.

The NoC performances for the two virtual channel
management schemes under uniform and transpose traffic
are given in Fig. 4 and Fig. 5. As observed from the
figure, each pair of DVCA and non-DVCA with 2, 4, and
8 VCs have almost the same performance at low traffic
loads. As the traffic load increases, the packet latency
rises dramatically due to the network congestion. The
results show that the conventional VC controller
performs slightly better than the DVCA VC controller.
This originates mainly from the prediction error. The
power consumptions of the routers which are computed
by Synopsis Power Compiler for a 0.13μm standard
CMOS technology are presented in Fig. 6 and Fig. 7. As
seen from the figure, the average power consumptions of
the switches with the DVCA VC of the switches with the
DVCA VC controller are considerably lower than the
corresponding conventional switches at low traffic loads
where some of the VCs may be clock-gated for saving the
power. As the traffic load increases the difference
between the average power consumptions of the switches
with the same number of the VCs decreases till they
eventually become almost the same at the congestion
injection rate. The power saving is achieved at the price
of slightly higher latency for the NoC with the DVCA
VC controller. As we summed up the power consumption
at each injection rate the power dissipation is reduced up
to 35% in the buffer power consumption and up to 20%
savings in the overall router power consumption. Finally,
to determine the area and power overheads of the
proposed technique, we synthesized the DVCA and
conventional switches using Synopsys Design Compiler.
Note that the controller is not on the critical path of the
router and, hence, its delay overhead does not need to be

considered. The synthesis results which are obtained for a
0.13μm standard CMOS technology are given in Table 2
and Table 3. The figures given in these tables reveal, the
area and power overheads of the proposed forecast-based
DVCA VC controller are negligible. Note that in
estimation of power overhead, both dynamic and leakage
power was considered in high traffic loads (worst-case).

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve
ra
ge
 P
ac
ke
t
La
te
nc
y
(c
yc
le
s)

Average Packet Arrival Rate (packets/cycle)

XY‐8VCs

XY‐8VCs‐DVCA

XY‐4VCs

XY‐4VCs‐DVCA

XY‐2VCs

XY‐2VCs‐DVCA

Fig. 4. Average latency under transpose traffic.

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve
ra
ge
 P
ac
ke
t
La
te
nc
y
(c
yc
le
s)

Average Packet Arrival Rate (packets/cycle)

XY‐8VCs

XY‐8VCs‐DVCA

XY‐4VCs

XY‐4VCs‐DVCA

XY‐2VCs

XY‐2VCs‐DVCA

Fig. 5. Average latency under uniform traffic.

5. Conclusion

In this paper, we introduced a forecasting-based

dynamic power management technique for controlling the
number of active virtual channels (VCs). The approach
makes use of the link and VC utilizations in predicting
the communication traffic. Based on the predicted traffic,
the number of the active virtual channels may be
increased, decreased, or remain the same. The clock-
gating power management technique is used to
activate/deactivate the VCs. To determine the efficacy of
the proposed technique NoCs with conventional and
DVCA VC controller for 2, 4, and 8 VCs were simulated.
The simulation results which performed for the uniform
and transpose traffic profiles showed considerable power
savings with a minimum impact on the latency for the
proposed technique. The technique was implemented
using a simple hardware to make the power and hardware
overheads very small.

155

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6

Av
er
ag
e
Po

w
er
 C
on

su
m
pt
io
n
(m

W
)

Average Packet Arrival Rate (packets/cycle)

XY‐2VCs

XY‐DVCA‐2VCs

XY‐4VCs

XY‐DVCA‐4VCs

XY‐8VCs

XY‐DVCA‐8VCs

Fig. 6. Average power consumption under transpose

traffic.

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6

Av
er
ag
e
Po

w
er
 C
on

su
m
pt
io
n
(m

W
)

Average Packet Arrival Rate (packets/cycle)

XY‐2VCs

XY‐DVCA‐2VCs

XY‐4VCs

XY‐DVCA‐4VCs

XY‐8VCs

XY‐DVCA‐8VCs

Fig. 7. Average power consumption under uniform

traffic.

Table 2. Area overhead of the DVCA unit
Component Area (µm2) Overhead (%)

DVCA Unit for 2 VCs 9296.81 2.78
DVCA Unit for 4 VCs 11918.68 1.99
DVCA Unit for 8 VCs 19863.11 1.09

Table 3. Power overhead of the DVCA unit
Component Power (mW) Overhead (%)

DVCA Unit for 2 VCs 4.86 1.7
DVCA Unit for 4 VCs 5.27 1.23
DVCA Unit for 8 VCs 8.55 0.89

Acknowledgement

The authors wish to acknowledge the financial
support by Iran Telecommunication Research
Center (ITRC) during the course of this project.

References

[1] L. Benini and G. D. Micheli, "Networks on chips: A new
SoC paradigm," IEEE Computer, vol. 35, pp. 70–78,
January, 2002.

[2] W.J. Dally et al., "Route Packets, Not Wires: On-Chip
Interconnection Networks," in Proc. of the DAC
Conference, pp.684-689, 2001.

[3] S. Heo and K. Asanovic, "Replacing global wires with an
onchip network: a power analysis," in Proc. of the ISLPED
Conference, pp. 369-374, 2005.

[4] R. Kumar, V. Zyuban, and D. M. Tullsen,
"Interconnections in multi-core architectures:
understanding mechanisms, overheads and scaling," in
Proc. of ISCA Conference, pp. 408-419, 2005.

[5] W. Hangsheng, L. S. Peh, and S. Malik, "Power-driven
design of router microarchitectures in on-chip networks,"
in Proc. of the MICRO Conference, pp. 105-116, 2003.

[6] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of
power consumption on switch fabrics in network routers,"
in Proc. of DAC, pp. 524-529, 2002.

[7] L. M. Ni and P. K. McKinley. A survey of wormhole
routing techniques in direct networks. IEEE Computer,
26:62{76, Feb. 1993.

[8] W. J. Dally, "Virtual-channel flow control," in Proc. of the
ISCA, pp. 60-68, 1990.

[9] W. J. Dally and C. L. Seitz, "Deadlock-free message
routing in multiprocessor interconnection networks," IEEE
Transactions on Computers, pp. 547-553, 1987.

[10] C.A. Zeferino, M.E. Kreutz, A.A. Susin, "RASoC: A
Router Soft-Core for Networks-on-Chip," DATE, Feb.
2004, pp. 198- 203.

[11] W. J. Dally and C. L. Seitz, "The torus routing chip,"
Journal of Distributed Computing, vol. 1(3), pp. 187-196,
1986.

[12] M. Li, Q.-A. Zeng, and W.-B. Jone, "DyXY – a proximity
congestion-aware deadlock-free dynamic routing method
for network on chip," in Proc. of the DAC Conference,
July 2006, pp. 849–852.

[13] G. M. Chiu, "The odd-even turn model for adaptive
routing," IEEE Trans. on Parallel and Distributed Systems,
11:729 – 738, July 2000.

[14] E.S .Shin, V.J. Mooney, G.F. Riley, "Round-robin Arbiter
Design and Generation," in Proc. of International
Symposium on System Synthesis, 2002, pp. 243-248.

[15] A. Bystrov, D. J. Kinniment, and A. Yakovlev, "Priority
Arbiters," in Proc. of the ASYNC Conference, 2000, pp.
128-137.

[16] W. J. Dally and C. L. Seitz, "Deadlock-free message
routing in multiprocessor interconnection networks," IEEE
Transactions on Computers, vol. C-36(5), pp. 547-553,
1987.

[17] S. Banerjee, and N. Dutt, "FIFO Power Optimization for
OnChip Networks," in Proc. of the 14th GLSVLSI
Conference, 2004, pp. 187-191.

[18] L. Shang, L. S. Peh, and Jha. N.K., "Dynamic Voltage
Scaling with Links for Power Optimization of
interconnection Networks," in Proc. of the 19th HPCA
Conference, Feb. 2003, pp. 91-102.

[19] R .J. Tersine, Principles of Inventory & Material
Management, Fourth Edition, Prentice Hall PTR, August
1994.

[20] M. Rezazad, H. Sarbazi-azad, "The Effect of Virtual
Channel Organization on the Performance of
Interconnection Networks," in Proc. of the 19th IPDPS
Conference, April 2005, pp. 264-271.

156

Negative Exponential Distribution Traffic Pattern for Power/Performance
Analysis of Network on Chips

Amir-Mohammad Rahmani, Iman Kamali, Pejman Lotfi-Kamran,

Ali Afzali-Kusha and Saeed Safari

Nanoelectronics Center of Excellence
School of Electrical and Computer Engineering, University of Tehran

am.rahmani@ece.ut.ac.ir, Iman_kam@aut.ac.ir, plotfi@computer.org, {afzali, saeed}@ut.ac.ir

ABSTRACT

In this paper, we propose a synthetic traffic model
based on Negative Exponential Distribution (NED). This
synthetic traffic profile is more similar to some statistical
behavior of realistic traces obtained by running different
applications on Network-on-chips that those of
conventional synthetic traffic profiles. To assess
usefulness of this traffic model, the average packet hops
for the proposed traffic profile is compared with those of
some synthetic and realistic traffic patterns obtained from
running applications on NoCs. The results show that the
NED traffic profile has more similarity with the realistic
traffic profiles than those of conventional synthetic ones.

1. Introduction

To increase the computing power of single chip
systems, several processors may be used. As the
computing power increases, the communication speed
should also increase to satisfy the data exchange
requirements of the system. In these systems,
conventional bus based communication architectures may
not work and may be replaced by Network on Chip
(NoC) ones [1] [2]. Many research groups have devoted
their efforts on different aspects of NoC’s, including
topology, routing algorithms and architectures, and core
mapping (see, e.g., [1] [2] [3]). To assess the performance
of the NoC options which exist in its vast design space,
simulations with different traffic profiles should be used.
These simulations are used to determine power and
latency characteristics of a given NoC architecture.
Traffic profiles may be classified as either synthetic or
realistic. Synthetic traffics are abstract models of message
passing in NoCs while realistic traffics are traces of real
applications running on NoCs. In contrast to realistic
traffics which are representative of a more specific class
of application, synthetic traffics should cover a broad
class of applications running on NoCs [4] [5].

Designers frequently rely on synthetic traffic patterns
such as Uniform random and Hotspot to evaluate their
network design [5] [6]. Some of other synthetic traffic
profiles include Transpose, Bit-Complement, Bit-
Reversal, and Self-Similar. Recently, several synthetic
traffic profiles have been proposed. In [7], a traffic model
for on-chip networks is proposed. This synthetic traffic is
a good model for the multimedia applications running on
NoC, but it may not be suitable for other applications.
In this paper, we propose a synthetic traffic profile based
on negative exponential distribution. This traffic pattern
can be used effectively to model the bursty traffic
behavior at chip-level.

The rest of paper is organized as follows. Section 2
briefly introduces related works in this area and presents
the motivation for presenting a new traffic profile for the
NoC analysis. Section 3 presents the NED traffic model
and its properties while the comparison results of this
traffic profile with those of others are discussed in
Section 4. Finally, the conclusion is given in Section 5.

2. Related Works

As discussed in the previous section, traffic profiles
for the design and the analysis of NoCs can be
categorized into realistic and synthetic groups. Next, we
briefly discuss widely used traffic profiles.

2.1. Realistic Traffics

In some works, to evaluate power and delay, NoCs
have been analyzed using under realistic traffic loads. For
example in [8], the performance of the proposed
technique has been evaluated using a GSM voice
CODEC traffic profile. Other realistic traffic profiles
used by researchers include SPLASH-2 [9], MediaBench
 [10], and SPEC [11] traces. It, however, should be noted
that the traffic patterns generated by different modules in
a NoC strongly depends on the application for which the

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.86

157

NoC is designed. Since the performance of the NoC is a
function of the traffic profile, the most accurate way to
assess the characteristics of the NoC would be to invoke
the traffic profiles corresponding to the application. In
many cases, the system is designed for multiple
applications. In these cases, the traffic profiles
corresponding to all the applications should be used
during the NoC design and analysis. This can be time
consuming even if all the applications are known
beforehand. As another option, synthetic traffic profiles
which can represent a class of application may be used.
This suggests that the use of both realistic and synthetic
traffic profiles forms a complete set for the evaluation of
the techniques proposed for NoC systems. Next, synthetic
traffic models are introduced and their features including
the application that they are representative for are
mentioned.

2.2. Synthetic Traffics

Different synthetic traffic patterns have been used for
evaluating interconnection networks. Uniform,
Transpose, Bit-Complement, Bit-Reversal, Hotspot [4],
and Self-similar [7] are the most widely used traffic
models for the analysis of power and delay in
interconnection networks.

To describe the synthetic patterns, let each node (x, y)
also be labeled with a number resulting from the
concatenation of x and y. The binary representation of xy
is n1n2n3… nm-2 nm-1nm. Also, let 0ത = 1 and 1ത = 0.

• Uniform Traffic: Each node sends messages to other

nodes with an equal probability (i.e., destination
nodes are chosen randomly using a uniform
distribution).

• Hot-spot Traffic: Each node sends messages to other
nodes with an equal probability except for a specific
node (Hotspot) which receives messages with a
greater probability. The percentage of messages that a
Hotspot node receives beyond the usual nodes is
indicated after the Hotspot name (e.g., Hotspot 10%).

• Transpose Traffic: Each node sends only to the
destination given by (nm/2n(m/2)+1 … nmn1n2 … n(m/2)–1).

• Complement Traffic – Each node sends only to the
destination given by (ത݊ଵ ത݊ଶ ത݊ଷ … ത݊ିଶ ത݊ିଵ ത݊).

• Bit reversal Traffic: Each node sends only to the
destination given by (nm nm-1 nm-2 … n3 n2 n1).

The uniform traffic model is a standard benchmark
used in network routing studies. This model can be
considered as the representative of well-balanced shared
memory computations. In the Hotspot traffic pattern, one
or more nodes are designated as the hot spot nodes, which
receive Hotspot traffic in addition to the regular traffic.

Therefore, the Hotspot node represents the very busy
nodes. For example, in multiprocessors, Hotspot nodes
could be the representative of computations in which there
are critical sections or shared/replicated data. For the
transpose traffic, two types of patterns are proposed. With
the first transpose traffic pattern, a node (i, j) only sends
messages to node (n – j, n – i) where n is the network
dimension (e.g., n × n in the mesh topology). This traffic
pattern is very similar to the matrix-transpose [7] In the
second transpose traffic pattern, a node (i, j) only sends
messages to node (j, i). The bit-complement, reversal, and
transpose traffics can model traces of applications related
to numerical computations [4].

New synthetic traffic patterns may be inspired by
analyzing the traffic patterns in a class of applications. As
an example, in [7], a self-similarity concept is utilized to
propose a new traffic pattern. The objective of the work
was to introduce self-similarity as a fundamental property
of the bursty traffic patterns flowing between the modules
in typical MPEG-2 video applications. This property was
inferred by examining the extracted traces when common
video statistical tests were performed on the chip.

The above discussion shows that each synthetic traffic
model is useful for certain classes of applications. Next,
we discuss the motivation for another synthetic traffic
profile which is representative for a broader class of NoC
applications.

2.3. Motivation for NED

One of the stages in design of NoC systems is to map
an application onto the cores existing on the chip. The
mapping is an optimization problem with the objective of
minimizing the total power consumption and delay of the
communication on the chip. Several research works have
been focused to the application mapping onto NoCs (see,
e.g., [12] [13] [14]). The power consumption as well as the
delay for each data communication operation is
minimized by lowering the number of hops and
shortening the total physical distance between the source
and destination cores. As a result of using these mapping
algorithms, an application should be mapped among
different cores such that the cores with a higher
communication volume should be mapped as close to
each other as possible. For these networks, the closer the
nodes are, the more packets they send to each other. An
example of this situation is shown in Fig. 1 which shows
the number of packets sent from Node X3,3 to other
nodes. For this case a total number of 1,000,000 packets
has been considered. Therefore, for a more accurate
evaluation of these networks, a synthetic traffic pattern
with this property should be used. Most of the above
synthetic traffic profiles do not have this property, and
hence, a new traffic profile

158

Fig. 1. Number of messages sent by Node (3, 3) to other nodes in a

5×5 mesh

3. NED Traffic Model

In a network, a source node S that is located in
position (a, b) is referred to as S = X*a,b. In addition, other
nodes that are placed in position (i, j) are referred to as
Xi,j. Assuming a mesh topology for now, the distance
matrix, R, for the source node is defined as

Rn*n = [ri,j]

where ri,j is the distance (number of hops) between S and
Xi,j and is given by

ri,j = | i + j – (a + b) | (1)

where is. Using Rn*n, Number of Distance (NoD) matrix,
D1,k(n) is defined as

d1*k (n) =∑ ∑

୰,ౠసK

୩
୬
୧ୀଵ

୬
୨ୀଵ , k=| Max ri,j | (2)

The jth column of this matrix indicates the number of

nodes in the network that have a distance of j from S. Fig.
2 shows R, and D1,6(4) for a 4×4 network with the source
node of X*1,1.

൦

൪ R=
3 4 5 6
2 3 4 5
1 2 3 4
0 1 2 3

D1*6(4) =ሾ 2 3 4 3 2 1 ሿ , k=6

Fig. 2. Distance matrix(R), Number of Distance matrix (D).

We are looking for a Probability Distribution Function
(PDF) that computes the probability of sending from the
source node to other nodes. The PDF should have the
property that the probability decreases as the distance
between the source and destination nodes increases. In
addition, for the mesh topology, the PDF should be
dependent on the source position. The reason is that the

longest distance between a source and other nodes are
dependent on the source position. Also, the number of
nodes that have a specific distance from a source is
different for different source positions in the mesh
topology.

Fig. 3 shows the distance matrices for S = X*1,1 and S
= X*3,3 in a 5×5 network. As shown, in Fig. 3(a), four
nodes have a distance of one from the source node and
the longest distance to source is 4. On the other hand, in
Fig. 3(b), two nodes have a distance of one from the
source node while the longest distance to the source is 8.
It should have the general properties of probability
distribution functions as well. If the Pr is the probability
of sending a packet to a destination with the distance r
from the source, and D is the set of all the distances from
the source, then then 0<Pr<1, ∑ P୰సభD .

ۏ
ێ
ێ
ێ
ۍ
4 3 2 3 4
3 2 1 2 3
2 1 0 1 2
3 2 1 2 3
ے4 3 2 3 4

ۑ
ۑ
ۑ
ې

ሺaሻ

ۏ
ێ
ێ
ێ
ۍ
4 5 6 7 8
3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
ے4 3 2 1 0

ۑ
ۑ
ۑ
ې

ሺbሻ

Fig. 3. (a) Distance matrix for S = X*1,1 ,(b) Distance matrix for S =
X*3,3

Note that a distribution function with the above
specifications may be used for other topologies such as
Torus, Hypercube, and 3D Torus. The reason for this is
that this distribution function is only dependent on the
distance between the source and destination.

In this work, we are looking for a probability
distribution function in which the value of Pr decreases
exponentially with increasing r. Denoting P1 by P, we
propose that the following probability function:

 P୰ ൌ P୫ሺ౨షభሻ ൈ P (3a)

or
 P୰ ൌ Pሺ୫ሺ୰ିଵሻሻାଵ (3b)

where m is a parameter between 0 and 1.

Fig. 4. Sending probability for m = 3, m = 2, m = 0.1, and m = 1/4.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 1 2 3 4 5 6

Distance from source

P
ac

ke
t r

ec
ep

tio
n

pr
ob

ab
ili

ty

m=1/4
m=1/10
m=2
m=3

159

Based on the central limit theorem [15], the sum of a
large number (practically 30 or more) of independent and
identically distributed random variables will have
approximately a normal distribution. For a normal
distribution function, the area under the function in the
range µ±3δ is 97.65% of the total area. Based on this, we
suggest that a suitable value for the parameter m be the
one that results in a traffic pattern in which the length of
the longest path is equal to µ+3δ. Thus, the value of
parameter m is chosen to be m ൌ ଵ

୬
.

As an example, in Fig.4, the probability for sending a
packet from S = X*1,1 to nodes with different distances in
a 4×4 network for m = 3, 2 , 0.1 and 1/4 is shown. Using
(4), we can write

 ∑ ሺrଵ.Lሺnሻ ൈ PL

୩
Lୀଵ ሻ ൌ 1 (4)

For the example shown in Fig. 2, we have

2P1 + 3P2 + 4P3 + 3P4 + 2P5 + P6 = 1 (5)

Putting Pr = P × P(r – 1)m in (5) leads to

2P + 3Pm+1 + 4P2m+1 + 3P3m+1 + 2P4m+1 + P5m+1 = 1 (6)

Let us assume m = ¼, and ܲᇱ = P1/4 or P = ܲᇱ4, then

2ܲᇱ4 + 3ܲᇱ5 + 4 ܲᇱ6 + 3ܲᇱ7 + 2ܲᇱ8 + ܲᇱ9 = 1 (7)

The value of ܲᇱ may be found by solving the above

equation numerically. Notice that there is only one
solution between 0 and 1 for the class of above equations.
Therefore, the solution is unique. This is proved using the
following theorem:

Theorem: For the equation given by
Y ൌ aPԢ୫ bPԢ୫ାଵ cPԢ୫ାଶ … . zPԢ୫ା୬ െ 1 (8)

where the coefficients a to z are integer greater than or
equal to 0 zero, there is a unique solution between 0 and
1.
Proof: The derivative of Y with respect to ܲᇱ is given by

Yᇱ ൌ maPᇱ୫ିଵ ሺm 1ሻbPᇱ୫ ሺm 2ሻcPᇱ୫ାଵ
 … . ሺm nሻzPᇱ୫ା୬ିଵ (9)

where Yᇱ is a continuous function on the set of real
numbers. On the other hand, if Y ൌ aPԢ୫ bPԢ୫ାଵ
cPԢ୫ାଶ … . zPԢ୫ା୬ െ 1 > 0, Yᇱ is also greater than
zero. Therefore Y is strictly increasing in the range of 0
and 1. Since the value of Y for Y ൌ aPԢ୫ bPԢ୫ାଵ
cPԢ୫ାଶ … . zPԢ୫ା୬ െ 1 = 0 and 1 are –1 and a + b + c
+ d + … + z – 1 > 0, respectively, and Y is continuous and

strictly increasing, therefore, there is exactly one point in
the range of 0 and 1 at which Y = 0.

Solving Equation (7) leads to ܲᇱ = 0.6247. The
probability distribution diagram for S = X*1,4 is shown in
Fig. 5.

Fig. 5. Probability distribution diagram for S = X*1,4 for a 4×4 mesh

network.

Note that the computation for a network with specific
dimension is done only once. In addition, since due to the
symmetry, there are nodes with the same distances, the
computation should only be done for about one fourth of
the nodes. This is shown in Fig. 6 for 4×4 and 5×5
meshes.

(a) (b)

Fig. 6. The nodes that require specific computation for (a) 4×4 and
(b) 5×5 meshes.

It should be noted that for ring, 2D, and 3D torus
topologies this traffic has less computational complexity
than that of 2D mesh. Fig. 7 shows ring, 2D torus, and 3D
torus topologies. In these networks, the computations are
done just for one node in a network with any dimension.
To illustrate the point, let us define n(d) for the source
node S as the number of nodes with the Manhattan
distance of d hops from S. Table 1 shows mathematical
expressions of n(d) for these network topologies. These
expressions reveal that, regardless of the source position,
the model of adjacent nodes is similar and is a function of
d.

Table 1. n(d) for major network topologies.

n(d) Topology
2 Rings (1-dimensional)
4d 2-dimensional torus

4d + 2 + 8∑ ሺ݀ െ ܽሻௗ
ୀଵ 3-dimensional torus

160

Fig. 7. (a) 3-dimensional torus (b) 2-dimensional torus (c) Rings (1-

dimensional) network-on-chip topologies.

As an example, matrices of Fig. 3 for a mesh topology
has been repeated for the same nodes in a 5×5 torus
topology and shown in Fig. 8. Distance matrices of these
two figures are equal regardless of the fact that the
position of the source is changed.

ۏ
ێ
ێ
ێ
ۍ
4 3 2 3 4
3 2 1 2 3
2 1 0 1 2
3 2 1 2 3
ے4 3 2 3 4

ۑ
ۑ
ۑ
ې

ሺaሻ

ۏ
ێ
ێ
ێ
ۍ
1 2 3 3 2
2 3 4 4 3
2 3 4 4 3
1 2 3 3 2
ے1 2 2 1 0

ۑ
ۑ
ۑ
ې

ሺܾሻ

D1*4ሺ5ሻ ൌ ሾ4 8 8 4ሿ, kൌ4
Fig. 8. (a) Distance matrix for S = X*1,1 , (b) Distance matrix for S =

X*3,3 for torus topology

4. Results and Discussion

To evaluate the efficacy of using NED traffic profile
in evaluating NoCs, we compared the average hop counts
of all packets transported based on different traffic
profiles. In addition, to NED, Transpose, Uniform,
Hotspot 5%, Hotspot 10%, Hotspot 20%, and Bit
complement, and traffic profiles generated based on some
realistic applications mapping on an n×n mesh were used.
For the Hotspot synthetic traffic profile, the hotspot point
was chosen to be the node (ۀ2/݊ڿ, ሻ. For mappingۀ2/݊ڿ
realistic applications on n×n meshes, we used Adaptcell
 [16]. Adaptcell is a mapping tool that maps DSP or similar
applications into distributed-control multiprocessor
system on chip (MPSoC). This tool is capable of run-time
task decomposition and scheduling capability. Each
computational cell in this platform is a special processor
which can be configured to 8, 16 or 32 bit mode. These
cells are placed in a 2D-mesh topology and uses NoC
scheme for communication. The size of each dimension of
mesh can be configured easily.

Table 2 shows the average hop counts of synthetic and
realistic traffic profiles on networks with different mesh
sizes. For all the switches, the data width was set to 32-
bits. Each input virtual channel had a buffer (FIFO) with
the size of six flits. In all the simulations, the latency was
measured by averaging the latency of the packets when
each local core generated 30,000 packets. The router used
the minimally fully adaptive reserved VC deadlock
avoidance technique discussed in [17]. As this table
shows, the average hop count of NED is more similar to
those of realistic traffics than those of other synthetic

traffic models. Other than NED, Uniform and Hotspot
(which is a specific kind of uniform traffic) are among
the synthetic traffic model with good hop count match to
those of realistic benchmarks. Even for these traffic
profiles, the differences between their average hop counts
and the realistic ones are larger than that of NED. In the
case of the semi realistic benchmark of “GSM +
Uniform” [7], the difference is less. In this benchmark,
just a few cores generate packets based on the GSM voice
codec and the rest of the cores are sent packet based on
the Uniform traffic profile. For other realistic
benchmarks, NED traffic has closer average packet hops
to those of these benchmarks. In addition, the difference
of NED and other synthetic traffic profiles increases as
the dimension of the network increases. Note that an
empty slot means that the mesh size is too large for the
application.

Fig. 9 also shows the average hop counts of different
synthetic traffic models for different mesh sizes. The rate
of increase in the average hop count in NED with the
network size is lower than those of other synthetic traffic
model. This behavior makes NED resembling more
realistic traffics.

Fig. 9. Average hop counts of different synthetic traffics for different

mesh sizes.

5. Conclusion

In this work, a synthetic traffic profile based on
Negative Exponential Distribution (NED) for network on
chips was proposed. In this traffic profile, the probability
of sending a packet from a source to a destination
decreases as the distance between them increases. This
property made NED more similar to traffic profiles of
real applications where the cores with higher packet
interchange were mapped closer to each other to
minimize the communication and delay. To show this
property for NED, the average packet hops for some
synthetic and realistic traffic profiles were compared.
Experimental results showed similarity of NED traces
with those of realistic applications running on NoCs with
different sizes.

0

1

2

3

4

5

6

7

8

9

10

3X3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Mesh size

A
ve

ra
ge

 p
ac

ke
t h

op
 c

ou
nt

s

Transpose

Uniform

Hotspot 5%

Hotspot 10%

Hotspot 20%

Bit_complement

NED

161

TABLE 2. Average packet hops for some synthetic and realistic traffic patterns

Traffic
Type Traffic Pattern 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10

Synthetic

Transpose 2.6667 3.3333 4 4.6667 5.333 6 6.6667 7.333
Uniform 2 2.6667 3.3333 4 4.6667 5.333 6 6.6667

Hotspot 5% 1.9965 2.6632 3.332 3.9911 4.6398 5.2816 5.9167 6.518
Hotspot 10% 1.9944 2.6632 3.3306 3.9834 4.6188 5.2011 5.761 6.2507
Hotspot 20% 1.9884 2.66 3.3248 3.9718 4.598 5.1071 5.5311 5.8861

Bit complement 3 4 5 6 7 8 9 10
NED (m = 1/n) 1.6519 2.0341 2.3995 2.6919 3.0255 3.3594 3.6933 4.0145

Realistic

GSM+Uniform - 2.1280 2.765 3.177 3.647 - - -
Order 16 FIR 1.455 1.93 2.4544 - - - - -
Order 24 FIR - 2.121 2.478 3.5855 - - - -

5×5 Matrix Multiplication 1.2351 1.915 2.7747 3.0323 - - - -
7×7 Matrix Multiplication 1.575 2.156 2.5578 2.8952 3.2887 - - -

8-points DCT 1.5961 1.8954 2.0425 - - - - -
16-points DCT - 2.252 2.45 2.8221 - - - -

Acknowledgement

The authors wish to acknowledge the financial support
by Iran Telecommunication Research Center (ITRC)
during the course of this project.

References

[1] L. Benini and G. D. Micheli, "Networks on chips: A new
SoC paradigm," IEEE Computer, vol. 35, pp. 70–78,
January, 2002.

[2] A. Jantsch and H. Tenhunen (Eds.), Networks on Chip,
Kluwer, 2003.

[3] T. Bjerregaard AND S. Mahadevan, “A Survey of
Research and Practices of Network-on-Chip,” ACM
Computing Surveys, Vol. 38, No. 1, 2006.

[4] M. L. Fulgham and L. Snyder, “Performance of Chaos and
Oblivious Routers under Non-Uniform Traffic,” Technical
Report UW-CSE-93-06-01, Univ. of Washington, July
1993.

[5] K. Lahiri et al. Evaluation of the traffic-performance
characteristics of system-on-chip communication
architectures. In Proc. of the 14th International Conference
on VLSI Design, pp. 29–35, Oct. 2000.

[6] W. J. Dally and B. P. Towles. Principles and practices of
interconnection networks. Morgan Kaufmann Publishers,
ISBN: 0122007514, San Francisco, CA, 2004.

[7] G. V. Varatkar and R. Marculescu, “On-chip traffic
modeling and synthesis for MPEG-2 video applications,”
IEEE Transactions of Very Large Scale Integration (VLSI)
Systems, Vol. 12, No. 1, Jan. 2004.

[8] D. Wu, B. M. Al-Hashimi, M. T. Schmitz, "Improving
Routing Efficiency for Network-on-Chip through
Contention-Aware Input Selection," in Proc. of Asia and
South Pacific Conference on Design Automation
(ASPDAC), Jan. 2006, pp. 36-41.

[9] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta,
“The Splash-2 Programs: Characterization and
Methodological Considerations,” In Proc. of ISCA-22,
June 1995.

[10] C. Lee et al. Mediabench: a tool for evaluating and
synthesizing multimedia and communications systems. In
Proc. of the 30th International Symposium on
Microarchitecture (MICRO-30), pp. 330-335, Nov. 1997.

[11] The Standard Performance Evaluation Corporation.
Available [online]:http://www.spec.org/.

[12] M. Nickray, M. Dehyadgari, and A. Afzali-Kusha, “Power
and Delay Optimization for Network on Chip,” In Proc. of
European Conference on Circuit Theory and Design
(ECCTD’05), pp. III-277–III-281, 2005.

[13] A. Mehran, A. Khademzadeh, A. Afzali-Kusha, and B.
Shirpour, “A Heuristic Energy Aware Application
Mapping Algorithm for Network on Chip,” In Proc. of IP
Based SoC Design Conference & Exhibition, Grenoble,
France, pp. 289-294, Dec. 6-7, 2006.

[14] S. Murali and G. D. Micheli, “Bandwidth-Constrained
Mapping of Cores onto NoC Architectures,” In Proc. of
DATE’04, pp. 896-901, Feb. 2004.

[15] Robert V. Hogg, Allen Craig, Joseph W. McKean,
“Introduction to Mathematical Statistics,” Prentice Hall,
2005.

[16] Sh.Vakili, S. M. Fakhraie and S. Mohammadi, “Adaptcell:
a NoC-based multiprocessor system with run-time task
decomposition and scheduling capability,” will be appear
in IET Computers & Digital Techniques, 2009.

[17] L. M. Ni, and P. K. McKinley, “A survey of wormhole
routing techniques in direct networks,” In IEEE computer,
pp. 62–76, 1993.

162

Latency, Power and Performance Trade-offs in Network-on-Chips by Link
Microarchitecture Exploration

Basavaraj Talwar
Electrical Communication Engineering

Indian Institute of Science, Bangalore

bt@ece.iisc.ernet.in

Shailesh Kulkarni
ESAT, Katholieke Universiteit Leuven

3001 Heverlee, Belgium

shailesh.kulkarni@esat.kuleuven.be

Bharadwaj Amrutur
Electrical Communication Engineering

Indian Institute of Science, Bangalore

amrutur@ece.iisc.ernet.in

Abstract

This paper presents a power, latency and throughput
trade-off study on NoCs by varying microarchitectural (e.g.
pipelining) and circuit level (e.g. frequency and voltage) pa-
rameters. We change pipelining depth, operating frequency
and supply voltage for 3 example NoCs - 16 node 2D Torus,
Tree network and Reduced 2D Torus. We use an in-house
NoC exploration framework capable of topology generation
and comparison using parameterized models of Routers and
links developed in SystemC. The framework utilizes inter-
connect power and delay models from a low-level modelling
tool called Intacte[1]1. We find that increased pipelining
can actually reduce latency. We also find that there exists
an optimal degree of pipelining which is the most energy
efficient in terms of minimizing energy-delay product.

1. Introduction

Network-on-Chip design parameters such as topology
generation and link pipelining have varying impacts on
throughput of the network, latency of flits and power dissi-
pation of the NoC in an SoC. The paper presents results on
power-performance tradeoff studies on three NoC topolo-
gies (2D Torus, a Reduced 2D Torus and a Tree based
network) by varying pipelining in links and frequency and
voltage scaling. Using frequency scaling experiments we
show that switching to a higher degree of link pipelining to
achieve higher frequency instead of adding larger buffers is
advantageous from a power perspective. A comparison of
the three topologies based on throughput is presented. A
SystemC based simulation framework containing parame-
terizable Routers, Links, Traffic generators and Sink nodes
is used for NoC exploration. The framework uses Intacte[1]
to estimate delay and power based on micro-architecture pa-

1We thank developers of INTACTE for making the tool available for
our research.

rameters such as wire length, wire width, activity for a given
technology and voltage.

Rest of the paper is organized as follows. Some of the re-
cent related works have been listed in Section 2. NoC explo-
ration framework used in the tradeoff studies is described
in Section 3. Latency, power, performance tradeoffs, Fre-
quency scaling and Voltage scaling results are presented in
Section 4. Paper concludes in Section 5.

2. Related Work

Current research in architectural level exploration of
NoC in SoCs concentrates on understanding the impacts
of varying topologies, link and router parameters on the
overall throughput, area and power consumption of the
system (SoCs and Multicore chips) using suitable traffic
models[2]. Work in [3] emphasizes need for co-design
of interconnects, processing elements and memory blocks
to understand the effects on overall system characteristics.
Simulation tools have been developed to aid designers in
ICN space exploration[4][5]. Tools model ICN elements
at system level and help in power/performance trade-off
studies[6]. Another area of active research is design of
Router architectures[11][12] and ICN topologies[10] with
varying area/performance trade-offs for general purpose
SoCs or to cater to specific applications.

Kogel et. al.[4] present a modular exploration frame-
work to capture performance of point-to-point, shared bus
and crossbar topologies. Orion[5] is a power-performance
interconnection network simulator that is capable of pro-
viding power and performance statistics. Orion model esti-
mates power consumed by Router elements (crossbars, FI-
FOs and arbiters) by calculating switching capacitances of
individual circuit elements.

Previous works largely concentrate on Router power and
do not take into account various link microarchitectural pa-
rameters for power and performance trade-off calculations.
This paper presents results for NoC power by considering

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.55

163

Figure 1. Flow of the ICN exploration framework.

Table 1. ICN exploration framework parame-
ters.

Parameter Description

NoC Parameters

Routing Algorithms Source Routing and Table based routing
Switching Policy Packet, Circuit, Wormhole, VC switching

Traffic Generation Scheme Deterministic, Self-Similar
Traffic Distribution Scheme Deterministic, Uniformly random

HotSpot, Localized, First Matrix Transpose
Router Microarchitecture

No. of Input/Output Ports 2-8 (based on topology to be generated)
Input/Output buffer sizes Flit-level buffers

Crossbar Switching capacity In terms of flits (default=1)
Link Microarchitecture

Length of interconnect Longest link in mm
Bit width of the interconnect

Circuit Parameters

Frequency, Supply Voltage

effects of various pipelining configurations, frequency and
voltage scaling values. Various traffic generation and dis-
tribution models have been used to mimic realistic traffic
patterns and activity in NoCs.

3. NoC Exploration Framework

The NoC exploration framework (Figure 1) has been
built upon Open Core Protocol-IP models[8] using OSCI
SystemC 2.0.1[9] on Linux (2.6.8-24.25-default). The
framework contains Router, Traffic generator and consumer
modules, Latency modules (to model link latency). A sin-
gle run outputs data files from which latency and power
statistics are extracted. Table 1 presents various parame-
ters that can be varied in the framework. Most options a
designer might encounter during NoC design process have
been added into the framework.

3.1. NoC Elements

Router Model. The router model is a parameterized, scal-
able module of a generic router[2]. Router microarchitec-
ture parameters include number of Input/Output ports, sizes
of input/output buffers, switching capacity of the crossbar
(no. of bits that can be transfered from input to output
buffers in a cycle) etc. Example Routing algorithms are

(a) Header used in table based routing.

(b) Header used in source routing.

Figure 2. Example flit header formats considered in this
experiment. (DST/SRCID: Destination/Source ID, HC:Hop
Count, CHNx:Direction at hop x).

source and table based routing. Switching policies such
as circuit switching, packet switching, wormhole switching
have been implemented. Flow control implemented through
sideband signals ([8]) prevents traffic generators from spew-
ing phits into the network after input buffer fills to a thresh-
old. Router model has been carefully designed to be eas-
ily adapted for use in various topologies (with varying flit
header formats as shown in Figure 2) with minimal changes.

Traffic Generator. Traffic models implemented in the Traf-
fic Generator module are Deterministic, Uniformly Ran-
dom, Localized, Hotspot and First Matrix Transpose traf-
fic. Each of the models vary in how many and how often
do destination nodes receive flits from a given generator.
In the current implementation flit header formats have been
varied based on the type of routing scheme used. The flit
header formats for Source routing and Table based routing
are shown in Figure 2. Source routing header (2(a)) is larger
as it contains ‘directions’ per hop the flit has to traverse
whereas the Table based routing header (2(b)) contains the
final destination address only. The examples are shown for
a 4x4 2D mesh topology. The framework also contains sink
nodes to receive flits and a top module to instantiate the
framework.

3.2. Power Model

We use the Intacte[1] for interconnect area, delay and
power estimates. Design variables the tool considers for
interconnect optimization are wire width, wire spacing, re-
peater size and spacing, degree of pipelining, supply (Vdd)
and threshold voltage (Vth). Intacte considers activity and
coupling factors to calculate dynamic power and includes
short circuit and leakage power statistics to calculate to-
tal power dissipation in a bus made of wires with known
length, spacing, repeater sizes and repeater spacing. The
SystemC framework(Figure 1) generates activity and cou-
pling factors averaged over the total simulation run for each
of the links to be input into Intacte. Wire width (in bits) is
known per simulation run. Wire lengths can be estimated

164

Table 2. Experimental Setup
Traffic Injection Rate 20%

Traffic Model Localized Traffic (6%)
Framework simulation time 35000 cycles

Process Technology 65nm
Models PTM[7]

Frequency of Operation 1 GHz
(unless mentioned otherwise)

Environment Linux (2.6.8-24.25-default)+
OSCI SystemC 2.0.1

Figure 3. Schematic representation of the three com-
pared topologies (L to R: 2D Torus, Tree, Reduced 2D
Torus). Shaded rectangles are Routers and white boxes are
source/sink Processing Elements(PE) nodes.

by approximate floorplans (Figure 4). Minimum wire spac-
ing is obtained from foundry rules. Intacte solves an opti-
mization problem to arrive at optimal number of repeaters,
repeater spacing for a given frequency and voltage. The tool
also includes flop and driver overheads for power and delay
calculations. Other physical parameters are obtained from
Predictive Technology Models[7] models for 65nm.

Power consumed by routers have not been included in
the results presented in the paper. This is the next step in
our work. This is not a limitation as we are concerned with
relative variations due to changes in link microarchitecture
and circuit parameter. Identical routers have been used in
all experiments in this work.

4. Simulation and Results

Experiments are designed to calculate latency (in clock
cycles), throughput (in gigabits/sec) and power in (milli-
watts) of various topologies. A comparative study of three
related topologies (2D Torus, Reduced 2D Torus and a Tree
based NoC) is made. Table 2 lists some of the simulation
setup parameters used in the following experiments. We did
not observe significant variation in activity factor and hence
power and throughput of the NoC by running the simulation
for durations greater than 35000 cycles.

4.1. NoC Topologies

In this work we consider three similar topologies for
tradeoff studies. Starting from a 2D Torus, two topologies

Figure 4. Approximate floorplans of the three compared
topologies.

Table 3. Links and pipelining details of NoCs
Topology Length in mm Pipelining

(no. of links)

2D Torus 7 (8) 1 2 3 4 5 6 7 8
1.5 (88) 1 1 1 1 2 2 2 2

Reduced 3.5 (12) 1 2 3 4 5 6 7 8
2D Torus 2.5 (16) 1 2 3 3 4 5 5 6

2.0 (44) 1 2 2 3 3 3 4 4

Tree NoC 3.5 (8) 1 2 3 4 5 6 7 8
(8+32) 0.75 (32) 1 1 1 1 2 2 2 2

(a hierarchical star topology and reduced Torus) contain-
ing equal number of source and sink nodes are derived by
removing/reconnecting links. Router and processing ele-
ments are identical in all three topologies. The three topolo-
gies are shown in Figures 4 (schematic) and 4 (approximate
floorplan). Processing elements (PEs) are assumed to be of
size 1.5 × 1.5mm[13] Routers are assumed to be 15% of
the PE size. Lengths of longest link in 2D Torus is esti-
mated to be 7mm and in Reduced 2D Torus and Tree based
NoC is 3.5mm. Routing policies for all topologies is ta-
ble based. Routing tables are populated such that longer
links have minimum activity. Lengths of links in each of
the topologies and pipelining factors is illustrated in Table
3. Pipelining factor corresponds to the longest link in the
NoC. Pipelining factor of 1 means the longest link is un-
pipelined, P=2 indicates it has a two cycle latency and so
on.

4.2. NoC Throughput

Throughputs of each of the NoC topologies are calcu-
lated in this subsection. Localized traffic generation scheme
(each traffic generator sends 6% of its traffic to its immedi-
ate neighbors) with self-similar traffic distribution is used.
Throughput is a measure of total data consumption at sink
nodes. Total throughput of the NoC (in bits/sec) is calcu-
lated as total number of bits received ((phitsr ∗ bitsphit))
at sink nodes divided by total (real) time ((1

f ∗ simcycles))
spent (Eqn 1).

Thtotal =
phitsr ∗ bitsphit

1
f ∗ simcycles

(1)

165

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

M
ax

. F
re

qu
en

cy
.

Pipeline stages

Max Attainable Frequency vs. Pipeline Stages.

Torus. Max. Len: 7mm
Tree and Reduce Torus. Max. Len: 3.5mm

Figure 5. Maximum attainable frequency by links in the
respective topologies. Estimated length of the longest link
in a 2D Torus is 7mm. Estimated longest link in the Tree
based and Reduced 2D Torus is 3.5mm.

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

G
ig

ab
it/

se
c)

Longest Link Pipeline Depth

Max Throughput vs. Longest Link Pipeline Depth (All 3 NoCs)

Torus
Tree

Reduced 2D Torus

Figure 6. Variation of total NoC throughput with varying
pipeline stages in all three topologies.

Maximum achievable frequency of a wire of a given
length is shown in Figure 5. Maximum throughput of each
NoC is presented in Figure 6. Tree based NoC supports lo-
calized traffic the best (atleast two neighbours at one hop
distance) and hence shows highest throughput. Both Tree
NoC and Reduced 2D Torus show higher throughput be-
cause of shorter links resulting in higher frequency of op-
eration. The Reduced 2D Torus has higher throughput than
a conventional 2D Torus as the minimum distance between
two neighbours is 1 hop (2 hops in case of a Torus).

4.3. NoC Power/Performance/Latency
Tradeoffs

Figure 7 shows the combined normalized results of
power, throughput and latency experiments on a 2D Torus.
Power consumption of the 2D Torus increases at a higher
rate after P=4 due to insertion of flops in the shorter links
(1.5mm) after P=5. Latency is calculated as the real time
spent in transit of all phits in the NoC over the complete
simulation time. Decrease in latency after P=5 is not con-
siderable as delays from inserted flops start to dominate

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t(

*3
2.

19
3G

bp
s)

, P
ow

er
(*

29
m

W
),

 E
ne

rg
y

&
 E

ne
rg

y
D

el
ay

N
or

m
al

iz
ed

 L
at

en
cy

 (
*0

.3
15

13
1

m
S

)

Link Pipeline Depth

2D Torus NoC Power/Performance/Latency Tradeoffs

Latency

Throughput

NoC Power

Energy

Energy.Delay

Figure 7. 2D Torus Power/Throughput/Latency tradeoffs.
Normalized results are shown.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t(

*5
3.

25
35

G
bp

s)
,P

ow
er

(*
10

0.
2m

W
),

E
ne

rg
y,

E
ne

rg
y

D
el

ay

N
or

m
al

iz
ed

 L
at

en
cy

 (
*0

.1
15

29
 m

S
)

Link Pipeline Depth

Reduced 2D Torus NoC Power/Performance/Latency Tradeoffs

Energy.Delay

Latency

Energy
Throughput

NoC Power

Figure 8. Reduced 2D Torus Power/Throughput/Latency
tradeoffs. Normalized results are shown.

clock cycle time and after a certain pipeline configuration
latencies will increase (not shown here). From the graph
it is seen that growth in power makes configurations more
than P=5 less desirable. Link pipelines with P=1,2 and 3
are also not optimal when latency is considered. Rise in
throughput also starts to fade as configuration of more than
P=5 are used. The optimal point of operation indicated by
the results is P=4. At this point the same number of flops as
P=1,2 and 3 are used but the least latency (1.56 times mini-
mum) is achieved and power (40% of max) and throughput
(64% of max) are at nominal points. The graph also show
energy (Power × Latency) required for the communication.
Energy for communication increases with pipeline depth.
However the energy delay product reduces initially with in-
creasing pipeline depth and then increases with a minimum
around P=4.

Tradeoff results on Reduced 2D Torus are shown in Fig-
ure 8. Latency and throughput curves show similar trend as
in a 2D Torus. Latency reduction and throughput gain after

166

P=4 is not considerable. The power optimal point of oper-
ation indicated by the results is P=3. At P=3 latency is 1.6
times the minimum and power (49% of max) and through-
put (61% of max). There is a shallow minima for energy-
delay product from P=3-7.

4.4. Power-Performance Tradeoff With Fre-
quency Scaling

We discuss the combined effects of pipelining links and
frequency scaling on power consumption and throughput
of three example topologies (Figure 4) in this subsection.
Maximum possible frequency of operation at full supply
voltage (1.1V) is determined using Intacte.

Figure 9 shows NoC power consumption for 3 example
topologies over various pipelining factors along with fre-
quency scaling. Maximum frequency of operation of an un-
pipelined longest link in a 2D Torus (we consider 7mm)
is determined to be 0.93GHz. This maximum through-
put point determined in each pipeline configuration in each
topology. Frequency is scaled down from this point and
power measurements are made for NoC activity obtained
using the SystemC framework for Localized traffic with
20% injection rate and 6% localization factor. Allowing
for some overheads (extra cycles of latency), the frequency
of operation required to achieve equivalent throughput in
pipelined links is 0.94− 0.96GHz. Higher frequency trans-
lates to higher throughput (Eqn. 1). Pipelining factor of 1
is unpipelined and has single cycle delay and a factor of 2
means link has two cycles of delay and so on.Experiments
for each topology show existence of crossover frequencies
after which it is better to switch to a higher pipelining to
save power and achieve higher throughput. Larger buffers
are required to drive links at higher frequencies. Power con-
sumed by buffers starts to overshadow the frequency gain at
these frequencies. Experiments on the 2D Torus show that
a link frequency of 2.5GHz can be achieved by pipelining
the link in stages 4 to 7. NoC power consumption can be
reduced by 40.97% by switching to a 4 stage pipeline from
a 7 stage pipeline. Another interesting result is the effect
of larger buffers as upper limits of frequency are reached
in a single pipeline configuration. For instance, in P=3
from 2.3GHz to 2.4GHz, buffers start to consume almost
the same power as a link with P=4.

Sizes of links of a Reduced 2D Torus are estimated to
be 3.5mm, 2.5mm and 2.0mm. NoC power consump-
tion across various pipeline stages differ by smaller amounts
compared to the 2D Torus as the number of links are lesser
(32+16 bidirectional compared to 12+8+16 bidirectional
links). Results show frequencies of 4.22GHz - 4.56GHz
can be achieved by both P=4 and P=5 (5% power differ-
ence). Complementarily, for a given frequency there exists
more than one pipeline configuration with varying power

 0

 100

 200

 300

 400

 500

 600

 700

 20 40 60 80 100 120 140 160 180

N
oC

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Throughput (Gbps)

NoC Power Consumption vs. Throughput with Frequency scaling.

2D Torus. P=5
2D Torus. P=6

TNoC. P=4
TNoC. P=5
R2DT. P=4
R2DT. P=5

Figure 9. Variation of NoC power with throughput for
each topology.

Table 4. Power optimal frequency trip points in a various
NoCs.

Pipe Trip Frequency (in GHz)
Stages 2DT R2DT Tree NoC

1-2 0.93 1.65 1.05
2-3 1.71 2.75 2.1
3-4 2.36 3.55 3.05
4-5 3.4 4.22 4.45
5-6 3.84 5.13 4.75
6-7 4.22 5.3 5.13

consumption. Frequency of 3.5GHz can be achieved by
pipelining into 3 to 7 stages. NoC power consumption can
be reduced by 26.6% by switching from P=7 to P=3 and
still achieve 3.5GHz. Table 4 shows power reduction when
switched from one pipeline configuration to the next higher
one at ‘trip’ frequencies.

Estimated sizes of links in a Tree Based NoC are 3.5mm
and 0.75mm. Results for the frequency scaling experiment
follow a similar pattern as the previous two configurations
(Figure 9). The differences between power numbers be-
tween various configurations are the least in this network
as this NoC contains the least number of links amongst
the three compared (4+16 bidirectional). Trip frequencies
are recorded in Table 4. A maximum of 21.27% of power
can be saved (at f = 3.84GHz) by switching over to P=4
from P=3 after 3.05GHz. Complementarily, 4GHz can be
achieved by P=4 to P=7 and NoC power consumption at
P=4 is 76% power consumed at P=7.

4.5. Power-Performance Tradeoff With
Voltage and Frequency Scaling

In each of the topologies, frequency is scaled down from
the maximum and the least voltage required to meet the
scaled frequency is estimated using Intacte and power con-

167

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160

T
ot

al
 N

oC
 P

ow
er

 (
m

W
)

Throughput (Gigabits/sec)

2D Torus. Power vs. Throughput with Dynamic Voltage Scaling.

P=1

P=7, Freq. Scaled

P=2
P=4

P=7

Figure 10. Effects of dynamic voltage scaling on the
power and performance of a 2D Torus. Highest frequency
of operation for P=1, 2, 4 and 7 are .93GHz, 1.68GHz,
2.92GHz and 4.22GHz. Power consumption of the fre-
quency scaled NoC is shown for comparison.

Table 5. Comparison of 3 topologies. Maximum inter-
connect network performance and power consumption for
varying pipe stages.

Topology Pipe Power Performance
Stages (mW) (Gbps)

2D Torus 1 32.01 31.5
2 49.44 53.27
4 101.42 115.34
7 146.41 268.61

Reduced 1 49.05 100.2
2D Torus 2 91.75 230.95

4 142.5 496.25
7 181.7 742.27

Tree 1 53.22 52.93
Network 2 90.66 99.46

4 141.17 191.07
7 179.77 307.6

sumption and throughput results are presented in this sec-
tion. Voltages are scaled from 1.1V to 0.65V . NoC param-
eters are identical to ones used in Section 4.2. Figure 10
shows results of DVS on the 2D Torus network. Similar to
the frequency scaling results there exists an frequency point
in a pipelining configuration after which it is power and
throughput optimal to switch to a higher pipelining stage.
For throughput higher than 90Gbps P=7 offers a highest
power reduction of 21.74% at 101Gbps. The frequency
scaled curve is obtained by scaling only the frequency and
NoC is run at supply voltage. Scaling voltage along with
frequency compared to scaling frequency alone can result
in power savings of upto 57% and 63% in cases of P=7 and
P=4 respectively. Comparison of all the three topologies is
presented in Table 5.

5. Conclusion

NoC design specifications can be met by varying a large
number of system and circuit parameters. We use 3 example
topologies - 16 node 2D Torus, Tree network and Reduced
2D Torus to show variation of latency, throughput and NoC
power consumption over link pipelining configurations with
voltage and frequency scaling. We find that contrary to in-
tuition, increasing pipeline depth can help reduce latency
in absolute time units, by allowing shorter links & hence
higher frequency of operation. In a 2D Torus when the
longest link is pipelined by 4 stages at which point least la-
tency (1.56 times minimum) is achieved and power (40% of
max) and throughput (64% of max) are nominal. Using fre-
quency scaling experiments, power variations of upto 40%,
26.6% and 24% can be seen in 2D Torus, Reduced 2D Torus
and Tree based NoC between various pipeline configura-
tions to achieve same frequency at constant voltages. Also
in some cases, we find that switching to a higher pipelining
configuration can actually help reduce power as the links
can be designed with smaller repeaters. Larger NoC power
savings can be achieved by voltage scaling along with fre-
quency scaling. Hence it is important to include the link mi-
croarchitecture parameters as well as circuit parameters like
supply voltage during the architecture design exploration of
a NoC.

References

[1] R. Nagpal, M. Arvind, Y. N. Srikanth, and B. Amrutur. Intacte: Tool for
interconnect modelling. In Proc. of CASES 2007, pages 238–247, 2007.

[2] P. P. Pande, et. al., Performance evaluation and design trade-offs for
network-on-chip interconnect architectures. IEEE Transactions on Comput-
ers, 54:1025–1040, Aug. 2005.

[3] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core
architectures: Understanding mechanisms, overheads and scaling. In Proc. of
ISCA ’05, pages 408–418, 2005.

[4] T. Kogel and et. al. A modular simulation framework for architectural ex-
ploration of on-chip interconnection networks. In Proc. of CODES+ISSS’03,
pages 338–351, Oct. 2003.

[5] H.-S. Wang, et. al., Orion: A power-performance simulator for interconnec-
tion networks. In Proc. of, MICRO 35, 2002.

[6] P. Gupta, L. Zhong, and N. K. Jha. A high-level interconnect power model
for design space exploration. In Proc. of, Computer Aided Design (ICCAD
’03). Intl. Conf. on, pages 551–558, 2003.

[7] http://www.eas.asu.edu/∼ptm/. Predictive technology models.
[8] http://www.ocpip.org/socket/systemc/. Ocp-ip, systemc ocp models.
[9] http://www.systemc.org/. Open systemc initiative.

[10] F. Karim and et. al. An interconnect architecture for networking systems on
chips. IEEE Micro, 22:36–45, Sept. 2002.

[11] K. Lee, S.-J. Lee, and H.-J. Yoo. Low-power network-on-chip for high-
perforamance soc design. IEEE Transactions on VLSI Systems, 14:148–160,
Feb. 2006.

[12] S. E. Lee, J. H. Bahn, and N. Bagherzadeh. Design of a feasible on-chip
interconnection network for a chip multiprocessor (cmp). In Proc. of, Com-
puter Architecture and High Performance Computing. Intl. Symp. on, pages
211–218, 2007.

[13] S. Vangal, et. al., An 80-tile sub-100-w teraflops processor in 65-nm cmos.
IEEE Journal of Solid-State Circuits, 43:29–41, Jan. 2008.

168

Session 3A

Low Power Device Technology

A Low Voltage CMOS Proportional-to-Absolute Temperature Current Reference

Sanjay Kumar Wadhwa
Freescale Semiconductor India Pvt. Ltd.

sanjay.wadhwa@freescale.com

Abstract

A CMOS low voltage Proportional-to-
Absolute Temperature current reference is presented.
The proposed circuit can work with supply voltages
as low as 1.1V. The circuit is designed in 90nm
CMOS technology for 2.2uA reference current at
typical corner, 27C, 1.2V. The circuit has been
extensively simulated across all possible
combinations of MOSFET, Resistor, BJT, supply
voltage and temperature variation corners.
Simulation results have been given for a wide
temperature variation from -40C to 125C and supply
voltage variation from 1.1V to 1.3V.

I. Introduction

Proportional-to-Absolute Temperature
[PTAT] current references are used in many
applications such as band-gap references, phase lock
loop (PLL), hearing aid devices, sensors etc. to
compensate for circuit parameters due to temperature
change [1]. For example, in a PLL system, if the
current controlled oscillator (CCO) gain decreases
with increase in temperature, a PTAT current
reference can be used to compensate for the gain to a
large extent. In current ultra deep sub-micron
(UDSM) technologies, the typical supply voltage
used is 1.2V or less. Thus, a PTAT current reference
which can work with supply voltage equal to or less
than 1.2V is required for today’s SoCs. In order to
achieve low voltage operation, a previously reported
circuit technique [1] uses MOSFETs in sub-threshold
region instead of bipolar transistors. However, use of
MOSFETs in sub-threshold region requires large area
devices even for the reference current in nano-amp
(nA) range. This increases the die size of the circuit.
Secondly, sometimes the availability of accurate
models of MOSFETs in sub-threshold region is not
guaranteed. In UDSM technologies, accurate
modeling of all regions of MOSFET operation is
becoming very challenging. This aspect must be kept
in mind while designing circuits with MOSFETs in
sub-threshold region. The proposed circuit achieves
low voltage operation with the use of parasitic

bipolar transistors only which are readily available in
a standard CMOS process.

II. Circuit Description

 A conventional PTAT reference is shown

in Fig. 1 [2]. Due to Opamp’s virtual short action,
voltages at node A and B become nearly equal. The
current flowing through MP1 and MP2 is same and is
given by

11

)ln()ln(
qR

mkT
R

mV
I T == (1)

where TV is thermal voltage, k is Boltzman
constant, q is electronic charge, T is absolute
temperature and m is area ratio of Q1 and Q2 as
shown in Fig. 1. The typical value of beV is 0.7V at
room temperature and it typically varies by
approximately -2mV/DegC. Therefore, for a
temperature range of -40DegC to 125DegC, the beV
will vary from 830mV to 500mV. At supply voltage
of 1.2V, it is difficult to design an opamp for such a
wide common mode range [3]. In the bandgap
reference circuit proposed in [3], the authors
modified the opamp architecture to work at sub-1V
supply. The common mode voltage was reduced by
half by using resistor dividers in parallel to both the
PNP transistors. However, due to this, the circuit
ceases to remain a PTAT current reference and
becomes a bandgap reference circuit.
Fig. 2 shows the proposed PTAT current reference
circuit. In Fig. 2, MP1, MP2, Q1, Q2 and R1 form a
PTAT current reference. MN1, MN2, MN3, MP3,
MP4, MP5 and MP6 constitute an OTA structure
without a tail current source. The drain of MN3 is
connected to the base terminals of Q1 and Q2 at node
base. The gate of MP1 has been connected to the
drain of diode connected transistor MP7 at node
mp1_g. Similarly, gate of MP2 has been connected to
the drain of diode connected transistor MP8 at node
mp2_g.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.18

171

Fig. 1: Conventional PTAT current reference

The drains of MP1 and MP2 are connected to the
gates of MN4 and MN5 at nodes mp1_d and mp2_d
respectively. The sources of MN4 and MN5 have
been connected to the joining points of resistors R2A,
R2B and R3A, R3B at nodes mn4_s and mn5_s
respectively. MP5 and MP6 act as high swing
cascode transistors to improve the output resistance
of the OTA. The gate voltage of MP5 and MP6 is
tapped from the joining point of R2B and R2C at
node casc. The PTAT current flowing through MP1
and MP2 is given by eqn. (1). In the proposed design,
the sizes of MP3, MP4, MP7 and MP8 are same as
that of MP1 and MP2. Ignoring channel length
modulation effect, the currents in MP3, MP4, MP7
and MP8 will be same as in MP1 and MP2
respectively. The drain to source voltage of MP1 is
given by

)4()1()1(2* MNGSMPGSMPDS VARIVV −+= (3)

Similarly, the drain to source voltage of MP2 is given
by

)5()2()2(3* MNGSMPGSMPDS VARIVV −+= (4)

Where I is the current flowing in MP7 and MP8. The
minimum supply voltage required for proper
operation of the circuit is equal to the sum of DSV of

MP1 (or MP2), beV of Q1 (or Q2) and DSV of
MN3. In order to achieve low voltage operation, W/L
ratio of transistors and values of resistors have been
chosen to have a maximum DSsatV of 150mV for
MP1 and MP2. Taking a beV value of 830mV at
-40C and a minimum DSV of 100mV for MN3, the
minimum supply voltage required for the circuit to
operate is close to 1.1V. Since there is no tail current
source used in the OTA, the voltage headroom
required to keep the tail current source in saturation is
not required. Also, design of OTA becomes very
simple and helps in achieving low voltage operation.
The startup circuit used in the proposed circuit is
described in detail in Figure 1 in [4].
There is an overall negative feedback in the circuit
which keeps the loop stable. The base voltage of Q1
and Q2 is adjusted by the loop depending upon the
operating condition of the circuit. To stabilize the
loop, R_COMP and C_COMP have been used.
In order to analyze the overall negative feedback in
the circuit, let’s assume that the base voltage is pulled
down slightly. Due to this, current in Q1 and Q2 will
increase. The voltage at node mp2_d will decrease
less as compared to the voltage at node mp1_d due to
increased voltage drop across resistance R1. MN4
and MN5 act as level shifters, therefore node mn5_s
will decrease less as compared to node mn4_s. MP7,
R2A and MP8, R3A act as a voltage dividers and
therefore, node mp2_g will be decrease less as
compared to node mp1_g. Due to this, the current in
MP3 will increase more as compared to current in
MP4. Therefore, the gate voltage of MN3 (voltage at
node out) will decrease which will pull up the base
voltage. Similarly, if base voltage is pulled up
slightly, voltage at node mp2_g will be increase less
as compared voltage at node mp1_g. Due to this, the
current in MP3 will decrease more as compared to
current in MP4. Thus, voltage at node out will
increase and base voltage will be pulled down. The
high gain of OTA along with the overall negative
feedback ensures that the voltages at node mp1_g and
mp2_g become nearly the same. This essentially
means that voltages at node mp1_d and mp2_d will
also be nearly equal because both are level shifted by
the same amount by MN4 and MN5 respectively.

III. Simulation results

 The proposed circuit has been designed in
90nm CMOS technology and simulated across PVT
corners for a typical PTAT current of 2.2uA at 27C.

172

Fig. 2: Proposed PTAT current reference

For simulations, voltage variation has been taken from
1.1V to 1.3V and temperature variation has been taken
from -40C to 125C. Fig. 3 shows)1(MPI with
temperature swept from -40C to 125C at typical corner,
1.2V.

Fig. 3: I(MP1) with temperature sweep at typical

corner, 1.2V

Table 1 shows)1(MPI across supply voltage variation
from 1.1V to 1.3V. It is clear from Table 1 that there is
very low variation in PTAT current with supply
variation.

Table 1: I(MP1) with supply variation from 1.1V to
1.3V at typical corner

Fig. 4 shows the transient response of the proposed
circuit at typical corner, 27C, 1.2V.

Fig. 4: Transient response of the proposed circuit at

typical corner, 27C, 1.2V

Fig. 5 shows the power supply rejection (PSR) of
)1(MPI at typical corner, 27C, 1.2V. The PSR value

@1MHz is -98.96 dB as shown in Fig. 5.

Fig. 5: PSR versus frequency at typical corner, 27C,

1.2V
Table 2 summarizes the simulated results of the
proposed circuit across PVTs. The minimum and
maximum values of)1(MPI ,)2(MPI ,)(ONDDI and

)(OFFDDI have been shown along with their
corresponding PVT corners. Wcs, typ and bcs denote

Temp. @1.1V @1.2V @1.3V
@-40C 1.6509uA 1.6634uA 1.6698uA
@27C 2.2127uA 2.2234uA 2.2296uA

@125C 3.0714uA 3.0867uA 3.0961uA

173

worst case, typical and best case MOSFET corners
respectively while bnwp and wnbp denote the skewed
corners.

Table 2: Simulated results of the proposed PTAT
current reference across PVT

Fig. 6(a), 6(b) and 6(c) show the histograms of)1(MPI
obtained from Monte Carlo mismatch simulations at
-40C, 27C and 125C respectively. At each temperature
corner, the mismatch simulations have been run at all
combinations of MOSFET, resistor, BJT and supply
voltage corners with 100 samples at each corner. The
mean and sigma values at each temperature are shown
in Table 3.

Table 3: Mean and Sigma Values of I(MP1) obtained

from Monte-Carlo mismatch simulations

 Fig. 6(a): At -40C Fig. 6(b): At 27C

 Fig. 6(c): At 125C

IV. Conclusion

 The paper described the design of a low
voltage PTAT current reference circuit capable of
working across a wide temperature range of -40C to
125C. Simulation results show that the proposed circuit
is capable to work reliably with supply voltage down
to 1.1V.

V. References

[1] Francisco Serra-Graells et el, “Sub-1-V CMOS
Proportional-to-Absolute Temperature References,”
IEEE J. Solid State Circuits, vol. 38, pp. 84–88,
January 2003
[2] Wang Zongrnin et el, “Low voltage, high
performance bandgap reference in standard CMOS
technology,” IEEE Int. Workshop VLSI Design &
Video Tech, Suzhou, China, May 28-30, 2005.
[3] Mikko Waltari and Kari Halonen, “Reference
Voltage Driver for Low-Voltage CMOS A/D
Converters”, IEEE Transactions on Circuits and
Systems –II Analog and Digital Signal Processing, vol.
50, No.12, Dec. 2003, pp. 928 - 932.
 [4] Khan Q. A., Wadhwa S. K., Misri K., “Low Power
Startup Circuits for Voltage and Current Reference
with Zero Steady State Current”, ISLPED’03, August
25-27, 2003, Seoul, Korea

Para-
meter

min typ max

)1(MPI

(uA)

1.092 @
bnwp_4sig_fet,
max_resistor,

typ_bjt,
vdd=1.1,
temp=-40

2.227 @
typ_fet,

typ_resistor,
typ_bjt,
vdd=1.2,
temp=27

4.5079 @
wnbp_fet,

max_resistor,
bcs_bjt,
vdd=1.3,

temp=125

)2(MPI

(uA)

1.144 @
bnwp_4sig_fet,
max_resistor,

typ_bjt,
vdd=1.1,
temp=-40

2.233 @
typ_fet,

typ_resistor,
typ_bjt,
vdd=1.2,
temp=27

4.4456 @
wnbp_fet,

max_resistor,
bcs_bjt,
vdd=1.3,

temp=125

)(ONDDI

(uA)

13.48 @
wcs_4sig_fet,
max_resistor,

wcs_bjt,
Vdd=1.1,
temp=-40

18.27 @
typ_fet,

typ_resistor,
typ_bjt,
vdd=1.2,
temp=27

26.34 @
wnbp_fet,

max_resistor,
bcs_bjt,
vdd=1.3,

temp=125

)(OFFDDI

1.006 nA @
wcs_4sig_fet,
max_resistor,

typ_bjt,
vdd=1.1,
temp=-40

16.95 nA @
typ_fet,

typ_resistor,
typ_bjt,
vdd=1.2,
temp=27

1.0903 uA @
bcs_4sig_fet,
min_resistor,

bcs_bjt,
vdd=1.3,

temp=125

Temp. Mean (uA) Sigma (uA)
@-40C 1.629152 0.358897
@27C 2.23505 0.447425

@125C 3.328190 0.8654516

174

Novel MOS Decoupling Capacitor Optimization Technique for
Nanotechnologies

Bardia Bozorgzadeh, and Ali Afzali-Kusha
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering,

University of Tehran, Tehran, Iran
b.bozorgzadeh@ece.ut.ac.ir, afzali@ut.ac.ir

Abstract

Designing MOS decoupling capacitors (DECAPs)
in nanotechnologies provides many challenges due to
the existing trade-offs among transient time response
behavior, area, and gate leakage current. In this paper
first it is shown that all of these challenges are
functions of the MOS DECAP channel length. Then, we
propose a method for optimizing the channel length of
MOS DECAPs. The technique is applied to 45nm and
32nm technology nodes and the results are extracted
using HSPICE simulations. Also the accuracy of the
proposed technique is verified. Finally, based on the
results, two optimum DECAP configurations which
provide trades off among area and gate leakage for
different applications in nanotechnologies are
proposed.

1. Introduction

Signal integrity has become a critical issue as VLSI
technology advances into the nanotechnology regime.
Among the signal integrity issues, power supply noise
is of particular importance and provides many
challenges in the design. These challenges include
unpredictability in the timing behavior of logic gates
[1], increasing gate delay [2][3], degrading the drive
capability of transistors [4], and logic failures [1][4]. In
general, a design objective is to keep voltage
fluctuations bounded by a given limit in order to limit
their corresponding impact on performance. This limit
is usually considered to be between 5 and 10% [4]-[7].

Among power supply noise reduction techniques,
inserting on-chip decoupling capacitors (DECAPs) is
the most common practice [1][4][11]. The DECAPs,
which hold a reservoir of charge, are placed around
regions of high current demand [1]. When large drivers
switch, nearby DECAPs provide a source of current
that reduces IR and Ldi/dt voltage drops to keep the
target average and peak supply voltages within their
noise budgets [1]. DECAPs are usually made from
MOS transistors [8].

Designing DECAPs provides many challenges due
to the existing trade-offs among transient time response

behavior, area, and gate leakage current [1][8][11][15].
Several works have focused on the DECAP design
challenges. For example in [1] and [11] authors have
dealt with transient time response and in [8] and [15]
the leakage and area have been investigated.

In this paper, we present a novel optimization
approach which provides compromise among the
DECAP design challenges. Also, two optimum
DECAP configurations which provide trades off among
area and gate leakage for different applications in
nanotechnologies are proposed. The rest of the paper is
organized as follows. In Section II, a brief background
about DECAPs is provided while in Section III
different design challenges are discussed. Section IV
contains a method for optimizing DECAP channel
length. In Section V, the optimum DECAP
configurations are proposed. Finally, summary and
conclusions are given in Section VI.

2. Background

A DECAP formed by an NMOS transistor is shown
in Fig. 1. This DECAP is modeled as a lumped RC
circuit, in which C determines the charge available and
R along with determines the transient response of
charge delivery to the switching circuit [1]. First order
calculations of effective capacitance, and effective
channel resistance, at low frequencies are given by [1]

WCWLCC oloxeff 2+= (1)

)(12 THDDox
eff VVWC

LR
−

=
μ

(2)

Here, Cox is the oxide capacitance per unit area, Col is
the sum of overlap and fringing capacitances per unit
width, μ is the channel mobility, VTH is the threshold
voltage, and W and L are the transistor width and
length.

DECAPs have traditionally been allocated into the
white space available on the die [1][11]. This approach
may lead to placing DECAPs at a significant distance
from the current load which results in increased power
supply noise and oversized capacitors [18]. To be
effective, a DECAP should be placed inside the blocks
composed of standard cells [1] [11]. In this case, it is
more convenient to make DECAPs using both types of

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.37

175

nMOS and pMOS transistors to form a DECAP cell as
shown in Fig. 2. One sample standard-cell DECAP
layout is given in Fig. 3 The capacitor areas are the
polysilicon gates which are deposited on the top of the
channel regions of the MOS transistors [11].

This paper discusses the optimization of the
standard-cell DECAPs although the results can be
applied to white-space DECAPs too.

3. Decoupling Capacitor Design Challenges

3.1. Gate Oxide Leakage Current

Gate tunneling current is a critical design issue for
DECAPs. The aggressive scaling of Tox results in the
presence of significant gate tunneling leakage current,
Igate [12]. The current is a strong function of Tox and
voltage potential across the gate oxide, VOX, due to its
exponential dependence [14]. If VOX is roughly equal to
VDD, the leakage current density is the largest [11].
Since in nMOS (pMOS) DECAPs, the gate is tied to
VDD (Gnd) and the source and drain of the transistor are
tied to Gnd (VDD), they experience the highest level of
the gate leakage [11].

 Using BSIM4 model parameters [14] and SPICE
simulation, the gate leakage current and power density
of nMOS and pMOS transistors in 130nm, 90nm, 45nm

and 32nm predictive technology models are obtained
and listed in Table 1. As observed from Table 1, the
gate leakage current density in 130nm, is small and
negligible. As Tox continues to scale, the gate current
density, Jgate, increases rapidly reaching to its
maximum in the 32nm technology which is almost 10
times larger than that of the 130nm one. As a result, the
gate leakage power density increases. Since the supply
voltage scales down too, the power density increases by
about 8 times in the 32nm and 45nm technologies in
comparison with the 130nm technology. Also, it is seen
that gate current density of pMOS transistors is almost
one third of nMOS transistors.

Methods have been suggested in order to reduce the
DECAP leakage such as using the thick-oxide MOS
transistors [8][11], utilizing high-K gate dielectrics
[8][11][13], and gated DECAP technique [15].

In this work, the gate leakage current of DECAPs is
minimized using two approaches which are optimizing
the DECAP channel length and proposing a new
DECAP configuration. These methods may be used in
conjunction with the previously proposed methods
mentioned above.

3.2. Transient Time Response Behavior

As the technology scales below 90nm, choosing an
appropriate channel length for MOS DECAPs becomes
a critical issue. First, considering Eq. (1), it is clear that
L should be large in order to have a large capacitance.
On the other hand, Eq. (2) suggests that a large L leads
to a large channel resistance which degrades the
transient response behavior of the DECAPs as
described below.

In fact, the MOSFET channel region is similar to a
bias-dependent RC distributed transmission line [14]
which takes a finite time for mobile carriers from the
source and drain to form the inversion layer [1]. Thus,
the effective capacitance of the MOS transistors is a
function of the frequency. At high frequencies, Ceff
decays since the channel charge cannot respond fast
enough to match the gate charge. Thus, in order to
achieve the required DECAP budget, more polysilicon
gate areas than the one estimated at low frequencies
should be used. This leads to two main problems which

Table 1. Gate leakage current and power
density for different technologies

Tech.

Toxp

*

(nm)

VDD

Current Density
(μA/μm2)

Power Density
(μW/μm2)

nMOS pMOS nMOS pMOS
130nm 1.6 1.3 0.14 0.045 0.18 0.06
90nm 1.4 1.2 0.45 0.14 0.54 0.17
45nm 1.1 1 1.26 0.41 1.26 0.41
32nm 1 0.9 1.5 0.49 1.35 0.44

*Toxp= Physical Oxide Thickness

Figure 3. Sample layout of a standard-cell

DECAP.

Figure 2. Standard cell DECAP [11]

Figure 1. DECAP modeled as an RC circuit [1]

176

are the increases in the chip area and the gate leakage
current (static power consumption).

The DECAP transient time response and effective
capacitance frequency characteristic were not important
issues in earlier technologies [1]. Currently, as f
increases into the gigahertz range, it is important to
consider these problems, and techniques should be
utilized in order to deal with them.

The response time of the channel charge is controlled
by the device transit time, which is quadratically
related to channel length [1]. The channel length of
DECAP, L, controls its frequency response. If L is
small enough, the effective capacitance remains
relatively constant at high frequencies [11]. Designers
use fingering technique in the DECAP layout in order
to minimize the effective capacitance reduction at high
frequencies. This leads to utilizing multiple parallel
small channel length transistors instead of one large
one [1][11]. An example of this concept is shown
schematically in Fig. 4(a). A long channel length
DECAP is implemented with three parallel DECAPs
which each channel length is one third of the long
channel one. The equivalent lumped RC model of these
DECAPs is shown in Fig. 4(b). Using Eqs. (1) and (2),
we obtain the low frequency effective capacitance and
channel resistance of each finger as one third of those
of the long channel one. For three fingers, we obtain

)/(19/
3

)3/(
13/

CsRsC
R

Z +=
+

=

(3)

Therefore, the total low frequency capacitance of three
finger configuration is the same as the long channel one
while the RC delay of the three finger one is one ninth
of the long channel one. The transient characteristic of
the DECAP improves at high frequencies in
comparison to that of the long channel one.

So, considering the transient response, it is desired to

implement DECAPs using multiple fingers with the

minimum channel length. However, the source and
drain contacts of the fingered transistors occupy area
which cannot be neglected. A sample layout of Fig. 3
which is implemented with two fingers is shown in Fig.
5. As seen, the added source/drain contact occupies 6λ
= 3Lmin of the standard-cell width using λ-based
MOSIS CMOS design rules [17]. If small channel
length is chosen for implementing multiple fingered
DECAPs, the area overhead due to source/drain
contacts is increased, which increases the total chip
area. Next, we discuss the optimization of the channel
length for implementing multiple finger DECAPs.

4. Optimizing Channel Length of DECAPs

We have used HSPICE simulations to extract the
frequency response of the effective capacitance of the
MOS DECAPs. HSPICE uses BSIM4 which has the
charge-deficit non-quasi-static (NQS) model for
simulating high frequency behaviors of MOS
transistors [14]. It should be noted that although typical
high-speed clock rates today are in the GHz range, it is
important to study frequency response well beyond the
clock frequency [1][16]. This is due to the fact that
most of the spectral power density of digital signals lies
within the frequencies up to fknee = 1/(2trise) where trise is
the signal rise time and fknee is the 3dB cut-off
frequency of the spectral power density [1]. We assume
that the clock frequency is 2GHz with a conservative
assumption of 50ps for trise and the analyses are carried
out up to fknee = 10 GHz.

The simulations are performed for 45nm and 32nm
technologies with VDD = 1V and 0.9V, respectively.
The effective capacitance of nMOS and pMOS
decoupling capacitors, with different gate lengths and a
fixed width (W = 9Lmin), is plotted in Fig. 6. As shown,
at low frequencies, Ceff is constant regardless of the
gate length. However as frequency increases, Ceff with
longer gate lengths begin to decay. The decay is more
in the case of pMOS DECAPs. For example, when L =
12Lmin in the 45nm technology, at 10 GHz, the nMOS
capacitance drops only by 0.6%, whereas the pMOS
capacitance drops by 40%. This implies that nMOS

Figure 5. Sample layout of standard-cell decap

with two fingers.

(a)

(b)

Figure 4. (a) Concept of fingering in decap; (b)
equivalent lumped circuit model.

177

DECAPs should have longer optimum channel lengths
compared to pMOS. Also, for the 32nm technology,
since the minimum channel length has been decreased,
the equal reduction in Ceff occurs in larger coefficients
of Lmin in comparison with the case of the 45nm
technology.

In order to find the optimum channel length, an
empirical cost function of implementing DECAPs is
defined here as:

gateL
LC min3+Δ=ψ

(4)

where ΔC is the effective capacitance reduction at high
frequencies. 3Lmin is the occupied area due to
source/drain contacts and Lgate is the DECAP channel
length, thus (3Lmin/Lgate) is the area overhead due to the
source/drain contacts.

If short channel length devices are used for
implementing multiple fingered DECAPs, ΔC is almost
zero while the area overhead due to source/drain

contacts is large. Thus, the cost is high. In long channel
lengths 3Lmin/Lgate is negligible but ΔC is high which
leads to more polysilicon gate area than the one
estimated at low frequency. Thus, the area and gate
leakage increases, and the cost becomes high again.
Somewhere, between two channel length extremes, the
minimum of ψ is obtained.

In order to find the optimum DECAP channel
length, ΔC and 3Lmin/Lgate are calculated for different
channel lengths and the channel length which
minimizes the cost function in Eq. (4) is determined as
the optimum channel length. Table 2 summarizes the
optimum gate lengths for the nMOS and pMOS
DECAPs in the 45nm and 32nm technologies at
10GHz. The shaded gate lengths are the optimum
channel lengths. As observed, the costs of pMOS
DECAPs are higher than those of the nMOS DECAPs.
Additionally, advancing into the 32nm technology
decreases the cost of implementing DECAPs.

Fig. 6. Effective capacitance frequency response of DECAPs in (a) nMOS (45nm technology), (b)

pMOS (45nm technology), (c) nMOS (32nm technology) (d) pMOS (32nm technology)

178

In order to show that the proposed method for finding
the optimum channel length of DECAPs is correct, a
40nf decoupling capacitance is implemented using
nMOS DECAPs in the 45nm technology with different
channel lengths and the result are shown in Fig. 7. As
is observed from the figure, when very short channel
lengths are used, the required area is high, thus the cost
is high. Increasing the multiple fingered DECAPs gate
length, although increases the gate leakage smoothly,
however it reduces the area drastically which leads to
decrease in cost function until L = 19Lmin is reached
where the cost should is minimized as expected.

The optimum channel lengths for different cut-off
frequencies (fknee) are shown in Fig. 8 which shows
when the frequency increases, the optimum channel
length of the MOS transistor decreases. This decrease
is far more pronounced for nMOS transistors. In
addition, at a given frequency, the optimum nMOS
channel length is more than two times larger than that
of the pMOS transistor. Note that the results are
different from the conventional belief that the optimum
channel length is about 10 times of the minimum
channel length [15].

5. DECAP Configurations

Three optimum DECAP configurations are shown in
Fig. 9. The layouts have been drawn in the 45nm
technology with the optimum gate length at 10 GHz.
Here, the λ-based CMOS design rules from MOSIS
have been used [9]. The DECAP configuration shown
in Fig. 9(a) is a conventional standard-cell DECAP
which is built by both of nMOS and pMOS transistors.
The configuration shown in Fig. 9(b) has been built
only with nMOS transistor and based on the results
given in Table II, minimizes the required area for
implementing the needed DECAP budget. Fig. 9(c) is
built using only pMOS transistors and according to the
results of Table I, is suggested for low gate leakage
current applications.

In order to compare these configurations, the
specifications of these three DECAP configurations are
listed in Table 3. As expected, the second configuration
(only nMOS) has the maximum effective capacitance
per area while the third configuration (only pMOS) has
the minimum gate leakage current per effective
capacitance.

In [1], it is discussed that since the pMOS DECAPs
have poor frequency response, it is not suitable for
implementing DECAPs with pMOS transistors.
However, as the results presented here reveal, the third
configuration (only pMOS) outperforms the first
configuration (nMOS + pMOS) in terms of both area
and leakage concerns. Thus, the first configuration
(nMOS + pMOS) has no advantage over the third
configuration.

Table 3. Specifications of DECAP Configurations
Config. Ceff

(fF)
Area
(μm2)

Ceff / Area
(fF / μm2)

Igate
 (nA)

Igate / Ceff
(nA / fF)

1st 15.09 1.637 9.22 140.01 9.28
2nd 21.04 1.637 12.85 284.22 13.51
3rd 9.023 0.902 10.00 39.55 4.38

�

Figure 8. Optimum gate length of MOS DECAPs

at different frequencies

Figure 7. Implementing 40nF DECAP with

different gate lengths.

Table 2. The summary of finding optimum
channel length of MOS DECAPs at 10GHz
Tech. Lgate

(×Lmin)
ΔC

(at 10GHz)
3Lmin/Lgate Cost

(Ψ)
45nm
nMOS

18 3.3% 16.7% 20%
19 4.1% 15.8% 19.9%
20 5.1% 15% 21%

45nm
pMOS

7 6% 43% 49%
8 10.3% 37.5% 47.8%
9 16% 33.3% 49.3

32nm
nMOS

21 3.3% 14.3% 17.6%
22 3.9% 13.6% 17.5%
23 4.6% 13% 17.6

32nm
pMOS

8 6.3% 37.5% 43.8%
9 10.1% 33.3% 43.4%

10 15.1% 30% 45.1%

179

6. Summary and Conclusions

Based on minimizing the cost function of
implementing DECAPs, a novel optimization
technique for determining the optimum channel
length of the MOS DECAPs was presented here.
This approach was applied to the 45nm and 32nm
technologies, and the results showed that, on
contrary to the conventional belief of setting the
DECAP channel length to about 10 times the
minimum channel length, the optimum channel
length is different from this value and should be
calculated individually for each technology node and
operating frequency. Finally, two optimum DECAP
configurations were discussed. One only used nMOS
transistors and was suitable for the applications
where the area was the main concern. The other was
built only by pMOS transistors and was a good
candidate for low leakage applications.

7. References

[1] K. Arabi, R. Saleh, X. Meng, “Power Supply Noise

in SoCs- Metrics, Management, and Measurement,”
IEEE Design & Test of Computers, vo. 24, no. 3, pp.
236-244, May-June 2007.

[2] C. Tirumurti et al., “A Modeling Approach for
Addressing Power Supply Switching Noise Related
Failures of Integrated Circuits,” Proc. Design,
Automation and Test in Europe Conf. (DATE 04),
IEEE CS Press, 2004, pp. 1078-1083.

[3] S. Pant et al., ‘‘Vectorless Analysis of Supply Noise
Induced Delay Variation,’’ Proc. Int’l Conf.
Computer-Aided Design (ICCAD 03), IEEE CS
Press, 2003, pp. 184-191.

[4] S. Zhao, K. Roy, and C.-K. Koh, “Decoupling
capacitance allocation for power supply noise
suppression”, in Proc. of International Symposium
on Physical Design, pp. 66–71, 2001

[5] International technology roadmap for
semiconductors, ITRS, report 2006.

[6] K. Shakeri and J. Meindl, “compact physical IR-drop
models for chip/package co-design of gigascale
integration (GSI)”, IEEE Trans. On Electron
Devices, 52(6), June 2005.

[7] M. Swaminathan, J. Kim, I. Novak, “Power
distribution network for systems-on-package: status
and challenges”, IEEE Trans. On Advanced
Packaging, 27(2), May 2004.

[8] J. Fu, Z. Luo, X. Hong, Y. Cai, S. X. –D. Tan, Z.
Pan, “VLSI on-chip power/ground network
optimization considering decap leakage currents”, in
proc. of Asia and South Pacific Design Automation
Conf., (ASP-DAC 2005), pp. 735 - 738 Jan. 2005.

[9] M. K. Gowan, L.L. Biro and D. B. Jackson, “Power
considerations in the design of the Alpha 21264
microprocessor,” Proc. of Design Automation Conf.,
pp. 726-731, Jun. 1998.

[10] http://www.eas.asu.edu/~ptm
[11] X. Meng, “Decoupling Capacitor Design Issues in

90nm CMOS”, M.A.Sc Thesis, University of British
Columbia, 2006.

[12] D. Lee, D. Blaauw, and D. Sylvester, “Gate oxide
leakage current analysis and reduction for VLSI
circuits” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 12, no. 2, pp. 155-
166, Feb. 2004.

[13] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-
Meimand, “Leakage Current Mechanisms and
Leakage Reduction Techniques in Deep-
Submicrometer CMOS Circuits,” in Proc. IEEE, vol.
91, no. 2, pp. 305-327, Feb. 2003.

[14] X. Xi, M. Dunga, J. He, W. Liu, K. M. Cao, X. Jin,
J. J. Ou, M. Chan, A. M. Niknejad, and C. Hu,
“BSIM4.6.1 MOSFET Model User’s Manual,”
University of California, Berkeley, 2007.

[15] Y. Chen, H. Li, K. Roy, and C. -K. Koh, “Gated
Decap: Gate Leakage Control of On-Chip
Decoupling Capacitors in Scaled Technology,” IEEE
Custom Integrated Circuits Conference, pp. 775-778,
Sep. 2005.

[16] H. Johnson and M. Graham, High-Speed Digital
Design, Prentice-Hall, 1993.

[17] N.H.E. Weste and David Harris, CMOS VLSI
Design. A Circuit and System perspective. Third
Edition, Boston: Addison-Wesley, 2005.

[18] M. Popovich, R. M. Secareanu, E. G. Friedman, and
O. L. Hartin, “Efficient. Placement of Distributed
On-Chip Decoupling Capacitors in Nanoscale ICs,”
Computer-Aided Design, IEEE/ACM Int’l Conf. on
(ICCAD 2007), pp.811-816 Nov. 2007.

Figure 9. Layouts of three DECAP configurations in 45nm technology with the optimum gate

length: (a) 1st, (b) 2nd, and (c) 3rd configuration.

180

Switched-Capacitor based Buck Converter Design
using Current Limiter for better Efficiency and

Output Ripple
Tamal Das*, Pradip Mandal, Member, IEEE

Department of Electronics & Electrical Communication Engineering
Indian Institute of Technology-Kharagpur, Kharagpur-721302, India

Email: *tamalfuture@gmail.com, pradip@ece.iitkgp.ernet.in

Abstract—In this paper we are addressing power efficiency and
output ripple of an embedded switched-capacitor based DC/DC
Buck Converters. Here we propose to use current pump based
switched-capacitor circuit in buck converter. The current pump
circuit limits transition current of the switched-capacitors and
hence, improves power efficiency and reduces output ripple.
We have also proposed an equivalent macro model of this
type of current pump based switched-capacitor converter which
would help to get a better essence of the closed loop stability
of the system and would reveal clearly trade-offs among load
current, flying capacitance and clock frequency. A transistor
level implementation of the proposed buck converter in 0.18µ
technology is provided. For a load current of 8mA (maximum)
the achieved power efficiency is 72.7% and the output ripple is
27mV. The flying capacitors in the converter are 2x108pF and
the load capacitor is 125pF.

I. INTRODUCTION

DC-DC buck converter using switched-capacitor circuits is
a recent trend for high dropout regulation [1],[6]-[9]. Power
efficiency and output ripple of this converter, however, are the
concern specifically for embedded applications where sizes of
its flying capacitors and load capacitor are limited by chip
area. Cascading switched-capacitor with a linear regulator is
an approach for the ripple reduction. Using this technique in
[1] a fully integrated on-chip regulator is developed. However,
switching current in that regulator is quite high. Fig.1(a)
shows the basic block diagram of switched capacitor based
buck converter. In this circuit the switches (transistors) are
voltage controlled and therefore, current through them is not
controlled specially during their phase transitions. This phase
transition current can be reduced by introducing two current
sources between the switch and the rails as shown in Fig.1(b).
This is similar to the technique used in [2] & [3] for charge
pump based boost converters. Note that the average value of
the current source should be determined by the output load
current. Fig.2 shows the current flows in its two phases.

Fig.3 shows the difference in the output voltage waveforms
for these two topologies. In case of hard switching [Fig.1(a)]
since at the time of transition the current is not controlled
the output voltage goes to its peak abruptly and it goes down
exponentially (approximately linear) till the end of that phase.
This pattern repeats in the next phase. This generates a shaw
tooth output voltage [Fig.3(a)]. Whereas, for the topology

Vdd

1

1
2

2

Rout

Cp

(a)

Vdd

1

1
2

2

Rout

Cp

(b)

Fig. 1. Switch Capacitor Buck Converter (a)Hard Switched (b) Current
Pumped topology

Fig.1(b) the current through the capacitance and the load is
controlled by a current constant current source. So, the output
voltage effectively remain constant (product of load resistance
and the current of that source). Now we can have a new
nomenclature called current pump based switching which give
us a ideally flat output voltage pumping only the required
current through them. But as the output resistance of the
current source practically is not infinite and hence we will get
some ripple. Fig.4 shows the improvement of the conduction
current and also the average current at the transition and during
the on time respectively.

In this paper we are proposing a DC/DC Buck converter
using current pumped switches which can easily be fully
integrable. We are also proposing a technique to get a macro
model approximation of the system. The organization of the
paper is: in section II working principle of differential mode
converter with current pumps; in section III the realization in
transistor level of the same is described; in section IV and V
the realization of macro model of the proposed buck converter
and its closed loop AC behavior are discussed respectively.

In this paper we are proposing a DC/DC Buck converter
using current pumped switches which can easily be fully
integrable and also we are proposing a technique to get a
macro model approximation of the system.The organization

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.43

181

Vdd

RL

Cp

Cp

RL

a
a

b
b

Phase 2

IL

IL

Phase 1

Fig. 2. Current Pumping Concept for Buck Converter

Fig. 3. Output Voltage Waveform for (a)Hard Switching (b) Current Pumping

of the paper will be: in section II working principle of
differential mode converter with current pumps; in section III
the realization in transistor level of the same is described;
in section IV and V the realization of macro model of the
proposed buck converter and its closed loop AC behavior are
discussed respectively.

Fig. 4. Comparison of Current through switches for Current Pumping and
Hard Switching

II. WORKING PRINCIPLE OF DIFFERENTIAL MODE

CURRENT PUMP BUCK CONVERTER

It is obvious that to get high output load current we need
to operate the converter at higher frequency. Now from the
Fig.1(a) it is seen that in each phase any one of the current
source must be switched off or that current has to be bypassed
to another path. In first case it may lead to phase switch over
problem and it is needless to say that the second case leads
to unnecessary power consumption. Hence only solution is to
opt for dual mode current pumping technique i.e. use another
same switched-capacitor converter driven by 1800 out of phase
clock signal. Fig.5 shows the differential version.

Vdd

1

2

2

2

2
1

1

1

IL/2

IL/2
RL

C1 C2

IL

Fig. 5. Current Pumping in Differential Mode

Fig.6 shows the circuit conditions of differential mode
current-pumped switching in two different phases; it shows
that the supply current by the current sources is reduced by
50%.

Vdd Vdd

C1

C1

C2

C2

IL/2

IL/2 IL/2

IL/2

a

b

a

b

c

d

c

d

(a) (b)

Fig. 6. Differential Mode Current Pumping in Two Phases

III. REALIZATION OF CURRENT PUMP BUCK CONVERTER

Now Fig.6 shows the transistor level implementation of pro-
posed topology. Transistors M0 and M1 are acting like current
source. Transistors M2 and M6 are acting like pMOS current-
pumped switches while transistors M3 and M7 are acting like
nMOS current pumped switches. The main challenge here is to

182

pull the current from ground and implement the nMOS current
pumped switches. When the transistor M3 (M7) will become
on at that very moment the voltage at node E(E′) becomes
negative ,and in each half cycle either of the Cp capacitors
works as voltage source; taking these opportunities we can
easily connect the source of the nMOS pass transistor to that
terminal and the drain of it can be grounded and therefore,
the current mirror realization to supply the gate voltage of this
pass transistor is obvious. Now for good load regulation we
can have a feedback path which will sense the output voltage
or required load current and will monitor the gate voltage of
the M0 and M1 transistors.

Vdd

−

+

+
−

Vref

M0
Mp

Mn M1

0

Vdd

M2

M3

M4

M5 M9

M8

M6

M7

Vdd

0

Vdd

0

Vdd

0

RLCout

A

D

E

C

B

D’

E’

Fig. 7. Proposed Topology of Current Pumped Differential Mode DC/DC
Buck converter

IV. MACRO MODEL OF THE CONVERTER

In [9] the necessity of the dynamic behavior and AC
response analysis are how important from the application point
of view is addressed. Here for the proposed topology we have
also analysed for the same.

The performance and stability of closed loop system can
only be described analytically by its equivalent macro model.
To get the macro model from the above current pump circuit
one should analyze all node voltages at the steady state of
the operation. It will be shown that the difference between the
average voltage at the drain of M0 and bottom plate of Cp

during the on cycle of M2 (M6) and M5 (M9) is Vdd/2.
Fig.8 shows some typical waveforms which help to find

the average output voltage and the difference between average
voltages at node A and B which will be needed to model the
flying capacitor Cp which needs to be modeled to get a dc
operating point for the macro model.

Let us take a common assumption that if any voltage level
is defined with respect to Vp

− then it will be designated with
an extra prime(′) mark. Now it is obvious that

(ΔV)A = (ΔV)C = (ΔV)(say) (1)

Now, (VA1 − VA2) = (VB1 − VB2) = (ΔV)B (2)

(VA)avg

(VC)avg

Time

A1

A2

B1

B2

D1

D1

D2

D2

Va

Vb

Vc

Vds0

Vds1

Vout

Vd

Va

Ve

Vc

Fig. 8. Waveform for average output voltage calculation

D1 = V
′
B1 = (V +

P)
′ − V

′
A2

D2 = V
′
B2 +

(ΔV)C

2
= (V +

P), − V
′
A1 +

(ΔV)A

2
⇒ V

′
B2 = (V +

P)
′ − V

′
A1

Therefore, (V
′
B1 + V

′
A2) = (V

′
B2 + V

′
A1) = (V +

P)
′

(3)

⇒ (VB1 + VA2) = (VB2 + VA1)

= (V +
P)

′ − 2[Vds1 +
(ΔV)C

2
]

= (V +
P) − [Vds1 +

(ΔV)C

2
]

= Vdd − |Vds0| − Vds1 − (ΔV)

(4)

Therefore, from Eq.2 and Eq.4 and as VA1=VB1 and
VA2=VB2,

(VA1 + VA2)
2

=
(VB1 + VB2)

2

=
Vdd − |Vds0| − Vds1 − (ΔV)

2
= Vout

(5)

Now again

(VA)avg − Vout = (Vdd − Vds0 − (ΔV)A

2
)

− Vdd − |Vds0| − Vds1 − (ΔV)
2

=
Vdd − (|Vds0| − Vds1)

2

(6)

If |Vds0|=Vds1, the difference between these two average
voltage level will become Vdd/2; and we can take it as Vdd/2
for our macro model.

Fig.5 shows the circuit condition during any half cycle. To
linearize the model one should replace the flying capacitors
Cp by some combination of any linear component. From the
Fig.8 we can easily have the macro model as shown in Fig.9.
The choice of second DC source as Vdd/2 between B and C′

is some what arbitrary and hence to meet the average voltage
at the source of the pass transistor M1 we have connected a
resistor R′ and which may be negative resistance whose value
depends on the relative value of Vds1 and Vds2 .

183

+ −

+
−

−

+
+
−

Vdd

R

R’

RL CL

V
d

d /2

Vdd/2

IL/2 IL/2

IL /2

Fig. 9. Macro Model Of Proposed Topology

A. Calculation of Resistance R and R′:
From the Fig.8 it is seen that at the drain of M0 an average

voltage is maintained at the steady state which is modelled
as resistor R. From that average voltage and the maximum
output required current we can easily calculate the value R in
two different ways: from the definition of (δV)avg and another
is described as follows. To get a better essence switched
capacitor circuit we have tried to find the relationship between
switch capacitor resistor(1/fcp) and R.

Firstly let, (Isat2) = (Isat)6 = Isat.

Now, (VA)avg = 2(ΔV)
′ − (

ΔV

2
) − Vds1

= 2Isat(
t1
Cp

) − 1
2
(
IL

2
t2
Cp

) − Vds1

=
IL

2
[

1
fCp

(2
Isat

IL

t1
t2

− 1
2
) − 2vds1

IL
]

=
IL

2
[

1
fCp

{(Δv
′

Δv
) − 1

4
} − 2Vds1

IL
]

(7)

Therefore, the resistor R can be modelled as

R =
1

fCp
{(Δv

′

Δv
) − 1

4
} − 2Vds1

IL
(8)

It can be shown that the resistance depends on either
minimum Vds1 or minimum Vds0;last equation shows the
dependency on Vds1.Now the value of R′ is some what
depends on Vdd as the value for 2nd DC source is taken as
Vdd/2 arbitrarily. Therefore to model the (ΔVC)avg we affix
the resistance there and hence it can be calculated as follows
Since after subtracting Vdd/2 we Will get (VC)avg otherwise
we may get another average voltage level say (VC

′)avg . From
the difference of these two average voltage level we can get
the value of R′ and this is given by as follows:

(VC′)avg = (VB)avg − Vdd

2
(9)

again, (VC′)avg +
ILR

′

2
= (VC)avg (10)

⇒ (VB)avg − Vdd

2
+

ILR
′

2
= Vs1 +

(ΔV)C

2
fromEq.5

⇒ ILR
′

2
=

(|Vds0| − Vds1)
2

Therefore the resistance R′ can be modelled for maximum
specified load current as

R
′
=

(|Vds0| − Vds1)
IL

(11)

And this value is very close to zero.
Now the main thing is to see whether this model will work

for lower load than maximum specified load current or not.
Now for no load current the gate voltage of the pMOS pass
transistor will be so fixed that it will supply only half load
current and the nMOS pass transistor will not supply any
current as drain-source voltage will become negligible.For in
between these two extreme cases the operation of pMOs pass
transistor and effect of R can be visualized easily by seeing
the upper closed loop path. Now for that cases operation of
nMOS will be determined by not only the gate voltage but
the source voltage and hence voltage drop due to R′ also. For
lower current the gate voltage will decrease and source voltage
also putting drain voltage equal to 0.

B. Properties of Pass Transistors and Error Amplifier

As it was already said that success of the model and hence
prepared design flow of the whole system from it depends on
the error amplifier performance and not only that the length of
the pass transistors are also claims some attention as the output
voltage level is related to them through average voltage at there
drain and source respectively. For full load the gate voltage
at the pMOS pass transistor will be minimum while for no
load condition this will be maximum. Therefore the depending
on the minimum output voltage of error amplifier will fix
the size of the pMOS and again the output voltage swing of
the error amplifier should support the required gate voltage
range of pMOS. A clear relationship between the minimum
and maximum gate voltage required for Popper closed loop
control over full range of load current. For nMOS transistor
control over the current through depends more strongly on its
source voltage. Now

IL = K ′
p(

W

L
)[Vgs0min − |vthp|]2(1 + λ|Vds|) (12)

IL

2
= K ′

p(
W

L
)[Vgs0max − |vthp|]2(1 + λ|Vds|) (13)

And they are related as

Vg0max = (
√

2 − 1√
2

)(VDD − |vthp|) +
1√
2
Vg0min (14)

For ripple reduction and for good load regulation the gain
of the amplifier also should be high with acceptable UGB

184

as we need lower settling time also. To meet these two
requirements the error amplifier should be cascode amplifier
type. As telescopic cascode though has high gain its short
output voltage swing restricts its usage. The folded cascode
differential amplifier is most suitable for this operation.

V. AC ANALYSIS OF THE MACRO MODEL

Fig. 10 shows high frequency small signal model for the
macro model of the proposed topology considering macro
model for the error amplifier also. Here the current through
the current mirror (Mp and Mn) is neglected and hence the
voltage at the gate of the M1 is just extracted to eliminate them
to avoid a cumbersome AC analysis. Here the error amplifier
is taken as an macro model having transconductance gmA and
output resistance RoutA. Now the open loop voltage gain from
vref to the vb can be found using super position principle
for two current sources.The current mirror part of the lower
nMOS pass transistor can be replaced by an equivalent small
gate-source voltage for that nMOS and that will be given by:

Fig. 10. Small Signal Equivalent of the Macro Model

vgs1 = (
gmAgmpRoA

gmn
)(

1
1 + sCoutARoA

) (15)

Now the open loop gain will be given by:

vb

vref
=

gmAgm0RoA

1 + sCoutARoA
[Z||(1

scgs1 + (gm1 + gmb1)
)]

+
gmAgmpRoAZ

gmn(1 + sCoutARoA)
[
scgs1ro1 + gm1ro1

Z + ro1
]

where,Z = ro||R||RL|| 1
s(CL + Cin)

= Reff || 1
s(CL + Cin)

(16)

which will be giving the following transfer function:

Av =(gmARoutA)(
gmp

gmn
)(

Cgs1

CL + Cin
)

[
s2 + Y

X s + Z
X

(s + p1)(s + p2)(s + p3)
]

(17)

where,

p1 = − 1
CoutARoA

p2 = −1 + Reff (gm1 + gmb1)
Reff (CL + Cin)

� p3

(18)

X = Reff (CL + Cin)Cgs1(
gmp

gmn
)

Y � Reff (CL + Cin)(gm0 +
gmp

gmn
gm1)

Z � 2{Reff (gm1 + gmb1) + 1}gm0

(19)

It is seen that the zeros are very far to create any disturbance
to the closed loop performance of the system. Now it is also
seen that if the maximum specified current is increased the
stability of the system would also increase as the poles (p2 &
p3)are gone away from the dominant pole p1 whose shifting
can be neglected.

Now for DC-DC converters it is well known that AC
analysis does not confirm its stability but the macro model
what we have proposed is giving the essence of stability issues
at low time scale.

VI. SIMULATION RESULTS

We have designed a current pump based DC-DC buck
converter with 0.18μ CMOS process. For the closed loop
application the necessary error amplifier is also designed with
55dB DC gain with 100MHz UGB using folded cascode
topology. Table 1 shows the performance comparison between
the hard switched and current pump based converter and
points to the advantages. Without closed loop control output
voltage would be VDD/2. For closed loop control we used
Vref =1.35V .

TABLE I
PERFORMANCE COMPARISON BETWEEN HARD SWITCHED AND CURRENT

PUMPED TOPOLOGY

Load Current η(%) Output Ripple
(mA) (mV)

Hard current Hard current
switching pump switching pump

7.99 64 72.7 100 27

Fig.11 shows typical waveforms at different nodes at 8mA

Load current which is supporting our qualitative view (Fig.8).
Fig.12 shows the dynamic behavior of the converter demon-

strating its good load regulation.
Table 2 shows the strength of the macro model of the design.

We have targeted a load current and from the macro model

185

Fig. 11. Typical Waveforms from the actual Circuit at 8mA Load Current

Fig. 12. Dynamic Behavior of the Converter for 4 to 8mA Load Current
Step

TABLE II
COMPONENT PARAMETERS OF MACRO MODEL AND ACTUAL TOPOLOGY

Maximum Cp(F) Output
Load Current(mA) Voltage(V)
Macro Actual Macro Actual Macro Actual
Model Topology Model Topology Model Topology
4.00 4.00 50p 53p 1.35 1.35
6.00 5.99 75p 78p 1.35 1.3499
8.00 7.99 100p 108p 1.35 1.34999

TABLE III
PERFORMANCE OF CURRENT PUMPED TOPOLOGY

Frequency (MHz) Load Current (mA) η (%) Output Ripple (mV)

50

8 72.7 27
7 69.8 25
6 64.6 20
5 61.0 16
4 54.0 14
3 50.0 12
2 37.0 10

we got the R and R’ and from that Cf . The table shows the
accuracy of the model. The size of flying capacitances shows
its integratibility.

Table 3 shows the performance of the converter for 8mA as
maximum load current from the efficiency and output ripple
point of view designed.

VII. SUMMARY AND CONCLUSION

We have proposed to use current pump based switched-
capacitor circuit for dc-dc buck converter. The current pump
circuit helps to reduce switching current during phase tran-
sition of the switch capacitors. This improves overall power
efficiency of the converter and reduces output ripple of the
converter. Stability and design trade offs of the converter
has been analysed with its macro model and small signal
equivalent circuits. Finally, a transistor level implementation
and its simulated performance of the converter are provided.
In the implementation the achieved power efficiency is 72.7%
(i.e. 8% more than conventional one) and the output ripple is
27mV (i.e. reduced by a factor of 3.7).

REFERENCES

[1] P. Mandal, K. Bhattacharya, “A Low Voltage,Low Ripple On Chip Hybrid
DC-DC Converter,” International Symposium on Integrated Circuits,
2007.

[2] Soon-Kyun Shin et.al, ”A High Current Driving Charge Pump with
Current Regulation Method” IEEE Custom Integrated Circuits Confer-
ence(CICC), 2005.

[3] A. Cabrini, A. Fantini and G. Torelli, ”High-efficiency Regulator for on-
chip charge pump voltage elevators” Electronics Letters, vol. 42, No. 17,
2006.

[4] Jaroslav Dudrik, Juraj Oetter, ”High-Frequency Soft-Switching DC-DC
Converters for Voltage and Current DC Power Sources” Acta Polytechnica
Hungarica, Vol. 4, No. 2, 2007.

[5] Rajapandian Ayyanar, Ned Mohan, ”A Novel Soft-Switching DC-DC
Converter with Wide ZVS-Range and Reduced Filter Requirement”
Power Electronics Specialists Conference, July 1999 Page(s):433 - 438
vol.

[6] Manal H. Hashem Et. Al. , Switched Capacitor Snubber-Assisted Zero
Current Soft Switching PWM High Frequency Inverter with Two-Lossless
Inductive Snubbers” IEEE PEDS, 2005.

[7] Mummadi Veerachary, ”Control of Switched Capacitor Step-Down Buck
Converter” IECON - 32nd Annual Conference, 2006.

[8] Kohei Onizuka, Hiroshi Kawaguchi, Makoto Takamiya and Takayasu
Sakurai, ”Stacked-chip Implementation of On-Chip Buck Converter for
Power-Aware Distributed Power Supply Systems” Solid-State Circuits
ConferenceIEEE Asian , 2006.

[9] A. Barrado, A. Lzaro, J. Pleite, R. Vzquez, J. Vzquez, E. Olas, ”Linear-
Non-Linear Control (LnLc) for DC-DC Buck Converters: Stability and
Transient Response Analysis.” Applied Power Electronics Conference and
Exposition, 2004, Page(s):1329 - 1335 vol.2.

186

Session 3B

System Synthesis

Reversible Logic Synthesis with Output Permutation

Robert Wille1 Daniel Große1 Gerhard W. Dueck2 Rolf Drechsler1

1Institute of Computer Science 2Faculty of Computer Science
University of Bremen University of New Brunswick

28359 Bremen, Germany Fredericton, Canada
{rwille,grosse,drechsle}@informatik.uni-bremen.de

gdueck@unb.ca

Abstract

Synthesis of reversible logic has become a very impor-
tant research area. In recent years several algorithms –
heuristic as well as exact ones – have been introduced in
this area. Typically, they use the specification of a reversible
function in terms of a truth table as input. Here, the posi-
tion of the outputs are fixed. However, in general it is irrel-
evant, how the respective outputs are ordered. Thus, a syn-
thesis methodology is proposed that determines for a given
reversible function an equivalent circuit realization modulo
output permutation. More precisely, the result of the syn-
thesis process is a circuit realization whose output functions
have been permuted in comparison to the original specifi-
cation and the respective permutation vector. We show that
this synthesis methodology may lead to significant smaller
realizations. We apply Synthesis with Output Permutation
(SWOP) to both, an exact and a heuristic synthesis algo-
rithm. As our experiments show using the new synthesis
paradigm leads to multiple control Toffoli networks that are
smaller than the currently best known realizations.

1. Introduction
According to Moore’s Law the number of transistors in

an integrated circuit doubles every 18 months. Due to this
exponential growth, physical boundaries will be reached in
the near future. Furthermore, power consumption of circuits
becomes a major issue. Quantum computers [12] are an
alternative to classical systems. Here, information is stored
in so called qubits instead of bits. In comparison to present
computers, many problems can be handled more efficiently
with the help of quantum computers.

Since all quantum computations are reversible, the syn-
thesis of reversible logic has become an intensely studied
topic. In contrast to classical irreversible gates, there are
restrictions for reversible gates, e.g. fan-out and feed-back
are not allowed. Consequently a network for reversible
logic consists of a cascade of reversible gates. In the past
different types of reversible gates have been introduced,
e.g. (multiple control) Toffoli [18] and Fredkin [2] gates,
Peres gates [13], and elementary quantum gates [1].

For the synthesis of reversible logic several approaches
– heuristic as well as exact ones – have been proposed. A
method based on enumeration that uses network equiva-
lences to rewrite a limited set of gates has been presented

in [16]. Proposed heuristics methods are based on spec-
tral techniques [10], positive polarity Reed-Muller expan-
sions [5], or transformation based synthesis [11]. In [9] a
method is introduced that synthesizes the reversible func-
tion in a first step and then based on transformations (us-
ing so called templates) a realization with fewer gates is
computed. Techniques of group theory can also be used
in the synthesis of reversible logic functions [17]. The au-
thors of [15] introduced a non-search based algorithm run-
ning transformations to synthesize reversible functions with
CNOT gates. Minimal networks for functions with up to
three variables have been synthesized by the approach intro-
duced in [23]. An exact synthesis method based on reach-
ability analysis is described in [6]. In [3, 4, 20] approaches
based on Boolean satisfiability (SAT) and in [22] a method
employing Quantified Boolean Formula (QBF) satisfiability
are used for exact synthesis.

Usually, the specification of the reversible function to be
synthesized is given as a truth table. Thus, each output is
set to a fixed position. Since in general the output ordering
for a given reversible function f is irrelevant, we propose
a synthesis methodology that determines an equivalent cir-
cuit realization for f modulo output permutation. That is,
the result of the synthesis is a circuit whose outputs have
been permuted. Note that no extra gates are invested to
achieve the output permutation. In fact, output permuta-
tion becomes an integral part of the synthesis process such
that the final permutation corresponds to an “update” of re-
versible function specification. Hence, the synthesis result
is a circuit realization and the computed output permutation
vector.

Based on this idea we introduce first algorithms to ap-
ply Synthesis with Output Permutation (SWOP). The algo-
rithms focus on synthesis of multiple control Toffoli net-
works. As the main objective the number of gates is mini-
mized as done by many other researchers (see e.g. [5, 9, 11,
15,16,20]). The proposed methodology can also be adapted
for other gate libraries as well as other objectives.

The application of output permutations has been recog-
nized before in [11]. It was suggested that for functions with
few input variables, all output permutations could be con-
sidered. However, neither an analysis of the effect of out-
put permutation nor techniques facing the increasing com-
plexity in case of larger circuits have been considered. This
work is an initiative to address this missing domain.

To find the best permutation of outputs for a function,

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.40

189

Table 1. Function specification
c b a o3 o2 o1

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 0

i.e. the one which leads to the smallest network realization,
all n! permutations have to be checked in general (where
n is the number of variables of the reversible function).
We show how this complexity can be reduced for incom-
pletely specified function (i.e. functions with garbage out-
puts). Furthermore, we present an exact and a heuristic
approach applying synthesis with output permutation. We
show that significantly smaller networks (even smaller than
the ones known as minimal till today) can be obtained if this
new synthesis paradigm is used.

The paper is structured as follows. First, preliminaries
are given in Section 2. Section 3 describes the general idea
of SWOP while Section 4 gives some theoretical consider-
ation. We introduce an exact and heuristic synthesis algo-
rithm which applies output permutation in Section 5. Re-
sults are given and discussed in Section 6. Finally, we con-
clude the paper and give directions for future work in the
last section.

2. Preliminaries
To keep the paper self-contained, this section briefly re-

views the basics of reversible logic. For a more detailed
insight we refer to the respective publications.

A reversible logic gate realizes an n-input n-output func-
tion that maps each possible input vector to a unique output
vector. In other words this function is a bijection. Many
reversible gates have been studied. Multiple control Tof-
foli gates [18] (also known as generalized Toffoli gates) are
widely used. In the rest of this paper we only consider Tof-
foli gates that are defined as follows:

Definition 1 Let X := {x1, . . . , xn} be the set of do-
main variables. A multiple control Toffoli gate has
the form TOF (C, t), where C = {xi1 , . . . , xik

} ⊂
X is the set of control lines and t = {xj}
with C ∩ t = ∅ is the target line. The gate
maps (x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕ xi1 . . . xik

,
xj+1, . . . , xn). If no control lines are given (C is empty),
then the target line is inverted, i.e. the input vector of the
gate is mapped to (x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xn).

Due to restrictions in quantum mechanics the only pos-
sible topology for a network is a cascade of gates.

Definition 2 The cost of a reversible network is defined as
the number of its gates.

Note that, as an additional quality criterion for reversible
logic also Quantum Costs [1] are used in literature. How-
ever, in this work we aim to minimize the number of gates
which is done by many other researches as well (see also
introduction).

(a) (b)
Figure 1. Minimal Toffoli networks

Since all quantum circuits are reversible, to realize a non-
reversible function (i.e. an n-input m-output function with
n > m) it must be embedded into a reversible one. There-
fore, it is often necessary to add constant inputs and garbage
outputs [8]. The garbage outputs are by definition don’t
cares and can be left unspecified. Functions with garbage
outputs are called incompletely specified functions in the
following.

3. General Idea
The input of most synthesis approaches is the specifica-

tion of the reversible function f : Bn → Bn to be synthe-
sized as a truth table. In this table each specified output has
a fixed position.

Example 1 Consider the function specification shown in
Table 1. The reversible function maps (c, b, a) to (b, a, ab⊕
c) = (o3, o2, o1). A minimal Toffoli network for this func-
tion is shown in Figure 1(a). The cost of this network is 6.

If the synthesis approach follows the proposed method-
ology the synthesis result for the given reversible specifica-
tion is an equivalent circuit realization whose outputs have
been permuted.

Example 2 In Figure 1(b) a Toffoli network is depicted
which computes the same reversible function than the Tof-
foli network shown in Figure 1(a). But in contrast, the three
output functions have been “reordered” to another posi-
tion in the output vector. More precisely, the Toffoli net-
work shown in Figure 1(b) maps (c, b, a) to (ab⊕ c, b, a) =
(o1, o3, o2). This reduces the overall costs from 6 gates to
a single gate, i.e. 5 gates have been saved. In total, the
result of a synthesis procedure for this example would be
the network shown in Figure 1(b) and the new output vector
(o1, o3, o2).

Motivated by this example, the question considered in
this paper is:

How can we efficiently compute good permuta-
tions of outputs for a given reversible function to
be synthesized such that smaller Toffoli networks
result?

This leads to an extension of common synthesis algo-
rithms we call Synthesis with Output Permutation (SWOP)
in the rest of this paper. As shown in the following,
SWOP may lead to significantly smaller circuits regardless
of whether exact or heuristics approaches are used. Since
the consideration of all permutations can be expensive with
respect to runtime, we propose different strategies which
handle the increasing complexity.

190

Figure 2. Realization of a permutation
4. Theoretical Consideration

In this section we show the best case benefit that can be
achieved by applying SWOP. Therefore, we compare com-
mon synthesis to SWOP and determine the maximal num-
ber of gates that can be saved if we allow output permutation
for an arbitrary reversible function specification. Further-
more, we discuss the worst case complexity to determine
the best permutation and show how this can be reduced for
incompletely specified functions by exploiting the informa-
tion on garbage outputs.

4.1. Best Case Benefit
Figure 2 depicts the gates needed to permute two signals

in a reversible circuit with multiple control Toffoli gates (in
total three gates are required). Since the best position of
the outputs is unknown at the beginning of the synthesis
process, outputs may be placed arbitrarily in the function
specification. Then, the three gates of Figure 2 are needed
to permute the value of a signal to the position given by the
specification. If in contrast output permutation is consid-
ered during the synthesis, the number of gates of the result-
ing network may be significantly smaller as the following
proposition shows.

Proposition 1 The number of gates in a reversible circuit
obtained by common synthesis approaches may be up to
3 · (n− 1) higher than the number of gates in a circuit
where synthesis with output permutation is applied (with n
is the number of variables).

Proof: Let c be the minimal costs of a circuit obtained by
enabling output permutation during synthesis. To move one
output line to the position given by the specification three
Toffoli gates are required (see Figure 2). At most n−1 lines
need to be moved. It follows that the cost of the minimal
circuit, where no output permutation is allowed, is less than
or equal to c+ 3(n− 1). �

4.2. Complexity
Finding the best output permutation causes a significant

increase in complexity for synthesis. In general, all possible
permutations have to be checked, which results in n! differ-
ent networks in total.

However, it is well known that many practical logic func-
tions contain garbage outputs (see Section 2). The garbage
outputs are by definition don’t cares and can be left unspeci-
fied. Thus, permutations of the garbage outputs need not be
considered. This reduces the complexity for SWOP. Instead
of n! only n!

g! different permutations are checked (while n is
number of variables and g the number of garbage outputs of
the reversible function f).

Example 3 Figure 3 shows all n! possible permutations for
an incompletely specified function with n = 3 variables and
g = 2 garbage outputs (denoted by g1 and g2). Since the
garbage outputs are left unspecified, the permutations that

Figure 3. Permutations with garbage outputs
only swap garbage outputs can be skipped (i.e. the last three
permutations of Figure 3). Thus, only 3!

2! = 3 permutations
instead of all 3! = 6 permutations are considered.

5. Applying Output Permutation
In a naive way, synthesis with output permutation can be

easily applied to existing approaches just by encoding all
permutations, synthesize each in one turn, and keep the best
one. This results in an increase of factor n!

g! . In this section
we introduce the application of output permutation to exact
as well as heuristic approaches using dedicated strategies.
Empirical tests show that the increase of the runtime by the
proposed approaches is less than the theoretical complexity
increase. This is due to the learning technique exploited
in the exact approach and due to the heuristic selection of
permutations in the heuristic approach.

5.1. Exact Approach
Exact synthesis algorithms determine a minimal realiza-

tion for a given function, i.e. a network with the minimal
number of gates. Ensuring minimality is obviously more
expensive, but helps e.g. to synthesize smaller networks (or
compositions of networks) and to define lower bounds for
heuristic approaches. Thus, research in this area is essential.

Recently exact algorithms for synthesis of multiple con-
trol Toffoli gates using Boolean satisfiability (SAT) have
been introduced [3, 20]. The basic idea is to check if there
exists a Toffoli network representation for a reversible func-
tion with c gates (starting with c = 1), where c is in-
creased in each iteration if no realization is found. The
respective checks are performed by representing the prob-
lem as an instance of SAT. This instance is solved by a
common SAT solver [3] or by the specialized solve-engine
SWORD, which additionally uses problem specific knowl-
edge [19,20]. Due to page limitation we refer to the respec-
tive publications for a detailed description of the encodings.
In this paper the concrete SAT encoding is simplified as fol-
lows:

Definition 3 Let f : Bn → Bn be a reversible function
to be synthesized. Then, the SAT instance of the respective
synthesis problem is given as

Φ ∧
2n−1∧
i=0

([
−→
inpi]2 = i ∧ [

−→
outi]2 = f(i)),

where

• −→inpi is a Boolean vector representing the inputs of the
network to be synthesized for truth table line i,

• −→outi is a Boolean vector representing the outputs of the
network to be synthesized for truth table line i and,

• Φ is a set of constraints representing the synthesis
problem according to [3, 20].

191

(a) original (b) with SWOP extension
Figure 4. Encoding for exact synthesis

As an example Figure 4(a) shows the abstracted repre-
sentation of the synthesis problem for the function specified
in Table 1 (the values of the truth table are given as inte-
gers).

To apply SWOP to the exact approach and still ensuring
minimality, all permutations are considered. This can be
done – as mentioned above – by n!

g! separate synthesis calls.
However, exploiting the advanced techniques of the used
SAT solvers leads to a faster synthesis. Therefore, just one
additional Boolean vector is needed.

Definition 4 Let f : Bn → Bn be a reversible function
to be synthesized. Then, −→p = (pdlog2

n!
g! e
, . . . , p1) is a

Boolean vector representing the binary encoding of a nat-
ural number p ∈ {1, . . . , n!

g! } which indicates the chosen
output permutation of the network.

Using this vector, the SAT encoding is slightly extended:
According to the assignments to −→p (set by the SAT solver)
a value for p is determined, which selects the current output
permutation. Depending on this permutation the respective
output order is set during the search. More formally, the
encoding of Definition 3 is extended as follows:

Φ ∧
2n−1∧
i=0

([
−→
inpi]2 = i ∧ [

−→
outi]2 = π−→p (f(i)))

The extended encoding of the synthesis problem for the
function specified in Table 1 is shown in Figure 4(b).

If the solver finds a satisfying assignment for the SWOP
instance, one can obtain the network from the result as de-
scribed in [3, 20] and the best permutation is provided by
the assignment to −→p .

Overall, this extension allows exact SWOP with only one
synthesis call in contrast to n!

g! separate ones. Furthermore,
since the variables of −→p are an integral part of the search
space, the permutations are checked much more efficiently.
Because of modern SAT techniques (in particular conflict
analysis [7]), during the search process reasons for conflicts
are learned. This learned information prevents the solver
from reentering non-solution search space, i.e. large parts
of the search space are pruned. In contrast, this information
is not available when each permutation is checked by sep-
arate calls of the solver. Thus, exact synthesis with output
permutation is possible in feasible runtime when learning is
exploited. Experimental results for exact SWOP are given
in Section 6.

5.2. Heuristic Approach
To apply SWOP in a heuristic approach, the algorithm

presented in [9] is considered. We avoid the construction
of all possible permutations which would lead to a com-
plexity increasing of n! since in [9] garbage outputs are not

(1) HeuristicSWOP(f : Bn → Bn)
(2) /* f is given as truth-table */
(3) perm = {1 , 2 , . . . ,n};
(4) cbest = synthesize(perm);
(5) best perm = perm;
(6) for i = 0 to n − 2 do
(7) for j = i + 1 to n − 1 do
(8) tmp perm = swap(perm, i, j);
(9) ctmp = synthesize(tmp perm);

(10) if (ctmp < cbest)
(11) best perm = tmp perm;
(12) end–if
(13) end–for
(14) perm = best perm;
(15) end–for

Figure 5. Heuristic SWOP
supported. We propose a SWOP-based synthesis heuristic
using a sifting algorithm inspired by [14] and hence reduce
the above complexity to n2. Because of the heuristic behav-
ior of sifting maybe not the best permutation is determined.
However, as the experiments in Section 6 show, significant
improvements can be achieved in feasible runtimes.

The pseudo-code for the sifting algorithm is given in Fig-
ure 5. First, an initial permutation is chosen and the realiza-
tion for this specification is synthesized (lines 3 and 4). As
initial permutation we used the one given by the specifica-
tion of the function. The gate count of this first realization
is stored. After this, for each output the best position within
the current permutation is searched. This is done by swap-
ping the position of the current output with each of the other
positions leading to new permutations (line 8). For each
of this new permutations the respective realization is syn-
thesized (line 9). If the gate count of such a realization is
smaller than the current best known gate count (line 10), the
current permutation is stored as being the best one (line 11).
When each position for one output have been checked, the
best permutation of these checks is used for the remaining
outputs (line 14).

In summary, for each of the first n− 1 outputs, the algo-
rithm will find a new position, that will result in a realization
with the fewest gates – when synthesized with the heuristic
algorithm from [9]. Therewith the complexity of SWOP can
be reduced while still improving the obtained results as the
next section will show.

6. Experimental Results
This section provides experimental results for SWOP. In

total four different aspects are studied: (1) the reduction of
the complexity of SWOP when garbage outputs are consid-
ered, (2) the results of exact SWOP in comparison to previ-
ous exact approaches, (3) the results of heuristic SWOP in
comparison to the common heuristic approach, and (4) the
quality (with respect to the number of gates) of the circuits
synthesized by SWOP in comparison to the currently best
known realizations.

For exact synthesis we used the algorithm introduced
in [20] (the SWOP extension was implemented on the top of
this approach). As heuristic approach the template match-
ing algorithm described in [9] has been used. The respective
benchmark functions have been taken from [21]. All experi-
ments have been carried out on an AMD Athlon 3500+ with

192

Table 2. SWOP considering garbage outputs
SWOP OPT. SWOP

BENCH. n g c n! TIME (S) n!
g! TIME (S) IMPR

4mod5 5 4 5 120 233.18 5 7.37 31.6
decod24 4 0 5 24 0.10 24 0.10 1.0

gt4 4 3 3 24 <0.01 4 <0.01 1.0
gt5 4 3 1 24 0.01 4 <0.01 >1.0

low-high 4 3 4 24 3.71 4 0.39 9.51
0-1-2 4 1 4 24 0.03 24 0.02 1.5

maj4 1 5 4 6 120 3500.90 5 2125.62 1.6
maj4 2 5 4 5 120 191.92 5 4.19 45.8

alu 5 4 6 120 2013.72 5 61.24 32.9
mini alu 1 4 2 5 24 0.28 12 0.19 1.5
mini alu 2 5 3 7 120 930.60 20 474.42 1.9
mini alu 3 5 3 5 120 9.60 20 2.07 4.6

1 GB of main memory. All runtimes are given in CPU sec-
onds. The timeout was set to 3600 CPU seconds (denoted
by TO in the following).

6.1. SWOP with Garbage Outputs
In a first series of experiments we compare the different

complexities which may occur when Toffoli networks for
functions containing garbage outputs are synthesized. Here
– as described in Section 4.2 – instead of n! permutations
only n!

g! are considered.
Table 2 shows a comparison of the exact SWOP ap-

proach with both numbers of permutations for each incom-
pletely specified function. The first three columns provide
the name of the function, the number n of variables and
the number g of garbage outputs, respectively. The min-
imal costs c (i.e. the minimal number of gates) of a Tof-
foli network representation is given in column c. Then,
the runtimes of SWOP with n! and with n!

g! permutations
are given (denoted by TIME). Furthermore, the improve-
ment of the optimized SWOP (i.e. the synthesis with only
n!
g! permutations) over SWOP with all n! permutation is pro-
vided (i.e. runtime of SWOP divided by runtime of OPT.
SWOP).

As expected the reduction of permutations leads to better
runtimes for all benchmarks. Improvements up to a factor
of 45 can be achieved in the best case.

6.2. Exact SWOP
In this section we compare exact SWOP with the pre-

vious exact algorithm from [20]. The results are shown in
Table 3.

Here again, the first column provides the name of the
function, n and g denote the number of variables and the
number of garbage outputs, respectively. The next columns
give the minimal costs c determined by the two approaches
and the corresponding runtimes. The last column shows in-
formation relating the complexity, i.e. the runtime overhead
when output permutation is considered (SWOP-Time

Syn-Time) com-
pared to the factor (n!

g!) resulting from the complexity anal-
ysis.

It can be seen that for many functions SWOP found
smaller networks than the ones generated by the previous
exact synthesis approach. Thus, removing the restriction
for the output ordering leads to smaller networks for many
of well known benchmark functions.

As expected the runtime for SWOP is higher in com-
parison to the runtime of pure exact synthesis. The rea-

Table 3. Exact synthesis vs. exact SWOP
EXACT EXACT

SYNTHESIS SWOP SWOP-TIME
SYN-TIME

BENCH. n g c TIME (S) c TIME (S) VS. n!
g!

4mod5 5 4 5 0.9 5 7.4 8.4 > 5
decod24 4 0 6 0.1 5 0.1 1.7 < 24

gt4 4 3 4 <0.1 3 <0.1 1.0 < 4
gt5 4 3 3 <0.1 1 <0.1 1.0 < 4

low-high 4 3 5 0.2 4 0.4 2.2 < 4
0-1-2 4 1 5 <0.1 4 <0.1 0.5 < 24

maj4 1 5 4 6 438.0 6 2125.6 4.8 < 5
maj4 2 5 4 6 13.6 5 4.2 0.3 < 5

alu 5 4 7 423.3 6 61.2 0.1 < 5
mini alu 1 4 2 5 <0.1 5 0.2 6.3 < 12
mini alu 2 5 3 8 2460.0 7 474.4 0.2 < 20
mini alu 3 5 3 5 0.2 5 2.1 12.2 < 20

3 17 3 0 6 <0.1 5 <0.1 9 > 6
graycode6 6 0 5 <0.1 5 13.5 224.7 < 720

mod5d1 5 0 7 11.8 7 184.1 15.6 < 120
mod5d2 5 0 8 9.9 8 1097.6 109.9 < 120

mod5mils 5 0 5 0.1 5 1.7 21.0 < 120
rand0 4 0 8 15.3 7 26.4 1.7 < 24
rand1 4 0 8 5.8 7 28.3 4.9 < 24
rand2 4 0 9 154.5 8 150.3 1.0 < 24
rand3 4 0 9 231.5 9 1895.6 8.2 < 24
rand4 4 0 9 151.1 9 569.9 3.8 < 24

son is that the search space is obviously larger due to the
number of output permutations that can be chosen. How-
ever, the increase is not as high as the number n!

g! . This
can be seen in the last column of Table 3. For all bench-
marks (except 4mod5 and 3 17) the runtime of SWOP di-
vided by the runtime of the previous synthesis approach is
significantly smaller than the worst case complexity (n!

g!).
As explained this is due to search space pruning, possible
when the encoding is extended such that all permutations
can be checked at once. Moreover, for some benchmarks
(e.g. maj4 2 or alu) the runtime of SWOP is even smaller
than for a single exact solution. This reduction is caused
by the fact, that smaller networks are found and thus the
synthesis terminates earlier.

6.3. Heuristic SWOP
In this section we compare the results of heuristic synthe-

sis with output permutation. In fact, the results obtained by
common heuristic synthesis (according to [9] in its newest
version) are compared with SWOP when all permutations
are considered (ALL PERMS) and with SWOP when the sift-
ing algorithm introduced in Section 5.2 is used (SIFTING).

The results are given in Table 4 showing the gate counts
of the resulting realizations as well as the time needed for
their synthesis.

As can be clearly seen, the effect of output permutation
is significant for most of the functions. For example, for
the function aj-e13 the realization is reduced by 30 percent
from 40 gates to 28 gates. The best absolute reduction of
gates can be observed for function hwb8. Here, 35 gates are
saved in total when output permutation is applied.

But not only the improvements are of interest. Even a
comparison of the best and the worst permutation (shown
in column c for ALL PERMS) give some interesting insight.
For example, consider the function hwb5. One output per-
mutation results in a circuit with 38 gates, while another
permutation results in 62 gates. Since a heuristic minimiza-
tion procedure is used, the results will most likely not be
optimal. In fact, according to Proposition 1 the difference
between the best and the worst permutation for hwb5 can
not be greater than 12 for minimal realizations – yet it is 24.

193

Table 4. Heur. synthesis vs. heur. SWOP
HEURISTIC HEURISTIC SWOP
SYNTHESIS ALL PERMS SIFTING

BENCH. n c TIME (S) c TIME (S) c TIME (S)
3 17 3 6 0.03 6-7 0.32 6 0.25
4 49 4 17 0.40 14-22 4.09 16 1.09

4mod5 5 9 0.03 9-21 10.02 9 0.75
5mod5 6 18 0.13 14-37 254.14 18 3.59
aj-e10 5 33 0.63 22-51 107.03 30 8.21
aj-e11 4 12 0.09 11-22 2.46 11 0.55
aj-e12 5 26 0.35 25-57 103.37 25 8.11
aj-e13 5 40 0.97 28-51 112.70 34 12.31

ex1 3 4 <0.1 4-8 0.08 4 0.06
graycode3 3 2 <0.1 2-5 0.01 2 0.01
graycode4 4 3 0.01 3-9 0.32 3 0.07
graycode5 5 4 0.03 4-13 4.72 4 0.31
graycode6 6 5 0.08 5-18 67.25 5 1.08

hwb3 3 7 0.06 6-11 0.32 7 0.29
hwb4 4 15 0.35 10-21 3.70 10 0.69
hwb5 5 55 1.66 38-62 153.71 44 16.49

prime5 6 15 0.20 13-40 227.05 13 3.09
prime5a 6 16 0.10 14-41 291.58 14 3.92

ham3 3 5 0.01 3-5 0.02 4 0.03
hwb6 6 125 7.08 – TO 91 89.20
hwb7 7 283 33.26 – TO 259 656.82
hwb8 8 676 152.13 – TO 641 4525.22
ham7 7 23 0.34 – TO 23 49.47
rd53 7 16 0.26 – TO 13 10.04

Finally it is shown, that sifting provides good results in
a fraction of the CPU time. For most functions with more
than six variables it is not feasible to minimize the function
considering all permutations. However, sifting offers sig-
nificant improvements for most of these functions (see the
bottom rows of Table 4).

6.4. Reductions Achieved by SWOP
Finally, the quality (with respect to the number of gates)

of some circuits synthesized by SWOP is compared to the
currently best known realizations obtained by common syn-
thesis approaches. Table 5 shows a selection of functions
with the gate count of the currently best known realization
(BEST KNOWN c). The source of this realization is given
in column SRC. The gate count when output permutation is
considered is given in column SWOP c.

Synthesis with output permutation enables the realiza-
tion of smaller networks than the currently best known re-
alizations. As an interesting example the realizations of the
hwb4 function is observed in more detail. For the initial
function specification a minimal realization with 11 gates
have been synthesized by the exact approach described
in [3]. Now, using output permutation we are able to synthe-
size a smaller realization with only 10 gates using a heuris-
tic approach.

7. Conclusions and Future Work
In this paper we introduced synthesis with output permu-

tation (SWOP). We discussed the best case benefit and in-
troduced different strategies facing the increasing complex-
ity of our new synthesis paradigm. Output permutation have
been applied to a representative of exact as well as heuristic
synthesis, respectively. On our set of functions we showed
that significant reductions (with respect to the number of
gates) can be achieved, i.e. considering output permutation
is beneficial. For some cases we synthesized multiple con-
trol Toffoli networks which are smaller than the currently
best known realizations – even smaller than the ones today
known as minimal.

Table 5. Best results obtained by SWOP
BEST KNOWN SWOP

BENCH. c SCR. c ∆c

decod24 6 [20] 5 1
alu 7 [20] 6 1
gt5 3 – 1 2
3 17 6 [20] 5 1
4 49 16 [21] 14 2
aj-e13 40 – 28 12
hwb4 11 [3] 10 1

For future work we plan to integrate the proposed
methodology in approaches that also consider other cost
metrics during synthesis (like e.g. [22, 23]).

8. Acknowledgements
This work was supported by the German Academic Ex-

change Service (DAAD).

References
[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum
computation. The American Physical Society, 52:3457–3467, 1995.

[2] E. F. Fredkin and T. Toffoli. Conservative logic. International Journal of The-
oretical Physics, 21(3/4):219–253, 1982.

[3] D. Große, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based Toffoli
network synthesis. In ACM Great Lakes Symposium on VLSI, pages 96–101,
2007.

[4] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis of ele-
mentary quantum gate circuits for reversible functions with don’t cares. In Int’l
Symp. on Multi-Valued Logic, pages 220–225, 2008.

[5] P. Gupta, A. Agrawal, and N. Jha. An algorithm for synthesis of reversible logic
circuits. IEEE Trans. on CAD, 25(11):2317–2330, 2006.

[6] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski. Optimal synthesis
of multiple output Boolean functions using a set of quantum gates by symbolic
reachability analysis. IEEE Trans. on CAD, 25(9):1652–1663, 2006.

[7] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. on Comp., 48(5):506–521, 1999.

[8] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE
Trans. on CAD, 23(11):1497–1509, 2004.

[9] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with
templates. IEEE Trans. on CAD, 24(6):807–817, 2005.

[10] D. M. Miller and G. W. Dueck. Spectral techniques for reversible logic synthe-
sis. In 6th International Symposium on Representations and Methodology of
Future Computing Technology, pages 56–62, 2003.

[11] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm
for reversible logic synthesis. In Design Automation Conf., pages 318–323,
2003.

[12] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

[13] A. Peres. Reversible logic and quantum computers. Phys. Rev. A, (32):3266–
3276, 1985.

[14] R.Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Int’l Workshop on Logic Synth., pages 3a–1–3a–12, 1993.

[15] M. Saeedi, M. Sedighi, and M. S. Zamani. A novel synthesis algorithm for
reversible circuits. In Int’l Conf. on CAD, pages 65–68, 2007.

[16] V. Shende, A. Prasad, I. Markov, and J. Hayes. Reversible logic circuit synthe-
sis. In Int’l Conf. on CAD, pages 353–360, 2002.

[17] L. Storme, A. D. Vos, and G. Jacobs. Group theoretical aspects of reversible
logic gates. Journal of Universal Computer Science, 5:307–321, 1999.

[18] T. Toffoli. Reversible computing. In W. de Bakker and J. van Leeuwen, editors,
Automata, Languages and Programming, page 632. Springer, 1980. Technical
Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[19] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler. Sword: A SAT
like prover using word level information. In VLSI of System-on-Chip, pages
88–93, 2007.

[20] R. Wille and D. Große. Fast exact Toffoli network synthesis of reversible logic.
In Int’l Conf. on CAD, pages 60–64, 2007.

[21] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
an online resource for reversible functions and reversible circuits. In Int’l
Symp. on Multi-Valued Logic, pages 214–219, 2008. RevLib is available at
http://www.revlib.org.

[22] R. Wille, H. M. Le, G. W. Dueck, and D. Große. Quantified synthesis of re-
versible logic. In Design, Automation and Test in Europe, pages 1015–1020,
2008.

[23] G. Yang, X. Song, W. N. N. Hung, and M. A. Perkowski. Fast synthesis of
exact minimal reversible circuits using group theory. In ASP Design Automation
Conf., pages 1002–1005, 2005.

194

Abstract—In this paper, we talk about techniques to

incrementally resynthesize logic cones within a large design
impacted by multiple RTL changes in order to accommodate a
late functional ECO. In design methodologies where the RTL is
hierarchical and the post route netlist is flat, mapping a change
in the behavioral description to the post layout netlist is very
complicated and may not even be feasible if the RTL is not
written in a synthesis friendly manner. We try to attack this
problem by introducing a technique that causes minimum
perturbation to the gate level netlist, thereby retaining to a large
degree, the goodness metrics of timing convergence, routability
and layout cleanliness that were achieved during the various
design milestones. This paper talks about the cone resynthesis
ECO methodology in detail and highlights its usefulness during
tight product deliverable schedules.

 Index Terms – Engineering change order (ECO), formal
verification, cut point, cone synthesis, placement, routing

I. INTRODUCTION
CO (Engineering Change Order) is the process of
introducing a change during the late stages of the design

cycle when most of the quality metrics in terms of timing,
routability and layout convergence have already been met.
ECOs are a necessity since they have many advantages over
the default flow in terms of shorter fabrication time with
focused-ion-beam milling, lower fabrication cost with metal-
only changes, shorter design time as opposed to running the
complete flow, lower design cost and most importantly,
predictable results to incremental changes. In terms of
classification, an ECO may either be a functional change or a
non-functional one. Functional ECOs are typically triggered
by late enhancement requests from customers or a late bug
identified during pre or post-silicon validation. Non-functional
ECOs are however, changes required to be made to the netlist
to fix timing and crosstalk problems or capacitance/transition
violations and hence, do not warrant a RTL change. Non-
functional ECOs are generally easier to converge since they
are localized in scope as opposed to functional ECOs that
involve adding or reconnecting numerous gates. ASIC design
involves integrating several of the complex functional ECOs
late into the tapeout cycle and many of them involve multiple
changes in the RTL, where accurate identification of nets in
the gate level netlist that map exactly to the RTL changes
becomes a very intricate and daunting task. Additionally, the
ECO cycles during a metal layer stepping or a potential base

layer stepping have very aggressive schedules and any
slippage is costly in terms of product launch, impacting the
bottomline. The complexity of a functional ECO could be
gauged on several orthogonal scales such as (a) mask
complexity, where a full set of masks is very expensive
whereas metal-only fixes require no base layer changes, (b)
design complexity, depending on the number of RTL modules
modified, (c) combinational logic complexity, depending on if
existing logic gates are rewired or additional gates (or spare
cells) are required, (d) sequential logic complexity, depending
on number of flops/latches touched by the ECO and the
downstream impact to the clock tree and scan flows and lastly,
(e) size complexity in terms of the number of gates added by
the ECO. There have been commercial tools that tackle this
issue such as ECO Compiler from Synopsys and Conformal
ECO from Cadence. However, each of these has certain
shortcomings – ECO Compiler does a good job at
implementing large ECOs of more than 500 gates. However,
the implementation is not physically aware and importantly,
the tool is no longer supported. On the other hand, Conformal
ECO from Cadence is difficult to use in a hierarchical design
where ports get added and additionally, the quality of the
netlist is somewhat inferior to a corresponding manual
implementation in terms of gate count. In such a scenario,
cone resynthesis is a promising technology where the fanin
cone to the impacted sequential elements is incrementally
resynthesized, placed and taken through the entire back end
and timing convergence loop, thus avoiding huge turnaround
times associated with the complete respin of the block.
Moreover, one could envisage practical scenarios during a
chip design cycle where a functional bug fix in the RTL is not
manually ECO’able using spare cells (metal only stepping) or
normal standard cells (base stepping). In such a situation, the
cone resynthesis flow is a very handy tool to implement the
ECO with minimum change to the existing design. In this
paper, we talk about the entire methodology in detail and
illustrate its effectiveness on a live design.
 To our knowledge, there is little literature talking about the
ECO resynthesis methodology spanning both front end [1][2]
and back end. Lin et al [2] try to solve the problem of late
implementation using a programmable rectification module to
reduce mask cost and improve turn around time. Lot of
previous work on ECO techniques focus on the back-end and
timing aspects of the design. There are several papers that talk
about ECO routing techniques as well as ECO timing

Cone Resynthesis ECO Methodology for Multi-
Million Gate Designs

Suresh Raman Mike Lubyanitsky
Intel Technologies India Pvt Ltd, Bangalore Intel Corporation, Santa Clara, CA 95052

E

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.28

195

convergence. Chen et al [3] talk about the ECO timing
optimization problem using spare cells and present a dynamic
programming algorithm for spare cell rewiring within an
essential bounding polygon without loss of solution
optimality. Li et al [4] propose a tile based ECO routing flow
using routing graph reduction for promoting tile propagation
speed. Xiang [5] addresses the issue of fixing coupling
capacitance violations using an ECO routing algorithm that
processes signal wire segments on a layer one by one while
trying to find a clean routing solution satisfying all constraints
following which the total deviation is minimized based on the
shortest path algorithm. A survey of the most popular
incremental algorithms in physical design is done by Coudert
et al [6][7][8] where they outline a set of problems in
synthesis, placement, and routing and suggest possible
solutions.

In this paper, we talk about an ECO design automation flow
that spans from the ECO implementation in the logical netlist
to the back end convergence of the design. We focus on the
building blocks of this capability that enables integrating
complex ECOs in a matter of days that would otherwise have
taken a long time to converge.

II. PROBLEM FORMULATION
Cone resynthesis flow could be thought of as a complete

framework that takes as input (a) the frozen flat gate level
netlist and (b) the modified RTL with the functional change
and outputs a flat netlist with the modified RTL mapped to
gates and further, that is converged w.r.t. timing and layout
DRC (Design Rule Check) violations. Fig. 1 illustrates the
entire flow using a block diagram representation.

Fig. 1: Block Diagram of Cone Resynthesis Flow

The entire system comprises of two parts: (a) a front end

subsystem that generates the logic level netlist that is formally
equivalent to the ECO’ed RTL and (b) a back end subsystem
that places the newly added cells, and incrementally routes the

corresponding nets with minimum disturbance to the majority
of the nets in the design. We now talk about the front end and
back end flows individually in detail.

A. Front End Cone Resynthesis Flow

The high level description of this flow is to extract a new
fanin cone to the impacted logic and swap the old cone with
the new one. Given a hierarchical RTL that has the functional
ECO change and the frozen gate level netlist that maps to the
original RTL, the first step is to run formal equivalence
verification (FV) between the new RTL and the old netlist in
order to obtain the failing cut points. Fig. 2 shows a sample
design with logic cones fanning in into what are called “cut
points”. Cut points are either D-pins of sequential elements
(latches/flip-flops) or macro data pins or primary inputs/
outputs, and are the points where the fanin cone is evaluated
and compared between the golden and revised netlists.

Fig. 2: Sample Design depicting fanin cones and cut points

Since the golden netlist (RTL) is hierarchical, we would

require giving the formal verification tool the list of sub-
modules to be compared. Care must be taken that these sub-
modules are flattened to leaf level without which the
underlying hierarchies would be considered as black boxes
and in case of a mismatch, the failing cut point would be
reported as a black box pin rather than a sequential element
within that hierarchy. Such mismatches would gate the
resynthesis flow from extracting the entire cone to the
impacted cut points.

The output of the formal equivalence verification run is a
list of all failing cut points where there are mismatches
between the RTL and the netlist. These points could either be
D-pins of latches or flops or could be a submodule port. The
next step is to isolate the lowest level sub-hierarchies in RTL
that completely contain all these mismatches. Once these sub-
hierarchies are identified, a change list requires to be
generated that specifies the exact changes to be made to the
netlist in terms of cell additions as well as the new net
connections and disconnections. Ports as endpoints of fanin
cones could be added when the scope of change is the top
level. This is simply added as just another end point after the
port is created manually. Connections to these lower level
ports also known as hierarchical pins could be automated

Original
RTL

Logic
Synthesis

Placement/
Routing

Original
placed/routed

netlist

Cone
Resynthesis
ECO Flow

New
RTL

ECO placed/
routed netlist

Logic
Synthesis

New
Synthesized

netlist

Equivalence
Verification

Logic cones

Cut points

196

using a script. In order to generate the change list, the new
RTL with the functional ECO requires to be resynthesized,
and this is done using the Design Compiler tool from
Synopsys. Depending on the runtimes, resynthesis could be
done either at the top level or at the level of the sub-hierarchy
that fully contains the mismatching cut points. Once the
resynthesized netlist is ready, the change list containing the
new fanin cone to the failing cut points is extracted and
incrementally plugged in into the original gate level netlist,
whereas the original cone is disconnected. The inputs to the
new cone are swapped with the names that match the original
post route netlist to enable proper connections. Further, the
dangling cone is removed through a reverse breadth first
recursive traversal until either a sequential element, a macro
output, a primary input or an instance used by another cone is
reached. Alternatively, the original cone could be just
disconnected and the inputs tied to the start points of the
original cones. Fig. 3 illustrates the sequence of steps where
the original fanin cones A, B, and C to the flip flops FF3, FF4
and the primary output PO are swapped with the new cones
from the resynthesized gate level netlist namely, A’, B’ and C’
respectively. The ECO’ed netlist in the figure shows the new
cones as well as the original ones disconnected from their
previous connections.

Fig. 3: Illustration of cone-in ECO flow

A point to note is that all the new instances and nets in the

resynthesized netlist must be prefixed with an ECO tag in
order to avoid name clashes with an already existing instance
or net. The change list with the net additions and deletions is
incrementally applied to the post layout netlist and verified for
logic equivalency against the ECO’ed RTL model. If the ECO
involves addition of new sequential elements, then FV must
ignore scan connections since the new latch or flop is not yet

hooked on to the scan chain. The entire front end cone
resynthesis algorithm is formalized in Fig.4

Algorithm: Front_End_Cone_Resynthesis (NOLD, R)
NOLD = {n1, n2, n3, …., nP}; where P is size of original netlist
R = New RTL model with functional ECO
FI(k) = Fanin cone to point k
n represents nets and c represents cells
Generate ECO netlist NECO equivalent to R, such that Δ(NOLD,
NECO) is minimum
Initialize NECO to NOLD
Resynthesize R to obtain new netlist, NNEW = {n1, n2,,.., nQ}
Run formal verification for NOLD against R and generate K =
{k1, k2, … , kM) where K is list of M mismatching cut points
For each cut point, k ε K
 Identify FIOLD(k) = {ni ,ci} such that ni, ci ε NOLD
 Identify FINEW(k) = {nj ,cj} such that nj, cj ε NNEW
 For each {nj ε NNEW} and {cj ε NNEW}
 Add nj and cj to NECO
 For each {ni ε NOLD} and{ci ε NOLD}
 Remove ni and ci from NECO

Fig. 4: Front End Cone Resynthesis Flow Algorithm

B. Back End Cone Resynthesis Flow
 After completing the front end cone resynthesis flow, the
logic netlist with the new connectivity information is ready.
However, the new cells and nets require going through the
entire back end physical design before the database could be
declared as a feasible candidate for tapeout. Specifically, any
new sequential elements inserted during the ECO must be
added to the scan chain and clock tree routed to this element in
an optimal manner such that the skew and latency
requirements are met. Since the number of added sequentials
is typically less during ECO cycles, identification of spatial
proximity to the nearest scan chain and optimum clock net
branch to tap to the new sequential cells is usually performed
manually. Once the clock tree is ECO’ed, the next steps are to
identify a valid placement for the new logic cells and to route
the new nets in a timing driven manner so that the timing and
routability metrics are met within a minimum number of
iterations. Since the number of cells impacted by the ECO is
not always small, manually placing and routing them may not
be an option. Hence, the back end convergence loop
necessitates a sequence of optimization flows that can
significantly reduce the turn-around time to churn out a fully
converged netlist. We now discuss the various options that
might be exercised to achieve the same.

The methodology for ECO placement of the new cells is a
function of the design complexity. If the design is complex, a
don’t touch attribute is applied on all the pre-existing cells and
nets in the design following which the ECO cells are placed
incrementally in timing driven mode. This ensures that the
perturbation to the design is minimal and the convergence
milestones that have been achieved in terms of timing and
layout for the major part of the design are retained. However,

FROZEN NETLIST

A
Q

Q
S
E

C
L

D

FF1

B
Q

Q
S
E

C
L

D

FF2

Q

Q
S
E

C
L

D

FF3

Q

Q
S
E

C
L

D
FF4

PI
C

PO

RESYNTHESIZED NETLIST

A’
Q

Q
S
E

C
L

D

FF1

B’
Q

Q
S
E

C
L

D

FF2

Q

Q
S
E

C
L

D

FF3

Q

Q
S
E

C
L

D
FF4

PI
C’

PO

ECO NETLIST

A’

Q

Q
S
E

C
L

D

FF1

B’

Q

Q
S
E

C
L

D

FF2
Q

Q
S
E

C
L

D

FF3

Q

Q
S
E

C
L

D

FF4

PI
C’

PO

C

B

A

197

it is not necessary to fix the cell placement if we could
potentially afford another round of DRC and hold fixes. Doing
so gives the placement tool higher degrees of freedom to meet
setup requirements and moreover, in most of the tools, post
clock tree optimization in ECO mode is allowed to change the
design state minimally. A point worth noting is that since the
new netlist was generated by a synthesis tool that works off a
wire load model, the cells in the ECO’ed paths might be
improperly sized, resulting in timing violations. In order to
overcome this issue, the placement step must be run twice
with varying capabilities for optimization. The first run places
the cells in the best possible locations in a post-route
environment with propagated clocks and annotated wire
delays, thus ensuring that the placement engine has the most
accurate parasitic data in its memory. Inspite of this, there
might be timing violations since the cell sizes were determined
in the absence of physical information, and purely based on
wire load models that are largely inaccurate for deep
submicron geometries. Therefore, we require rerunning the
placement engine, this time in “sizing only” mode where the
cells on the ECO paths are upsized or downsized depending
on the slack availability. The timing information could be
obtained using the native timing engine within the placer or
could be generated from the actual sign-off timing engine.
Although more accurate, the latter results in larger runtimes
and is acceptable only in cases when the design complexity is
manageable and product timelines allow longer runway for
convergence. Even after multiple placement runs, there is a
possibility that there are remaining violations if the placement
has been arrived at in a constrained environment where the
rest of the logic is not allowed to move. In such a scenario
where global optimization might not be enabled, the
placement engine might yield a local optima putting the onus
on the designer to try out various flavors to increase the
inherent “freedom” to the placer, by removing don’t touch
attributes on related logic cones and by running the placer
with high effort.

Once the placement is achieved with decent timing quality,
the next step is to route the newly created nets in a timing
driven fashion and in a way that introduces minimum routing
DRC violations with the existing nets. If the incremental
routing results in high local congestion and hence huge DRCs,
the fallback option would be to fully route the entire design,
keeping in mind that doing a full route must be the last resort
since it undoes most of the timing fixes done during the earlier
stages. At this point, one could potentially fix most of the
maximum transition and capacitance violations reported by the
router timing engine, assuming that it correlates to a fair
degree with the final signoff timer. Fixing these violations
upstream could potentially help reduce iterations between
timing and placement/routing. On a similar note, one could
also fix the hold violations at the placement or routing stage
itself by inserting buffers or downsizing drivers on the nets in
the failing paths. The stage at which each of these violations is
fixed is purely based on the design methodology/legacy and
how well the placement and router timing engines correlate
with the final signoff timer. Post placement and routing, all the

nets in the design are extracted and the RC parasitics are fed to
the timing engine to generate the timing health indicators for
the design. The setup, hold, slope and Cmax violations reported
by the signoff timer are fixed in subsequent loops and repeated
until the design is timing and layout clean. Each of the steps in
the entire flow is captured in Fig. 5.

Algorithm Back_End_Cone_Resynthesis (NECO)
NECO: Logical netlist equivalent to ECO’ed RTL
Generate layout database converged w.r.t. all physical design
quality metrics

1. Stitch newly added sequentials into nearest scan chains
2. Connect clock pins of newly added sequentials to existing

clock tree
3. Apply don’t touch to all existing cells and nets in design
4. Run timing driven placement for ECO cells with

propagated clocks and annotated wire delays
5. Rerun placement in sizing only mode
6. Route ECO nets incrementally in timing driven mode
7. Extract RC parasitics for the entire design
8. Run sign-off timing engine
9. Generate setup, hold, slope and Cmax violation reports
10. If no timing violations, fix layout DRCs and exit
11. Else fix remaining violations by buffer insertion, gate
 sizing, and load isolation
12. Go back to Step 6

Fig. 5: Back End Cone Resynthesis Flow Algorithm

III. RESULTS
We ran the entire cone resynthesis flow on four large blocks in
our design that have 500K-800K placeable instances.
Synopsys Design Compiler was used for all synthesis runs as
well as to extract the fanin cones to the failing cut points
reported by formal verification. Table 1 depicts the complexity
of the blocks as well as the ECOs in terms of the change
magnitude in the number of cells.

BLOCK CELL COUNT CHANGE MAGNITUDE
(# cells)

A 400K 4280
B 402K 4120
C 836K 2328
D 226K 1130

Table 1: Design/ECO complexity

Table 2 shows the results of ECO runs on blocks with varying
complexity in terms of the magnitude of the cell count change.
Metrics of interest such as number of cells modified in order
to close timing and the estimated equivalent manual effort are
mentioned. Manual effort numbers are projected estimates
based on available design data that had similar cell changes
and ECO complexity. The functional ECOs chosen as
testcases are the ones that absolutely could not be manually

198

ECO’ed or are difficult to ECO on the gate level netlist.

BLOCK ESTIMATED

MANUAL
EFFORT
(man days)

ACTUAL
EFFORT WITH
CONEIN FLOW
(man days)

NUMBER OF
CELLS CHANGED
TO CONVERGE
TIMING

A 40 12 5650
B 35 12 6793
C 50 14 18724
D 5 3 2124

Table 2: Estimated Manual Effort versus cone resynthesis
effort for varied designs

The ECOs in Blocks A and B involved changes in a
common module that was multiply instantiated four times, that
warranted identifying the corresponding manual ECO in four
different physical implementations of the affected module. We
underwent the manual ECO process for four weeks where we
tried identifying the nets in the gate level netlist that exactly
mapped to the RTL change, and this effort yielded success for
two of the four instantiations. This was because two of the
four instantiations were synthesized in an optimized fashion
whereas the remaining two were fairly complicated with a
large number of intermediate signals yielding a netlist difficult
for an ECO. Manual implementation involved tracing
thousands of start points in the fanin cones to the impacted
registers and this was required to exactly pinpoint the logic to
be modified. We went through the cone resynthesis flow for
this ECO and summarize the results in terms of savings with
this flow versus the corresponding manual effort.

For Block C, that had 836K instances, the functional ECO
was particularly difficult, wherein a considerable amount of
manual effort was expended in order to generate a metal only
ECO. Even after significant effort that spanned several man
days, we received formal verification mismatches between the
RTL and the modified netlist, thus requiring an alternative
implementation using cone resynthesis. In the absence of this
flow, complete respin of this block would have taken around
8-10 weeks making it impossible to tape out the chip on
schedule. However, with the cone resynthesis flow, it took
only 2 weeks to converge on the entire design in terms of
timing as well as layout cleanliness. For another block D with
226K cells, that had a functional ECO, we simultaneously ran
the conein flow as well as pursued manual implementation and
found that the conein flow signoff netlist took less time
compared to the corresponding manual effort. In this case, we
changed 2124 cells to converge on timing with the cone
resynthesis flow as opposed to only 115 cells with the
corresponding manual effort. In addition to these four blocks,
we have run the cone resynthesis algorithm on several ECOs
of low and medium complexity that had to be implemented
during a metal-only stepping and found favorable results in
terms of netlist quality and implementation time that did not
exceed 2-3 days for ECOs impacting a maximum of 1K gates.

In conclusion, experimental data shows that the cone
resynthesis flow is a very useful tool in speedy convergence of

the design and can be employed effectively in scenarios where
the RTL change looks difficult to map to the actual gates. For
ECOs with relatively less complexity, the cone resynthesis
flow might yield a higher gate count compared to a manual
implementation and hence higher convergence turn around
time, thereby warranting effective judgement on the part of the
designer to make a choice on either of the approaches. Either
way, cone resynthesis presents itself as a viable and
predictable alternative during tapeout crunch situations and
could be deployed across various types of ECOs.

IV. CONCLUSIONS
To summarize, cone resynthesis automation flow enables

more than 3X reduction in turn around times for timing and
layout convergence for difficult to implement functional
ECOs. However, the flow does have a drawback where the
number of cells that it adds might be much more than what a
manual ECO would do. This is due to the fact that the flow is
based on simple logic equivalence where the entire fanin cone
to a cut point is swapped completely and the algorithm is not
smart enough to find the farthest logic to the cut point where
the cones start diverging. The size of these cones is typically
much small compared to the design size and hence, the extra
gate count is usually acceptable. However, in cases where the
designer has “good enough” confidence to identify the gates
that map to the functional change, the cone resynthesis flow
may not be recommended due to the extra overhead in terms
of cell count and layout convergence.

V. ACKNOWLEDGMENTS
The authors would like to acknowledge Patrick Tsui,

Sitanshu Jain and Srinivas Jammula for their continuous
support during the development cycle of the flow.

REFERENCES
[1] D. Brand, A. Drumm, S. Kundu, and P. Narain, “Incremental Synthesis,”

In Proc. IEEE/ACM International Conference on Computer Aided
Design, Nov. 1994, pp. 14-18.

[2] C. Lin, Y. Huang, S. Chang, W. Jone, "Design and Design Automation
of Rectification Logic for Engineering Change,” In Proc. of the 2005
conference on Asia South Pacific design automation, pp. 1006-1009.

[3] Y. Chen, J. Fang and Y. Chang, “ECO timing optimization using spare
cells,” In Proc. IEEE/ACM International Conference on Computer
Aided Design, Nov. 2007, pp. 530-535.

[4] Y. Li, J. Li and W. Chen, “An efficient tile-based ECO router using
routing graph reduction and enhanced global routing flow,” In IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol.26, no.2, pp. 345-357, Feb. 2007.

[5] H. Xiang, K. Chao, and M. D. F. Wong, “An ECO routing algorithm for
eliminating coupling-capacitance violations,” In IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, vol.25,
no.9, Sep. 2006, pp. 1754-1762.

[6] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,”
In Proc. IEEE/ACM International Conference Computer-Aided Design,
Nov. 2000, pp. 236-243.

[7] J. Cong, and M. Sarrafzadeh, “Incremental Physical Design,” In
International Symposium on Physical Design, 2000, pp. 84-92.

[8] A.B.Kahng, and S. Mantik, “Mismatches of Incremental Optimizers and
Instance Perturbations in Current Place-and-Route tools,” In Proc.
IEEE/ACM International Conference on Computer Aided Design, 2000.

[9] Synopsys Design Compiler X-2005.09-SP4 User Guide

199

A General Approach to High-Level Energy and

Performance Estimation in SoCs

Sandro Penolazzi, Ahmed Hemani and Luca Bolognino

Dept. of Electronic, Computer and Software Systems, School of ICT, KTH, Kista, Sweden

Email: {sandrop, hemani, lucab}@kth.se

Abstract—We present a high-level methodology for efficient
and accurate estimation of energy and performance in SoCs at
Functional Untimed Level. We then validate the proposed method
against gate level for accuracy and against TLM-PV for speed.
We show that the method is within 15% of gate-level accuracy
and in average 28x faster than TLM-PV, for the benchmark
applications selected.

I. INTRODUCTION

FUNTIME is an early estimation framework that provides

estimates of energy and performance of SoCs. The level of

abstraction that forms the basis for estimation is the Functional

Untimed Level, which gives the name to the framework:

FUNTIME. Important benefits of the FUNTIME method are:

Low Engineering Effort: the FUNTIME method does not

require any extra engineering step, like building a Transaction

Level Model. The method is naturally absorbed in the algorith-

mic design phase and architectural exploration and mapping.

We emphasize that a simulation model of architecture is not

required.

Speed: since algorithmic simulation is the basis for energy

and performance estimation, the speed is very high compared

to approaches that involve simulation of the architectural

implementation at various levels of details, like TLM or RTL.

Accuracy: the FUNTIME method claims that it can achieve

accuracy that is not too far from gate level, while remaining

at algorithmic level, as shown in Fig. 1. Although this claim

might sound extra-ordinary, it is based on the state-of-the-art

SOC engineering practice of buy-and-assemble: we assume

the existence of IPs that are characterized for energy and

performance, based on detailed gate level simulation.

In the past, we have already outlined the overall FUNTIME

method and focused on the possibility to use it for inferring

the total amount of transactions occurring in a platform

without having to run any architectural simulation [1]. In the

present paper, we enhance FUNTIME to also allow energy

and performance estimation.

II. RELATED WORK

Many methods for system-level modeling have been devel-

oped by several research groups. Some of them are Metropo-

lis [2], SPADE [3], SpecC [4] and TAPES [5]. What all

these methodologies have in common is the fact of relying

on architectural simulation to perform system-level estimation,

either based on SystemC or other languages.

Fig. 1. Speed vs. accuracy for different levels of abstractions

On the contrary, FUNTIME differs mainly in these two

aspects: a) the ability to avoid architectural simulation, b) the

ability to also generate energy reports. Similarly to Metropolis

and SpecC, FUNTIME adopts the concept of separating com-

putation from communication, but it does not need to define

any modeling language like in SpecC or Metropolis, which

rely on SystemC. FUNTIME shares with SPADE the advan-

tage of adopting untimed modeling. In addition, FUNTIME

does not constrain designers to an exact architecture topology

as TAPES does.

III. THE FUNTIME METHOD: 3 LEVELS OF ABSTRACTION

FUNTIME operates at 3 different levels of abstraction, as

detailed in the present section and shown in Fig. 2. Using a

bottom-up approach, we distinguish A) IP Level, B) FUN-

TIME Level and C) Refinement Level.

Fig. 2. The FUNTIME Methodology flow (A-IP Level, B-FUNTIME Level,
C-Refinement Level)

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.25

200

A. IP Level

Due to the increasing complexity of modern SoCs, it is

sensible believing that, even in the future, new architectures

will be built more and more by reusing and assembling

previously existing IPs, taken from a library and properly

configured according to the specifications requirements. This

is mainly aimed at reducing the time to market and at easing

the whole design process.

It is therefore reasonable to believe that spending time in

characterizing and building models for such IPs is worthwhile

and represents a one-time effort made by the IPs provider.

Models describing IPs architectural properties and configura-

tion space are already available under the industrial XML-

standard SPIRIT [6]. In the context of the present work, we

consider the advantage of having IP-level models for energy

and performance as well. This is shown in Fig. 2A.

In particular, in the scenario that we envisage, an IP energy

and performance model characterizes each IP transaction in

terms of energy and number of cycles, where a transaction

directly expresses one of the IP functionalities. For instance,

for a Processor IP, each instruction belonging to its instructions

set represents one such transaction. Other examples of transac-

tions could be read/write operations for a bus, tx/rx for an I/O

device, encode/decode for a codec, etc. The final IP model

can be expressed in form of look-up tables, mathematical

formulas or by a combination of the two. In addition, the

characterization accounts for variations in the IP configuration

space, both in terms of static parameters, i.e. the VHDL

generics, and run-time parameters, i.e. baud rate, frequency,

etc.

In Section IV, an example of how an IP provider could build

an energy and performance model for a processor is presented.

Note that, in case an IP energy and performance model is not

available, FUNTIME can still produce estimates for that IP in

terms of total number of transactions. This is shown in Fig. 2.

B. FUNTIME Level

Once each IP transaction has been characterized for energy

and performance, the total energy and performance for a full

application can be calculated provided that the total number

and type of transactions triggered by such an application is

known.

Traditionally, this information can be collected from

Instruction-Set Simulation (ISS), transaction-level simulation

or any other architecture-based simulation. In our approach

instead, since the idea is to avoid architectural simulation,

the inference of architectural transactions is achieved by

instrumenting the application, itself devoid of any architectural

detail, to be architectural aware. An instrumented application

is what we define a FUNTIME Model. To make the instru-

mentation possible, the FUNTIME Level needs to receive in

input both an architecture specification (AS) and a use-case

specification (UCS). The AS is an XML file that symbolically

tells which IPs compose the architecture and how they are

connected to each other. The UCS tells which applications are

going to run on the architecture and how they are mapped.

Transactions inferred at this level are defined primary trans-

actions (P-ALTs). The process flow is illustrated in Fig. 2B.

Applications can be implemented either in software or in

hardware. In the former case, we say that they are mapped to

software IPs like a Processor, while in the latter case they can

be mapped to a hardware macro. In the present work, we only

focus on the generation of FUNTIME Models for software

applications, which is detailed in Section V. The generation

of FUNTIME Models for hardware applications is part of our

future work.

Note that the process of retrieving amount and type of

transactions is in general not only limited to the resource

where the application is mapped, but can be straightforward

also for interconnects and memories used by such a resource.

For instance, by knowing that an application is mapped to a

processor connected to a memory through a bus, it is possible

to infer also the amount of bus and memory transactions, by

counting how many store/load instructions have been issued.

C. Refinement Level

From Subsections III-A and III-B, once each IP transaction

has been characterized for energy and performance, and the

total occurrence of such transactions for the execution of

an application has been determined, the total energy and

performance can finally be estimated. However, in most cases

this calculation would lead to a wrong estimation both for

energy and timing, compared to the actual values collected

from gate level.

The reason is that there are other implications, ignored

in the two steps above, that need to be kept into account.

Such implications are mainly related to transactions inter-

dependency/ordering issues, as well as to hardware/software

optimizations (i.e. caches or power management), and resource

sharing (i.e. bus arbitration, scheduling).

The first direct effect implied by the elements above is a

variation of the total application length, in terms of number of

cycles and, consequently, in the final energy too. In traditional

cycle-accurate architectural simulations, this would not repre-

sent an issue, as the exact number of cycles would come along

as part of the simulation itself. In contrast, in our approach this

contribution needs to be factored in separately.

In this paper, we demonstrate that this can be done by

refining the trace of P-ALTs collected at the FUNTIME Level

below. Such a refinement produces what we have defined as

secondary ALTs (S-ALTs). This is shown in Fig. 2C. The sum

of P-ALTs and S-ALTs represents the total number of triggered

ALTs, from which total energy and performance numbers can

finally be extracted.

In Section VI and VII, we detail how a possible refinement

can be done to take into account the implications due to

transactions interdependency and to the presence of caches.

IV. A LEON3 ENERGY AND PERFORMANCE MODEL

In this Section, we propose an overview on how an IP

energy and performance model for a processor can be defined.

201

In the context of our research, we have done it for a SPARC-

based Leon3 processor [7], however the methodology is gen-

eral and can be applied to other processors as well. The entire

process relies on having an RTL representation of the IP and

on extracting energy/timing information from its equivalent

gate level. The main steps are the following.

First, a set of significant configurations is chosen by chang-

ing the VHDL generics in the RTL model; such configurations

include a version with/without cache, with/without mul/div

unit, for a total of 4 different configurations. Enabling the

cache generic only specifies that the cache controller has

to be synthesized. The cache itself is located outside the

core module and is not synthesized. For the 4 configurations,

synthesis has been carried out in our case by using Cadence

RTL Compiler and the 90nm TSMC library.

As a second step, gate-level simulations are run to extract

energy and number of cycles associated to each processor

instruction for all the configurations selected. The method

used to make this characterization relies on executing for 100

consecutive times a basic sequence composed of 5 nops, 1

instruction under test and 5 nops, for a total of 1100 executed

instructions, as shown in Expression 1.

100 × (5 · NOP, IUT, 5 · NOP) (1)

The first selected IUT is the nop itself. From Expression 1, this

will lead to the execution of 1100 nops, for which energy is

also calculated. The energy of a single nop is therefore given

by Eq. 2.

ENOP =
E1100 NOP

1100
(2)

Once the energy of a single nop is known, calculating the

energy for the other IUTs is quite straightforward: since in

these cases there will be 100 executed IUTs and 1000 nops,

the energy of 100 IUTs is given by Eq. 3

E100·IUT = E1000 NOP+100 IUT − 1000 · ENOP (3)

and therefore the energy for a single IUT is

EIUT =
E100 IUT

100
(4)

As a third step, the energy values for the whole instruction set

are collected in a LUT together with the number of cycles, as

shown in the fragment reported in Table I. Note that reporting

energy rather than power has the advantage of making the

model independent of the frequency at which the IP runs, and

therefore also more general.

TABLE I
LEON3 LUT FOR ENERGY AND PERFORMANCE

Instr. Energy[pJ] Cycles

add 92.74 1.00

ld 75.17 1.00

nop 25.34 1.00

st 108.72 2.00

...

V. FUNTIME MODELS FOR SOFTWARE APPLICATIONS

The generation of FUNTIME Models for applications

mapped to a processor relies on the ability to relate the source

code lines of the application to the assembly instructions

contained in the corresponding basic blocks for the target

processor. This is obtained in the following steps:

• An application is compiled for a host environment (typ-

ically a common x86-based PC).

• Mixed source/assembly code files are generated for the

same application for the target processor (the Leon in our

example).

• The application is executed natively in the host environ-

ment and a code coverage tool is used to extract the

number of times that each source code line has been

executed.

• By relating this information to the instructions and basic

blocks of the same application for the target processor,

it is possible to generate a report of primary transactions

(P-ALTs), as shown in Table II.

TABLE II
EXAMPLE OF TRANSACTIONS REPORT

Total transactions = 2 397 366

save 673
st 159 266
mov 123 528
... ...

Note that this approach to generating and executing FUNTIME

Models for software applications is very general, which leads

to high re-usability, and requires no extra engineering effort:

it just needs a compiler, for the host and target architectures,

a code coverage tool and a small script that automatically

performs the source-to-assembly mapping operation and that

is application and architecture independent.

VI. TRANSACTIONS INTERDEPENDENCY REFINEMENT

The first refinement that we operate aims at isolating and

modeling the effect of transactions interdependency over the

total application length and energy estimated by using IP

Models and FUNTIME Models.

IP energy and performance models are implemented assum-

ing an ideal condition where each transaction is completed

in the least possible amount of cycles, provided that the

transaction is not related to any previous one and that all

what is required to make it happen (ex. instructions, data)

is already available at the IP inputs before the transaction gets

triggered. In this way, the amount of cycles finally associated

to each transaction only depends on the intrinsic properties of

the IP and is not related to what is around it. However, in real

systems running real applications, such ideal conditions are

generally not satisfied. This non-ideality can be interpreted

as the injection of extra cycles besides the theoretical ones

reported in the IP model.

For a processor IP, transactions are the instructions belong-

ing to its instruction set, and the occurrence of extra cycles can

202

be interpreted as “stall” conditions implied by instructions/data

dependency. As an example, in a system without cache, if

a load instruction is issued right after a store to the same

memory location, a stall condition will occur, since the data

to be loaded has not yet been stored into memory. The goal of

the present refinement is therefore to estimate how many such

stalls occur when executing real applications, without running

any architectural simulation, like gate level or TLM.

Our approach relies on the idea that, even if all applications

are different from each other, their instructions are executed

such a high number of times and in so many different

combinations, that it makes sense and it is possible to find an

average behavior, independent from the application chosen.

The following empirical method can generally be used. A

small number of reference applications is taken and used as

a base for calibration. In detail, such applications are first

run on a platform and the average number of cycles per

instruction is collected for each such application. Afterwards,

calibration is performed by taking a weighted average of the

cycles per instruction over the reference applications. In each

application, the weighting factor is given by the percentage of

times that each instruction is issued over the total number

of instructions. The resulting numbers are then taken as a

model and applied to new applications to estimate the total

applications length in terms of cycles. The difference between

the total application cycles found by using the refined values

and the total application cycles found by using the ideal values

represents the contribution of the stalls and, consequently,

the effect of transactions dependency. Since a stall basically

corresponds to a state where the processor is not executing any

useful operation, its behavior in terms of energy and cycles can

be identified with the behavior of a nop instruction. By using

Eq. 5, it is therefore possible to estimate how many stalls occur

and to refine accordingly the transactions report produced by

the FUNTIME Model.

#Stall =
Tot estimated cycles− Tot ideal cycles

Cycles per NOP
(5)

Similarly, the extra energy contribution due to the stalls can

be calculated by using Eq. 6.

Estalls = #stalls× ENOP (6)

In the context of our research, the method described above has

been applied to a SoC based on a Leon3 processor (without

cache) that exchanges information with a memory through

an AMBA AHB bus. A set of 3 different applications (an

FFT, a Quicksort and a Fibonacci series) has been taken

as a reference and used for calibration. Table III shows a

comparison between the ideal cycles and the refined ones

for a bunch of Leon3 instructions. This approach to refining

transactions interdependency has been validated and presented

in Section VIII.

VII. CACHE REFINEMENT

The presence of caches is a further element that affects the

ideal numbers estimated by using IP Models and FUNTIME

TABLE III
COMPARISON BETWEEN IDEAL AND REAL AVERAGE CYCLES PER INSTR.

Instr. Ideal cycles Real avg. cycles

add 1.00 7.58

ld 1.00 15.19

nop 1.00 3.23

st 2.00 5.82

...

Models. The refinement that we intend to apply in this

case aims at quantifying and modeling the variation of an

application length and energy, compared to the case with no

cache, given the cache miss ratio. As opposed to the effect of

transactions interdependency, which adds extra cycles, caches

reduce the total amount of application cycles, since there are

fewer wait states caused by communication with memory.

Also in this case, the way in which the refinement is

implemented relies on the assumption that the percentage of

cycles variation for a given cache miss ratio, compared to

the case without cache, is independent from the application

studied. This assumption is again sustained by the fact that an

average behavior can be detected, as a consequence of the high

number of instructions and instruction sequences generated

by each application. Similarly to the previous refinement, a

small set of applications can therefore be taken as a base for

calibration and the results of calibration can then be applied

to refine new applications. Calibration in this case consists in

finding an interpolation function.

Referring to the same simple SoC (Leon3 with 1k, 2k, 4k

cache) and the 3 reference applications as for the transactions

interdependency refinement, the interpolation function results

in this case in a straight line, expressed in Eq. 7:

% Cyc = 1.09 · Miss Ratio + 19.19 (7)

where % Cyc represents the percentage of total cycles com-

pared to the case without cache. Note that, for an ideal case of

miss ratio = 0, an application would complete in about 20%

of the time with respect to the case with no cache. Validation

for cache refinement is also presented in Section VIII.

VIII. VALIDATING THE FUNTIME APPROACH

The validation of the FUNTIME methodology has been

carried out on a set of common benchmark applications,

mapped to the same reference SoC used in the sections above:

a Leon3 processor exchanges information with a memory

through an AMBA AHB Bus. The validation consists of the

following 2 subsections: in Subsection VIII-A, the Leon3

IP model (Section IV), the FUNTIME Model for software

applications (Section V) and the refinements (Sections VI

and VII) are validated against gate level for energy and

timing estimation accuracy; Subsection VIII-B validates the

FUNTIME methodology in terms of execution speed against

TLM-PV.

A. FUNTIME vs. gate level for energy and timing accuracy

Gate level has been chosen as a reference for FUNTIME

validation, since it represents the most accurate estimation

203

TABLE IV
1 SOURCE OF INACCURACY: LEON3 ENERGY & PERFORMANCE MODEL

FFT Quicksort Fibonacci Viterbi Queens Dhrystone MD5

Instructions 1 371 584 4 008 651 1 585 313 2 452 903 4 266 783 1 950 813 1 802 380
Cycles 6 485 094 31 649 232 13 902 019 17 511 989 24 193 885 15 938 144 14 428 588

Real energy [mJ] 0.2396 1.1508 0.4906 0.6250 0.8571 0.5641 0.5228
Estimated energy [mJ] 0.2720 1.1490 0.4781 0.6597 0.9369 0.5788 0.5258
Error [%] 13.52 -0.16 -2.55 5.55 9.31 2.61 0.57

TABLE V
2 SOURCES OF INACCURACY: LEON3 ENERGY & PERFORMANCE MODEL + ESTIMATED NUMBER OF CYCLES (STALLS)

Calibration benchmarks
FFT Quicksort Fibonacci Viterbi Queens Dhrystone MD5

Instructions 1 371 584 4 008 651 1 585 313 2 452 903 4 266 783 1 950 813 1 802 380

Real # cycles 6 485 094 31 649 232 13 902 019 17 511 989 24 193 885 15 938 144 14 428 588
Estimated # cycles 7 217 187 31 153 927 13 251 730 18 484 266 24 878 824 15 660 388 14 082 568
Error [%] 11.29 -1.56 -4.68 5.55 2.83 -1.74 -2.40

Real energy [mJ] 0.2396 1.1508 0.4906 0.6250 0.8571 0.5641 0.5228
Estimated energy [mJ] 0.2923 1.1352 0.4600 0.6597 0.9559 0.5711 0.5162
Error [%] 22.01 -1.35 -6.23 9.87 11.52 1.24 -1.27

TABLE VI
3 SOURCES OF INACCURACY: LEON3 ENERGY & PERFORMANCE MODEL + ESTIMATED NR. OF CYCLES (STALLS) + ESTIMATED NR. OF INSTRUCTIONS

Calibration benchmarks
FFT Quicksort Fibonacci Viterbi Queens Dhrystone MD5

Real # instructions 1 371 584 4 008 651 1 585 313 2 452 903 4 266 783 1 950 813 1 802 380
Estimated # instructions 1 273 927 3 824 253 1 517 196 2 398 390 4 006 083 1 880 389 1 707 214
Error [%] -7.12 -4.6 -4.3 -2.22 -6.11 -3.61 -5.28

Real # cycles 6 485 094 31 649 232 13 902 019 17 511 989 24 193 885 15 938 144 14 428 588
Estimated # cycles 6 731 528 29 427 456 12 185 120 17 783 529 23 680 975 15 131 674 13 233 901
Error [%] 3.8 -7.02 -12.35 3.55 -2.12 -5.06 -8.28

Real energy [mJ] 0.2396 1.1508 0.4906 0.6250 0.8571 0.5641 0.5228
Estimated energy [mJ] 0.2734 1.0660 0.4145 0.6636 0.9280 0.5382 0.4803
Error [%] 14.1 -7.37 -15.51 6.18 8.27 -4.60 -8.13

methodology for SoCs. A first set of comparisons is presented

in Tables IV, V and VI. These tables validate the accuracy of

the FUNTIME Methodology for 7 benchmarks by introducing

a growing number of sources of inaccuracy. Note that the first

3 applications from the left also represent the calibration suite

referenced in the refinement sections. In all these 3 tables, the

Leon3 configuration without cache has been selected.

In Table IV, the only source of inaccuracy introduced is

the IP energy and performance model of the Leon3, while

the number of actual cycles and instructions is measured.

Therefore, no refinement and no FUNTIME Model is used.

This table basically validates the accuracy of the Leon3 energy

and performance model. Table V introduces 2 sources of

inaccuracy: the first refers to the transactions interdependency

refinement used to estimate the total number of cycles (ideal

+ stalls contribution); the second refers to the Leon3 energy

and performance model. The number of actual instructions

is measured. Finally, Table VI introduces 3 sources of in-

accuracy: the first two are like in Table V, while the third

refers to the estimated number of transactions (instructions)

found by means of the FUNTIME Model. Note that, in this

case, the number of transactions is always underestimated.

This depends on the fact that, when associating source lines

to assembly code, the FUNTIME Models cannot take into

account the contributions of calls to external routines for which

the assembly code is not directly available. This is for instance

the case for common library functions, i.e. malloc, strcpy,

printf, etc. We have been working on modeling and factoring in

this contribution separately, but the process is not yet complete.

Note that in Table VI, which introduces the highest number

of sources of inaccuracy, the maximum error of FUNTIME

for energy estimation is around 15% of the gate level. These

results confirm the expectations shown in Fig. 1.

Validation for the cache refinement is instead presented

in Fig. 3. In this case, the Eq. 7 found as an interpolation

for the calibration benchmarks has been used to estimate

the cycles variation also for the other 4 benchmarks on the

right when using a Leon3 with 1k, 2k, 4k cache. Fig. 4

shows both the interpolation straight line extracted from the

calibration benchmarks (dashed line), and the real interpolation

straight line for the other 4 applications (thick line). The

small difference between the two proves that using Eq. 7 as

a reference for all the applications is sensible and the error

introduced is minimal.

B. FUNTIME vs. TLM-PV for execution speed

For speed comparison, TLM-PV has been chosen as a

reference. The reason is that this represents the fastest high-

204

Fig. 3. Validating the cache refinement

TABLE VII
TIMING COMPARISON BETWEEN FUNTIME AND TLM-PV

#ALTs TLM-PV FUNTIME Speedup

Jpeg2k 128x128 82M 3.00 sec 0.62 sec 5

Jpeg2k 256x256 272M 10.30 sec 0.69 sec 15

Jpeg2k 512x512 986M 38.66 sec 1.04 sec 37

H264 176x144 1.68B 50.75 sec 1.41 sec 36

H264 352x288 2.55B 79.80 sec 1.58 sec 51

level methodology for system-level estimation commonly used

at present. For this purpose, we built our own TLM-PV in Sys-

temC for the reference SoC architecture. The implementation

has been as abstract as possible, since it exclusively represents

the transactions occurring across the platform among the

different IPs. In addition, communication is handled using

bidirectional blocking interfaces. For this experiment, a set

of applications has been chosen with a number of executed

instructions much higher than the benchmark applications of

the previous experiment. The reason is to make the differ-

ence between FUNTIME and TLM-PV execution speed more

evident. The applications chosen are the image compression

codec JPEG2000 and the video compression codec H264.

The first has been applied to three images of sizes 128x128,

256x256 and 512x512. The second has been used for two

videos of 3 frames each, with resolution of 176x144 and

352x288. The number of total executed instructions ranges

from 80 milion to 1.6 billion. The results of this comparison

are reported in Table VII and show a mean speed improvement

of 28 times for FUNTIME compared to the TLM-PV. Besides,

note that the advantage of FUNTIME over TLM-PV increases

as the number of instructions increases. This confirms the

capacity of FUNTIME to be used for complex and real use-

case scenarios, and is consistent with the speedup expectations

of Fig. 1.

Fig. 4. Cycles variation as a function of the cache miss ratio

IX. A REAL-CASE EXAMPLE

To demonstrate the capacity of the FUNTIME Methodology,

FUNTIME has been used to estimate energy and execution

time for a real use case of encoding a full movie (608x336

for 193 204 frames) using the H264 video codec.

It took about 28 hours to execute the application on the

host machine. This is because the codec was compiled with

no optimization. On the other hand, the instrumentation and

the generation of energy/timing reports only took 0.72 secs.

By using the values in Table VII, it is reasonable to estimate

that the same experiment performed in TLM-PV with the

simplified CPU model would take around 128 hours.

In Fig. 5, we report energy figures for the Leon3 processor,

the AHB Ctrl and a 16k memory, as well as the estimated

execution time of the application, assuming that the SoC is

clocked at 400MHz. IP-level energy and performance Models

have been implemented both for the Leon3 and the AHB Ctrl,

while Cacti [8] has been used for memory energy estimation.

Fig. 5. Energy distribution

X. CONCLUSION AND FUTURE WORK

We have described a high-level approach to perform ef-

ficient and accurate energy and performance estimations in

SoCs. We have based the presentation on 3 different levels of

abstraction: IP Level, FUNTIME Level and Refinement Level.

We have then validated the methodology against gate level

for estimation accuracy, and against TLM-PV for estimation

speed. The results give an accuracy of FUNTIME within 15%,

and a mean speedup around 28x. We are presently working

on extending and completing the refinement process to also

account for the implications due to bus contention, scheduling,

power management policies and resource sharing issues in

general. The generation of FUNTIME Models for hardware

applications is also part of our future work.

REFERENCES

[1] S. Penolazzi, M. Badawi, and A. Hemani, “A Step Beyond TLM Inferring
Architectural Transactions at Functional Untimed Level,” in VLSI-SoC,
Rhodes, Greece, 2008.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: an integrated electronic system
design environment,” Computer, vol. 36, no. 4, pp. 45–52, April 2003.

[3] P. Lieverse, P. V. D. Wolf, K. Vissers, and E. Deprettere, “A methodology
for architecture exploration of heterogeneous signal processing systems,”
J. VLSI Signal Process. Syst., vol. 29, no. 3, pp. 197–207, 2001.

[4] D. D. Gajski, Z. Jianwen, R. Domer, A. Gerstlauer, and Z. Shuqing,
SpecC: Specification Language and Methodology. Springer, 2000.

[5] T. Wild, A. Herkersdorf, and G.-Y. Lee, Design Automation for Embedded

Systems. Springer, 2006, vol. 10, ch. TAPES-Trace-based architecture
performance evaluation with SystemC.

[6] SPIRIT User Guide v1.2, 2006.
[7] L. Bolognino, “Synthesis and Power Modeling of a Leon3 SPARC V8

Processor,” Master’s thesis, Royal Institute of Technology (KTH), 2008.
[8] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi, “Cacti 5.0,” HP

Laboratories, Tech. Rep., 2007.

205

Exploiting Hybrid Analysis in solving Electrical Networks

V. Siva Sankar, H. Narayanan, Sachin B. Patkar
{sivasankar,hn,patkar}@ee.iitb.ac.in

Department of Electrical Engineering,
Indian Institute of Technology, Bombay,

Mumbai-400076,
India

Abstract

In this paper we use topological hybrid analysis (mixture
of nodal analysis and loop analysis) to solve circuits with
resistors, voltage sources, current sources and diodes with
exponential characteristics. In topological hybrid analysis
[3], from the given network two smaller circuits are derived
and solved simultaneously satisfying certain boundary con-
ditions and this results in a solution of the original network.

Our main emphasis is on non planar circuits with a large
conductance range. The reason for this is that for non
planar circuits preconditioned Conjugate Gradient method
seems to perform very well but its convergence will be ad-
versely affected once the ratio of maximum to minimum con-
ductance becomes as high as 108. To overcome this problem
we use Hybrid analysis and a variation of Conjugate Gra-
dient method. Using this method we analyzed circuits con-
taining resistors with large range of values, voltage sources
and current sources and having size up to 1 million nodes
and 3 million edges on 3GHZ pentium IV processor with
2GB RAM in less than 4 minutes. Also, we report the simu-
lation timings for circuits containing diodes.

1. Introduction

The static DC analyzer is at the core of a circuit simula-
tor. As it decides the performance of the simulator, speeding
it up is of paramount importance. The work reported in this
paper is part of an ongoing effort [5, 6] at the Electrical De-
partment, IIT Bombay towards building specialized circuit
simulators that can handle large scale (106 nodes) circuits
with diodes, resistors, current and voltage sources. In ear-
lier work we have reported good results with planar linear
circuits on which sparse LU and cholesky decomposition
are very successful. Through the Newton-Raphson (NR)
technique, we can then solve planar diode circuits which at

each iteration reduce to linear circuits. However non pla-
nar circuits present serious difficulties since sparse LU per-
forms poorly beyond 20K node size circuits and cholesky
decomposition beyond about 100K. On the other hand, the
conjugate gradient method (CG) performs excellently well
if the ratio of maximum to minimum conductance is in the
range 1 − 104. But, in practice exponential diode circuits
during NR iteration produce the ratio of maximum to min-
imum conductance as 109 or 1010. This is correlated with
high condition number and CG essentially does not con-
verge.

Curiously, a method which has largely been dismissed
as purely of theoretical interest appears to give satisfactory
practical results for this problem. This is the hybrid analysis
of Kron topologically generalized as in [1, 3]. Essentially
by scaling the values of resistors one puts them in the range
10−k to 10kΩ (k=4, adequate for us). The resistors are par-
titioned into those in 1 − 104Ω range and those in 10−4

to 1Ω. The method treats the former as resistors in loop
analysis and the latter as conductances in nodal analysis.
Two networks denoted by NAL and NBK are appropriately
constructed on these two groups. We write nodal analysis
equations for NAL network and loop analysis equations for
NBK network and couple them in terms of boundary cur-
rent/voltage variables. This results in a coefficient matrix of
the form [

ArGAT
r HT

−H BRBT

]

where the top left block is the node conductance matrix of
NAL and the bottom right, the loop resistance matrix of
NBK . This matrix is positive definite but not symmetric.
A variant of CG (called Modified CG [1]) works well for
this case and the convergence behavior is as though we are
working with a network where the range of resistances is
only 1 − 104Ω. For randomly generated non planar cir-
cuits with exponential diodes, resistors, voltage and current
sources, this method is very effective (see section 6).

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.27

206

Brief description of topological hybrid analysis and
MCG method are given in section 2. Section 3 presents
an approach to obtain an electrical equivalent circuit from
a specific set of linear equations and solve the circuit to get
the solution of the linear system of equations. Experimental
results are discussed in section 4. Conclusions are given in
section 5.

2 Preliminaries

Let G be a graph on the set of edges S. A forest of G is
the maximal set of branches of G which contains no loops.
If the graph is connected (i.e in a single connected piece
(called component)) the forest of G would be called a tree
of G. Let P⊆S. By G×P , the contraction of G on P , we
mean the graph obtained by fusing the end points of edges
in S−P and deleting them. By G◦P , the restriction of G on
P , we mean the graph obtained by open circuiting (deleting)
all the edges in S − P and retaining only the nodes which
are end points of edges in P .

3 Hybrid Analysis

The solution of a network with voltage sources and
other devices can be reduced to one without voltage
sources by the simple and fast procedure of voltage-shift
[4]. We will therefore assume that our linear network
has only resistors and current sources. We will further
assume that our circuit is non planar. As mentioned before,
direct methods (sparse LU and cholesky decomposition)
are too slow beyond 100K nodes. Preconditioned conju-
gate gradient method does not work well if the ratio of
maximum to minimum conductance is higher than 104.
Topological hybrid analysis combined with modified CG
seems tailor made for this situation [2, 3]. We will call it
the NAL−NBK method. The steps involved are as follows:

Let the given network be N with graph G as in Figure
1. The devices in N are decomposed into A and B. The
only requirement is that the characteristics of the devices
in A and B are independent of each other. In our case we
scale the resistances so that they are in the range 10−k to 1
(A branches) and 1 to 10k (B branches). Let tA be a tree
(or forest) of the sub graph of G on A. Extend tA to a tree
(or forest) t of the graph G. Call as K the branches in tA
which lie in the fundamental circuit of a B − t branch with
respect to the tree t. Call as L the branches in B − t whose
fundamental circuits with respect to t contain branches of
tA. Now build the network NAL on G × (A ∪ L) as shown
in Figure 2 with device characteristics of A as in N but
devices in L with no constraints (can be thought intuitively
as unknown current sources). Next build the network NBK

on G ◦ (B ∪ K) (see Figure 3).

1

2 3

4

5

6

0

A

B

e1 e2

e3

e4 e5

6e7 e8
e9

e10

e11 e12

e

Figure 1. Given Network N

1

0

e1 e2e3

e4 e5

i6
i7

 2 3

Figure 2. Network NAL

e3

e5

e6e9e8

e7

e10

e11
e12

2

3

4

5

6

0

Figure 3. Network NBK

The result in [2, 3] states that solving N is equivalent
to solving NAL and NBK simultaneously matching the
boundary conditions by making iL the same in both and
vK the same in both.

In our case we assume every branch to be composite as
in Figure 4. The device characteristic can be seen to be

i − J = G(v − E) (1)

v − E = R(i − J) (2)

We then write nodal analysis equations for NAL taking

207

k,ikv

Jk

Rk

Ek

Figure 4. Composite branch

iL to be current sources yielding the equations

ArAGAAT
rAvnA

+ ArLiL = −ArJA + ArGAEA

We write loop analysis equations for NBK keeping vK as
voltage sources.

BBRBBT
Bi1B

+ BKvk = −BBEB + BBRBJB

Here
[

BB BK

]
is a fundamental circuit matrix of

G◦(B∪K) and
[

ArA ArL

]
is a reduced incidence ma-

trix of G × (A ∪ L). We denote by BL the sub matrix
of BB with all rows but columns corresponding to L and
by ArK the sub matrix of ArA with all rows but columns
corresponding to K. Matching iL, vK for both yields
iL = BT

L ilB , vK = AT
rKvnA.

So finally we get equations of the form[
ArAGAAT

rA ArLBT
L

BKAT
rK BBRBBT

B

] [
vnA

i1B

]
=

[−ArJA + ArGAEA

−BBEB + BBRBJB

]
(3)

Solving which we get node voltages of NAL and loop cur-
rents of NBK . The branch voltages vA and branch currents
iB can be obtained through KCL and KVL and iA and vB

are obtained using device characteristics.

3.1 Modified Conjugate Gradient Method
(MCG)[1]

The steps for this method are the same as preconditioned
CG except for one difference. Whenever we need to
compute the dot product < x1 x2, y1 y2 >∼ of vectors
(x1, x2) and (y1, y2) partitioned consistently with the
partition in 3, we compute it as xT

1 y1 − xT
2 y2 rather than

xT
1 y1 + xT

2 y2. With this definition of dot product modified
CG is as follows; To solve Âx = b, with a preconditioned
matrix M

• Given an initial guess x0, take r0 = b − Âx0, solve
Mz0 = r0.

• Set p0 = z0.

• For k=1,2,3....

• compute Âpk−1.

• set xk = xk−1 + ak−1pk−1, where ak−1 =
<rk−1,zk−1>∼

<pk−1,Âpk−1>

• compute rk = rk−1 − ak−1Âpk−1.

• solve Mzk = rk and set pk = zk + bk−1pk−1 where
bk−1 = <rk,zk>∼

<rk−1,zk−1>∼ .

In [1] it is shown that this method converges provided it
does not encounter any vector x such that < x, x >∼= 0
during the progress of the algorithm.

4 Adapting MCG to Hybrid Analysis

The key step in the adaptation is to interpret matrix vec-
tor multiplication Apk−1 and the solution of Mzk = rk,
graph theoretically or network theoretically. In our case the
pre conditioner is

M =
[

ArAGAAT
rA 0

0 BBRBBT
B

]

The solution of Mzk = rk can be interpreted as
the solution of two decoupled networks on G◦A and
G×B respectively interpreting rk as current or voltage
sources. There is no need to compute the coefficient
matrix in 3 or the matrix M explicitly. One should
just have the appropriate network available while multi-

plying

[
ArAGAAT

rA ArLBT
L

BKAT
rK BBRBBT

B

] [
vnA

i1B

]
. Since H

is a sparse matrix containing 0 and 1 as elements, we
need to worry about computing (ArAGAAT

rA)vnA
and

(BBRBBT
B)i1B

only. Consider the former. First, AT
rAvnA

is the branch voltage vector corresponding to the node
potential vector vnA

(with respect to a datum node) in
the graph G◦A. This can be done graph theoretically.
GA(AT

rAvnA
) only involves scaling the components of this

vector using the (diagonal) entries of GA. Treating this as a
branch current vector ArA[GAAT

rAvnA
] yields the net cur-

rent leaving each node. This again can be done graph theo-
retically.

Next consider (BBRBBT
B)i1B

. BB is the fundamental
circuit matrix of G×B with respect to a tree tB and a co
tree LB . Then BT

Bi1B
is the branch current vector corre-

sponding to co tree current vector i1B
. As before, mul-

tiplying by RB amounts to scaling the vector. Comput-
ing BB[RBBT

Bi1B
] = BBYB say. This can also be given

a graph theoretical interpretation. If BB = [I B12] and

208

YB =
[

Y1

Y2

]
then BBYB = [I B12]

[
Y1

Y2

]
= E1 say, i.e

[I B12]
[

Y1 − E1

Y2

]
= 0. The vector Y1 −E1 is the co tree

voltage corresponding to the tree voltage Y2 in G×B. Since
Y1 is already known E1 can be computed.

5 Approach to solve a specific set of linear
equations

To solve the equation 3 using modified CG we experi-
mented with Block diagonal preconditioning. Here in each
iteration of MCG, it is necessary to solve

M

[
z1

z2

]
=

[
r1

r2

]
(4)

where

M =
[

ArAGAAT
rA 0

0 BBRBBT
B

]

As explained earlier, in order to solve the equation 4 we
have to solve two decoupled networks. They are

1. An RJ circuit (NAL): The system of equations to be
solved here is

ArAGAAT
rAz1 = r1 (5)

Solving the equation 5 is equivalent to solving the RJ
circuit obtained from NAL network after open circuit-
ing L branches and treating r1 as current sources. To
illustrate it, let NAL graph be as shown in Figure 5.

1

0

A A

K

K

L L

A

 3 2

Figure 5. NAL graph

With respect to NAL graph, we have to solve

ArAGAAT
rAz1 =

⎡
⎣ r11

r12

r13

⎤
⎦ (6)

To solve the equation 6 we solve the equivalent RJ net-
work shown in Figure 6. For the circuits shown in Fig-
ures 2 and 6, node 0 is taken as datum node.

r13

r11

r12

2

0

A A

K

K

1

3

A

Figure 6. RJ circuit equivalent to the equation
6

2. An RV circuit (NBK): The system of equations to be
solved here is

BBRBBT
Bz2 = r2 (7)

We do not solve the equation 7 directly since the coef-
ficient matrix is dense. Instead, we form an equivalent
electrical network and solve it through nodal analysis.
Solving the equation 7 is equivalent to solving the RV
circuit obtained from NBK network after short circuit-
ing the K branches and treating r2 as voltage sources
in series with co tree branches.

2

3

4

5

0

6

K

K
L

L

B
B

BB
B

e1 e3
e2

e4

e5

e6

e7
e8

e9

Figure 7. NBK graph

To illustrate it, let NBK graph be as shown in Figure
7. Figure 3 has been renumbered for convenience. Let
the branches e5, e6, e7, e8 and e9 form a tree for the
network NBK . The branches e1, e2, e3 and e4 form the
corresponding co tree. Now with respect to the circuit
shown in Figure 7 we will have to solve

BBRBBT
B

⎡
⎢⎢⎣

z21

z22

z23

z24

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r21

r22

r23

r24

⎤
⎥⎥⎦ (8)

Where z2k = iek
for k=1,2,3 and 4.

Solution of the equation 8 can be obtained by solving
the RV network shown in Figure 8.

Now a resistance in series with a voltage source can
be converted into a resistance in parallel with a current
source without changing the terminal behavior.

209

2

5

6

0

r21

r22

e1

e2
e7

e3

r23

e4

r24

e9

e8

Figure 8. RV circuit equivalent to the equation
8

By applying this concept, the RV circuit shown in Fig-
ure 8 can be converted into RJ circuit which appears as
shown in Figure 9.

J22 e7

2

5 0

6

e4 e9

e8

e3

J23

J21

J24

e1

e2

Figure 9. RJ circuit equivalent to the RV cir-
cuit shown in figure 8

Now we can perform nodal analysis for the circuit
shown in Figure 9 and subsequently get the solution
of circuit in Figure 8.

6 Experimental Results

In this section, we present simulation times for randomly
generated simple non planar circuits. The number of nodes
and the number of edges for every circuit are in the ratio
of 1:3. For every circuit, the number of voltage sources
and current sources each are 20% of the number of edges
respectively. Nodes of G is the number of Nodes in the gen-
erated non planar circuit. In Table 1, NdiagCG

Iter refers to
the number of iterations taken by diagonal matrix based pre
conditioner CG method when the entire circuit is solved by
nodal analysis and tdiagCG

dcAna , the total time taken for solv-
ing the circuit. In Tables 2, 3 and 4, NMCG

Iter refers to the
number of iterations taken by MCG method in hybrid anal-
ysis approach and tMCG

dcAna, the total time taken to solve the
circuit.

Experiments in all the tables are performed on 3GHZ
Pentium IV processor with 2GB RAM. The solution for a
network will be said to be obtained if the following con-

Nodes of G NdiagCG
Iter tdiagCG

dcAna

10K 413 0.5
30K 1676 3.13
50K 2467 7.38
80K 3480 17.1

100K 5290 34.81
200K 8401 123.61

Table 1. For non planar resistive circuits, tim-
ing results of PCG-DC Analyzer when the re-
sistance range is 1 Ω to 108 Ω

straints are met.

1. KCE at each node is satisfied within a tolerance termed
as toleranceforKCL. The value of toleranceforKCL for
the tables 2, 3 and 4 where hybrid analysis is used,
is 10−4 times the maximum value of current source
i.e if ij is the net leaving current at node j then ij <
toleranceforKCL.

2. KVE is exactly satisfied for all the tables.

3. A device characteristic is said to be verified if
Δ < tolForDevChar, where tolForDevChar = 0.01.
Δ is relative error in voltage across or current in the
diode depending on reverse biasing or forward biasing.

The circuit with resistance range 1 Ω to 108 Ω has been
generated as follows. First generate a non planar circuit
randomly with resistances picked in the range from 1 Ω to
102 Ω. Then 30% of the resistive edges are reassigned to
1Ω and 30% to 108 Ω.

We can draw the following conclusion from the results
given in Table 1. Whenever there is a large range of con-
ductances in a non planar circuit, Preconditioned CG based
DC Analyzer exhibits poor performance. This problem
arises while solving non linear circuits like diode circuits
and combinatorial optimization problems as explained ear-
lier.

It is already mentioned that the performance of Conju-
gate Gradient method has a continuing deterioration with
the increase in the range of conductances. But interestingly,
from Tables 2 and 3 we can observe that hybrid analysis
based approach does not exhibit such deterioration.

In Table 4, the circuits contain practical diodes (with ex-
ponential characteristics). The number of diodes is 10% of
the total edges in the circuit. The index Total-NR iter refers
to the number of Newton-Raphson iterations for lineariz-
ing non linear elements. The exponential characteristic of a
diode can be represented by the equation

i = Is(exp
v

VT
− 1)

210

Nodes of G 1 − 108Ω
NMCG

Iter tMCG
dcAna

100K 7 10.35
200K 6 22.4
300K 6 42.4
400K 6 58.01
500K 6 73.02
800K 6 155.62

1000K 6 200.99

Table 2. For non planar resistive circuits, tim-
ing results of hybrid analysis based DC Ana-
lyzer when the resistance range is 1 − 108Ω

Nodes of G 1 − 1010Ω
NMCG

Iter tMCG
dcAna

100K 5 9.11
200K 5 21.31
300K 5 39.25
400K 5 55.23
500K 5 73.03
800K 5 144.34

1000K 5 181.37

Table 3. For non planar resistive circuits, tim-
ing results of hybrid analysis based DC Ana-
lyzer when the resistance range is 1 − 1010Ω

where i and v are current through and voltage across the
diode branch. We have chosen Is = 10−10A and VT =
0.0259V . While solving the diode circuits, depending on
the range of conductances either hybrid analysis technique
or Nodal Analysis technique is used in our DC analyzer.
From Tables 2, 3 and 4 we can observe that the prob-
lem of large conductance range can be tackled by hybrid
analysis approach and modified CG. The reason for the
near quadratic (time) behavior from 100K node circuit to
1000K node circuit is the varying performance of modified
CG with varying distribution of conductance values across
NR iterations.

7 Summary and Conclusions

The main difficulty is handling practical diode circuits
where the range of conductances is very large because then
the convergence rate of diagonal preconditioned CG method
deteriorates adversely. This problem was faced when we
tried to solve a non planar min cost flow problem using
electrical techniques. We observed that this problem can

Nodes of G Total-NR iter tMCG
dcAna

100K 22 185.23
300K 24 1150.12
500K 25 2728.96
700K 30 5126.64

1000K 27 8044.54

Table 4. For non planar diode circuits, timing
results of hybrid analysis based dc Analyzer

be overcome by hybrid analysis approach along with MCG
method. This technique has strengthened our belief that we
can tackle even very large size non planar min cost flow
problems by electrical networks.

References

[1] H. Narayanan, “Mathematical Programming and Elec-
trical Network Analysis II: Computational Linear Al-
gebra through Network analysis,” International Sym-
posium on Mathematical Programming for Decision
Making: Theory and Applications (ISMPDM07), ISI
Delhi, January 10-11, 2007.

[2] H. Narayanan,“A theorem on graphs and its appli-
cation to network analysis,” Proceedings of IEEE
International Symposium on Circuits and Systems,
pp. 1008-1011, 1979.

[3] H. Narayanan, Submodular Functions and Electrical
Networks, Annals of Discrete Mathematics, vol. 54.
North Holland, Amsterdam, The Netherlands, 1997.

[4] S. H. Batterywala and H. Narayanan, “Efficient DC
Analysis of RVJ Circuits for Moment and Derivative
Computations of Interconnect Networks,” 12th Inter-
national Conference on VLSI Design, pp. 169-174,
1999.

[5] G. Trivedi, M. P. Desai and H. Narayanan, “Fast dc
analysis and its application to combinatorial optimiza-
tion problems,” International Conference on VLSI De-
sign, India, January 2006.

[6] G. Trivedi, Sumit Punglia and H. Narayanan, “Appli-
cation of DC Analyzer to combinatorial optimization
problems,” 20th International Conference on VLSI
Design, 2007.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, Clifford Stein, Introduction to Algorithms,
MIT Press, Cambridge, MA, USA, 1990.

211

Session 3C

Test Generation

The Effect of Filling the Unspecified Values of a Test Set on the Test Set Quality

Irith Pomeranz1 and Sudhakar M. Reddy2

School of Electrical & Computer Eng. Electrical & Computer Eng. Dept.
Purdue University University of Iowa

W. Lafayette, IN 47907 Iowa City, IA 52242
pomeranz@ecn.purdue.edu reddy@engineering.uiowa.edu

Abstract
Test generation and test data compression

processes create test vectors with unspecified input values
that need to be filled. We study the extent to which filling
the unspecified input values affects the untargeted fault
coverage of a test set. To make the study independent of
any particular test generation or test data compression
scheme, we consider test sets for stuck-at faults that are
obtained by first unspecifying as many values as possible
without losing stuck-at fault coverage, and then filling the
unspecified values randomly. The results indicate that
there are significant differences in the untargeted fault
coverage between different test sets. The differences in
the average number of detections of stuck-at faults are
less noticeable. We also show that adding a small frac-
tion of untargeted faults to the set of faults considered
during the unspecifying process improves significantly the
untargeted fault coverage after filling of unspecified
values.

1. Introduction
Test generation processes [1]-[6] typically leave

unspecified input values that need to be filled.
Compressed test data also contains unspecified values that
are filled by test data decompression logic [7]-[8]. Values
may be filled randomly, or based on considerations such
as power dissipation [9]-[12]. Certain decompression
schemes impose additional constraints on the filled values,
for example, in broadcast scan [13], all the scan chains
that are driven from the same scan input are filled with the
same values.

The quality of a test set after filling its unspecified
values can be measured by considering the numbers of
detections of stuck-at faults [14]. This is motivated by the
following observations. It was shown earlier that when a
stuck-at fault is detected multiple times, the likelihood of
detecting defects associated with the fault site increases
[15]-[20]. Based on these results, the number of detections
of stuck-at faults can be used to measure the quality of a
test set. However, it was also shown that different tests for
a fault may be different in ways that are not relevant to the
������������������
1. Research supported in part by SRC Grant No. 2007-TJ-1643.
2. Research supported in part by SRC Grant No. 2007-TJ-1642.

detection of the fault or the defects associated with its site
[21]. For example, consider a fault f in the input cone of
an output z , which is detected on z . Inputs that are not in
the input cone of z may be changed to create multiple
tests for f , without creating different conditions around
the site of f . In this case, the tests may not detect different
defects. As a result, it is possible to reach a high number
of detections for a given stuck-at fault without detecting
the fault in fundamentally different ways. Thus, the
number of detections may not be sufficient for evaluating
the quality of a test set.

In this work we study the quality of a test set after
its unspecified values are filled. To make the study
independent of any particular test generation or test data
compression and decompression scheme, we use an
experiment that proceeds as follows. We start from a
fully-specified test set T for single stuck-at faults. We use
a procedure similar to the ones in [22]-[24] to unspecify
as many values as possible in T . We repeat this pro-
cedure 10 times to obtain 10 incompletely-specified test
sets T 0,T 1, . . . ,T 9 that detect the same set of single
stuck-at faults as T . We then fill the unspecified values of
each test set Ti 10 times randomly to obtain 100 fully-
specified test sets Ti ,0,Ti ,1, . . . ,Ti ,9, for 0 ≤ i ≤ 9. For
every Ti ,j , we compute the average number of detections
of single stuck-at faults, and the coverage of a set of faults
that were not targeted during the test generation, unspeci-
fying or filling process of T . The untargeted faults we
consider are bridging faults. In this experiment, Ti ,j is a
test set that may be obtained by test generation after filling
unspecified values, or by compressing and then
decompressing a test set T .

The fault sets used in this experiment are described
in Section 2. The processes of unspecifying a test set and
filling its unspecified values are described in Section 3.
The experiment and its results are described in Section 4.
The results indicate that there are significant differences in
the untargeted fault coverage between the various test sets
Ti ,j , for 0 ≤ i ≤ 9 and 0 ≤ j ≤ 9. The differences are less
noticeable from the average number of detections of
stuck-at faults.

A way to address these issues is to expand the set of
faults targeted, directly or indirectly, during the test gen-
eration or compression process, where unspecified values
are created, or when the unspecified values are filled. In

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.11

215

Section 5 we study the effects of adding bridging faults to
the set of target faults of the unspecifying process. This
study shows that including a small fraction of bridging
faults as targets reduces the effects of random filling con-
siderably. This is demonstrated by the increase in the cov-
erage of untargeted bridging faults after unspecified
values are filled. To reduce the effect of random filling on
the test quality it is also possible to consider bridging
faults indirectly, as done, for example, in [25].

2. Fault sets
We consider two sets of target faults. Fsa is the set

of collapsed single stuck-at faults. Fbr consists of four-
way bridging faults [26]-[27], and it is defined as follows.

A four-way bridging fault is associated with two
lines, g 1 and g 2, and a value a . The fault is denoted by
(g 1=a ,g 2=a′). The fault is activated on g 1 when g 1 = a
and g 2 = a′ . A test for the fault detects the fault g 1
stuck-at a′ while setting g 2 = a′ .

The number of four-way bridging faults in a circuit
may be very high, and many of the faults may be easy-to-
detect [28]. In addition, some of the faults may be
undetectable. Therefore, we include in Fbr a subset of the
non-feedback four-way bridging faults. The subset is
selected as follows to limit its size while ensuring that the
faults it contains are detectable but not easy-to-detect.

Initially, Fbr = φ. For every line g 1 which is not a
fanout branch and for every value a ∈ {0,1}, we find the
set of lines G 2 that consists of every line g 2 such that
there is no path in the circuit between g 1 and g 2 (in either
direction). If the size of G 2 is larger than 100, we remove
lines from G 2 randomly until its size reaches 100. For
every line g 2 that remains in G 2, we include in Fbr the
fault (g 1=a ,g 2=a′).

We then reduce the size of Fbr by fault simulation
as follows. Let T be a test set for Fsa . We perform fault
simulation of Fbr under T . We remove from Fbr faults
that are not detected by T . The faults left in Fbr are
detectable (they are detected by T).

To remove easy-to-detect faults from Fbr , we con-
sider up to 2000 random input vectors. For every random
input vector r , we perform fault simulation of Fbr under r
with fault dropping. We continue to simulate random
input vectors only as long as the size of Fbr is higher than
2L , where L is the number of circuit lines.

We are left in Fbr with faults that are detected by T ,
and are not easy-to-detect. If the number of faults in Fbr is
higher than 2L , we select 2L faults randomly to keep in
Fbr , and we remove the remaining faults.

3. Unspecifying and filling processes
In this section we outline the processes we use for

unspecifying a test set and for filling its unspecified
values.

We consider a test set T and a set of target faults F .
We denote the number of tests in T by m , and the number
of circuit inputs by n . Test i is denoted by ti . The value
of input j under test ti is denoted by ti (j).

The unspecifying process we use is the one from
[24]. We first perform fault simulation of F under T with
fault dropping. We denote by Fi the set of faults detected
by ti during this process, for 0 ≤ i < m .

During the unspecifying process we consider every
value ti (j) of T separately, for 0 ≤ i < m and 0 ≤ j < n .
When ti (j) is considered, we first unspecify it by setting
ti (j) = x . We then simulate all the faults in Fi . If all the
faults in Fi continue to be detected by ti we accept the
change. Otherwise we restore the original value of ti (j).

Only the detection of faults included in Fi may be
affected by the change in ti (j) (all the other faults con-
tinue to be detected by the other test vectors that have not
been changed). Therefore, we only simulate the faults in
Fi . We simulate them only under ti , although some of
these faults may also be detected by other test vectors.
This is done to restrict the simulation effort.

To obtain different incompletely-specified test sets
from a given test set T , we reorder the test vectors of T in
different ways. As a result, the test vectors are simulated
in different orders, and the sets of detected faults Fi are
different. This results in different unspecified values at the
end of the procedure.

To reorder a test set T , we swap every test vector
ti ∈ T with a randomly selected vector tj ∈ T .
Specifically, for every vector ti where i = 0,1, . . . ,m −1,
we select a vector tj randomly, where 0 ≤ j < m . We then
swap ti and tj .

To fill an incompletely-specified test set T , we
select a random value for every unspecified value of T .
We select different sets of random values in order to
obtain different fully-specified test sets based on T .

4. Effects of unspecifying and filling processes
In the experiment described in this section, we

apply the procedure of unspecifying a test set T for
stuck-at faults 10 times, each time reordering the test vec-
tors differently, and using Fsa as the set of target faults.
We obtain 10 incompletely-specified test sets denoted by
T 0,T 1, . . . ,T 9. For every test set Ti , we denote by pi the
percentage of unspecified values in Ti . Every test set Ti

detects all the detectable faults in Fsa .
For every test set Ti , we fill the unspecified values

of Ti randomly 10 times. We denote the test sets obtained
after specifying the unspecified values of Ti by
Ti ,0,Ti ,1, . . . ,Ti ,9. We simulate the set of bridging faults
Fbr under every test set Ti ,j , for 0 ≤ i ≤ 9 and 0 ≤ j ≤ 9.
We denote the bridging fault coverage of Ti ,j by f ci ,j .

We also perform 10-detection fault simulation of
stuck-at faults under Ti ,j , for 0 ≤ i ≤ 9 and 0 ≤ j ≤ 9. In

216

this process, a stuck-at fault is dropped after it is detected
10 times. We denote by ndi ,j (f) the number of times a
stuck-at fault f ∈ Fsa is detected. We compute the aver-
age number of detections of stuck-at faults under Ti ,j as
nd��i ,j = Σ{ndi ,j (f):f ∈ Fsa }/ | Fsa | .

Considering T 0,T 1, . . . ,T 9, we find the minimum
and maximum percentage of unspecified values, p min =
min{pi :0≤i ≤9} and p max = max{pi :0≤i ≤9}, respectively.

Considering the test sets T 0,0, T 0,1, . . . , T 0,9, T 1,0,
. . . , T 9,9, we find the minimum and maximum bridging
fault coverage f c min = min{f ci ,j :0≤i ≤9,0≤j ≤9} and
f c max = max{f ci ,j :0≤i ≤9,0≤j ≤9}, respectively. We also
find the minimum and maximum average number of
detections of stuck-at faults,

nd��min = min{nd��i ,j :0≤i ≤9,0≤j ≤9} and
nd��max = max{nd��i ,j :0≤i ≤9,0≤j ≤9}.

Considering the original test set T , we define
parameters porig , f corig and nd��orig , which are the percen-
tage of unspecified values, the bridging fault coverage,
and the average number of detections of stuck-at faults for
T . We note the following. Since T is fully-specified,
porig = 0. Due to the selection of Fbr as a subset of bridg-
ing faults detected by T , f corig is guaranteed to be 100%.
We perform 10-detection fault simulation of stuck-at
faults under T to compute the average number of detec-
tions nd��orig .

In Table 1 we show for every circuit considered the
following parameters. Under column %unspec we show
the values of p min and p max. Under column bridg f.c. we
show the values of f c min and f c max. Under column ave
nd we show the values of nd��orig , nd��min and nd��max.

From Table 1 it can be seen that the 10
incompletely-specified test sets obtained for every circuit
have similar percentages of unspecified values (for s 298,
between 37.50% and 39.95%). Nevertheless, there are
large differences in the fault coverage of bridging faults
depending on the incompletely-specified test set and the
way its unspecified values are filled (for s 298, the
minimum is 71.28% and the maximum is 93.33%). The
test sets obtained after filling unspecified values always
detect fewer than 100% of the bridging faults detected by
the original test set. This indicates that the unspecified
values and their fill can have a significant effect on the
untargeted fault coverage of a test set.

Considering the average number of detections of
stuck-at faults, the differences between the minimum and
maximum values are much less significant than indicated
by the bridging fault coverage (for s 298, the minimum is
4.60 and the maximum is 4.78). Moreover, the maximum
is sometimes higher than the average number of detec-
tions of the original test set, even though the bridging fault
coverage is always lower than 100%. Thus, the number of
detections of stuck-at faults does not predict the coverage
of untargeted faults.

Table 1: Effects of unspecifying and filling
%unspec bridg f.c. ave nd

circuit min max min max orig min max��
s298 37.50 39.95 71.28 93.33 4.81 4.60 4.78
s344 41.94 44.72 74.91 94.64 4.06 3.92 4.05
s382 45.83 48.33 66.44 86.24 4.73 4.42 4.85
s420 50.56 52.56 90.48 94.88 5.61 5.00 5.34
s510 67.11 67.93 82.62 90.67 5.45 5.27 5.38
s526 41.17 42.58 84.28 91.99 5.44 5.29 5.45
s641 47.73 50.84 81.09 90.94 4.97 4.91 5.13
s820 50.88 51.53 84.98 91.49 3.54 3.46 3.53
s953 71.11 71.67 93.44 96.17 5.58 5.50 5.58
s1196 57.81 58.63 91.47 96.53 6.11 6.03 6.16
s1423 42.81 46.11 82.92 91.34 5.31 5.45 5.57
s5378 71.39 72.31 73.25 77.37 7.60 7.69 7.77
s9234 67.11 67.50 86.43 88.17 5.71 5.90 5.99
s13207 92.98 93.15 72.63 75.11 6.76 7.42 7.48
s15850 79.65 80.19 80.67 83.02 6.66 7.30 7.37
s38417 73.77 73.99 90.39 91.32 7.31 7.77 7.81��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5. Reducing the effects of the filling process
It is possible to reduce the effects of the filling pro-

cess on the untargeted fault coverage by extending the set
of faults considered during the unspecifying process, or by
considering faults explicitly during the filling process. In
this section we study the option of extending the set of tar-
get faults of the unspecifying process. In the context of
test generation this implies using unspecified values to tar-
get additional faults during test generation. In the context
of test data compression this implies ensuring that addi-
tional faults will be detected after decompression. We
perform the following experiment.

We apply the unspecifying procedure using a set of
target faults that consists of Fsa and a subset of Fbr . The
subset of Fbr consists of a fraction s of the faults in Fbr .
The faults are selected randomly. We consider s = 0.0,
0.1, 0.2, . . . , 1.0. We denote by Fs the set of target faults
that consists of Fsa and s of the faults in Fbr . We denote
by Ts the test set obtained by applying the unspecifying
procedure to T and Fs . After obtaining Ts , we fill its
unspecified values randomly 10 times to obtain test sets
Ts ,0,Ts ,1, . . . ,Ts ,9.

For every test set Ts ,j , we compute the bridging
fault coverage with respect to Fbr , denoted by f cs ,j . For
every s , we find the minimum and the maximum bridging
fault coverage, f cs ,min = min{f cs ,j :0≤j ≤9} and f cs ,max =
max{f cs ,j :0≤j ≤9}.

As s is increased, we expect f cs ,min and f cs ,max to
become closer to each other and closer to 100%. For
s = 1.0, we expect f c 1.0,min = f c 1.0,max = 100%.

The results of this experiment are shown in Tables
2-17. For every value of s we show the percentage of
unspecified values in the test set Ts . We then show the
minimum and maximum bridging fault coverages f cs ,min

and f cs ,max .
From Tables 2-17 it can be seen that as s is

increased, the percentage of unspecified values decreases.
The minimum and maximum bridging fault coverages

217

increase significantly with s and approach 100%. The
fault coverage reaches 100% around s = 0.8 or 0.9.

A significant increase in the bridging fault coverage
occurs around s = 0.1 or 0.2 for most of the circuits con-
sidered. These values of s can be used to limit the number
of target faults of the unspecifying process.

6. Concluding remarks
We considered test sets for stuck-at faults that were

obtained by first unspecifying values in a given stuck-at
test set T without losing stuck-at fault coverage, and then
filling the unspecified values randomly. In this discussion,
the unspecifying process represented a test generation or
test set compression process. We obtained 100 different
test sets by unspecifying T in 10 different ways, and
filling the unspecified values of each test set also in 10 dif-
ferent ways. The results indicated that there are significant
differences in the bridging fault coverage between the
various test sets. The differences in the average number
of detections of stuck-at faults were less noticeable. This
is due to the fact that multiple tests for a stuck-at fault,
which are obtained by unspecifying and filling processes,
may not be sufficiently different from each other. We also
showed that adding a small fraction of bridging faults to
the set of faults considered during the unspecifying pro-
cess improves significantly the bridging fault coverage
after filling of unspecified values.

References
[1] P. Goel and B. C. Rosales, "Test Generation and Dynamic Com-

paction of Tests", in Proc. Test Conf., 1979 pp. 189-192.
[2] I. Pomeranz, L. N. Reddy and S. M. Reddy, "COMPACTEST: A

Method to Generate Compact Test Sets for Combinational Cir-
cuits", in Proc. Intl. Test Conf., 1991, pp. 194-203.

[3] J.-S. Chang and C.-S. Lin, "Test Set Compaction for Combina-
tional Circuits", in Proc. Asian Test Symp., 1992, pp. 20-25.

[4] Y. Matsunaga, "MINT -An Exact Algorithm for Finding
Minimum Test Sets", IEICE Trans. Fundamentals., vol. E76-A,
No. 10, Oct. 1993, pp. 1652-1658.

[5] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, "Cost-
Effective Generation of Minimal Test Sets for Stuck-at Faults in
Combinational Logic Circuits", IEEE Trans. on Computer-Aided
Design, Dec. 1995, pp. 1496-1504.

[6] I. Hamazaoglu and J. H. Patel, "Test Set Compaction Algorithms
for Combinational Circuits", in Proc. Intl. Conf. on Computer-
Aided Design, 1998, pp. 283-289.

[7] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller
and B. Koenemann, "OPMISR: The Foundation for Compressed
ATPG Vectors", in Proc. Intl. Test Conf., 2001, pp. 748-757.

[8] J. Rajski, J. Tyszer, M. Kassab, N. Kukherjee, R. Thompson, K.-
H. Tsai, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide and
J. Qian, "Embedded Deterministic Test for Low Cost Manufac-
turing Test", in Proc. Intl. Test Conf., 2002, pp. 301-310.

[9] A. Chandra and K. Chakrabarty, "Reduction of SOC Test Data
Volume, Scan Power and Testing Time Using Alternating Run-
length Codes", in Proc. Design Autom. Conf., 2002, pp 673-678.

[10] P. M. Rosinger, P. T. Gonciari, B. M. Al-Hashimi and N. Nicol-
ici, "Analysing Trade-offs in Scan Power and Test Data
Compression for Systems-on-a-Chip", IEE Proceedings - Com-
puters and Digital Techniques, July 2002, pp. 188-196.

[11] J. Lee and N. A. Touba, "Low Power Test Data Compression
Based on LFSR Reseeding", in Proc. Intl. Conf. on Computer
Design, 2004, pp. 180-185.

[12] N. Badereddine, K. Chakrabarty, P. Girard, C. Landrault, S. Pra-
vossoudovitch and A. Virazel, "Power-Aware Test Data
Compression for Embedded IP Cores", in Proc. Asian Test
Symp., 2006, pp. 5-10.

[13] K. Lee, J. Chen and C. Huang, "Using a Single Input to Support
Multiple Scan Chains", in Proc. Intl. Conf. Computer-Aided
Design, 1998, pp. 74-78.

[14] A. Chandra and M. Chakrabarty, "Test Resource Partitioning and
Reduced Pin-Count Testing Based on Test Data Compression" in
Proc. Design, Automation and Test in Europe Conf., 2002, pp.
598-603.

[15] S. C. Ma, P. Franco and E. J. McCluskey, "An Experimental
Chip to Evaluate Test Techniques Experiment Results", in Proc.
Intl. Test Conf., 1995, pp. 663-672.

[16] S. M. Reddy, I. Pomeranz and S. Kajihara, "Compact Test Sets
for High Defect Coverage", IEEE Trans. on Computer-Aided
Design, Aug. 1997, pp. 923-930.

[17] J. T.-Y. Chang, C.-W. Tseng, C.-M. J. Li, M. Purtell and E. J.
McCluskey, "Analysis of Pattern-Dependent and Timing-
Dependent Failures in an Experimental Test Chip", in Proc. Intl.
Test Conf., 1998, pp. 184-193.

[18] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H.
Balachandran, B. Houchins, V. Mathur, J. Park, L.-C. Wang and
M. R. Mercer, "REDO - Random Excitation and Deterministic
Observation - First Commercial Experiment", in Proc. VLSI Test
Symp., 1999, pp. 268-274.

[19] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H. Tsai, S. Ran-
ganathan, R. Madge, J. Rajski and P. Krishnamurthy, "Impact of
multiple-detect test patterns on product quality", in Proc. Intl.
Test Conf., 2003, pp. 1031-1040.

[20] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee, A Ojha and R.
Guo, "An Experimental Study of n -Detect Scan ATPG Patterns
on a Processor", in Proc. VLSI Test Symp., 2004, pp. 23-28.

[21] I. Pomeranz and S. M. Reddy, "Definitions of the Numbers of
Detections of Target Faults and their Effectiveness in Guiding
Test Generation for High Defect Coverage", in Proc. Conf. on
Design Autom. and Test in Europe, 2001, pp. 504-508.

[22] S. Kajihara and K. Miyase, "On Identifying Don’t Care Inputs of
Test Patterns for Combinational Circuits", in Proc. Intl. Conf. on
Computer-Aided Design, 2001, pp. 364-369.

[23] A. El-Maleh and A. Al-Suwaiyan, "An Efficient Test Relaxation
Technique for Combinational & Full-Scan Sequential Circuits",
in Proc. VLSI Test Symp., 2002, pp. 53-59.

[24] I. Pomeranz and S. M. Reddy, "Reducing the Number of
Specified Values Per Test Vector by Increasing the Test Set
Size", IEE Proceedings - Computers & Digital Techniques, Jan.
2006, pp. 39-46.

[25] H. Tang, G. Chen, S. M. Reddy, C. Wang, J. Rajski and I.
Pomeranz, "Defect Aware Test Patterns", in Proc. Design Autom.
and Test in Europe Conf., 2005, pp. 450-455.

[26] S. Sengupta, S. Kundu, S. Chakravarty, P. Parvathala, R.
Galivanche, G. Kosonocky, M. Rodgers and T. M. Mak,
"Defect-Based Tests: A Key Enabler for Successful Migration to
Structural Test", Intel Technology Journal, Q.1, 1999.

[27] V. Krishnaswamy, A. B. Ma, P. Vishakantaiah, "A Study of
Bridging Defect Probabilities on a Pentium (TM) 4 CPU", in
Proc. Intl. Test Conf., 2001, pp. 688-695.

[28] I. Pomeranz, S. M. Reddy and S. Kundu, "On the Characteriza-
tion of Hard-to-Detect Bridging Faults", in Proc. Design Autom.
and Test in Europe Conf., 2003, pp. 1012-1017.

218

Table 2: Unspecifying with target bridging faults s 298
bridg f.c.

circuit s %unspec min max��������������������������������������
s298 0.0 38.48 83.93 93.33
s298 0.1 35.05 91.28 97.26
s298 0.2 32.11 94.53 98.29
s298 0.3 30.88 96.41 98.97
s298 0.4 29.66 97.78 99.32
s298 0.5 28.68 99.32 99.83
s298 0.6 28.43 99.32 100.00
s298 0.7 28.19 99.66 100.00
s298 0.8 28.19 99.66 100.00
s298 0.9 27.45 100.00 100.00
s298 1.0 27.45 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Unspecifying with target bridging faults s 344
bridg f.c.

circuit s %unspec min max��������������������������������������
s344 0.0 43.33 81.83 93.77
s344 0.1 38.06 92.73 97.40
s344 0.2 36.94 95.33 97.92
s344 0.3 34.72 96.89 98.96
s344 0.4 33.61 97.40 98.96
s344 0.5 33.33 98.10 99.31
s344 0.6 31.94 98.96 99.65
s344 0.7 29.44 99.48 100.00
s344 0.8 28.89 100.00 100.00
s344 0.9 28.61 100.00 100.00
s344 1.0 28.61 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4: Unspecifying with target bridging faults s 382
bridg f.c.

circuit s %unspec min max��������������������������������������
s382 0.0 47.67 66.44 76.68
s382 0.1 41.17 85.91 92.79
s382 0.2 39.67 91.28 95.30
s382 0.3 37.50 93.79 96.14
s382 0.4 36.17 96.31 98.83
s382 0.5 35.50 96.98 99.33
s382 0.6 34.50 97.65 99.50
s382 0.7 33.83 98.49 99.66
s382 0.8 33.33 98.83 100.00
s382 0.9 32.67 99.66 100.00
s382 1.0 32.17 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 5: Unspecifying with target bridging faults s 420
bridg f.c.

circuit s %unspec min max��������������������������������������
s420 0.0 51.23 91.19 94.76
s420 0.1 50.23 93.33 95.71
s420 0.2 49.17 94.52 96.55
s420 0.3 48.04 95.71 97.14
s420 0.4 47.38 96.43 97.86
s420 0.5 46.38 97.38 98.45
s420 0.6 45.58 97.86 99.05
s420 0.7 45.12 98.21 99.17
s420 0.8 44.19 99.05 99.88
s420 0.9 43.52 99.52 100.00
s420 1.0 43.19 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6: Unspecifying with target bridging faults s 510
bridg f.c.

circuit s %unspec min max��������������������������������������
s510 0.0 67.70 85.10 89.08
s510 0.1 65.70 88.88 92.35
s510 0.2 64.30 90.96 95.13
s510 0.3 63.26 92.15 96.23
s510 0.4 62.15 93.94 97.12
s510 0.5 61.11 95.23 97.52
s510 0.6 59.85 96.92 98.31
s510 0.7 58.89 98.31 99.11
s510 0.8 57.70 99.30 99.70
s510 0.9 57.19 99.60 99.80
s510 1.0 56.59 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 7: Unspecifying with target bridging faults s 526
bridg f.c.

circuit s %unspec min max��������������������������������������
s526 0.0 41.25 85.64 90.33
s526 0.1 38.33 91.70 94.34
s526 0.2 36.58 95.12 96.48
s526 0.3 35.17 96.00 97.46
s526 0.4 34.25 96.78 98.34
s526 0.5 32.25 97.66 99.02
s526 0.6 31.58 98.14 99.22
s526 0.7 30.50 99.41 99.80
s526 0.8 30.08 99.61 99.80
s526 0.9 29.75 99.71 99.80
s526 1.0 29.25 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8: Unspecifying with target bridging faults s 641
bridg f.c.

circuit s %unspec min max��������������������������������������
s641 0.0 50.76 85.74 89.91
s641 0.1 47.73 89.52 93.30
s641 0.2 45.12 93.70 95.43
s641 0.3 43.43 94.96 96.38
s641 0.4 41.67 96.22 96.85
s641 0.5 40.24 97.16 97.79
s641 0.6 38.72 98.66 99.13
s641 0.7 38.22 98.98 99.37
s641 0.8 37.46 99.13 99.61
s641 0.9 36.62 99.68 99.84
s641 1.0 36.03 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 9: Unspecifying with target bridging faults s 820
bridg f.c.

circuit s %unspec min max��������������������������������������
s820 0.0 51.20 86.59 90.59
s820 0.1 49.26 91.75 94.00
s820 0.2 47.92 93.36 96.20
s820 0.3 46.81 95.23 96.84
s820 0.4 45.33 97.36 98.26
s820 0.5 44.59 97.61 98.65
s820 0.6 43.62 98.45 99.03
s820 0.7 43.11 98.84 99.10
s820 0.8 42.37 99.29 99.48
s820 0.9 41.63 99.74 99.87
s820 1.0 41.21 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

219

Table 10: Unspecifying with target bridging faults s 953
bridg f.c.

circuit s %unspec min max��������������������������������������
s953 0.0 71.46 94.28 96.01
s953 0.1 70.29 95.59 97.32
s953 0.2 69.53 96.59 97.95
s953 0.3 68.83 97.17 98.32
s953 0.4 68.10 98.01 98.74
s953 0.5 67.57 98.48 99.00
s953 0.6 66.96 98.79 99.32
s953 0.7 66.40 99.21 99.58
s953 0.8 65.99 99.42 99.74
s953 0.9 65.47 99.69 99.90
s953 1.0 64.97 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 11: Unspecifying with target bridging faults s 1196
bridg f.c.

circuit s %unspec min max���������������������������������������
s1196 0.0 58.17 92.60 94.48
s1196 0.1 57.40 95.36 96.70
s1196 0.2 56.84 96.86 97.45
s1196 0.3 56.43 97.41 98.33
s1196 0.4 56.05 97.99 98.58
s1196 0.5 55.30 98.66 99.12
s1196 0.6 54.87 98.95 99.54
s1196 0.7 54.35 99.33 99.75
s1196 0.8 54.10 99.41 99.83
s1196 0.9 53.51 99.71 100.00
s1196 1.0 53.12 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 12: Unspecifying with target bridging faults s 1423
bridg f.c.

circuit s %unspec min max���������������������������������������
s1423 0.0 46.11 87.43 90.18
s1423 0.1 41.34 93.24 95.42
s1423 0.2 39.01 95.04 96.65
s1423 0.3 37.66 96.37 97.32
s1423 0.4 36.26 97.78 98.31
s1423 0.5 35.33 98.10 98.80
s1423 0.6 34.62 98.49 99.05
s1423 0.7 33.31 98.98 99.51
s1423 0.8 32.50 99.33 99.65
s1423 0.9 31.61 99.68 99.86
s1423 1.0 30.77 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 13: Unspecifying with target bridging faults s 5378
bridg f.c.

circuit s %unspec min max���������������������������������������
s5378 0.0 71.58 73.25 74.78
s5378 0.1 64.45 86.03 86.83
s5378 0.2 60.37 90.36 91.47
s5378 0.3 57.16 93.16 93.81
s5378 0.4 54.51 94.97 95.58
s5378 0.5 52.69 96.30 96.81
s5378 0.6 50.88 97.37 97.83
s5378 0.7 49.60 98.09 98.45
s5378 0.8 47.85 98.98 99.15
s5378 0.9 46.63 99.49 99.68
s5378 1.0 45.73 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 14: Unspecifying with target bridging faults s 9234
bridg f.c.

circuit s %unspec min max���������������������������������������
s9234 0.0 67.47 86.90 87.51
s9234 0.1 61.02 93.14 93.76
s9234 0.2 57.51 95.08 95.46
s9234 0.3 54.71 96.41 96.68
s9234 0.4 52.41 97.21 97.55
s9234 0.5 50.44 97.95 98.15
s9234 0.6 48.54 98.45 98.60
s9234 0.7 47.18 98.87 99.01
s9234 0.8 45.72 99.30 99.39
s9234 0.9 44.43 99.70 99.76
s9234 1.0 43.26 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 15: Unspecifying with target bridging faults s 13207
bridg f.c.

circuit s %unspec min max���������������������������������������
s13207 0.0 93.15 73.07 74.29
s13207 0.1 89.92 84.39 85.20
s13207 0.2 87.80 88.56 89.15
s13207 0.3 86.08 91.36 91.73
s13207 0.4 84.52 93.49 93.80
s13207 0.5 83.35 94.89 95.24
s13207 0.6 82.34 96.25 96.55
s13207 0.7 81.44 97.39 97.66
s13207 0.8 80.61 98.35 98.51
s13207 0.9 79.85 99.20 99.30
s13207 1.0 79.08 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 16: Unspecifying with target bridging faults s 15850
bridg f.c.

circuit s %unspec min max���������������������������������������
s15850 0.0 79.91 80.93 82.24
s15850 0.1 73.85 91.30 91.86
s15850 0.2 70.35 93.43 93.79
s15850 0.3 67.77 94.72 95.04
s15850 0.4 65.51 95.81 96.11
s15850 0.5 63.44 96.96 97.15
s15850 0.6 61.72 97.72 97.86
s15850 0.7 60.21 98.36 98.51
s15850 0.8 58.93 99.00 99.08
s15850 0.9 57.64 99.55 99.61
s15850 1.0 56.58 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 17: Unspecifying with target bridging faults s 38417
bridg f.c.

circuit s %unspec min max���������������������������������������
s38417 0.0 73.92 90.54 90.97
s38417 0.1 69.91 94.23 94.67
s38417 0.2 67.44 95.69 96.05
s38417 0.3 65.58 96.65 96.94
s38417 0.4 63.84 97.43 97.68
s38417 0.5 62.46 98.01 98.20
s38417 0.6 61.12 98.56 98.71
s38417 0.7 59.89 98.96 99.09
s38417 0.8 58.88 99.33 99.39
s38417 0.9 57.95 99.67 99.71
s38417 1.0 57.00 100.00 100.00�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

220

New Techniques for Accelerating Small Delay ATPG and Generating
Compact Test Sets∗

Boxue Yin1 , Dong Xiang1 , Zhen Chen2

Key Laboratory for Information System Security, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology

1.School of software, 2.Dept. of Com. Sci. and Tech., Tsinghua University, Beijing, China
ybx06@mails.tsinghua.edu.cn

Abstract — The small delay defects testing has two
challenges. One is that the longest testable path selection
for every target fault in ATPG consumes much CPU time.
The other is the test data volume are very large. In this
paper, we propose two strategies to resolve these two prob-
lems. A new path selection in advance scheme is proposed
to accelerate ATPG. It aims to find fewer paths and cover
more faults in advance, which is different from the previ-
ous works. To reduce the test data volume, we propose a
novel scan-based test scheme. We partition the scan flip-
flops into some scan chains. The first scan flip-flop of every
scan chain works in enhanced scan mode. And other scan
flip-flops work in broad-side mode. This can significantly in-
crease the don’t care bits of every test pattern and provide
more room for test compaction. Then the test pattern count
can be reduced significantly. Experimental results show the
efficiency of these techniques.

Keywords — Small delay defect, the longest testable
path selection, broad-side scan testing.

I. Introduction

As semiconductor technologies develop, the probability of
small timing defects has significantly increased. It is shown
that there are much more small delay defects than large de-
lay defects in manufacturing [6]. Three types of fault models
are widely used in traditional delay testing: the gate delay
fault model (transition fault model) [12] [1], the path delay
fault model [13] and the segment delay fault model [3]. Al-
though the path delay model is accurate, the huge number of
path delay faults makes it complex and impractical for large
circuits. For transition fault model, whenever a fault occurs,
it is assumed that the fault effect is large enough to cause
a timing failure. Therefore, to detect a transition fault, the
length of the path along which the fault is activated and
propagated is not considered. The transition fault test gen-
eration often detects faults through shorter paths. Thus
many small delay defects remain undetected. The segment
delay fault model is a trade-off between the transition fault
model and path delay fault model.

When considering the fault size, the path to activate and
propagate the fault is very important. As we know, if the
delay fault size is greater than the slack of the shortest func-
tional path, S1, the circuit will malfunction regardless of the
location of the fault. This fault can be detected by using the

∗This work was partially supported by the National Science
Foundation of China under grants 60373009 and 60425203.

transition fault model. If the delay fault size is smaller than
the slack of the longest functional path, S2, the circuit can
work correctly and the fault is redundant. When the fault
size is between S1 and S2, the fault will affect the normal
operation of the circuit if the sum of the longest function
path passing through the fault and the fault size is greater
than the system clock period. This kind of faults should
be activated and propagated along the longest testable path
passing through them. When we use critical path in the
path delay test, some small delay defects can be detected.
But critical paths are limited in number, the small delay
defects which can’t affect the critical path need to be de-
tected through their least slack path. When the frequency
of the circuits increase, these faults will affect the function
of circuits.

A. Previous works

In recent delay test studies, the detection of small delay
defects has become more and more important. In [2], a new
transition fault model ALAPTF is proposed, which aims
to detect small delay defects. And the corresponding ATPG
algorithm is developed. To generate the tests for the longest
path through each gate, some techniques are used [8]. A
list of long paths passing through each gate is generated
before ATPG and then the test generation for the paths
in this list is performed to detect the small delay faults.
In [5], the transition faults with small delay are activated and
propagated only along implicitly kept sensitizable critical
paths for compact quality tests. Two algorithms, which are
activation-first and propagation-first, are proposed in [4].

On the other hand, the ATPG for small delay defects
which activate and propagate the transition faults with small
delay along the longest path may generate much more pat-
terns than the traditional transition fault generation. Even
in broad-side test approach, the test set is still large. In [7], a
new criterion is employed to identify a subset of small delay
faults that are detected along the longest path. Others are
treated as traditional transition faults. This method may
reduce the overall small delay test quality.

B. Motivation

In the process of test generation for small delay defects,
selecting the longest testable path for every fault gate or
fault line is a time-consuming task. For some faults on the
same longest testable path, the conventional ATPG tool will
find the same path repeatedly. In this paper, we propose a
new method that selects small set of paths which can cover

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.64

221

Pm m

Pe

Pt

Figure 1: Example for l-path.

many faults. The testable path means functional sensiti-
zable path. The effort to find the longest paths passing
through these faults in ATPG can be avoided. We know that
if a path S is the longest path passing through the fault f1,
S may also be the longest path passing through other faults
f2...fn. In this condition, the conventional ATPG isn’t sure
whether S is the longest path for f2...fn before these test
patterns are generated. So it should find S for f2...fn re-
peatedly. In this paper, we propose the new path selection
scheme to resolve this problem. The longest testable path
beginning from each primary input and pseudo-primary in-
put is selected in advance. And these selected paths are
recorded. Then a principle is given, and this principle can
guide the ATPG to avoid finding the same longest path
for some faults repeatedly. The motivation to find the
longest testable path beginning from each primary input and
pseudo-primary input is to find fewer paths in advance and
cover more faults. This work is different from the previous
work that selects the critical path. The critical path is the
longest testable path in the circuit. So the number critical
paths are small and the faults which they cover are also less.

The broad-side test approach is widely used for small
delay defects testing. The test sets are smaller than the sets
for other test approach of the same fault coverage. But its
test set is still too large. We modify the standard broad-side
scan test to increase don’t care bits in test patterns. Then
the test pattern count will be significantly reduced after test
pattern compaction.

The rest of the paper is organized as follows. Section 2
presents the new path selection scheme. The process of ac-
celerated test generation for small delay defects is described
in Section 3. The modified broad-side scan test approach is
proposed in Section 4. Section 5 gives the experiment results
and Section 6 concludes the paper.

II. The New Path Selection Scheme

In the circuit under test, there are several paths which
begin from the primary input (PI) or pseudo-primary in-
put (PPI) and end at the primary output (PO) or pseudo-
primary output(PPO). Among these paths, some can only
propagate the rising transitions, while some can only propa-
gate the falling transitions. And others can propagate both.
In this paper, we find the longest path beginning from each
PI and PPI that can propagate the rising transition and also
find the longest path beginning from each PI and PPI that
can propagate the falling transition. These two paths from
the same input can be the same. In the following parts of
this paper, for ease of description, we ignore the difference
between these two kinds of paths. Usually, the sensitization
conditions used to propagate the stuck-at faults are adopted
to detect small delay defects. So the testable path that
we find means functional sensitizable path. To find these

Pn
Pm

Pt

Ps

Ps’

 t

 s
 n

f1

 m

 1 P 1

Figure 2: The proof of Lemma 1.

longest testable paths beginning from PIs and PPIs, the
redundant identification strategies proposed in [10] [16]are
used. These strategies can identify the untestable paths fast.
After we get the testable paths, we can easily find the longest
path that begins from each PI or PPI of the circuit. Also the
method in [11] can be used to obtain these longest testable
paths. But in this paper, we don’t find the longest path
passing through each gate in circuit and only find the longest
path passing through each PI and PPI. This is different from
the scheme in [11].

Firstly, we find the longest testable path from each input.
Then the path for each input and its length is recorded.
Secondly, for each gate in the circuit, we use the testability
measure proposed in Section 4 to find the PIs and PPIs
which can reach the gate. Then we use these information to
accelerate the ATPG program for small delay defects.

Definition 1 The longest testable path beginning from a
primary input or pseudo-primary input and ending at a pri-
mary output or pseudo-primary output is called l-path. And
LS is the set which contains all l-paths for all primary inputs
and pseudo-primary inputs in a circuit.

As shown in Fig.1, Pe,Pm,Pt all begin from the input m
and Pm is the longest one of them. So Pm is the l-path for
input m.

Lemma 1 For a fault f1, the l-paths which pass through f1

are P1, ... Pn. Among these paths, the longest one is Pm.
And the inputs of the circuit that can reach the fault gate
are 1 ... t. The l-paths P1...Pt begin from the inputs 1 ... t.
{ P1...Pt } includes {P1, ... Pn}. If Pm is also the longest
one in P1...Pt, then the longest testable path passing through
f1 is Pm.

Proof: we would like to prove the lemma via contradic-
tion. As shown in Fig. 2, suppose that there exists another
testable path Ps passing through f1 which is longer than
Pm. According to the condition that Pm is the longest one
of the l-paths passing through f1, Ps is not a l-path. Ps

should begin from one primary input or pseudo-primary in-
put that is noted as s and the l-path of s is Ps’. Since Ps

passes through f1, s can reach the fault gate and the set
{1 ... t}includes s. Since Pm is also the longest one of the
l-paths {P1...Pt} which includes Ps’, Pm is longer than Ps’.
And since Ps is longer than Pm, Ps is longer than Ps’. This
contradicts with Definition 1 that Ps’ is the l-path of s (Ps’is
the longest testable path beginning from s).

The condition that Pm is also the longest one in P1...Pt

is necessary for Lemma1. If Pm is not the longest one in

222

{P1...Pt}, there is Pr in {P1...Pt} that is longer than Pm

and Pr begins from input r. Then there may be a testable
path beginning from r passing through the fault. This path
is shorter than Pr, but is longer than Pm. Then Pm is not
the longest one passing through the fault.

We would like to introduce a new test pattern generation
scheme for small delay faults. According to the proposal
above, we have found the l-path beginning from each PI and
PPI. These l-paths compose the set LS. And the length of
each l-path is recorded for each input. After this, we modify
the small delay ATPG. For every target transition fault with
small delay, our method will check whether it is on some l-
paths. If this fault is on some l-paths in LS, the longest one
(Pm) of these paths is selected. And the set SP is composed
of the inputs of the circuit which can reach the fault gate.
We will check whether Pm is also the longest one of the l-
paths which begin from the inputs in SP. If Pm is the longest
one, according to the Lemma 1, Pm is longest testable path
passing through the fault gate and Pm can be selected to ac-
tivate and propagate the fault. And the faults satisfying the
above conditions are detected along the true longest testable
path. The effort to find the longest path to propagate the
fault can be avoided, because the l-paths in LS have been
already found. And the process of checking whether a l-path
is the longest testable path passing through a gate is very
fast. This technique can significantly accelerate the ATPG.
Suppose that there are n transition faults with small de-
lay on an l-path and the l-path is the longest path passing
through these faults. In the conventional ATPG process, the
program has to find the l-path n times. Because though the
l-path is found as the longest path for one fault, the conven-
tional ATPG isn’t sure the l-path is also the longest path for
other faults. In our method, the l-path has been found in
advance. During the ATPG process, the Lemma1 can guide
the ATPG and the effort of finding the longest path for the
n faults can be avoided.

III. The Process of Accelerated Test
Generation

The process of the accelerated test generation for small
delay defects is described as follows. The new path selection
scheme is applied in the accelerated ATPG. And this scheme
can be used in any test approach such as broad-side, skew-
load and enhanced scan test approach.

Accelerated small delay test generation()
{

1. Generate the l-paths that begin from the PIs and PPIs.
These l-paths compose the set LS .

2. While the fault list is not empty, do 3,4,5.

3. Select a target fault f and check if it is on any l-path
in LS. If it is on some l-paths do 4. Otherwise, do 5.

4. The l-paths P1...Pn are passing through the fault f .

(a) Find the longest one Pm of P1...Pn.

(b) Get the set of inputs i1...it that can reach the
fault gate and get the l-paths P1...Pt beginning
from i1...it.

(c) Check whether Pm is the longest one of P1...Pt .

i. If Pm is the longest one of P1...Pt, the activa-
tion and propagation of the target fault can

directly along the path of Pm. After the test
pattern is generated for the target fault, do
3 select a new target fault.

ii. If it Pm is not the longest one, do 5.

5. Traverse all the paths passing through the target fault
and find the longest testable one to activate and prop-
agate the target fault.
}

IV. Generate the Compact Test Sets

A. A novel small delay test approach

The cost of test application is directly determined by the
size of test pattern set. Broad-side test approach is widely
used in small delay testing. In broad-side approach, the
second pattern is obtained from the response to the first
pattern. So the test sets are smaller than that of other
test approaches. But they are still large. Due to large test
volume required to achieve satisfactory coverage, small de-
lay defect coverage is often compromised for acceptable test
volume. To reduce the test data volume, we will propose a
novel scan-based test approach.

A two time-frame circuit model is widely used in broad-
side scan testing for small delay defects. Fig. 3 shows the
two time-frame model. Each frame of the model is a copy
of the circuit under test. And the PPOs in the first frame
is connected to the PPIs in the second frame. In the second
time-frame, the fault effect is propagated to the PO or PPO
and some PIs or PPIs should be assigned specified values.
The PPOs in the first time-fame, corresponding to the PPIs
which have the specified values, should backtrace to the PPIs
or PIs in the first time-frame.

As shown in Fig. 3 , if PPI si is set to 1 to propagate the
fault effect in the second frame, a large number of PPIs and
PIs will be assigned specified values in the first frame. On
the other hand, if the scan flip-flop si works in enhanced scan
mode, the value 1 can be loaded from scan-in directly. And
no backtrace is required in the first time-frame to assign si to
1. Hence, the don’t care bits of the test pattern can increase.
Then the space for test compaction will be much larger. And
the test patterns can be reduced. By this motivation, we
select some scan flip-flops working in enhanced mode. We
partition the scan flip-flops into several scan chains. And the
number of enhanced scan flip-flops is the same as the number
of the scan chains. Then we place one enhanced scan flip-
flop in each scan chain and set the enhanced scan flip-flop to
be the first place in the scan chain. And these scan flip-flops
at the first of the scan chains work in enhanced scan mode.
The rest work in broad-side mode. Note that the number
of scan chains (enhanced scan flip-flops) is limited by the
number of scan-ins.

In standard scan test design, there is an input E1 to con-
trol the scan enable signal for all the scan flip-flops. In our
scan test design, an extra scan control input E2 is needed.
E1 is used to control the scan enable signal for the broadside
scan flip-flops. E2 is used to control the scan enable signal
for the enhanced scan flip-flops. When E1=E2=1, the cir-
cuit works in shift mode and the first test vector is shifted
in. When E1=0, E2=1, the broadside scan flip-flops work in
function mode and the enhanced scan flip-flops work in shift
mode. Then the test data, which the first scan flip-flops of
the scan chains need in the second time-frame, are scanned
in the first scan flip-flops through the scan-ins for the scan

223

PPIs PPIs PPOs

PIs PIsPOs POs

Si=1 Si=1

time−frame 1 time−frame 2

Figure 3: The two time-frame circuit model.

chains. And the broadside scan flip-flops capture the re-
sponse to the first pattern simultaneously. Then E1=E2=0,
the circuit is under function mode. Because the test data for
the enhanced scan flip-flops in the second time-frame are one
bit for each scan cell and the number of the enhanced scan
flip-flops is small, so the test data increasing by enhanced
scan test are very small. Since we only drive few scan flip-
flops by E2, the signal for E2 can be easily designed to be
fast changing between launch clock and capture clock. This
technology increases the don’t care bits of the test patterns.
Therefore it can make the test compaction much more pow-
erful. And it doesn’t reduce the quality of the test sets .

From the description of the test application process
above, the scan flip-flops which work in enhanced mode can
arbitrarily receive the corresponding test data of two test
vector. And each scan chain has only one enhanced scan
flip-flop at the beginning of the chain. These enhanced scan
flip-flops can directly receive the second test data after re-
ceiving the first test data after applying the first test data.
So the enhanced scan flip-flops don’t need hold-scan design.
The test application process is described above.

When generating the test patterns for the modified
broad-side test approach, the backtrace schemes of the val-
ues assigned to the PPIs in the second frame are different. If
the PPIs working in enhanced scan mode are assigned spe-
cific values, the values are recorded directly without back-
tracing. And if the PPIs working in broad-side mode are
assigned specific values, they should be backtraced in the
first frame.

Note that this test approach is different from the one
in [9]. Ours aims to provide the larger room for compaction,
while [9] aims to improve the fault coverage. And the strat-
egy of selecting the first scan flip-flops is different. Also the
proposed approach is different from the one in [15]. The
method of [15] combines advantages of the skew-load and
broad-side approaches. The scan architectures of the pro-
posed method and the one in [15] are different.

B. The enhanced scan flip-flops selection

As illustrated above, the first scan flip-flops of the scan
chains work in enhanced scan mode that can increase the
don’t care bits in the test patterns. Which scan flip-flop in
scan chain should be placed first to achieve the best com-
paction effect?

As shown in two time-frame circuit model, a PPI is as-
signed a specific value in the second frame. Then the cor-
responding PPO in the first frame should backtrace to the
PPIs or PIs. If the number of these PPIs or PIs that the
PPO affects is large, we choose this PPO as an enhanced
scan flip-flop, then it can provide more don’t care bits and it

can achieve better compaction effect. So we want to choose
some scan flip-flops, that their corresponding PPO in the
first frame affect more PPIs or PIs, as the enhanced scan
flip-flops.

A testability measure and a function are proposed in this
section. The testability measure can more exactly calculate
the PIs and PPIs that a PPO can affect. And the func-
tion based on the testability measure is used to choose the
enhanced scan flip-flops.

The testability measure can calculate the PIs or PPIs
that each gate can affect. To introduce the testability mea-
sure, we first explain some definitions. RCi(l) presents the
minimum set of primary inputs (or pseudo-primary inputs)
which have to be assigned a specified value(0 or 1)in order
to set line l to value i. Ci(l) presents the size of RCi(l). For
a input l, we have:

RC1(l) = RC0(l) = {l}, (1)

C1(l) = C0(l) = 1. (2)

For an AND gate l with inputs A and B, we have:

RC1(l) = RC1(A) ∪ RC1(B), (3)

C1(l) = |RC1(l)|. (4)

where |RC1(l)| is the size of the set RC1(l).

RC0(l) =

{
RC0(A) if |RC0(A)| ≤ |RC0(B)|,
RC0(B) if |RC0(A)| > |RC0(B)|. (5)

C0(l) = |RC0(l)|. (6)

For a OR gate l with inputs A and B, we have:

RC1(l) =

{
RC1(A) if |RC1(A)| ≤ |RC1(B)|,
RC1(B) if |RC1(A)| > |RC1(B)|. (7)

C1(l) = |RC1(l)|. (8)

RC0(l) = RC0(A) ∪ RC0(B), (9)

C0(l) = |RC0(l)|. (10)

For a fanout s with branches B1, B2, . . ., Bk, for i ∈
{0, 1}, and j ∈ {1, 2, . . ., k}, we have:

Ci(Bj) = Ci(s). (11)

Other kinds of gate are similar. After we have the testa-
bility of each gate, we propose a function to find the en-
hanced scan flip-flops which can significantly increase the
don’t care bits in generated patterns. The function is:

G =
∑

ppo∈P

∑
i∈{0,1}

Ci(ppo), (12)

where P is the set that includes all PPOs in the first frame
of the two time-frame model. This function can reflect the
sum of the controlability of all PPOs.

224

To select the enhanced scan flip-flops, we do as following.
Suppose there are n scan chains. Firstly, we calculate G in
the original circuit according to the function (12). Secondly,
for each scan flip-flop in the circuit, we attempt to set it to
be the enhanced scan cell. If a scan flip-flop is considered
as the enhanced scan cell, the corresponding PPI in the sec-
ond frame doesn’t connect to the PPO in the first frame.
This PPI is considered as a PI. Then calculate the G′. We
choose the n scan flip-flops which can mostly minimize G′

comparing G. That is to say we choose the n scan flip-flops
working in enhanced scan mode to reduce G most. By us-
ing this method, the selected enhanced scan flip-flops can
most reduce the PIs or PPIs that may be assigned specific
value. So it can significantly increase the don’t care bits of
the generated patterns. This can increase the effectiveness
of the test compaction.

V. Experimental Results

We implemented the ATPG algorithm and the proposed
techniques on DELL workstation (Precision490) using C lan-
guage. We develop a conventional ATPG program for small
delay defects. It is based on ATALANTA. And we mod-
ify the conventional ATPG with the strategies proposed
in this paper. Experimental results are shown in Table 1
and Table 2. In Table 1, the SDQL is the statistical delay
quality level that is the probability of detecting small de-
lay defects [14]. In calculating SDQL, we use the method
in [14]and assume that the delay of every gate is 0.2 ns.
We modify the method in [10] to find the testable paths for
broad-side testing and select the longest true path passing
through each gate for calculating SDQL.

Table 1 shows the results of the the proposed new path
selection scheme applied to accelerate the ATPG for broad-
side small delay defects testing. The selected l-paths are
testable for broad-side testing and these paths are obtained
by using the modified methods in [10]. Table 1 also shows
the comparison between the ATPG using the proposed tech-
nique and the conventional small delay ATPG. The column
“Faults” represents the fault number of the circuits. The
3rd to 5th columns show the fault coverage, CPU time and
SDQL of the conventional small delay ATPG. And the 6th
to 9th columns show the fault coverage, CPU time, Time
ratio and the SDQL of the ATPG using the accelerating
technique proposed in this paper. When we calculate the
CPU time of the proposed method, the time of selecting
longest testable path from each PIs and PPIs in advance
is included. The “Time ratio” column shows the ratio of
the CPU time of proposed method to that of conventional
method. From table 1 we can see that the CPU time reduces
significantly by using this accelerating technique, especially
for s13207, s15850, s38417 and s38584. This shows that the
proposed techniques can effectively accelerate the ATPG for
small delay testing. Also the SDQL does not increase by us-
ing the proposed technique. And we know that the lower
the SDQL value is, the higher the delay test quality is. The
SDQLs of six circuits are smaller than that of the conven-
tional method. Because in conventional ATPG, very few
found paths for the target fault are not the longest one with
the limited backtrack number. And the selected paths by
using the proposed scheme are the longest ones for many
faults. So the SDQL may reduce.

Table 2 shows the effectiveness of our scan test approach
for test compaction. The 2nd column represents the count

of the test patterns for standard broad-side small delay test
approach. The 3rd to 6th columns represent the count of
the test patterns for new method. And we use the proposed
strategy in Section 4 to select the enhanced scan flip-flops,
comparing with randomly selecting the enhanced scan flip-
flops. The 3rd and 4th columns show the pattern count that
the enhanced scan flip-flops are randomly selected, while the
5th and 6th show the pattern count of using the proposed
selecting strategy. The “n=10”,“n=20” means that there
are 10,20 scan flip-flops work in enhanced mode. And in
the 3rd to 6th columns, the numbers on the left are the
test pattern counts and the numbers on the right are the
ratio of the pattern count of new method to the pattern
count of standard broad-side scan test. From Table 2 we
can see the test patterns are reduced significantly with the
proposed approach. This approach can provide large room
for test compaction. Note that the test compactor used in
this experiment is simple. Also we can see the proposed
testability measure and the selecting strategy are effective,
comparing the results of 3rd,4th columns to those of 5th,
6th columns. And the quality of the test patterns generated
by the new method does not decrease and the SDQL is the
same as that of Table 1. However, the fault coverage may
increase by using our test approach, we only consider the
effectiveness of compaction and our selecting method is more
effective for compaction.

VI. Conclusions

In this paper we propose a new technique to accelerate
the small delay ATPG. The path selection scheme aims to
select the fewer paths covering more faults. Also we propose
a novel scan test approach. Some scan flip-flops work in en-
hanced scan mode, while the rest work in broad-side mode.
In the two time-frame model, the enhanced scan flip-flops
assigned the specific value in the second time-frame needn’t
backtrace to the first time-frame. This can significantly in-
crease the don’t care bits in the test patterns that provide
larger room for test compaction. A selecting method is pro-
posed. Experimental results show that these techniques are
effective.

References

[1] K.-T. Cheng, “Transition Fault Testing for Sequential
Circuits,” IEEE Trans. Computer-Aided Design Inte-
grate Circuits and System, vol. 12, no. 12, pp. 1971-
1983, Dec. 1993.

[2] P. Gupta and M. S. Hsiao, “ALAPTF: A New Transi-
tion Fault Model and the ATPG Algorithm,” in Proc.
of IEEE Int. Test Conference, pp. 1053-1060, 2004.

[3] K. Heragu, J. H. Patel, and V. D. Agrawal, “ Segment
Delay Faults: A New Fault Model,” in Proc. of 14th
IEEE VLSI Test Symposium, pp. 32-39, 1996

[4] S. Kajihara, S. Morishima, A. Takuma, X. Wen,
T. Maeda, S. Hamada, and Y. Sato, “A Framework
of High-quality Transtition Fault ATPG for Scan Cir-
cuits,” in Proc. of IEEE Int. Test Conferance, paper 2.1,
2006.

[5] M. M. V. Kumar and S. Tragoudas, “High-Quality
Transition Fault ATPG for Small Delay Defects,”
IEEE Trans. on Computer-Aided Design of Integrated

225

Table 1: Comparison with the ordinary small delay testing method
Circuit Faults The conventional small delay test method The proposed small delay test method

Coverage(%) Time(s) SDQL(ppm) Coverage(%) Time(s) Time Ratio(%) SDQL(ppm)

s1423 2512 87.34 2.16 0.21 87.34 1.57 72.7 0.21

s5378 6988 89.55 10.02 0.10 89.56 5.63 56.2 0.10

s9234 11328 80.12 301.25 0.95 80.12 167.05 55.5 0.92

s13207 15602 81.57 79.85 0.28 81.59 23.93 30.0 0.27

s15850 19046 78.12 119.50 1.62 78.12 33.05 27.7 1.57

s35932 62798 84.27 501.11 3.65 84.27 270.06 53.9 3.57

s38417 49738 96.24 965.60 0.17 96.34 309.31 32.0 0.16

s38584 61254 89.19 1115.93 0.47 89.19 436.73 39.1 0.46

Table 2: The effect of test compaction using the novel test approach
Circuit Patterns of standard Patterns of proposed test approach

broad-side test random select method the proposed select method
approach n=10 n=20 n=10 n=20

s1423 139 95(68.3%) 78(56.1%) 80 (57.6%) 69 (49.6%)

s5378 454 286(63.0%) 223(49.1%) 210 (46.3%) 179 (39.4%)

s9234 789 466(59.1%) 401(50.8%) 346 (43.9%) 319 (40.4%)

s13207 738 501(67.9%) 493(66.8%) 410 (55.6%) 383 (51.9%)

s15850 624 357(57.2%) 283(45.4%) 270 (43.3%) 253 (40.5%)

s35932 143 129(90.2%) 114(79.7%) 122 (85.3%) 100 (69.9%)

s38417 2123 991(46.7%) 901(42.4%) 713(33.6%) 673 (31.7%)

s38584 1566 1135(72.5%) 996(63.6%) 895(57.2%) 817 (52.2%)

Circuits and Systems, vol. 26, no. 5, pp. 983-989,
May 2007.

[6] R. Kapur, J. Zejda and T. W. Williams, “Fundamen-
tals of Timing Information for Test: How Simple Can
We Get ? ” in Proc. of IEEE Int. Test Conference,
paper 17.2, 2007.

[7] X. Lin, M. Kassab and J. Rajski, “Test Generation
for Timing-Critical Transition Faults,” in Proc. of 16th
IEEE Asian Test Symposium, pp. 487-492, 2007.

[8] A. K. Majhi, V. D. Agrawal, J. Jacob, and L. M.
Patnaik,“Line Coverage of Path Delay Faults,” IEEE
Trans. on Very Large Scale Integration(VLSI) Systems,
vol. 8, no. 5, pp. 610-614, Oct. 2000

[9] I. Pomeranz, S. M. Reddy, “Enhanced Broadside Test-
ing for Improved Transition Fault Coverage,”in Proc. of
16th IEEE Asian Test Symposium, pp. 473-478, 2007

[10] S. Padmanaban and S. Tragoudas, “Efficient Identifi-
cation of (critical) Testable Path Delay Faults Using
Decision Diagrams,” IEEE Trans. on Computer-Aided
Design, vol. 24, no. 1, pp. 77-87, Jan. 2005.

[11] M. Sharma and J. H. Patel, “Finding a Small Set of
Longest Transition Paths That Cover Every Gate, ”in
Proc. of IEEE Int. Test Conference, paper 34.1, 2002.

[12] J. Savir, “Broad-side Delay Test,” IEEE Trans. on Very
Large Scale Integration Systems, vol. 2, no. 3, pp. 368-
372, Sept. 1994.

[13] G. L. Smith, “Model for Delay faults upon paths,” in
Proc. of IEEE Int. Test Conferance, pp. 342-349, 1985.

[14] Y. Sato, S. Hamada, T. Maeda, A. Takatori,
Y. Nozuyama and S. Kajihara, “Invisible Delay Quality
- SDQM Model Lingts Up What Could Not Be Seen,”
in Proc. of IEEE Int. Test Conference, paper 47.1, 2005.

[15] S. Wang, X. Liu, S. T. Chakradhar, “Hybrid Delay
Scan: A Low Hardware Overhead Scan-based Delay
Test Technique for High Fault Coverage and Compact
Test Sets,” in Proc. of Design Autom. and Test in Eu-
rope Conference, pp. 1296-1301, 2004

[16] D. Xiang, K. Li, H. Fujiwara, and J. Sun, “Generat-
ing Compact Robust and Non-robust Tests for Com-
plete Coverage of Path Delay Faults Based on Stack-at
Tests,” in Proc. of 24th IEEE Int. Conf. Computer De-
sign, pp. 446-451, 2006

226

TIGUAN: Thread-parallel Integrated test pattern Generator Utilizing satisfiability ANalysis∗

Alejandro Czutro∗, Ilia Polian∗, Matthew Lewis∗, Piet Engelke∗, Sudhakar M. Reddy∗∗, Bernd Becker∗

∗Institute for Computer Science

Albert-Ludwigs-University

D-79110 Freiburg i. Br., Germany

∗∗ECE Department

University of Iowa

Iowa City, IA 52242, USA

Abstract
We present the automatic test pattern generator TIGUAN
based on a thread-parallel SAT solver. Due to a tight integra-
tion of the SAT engine into the ATPG algorithm and a care-
fully chosen mix of various optimization techniques, multi-
million-gate industrial circuits are handled without aborts.
TIGUAN supports both conventional single-stuck-at faults
and sophisticated conditional multiple stuck-at faults which
allows to generate patterns for non-standard fault models.

1 Introduction
Traditional deterministic automatic test pattern generation
(ATPG) algorithms work directly on the circuit structure
[1–4], possibly in conjunction with additional data structures
such as implication graphs [5] or advanced techniques to
prune the solution space [6, 7]. It has long been known that
an ATPG problem can be reduced to a Boolean satisfiability
(SAT) instance and solved using a SAT solver [8, 9]. How-
ever, this approach has not become widely adopted as the
structural approaches tended to exhibit better performance.
It has recently been shown that SAT-based ATPG outper-

forms structural approaches for several classes of faults [10].
One such class consists of redundant faults. SAT solvers are
routinely used to prove unsatisfiability in applications such
as equivalence checking, and a number of techniques have
been developed to quickly prune large parts of the solution
space. In contrast, structural ATPGmethods may need to tra-
verse almost the complete solution space to make sure that
no test pattern for a fault exists. It has also been reported
that there are testable faults for which structural ATPG per-
forms a large number of backtracks to find a pattern while
SAT-based ATPG swiftly finds a solution [10].
The ability to handle redundant faults is becoming more

important for two reasons. First, defects in nanoscale man-
ufacturing technologies may not be described adequately by
stuck-at faults [11]. Non-standard fault models such as re-
sistive bridging faults [12, 13] or interconnect opens [14, 15]
may impose very specific conditions on the lines in the cir-
cuit, which are, in many cases, impossible to satisfy, so the
fault is undetectable.

∗Parts of this work have been supported by the German Research Coun-

cil under project BE 1176/14-1 and by the Alexander-von-Humboldt Foun-

dation. We are thankful to Juergen Schloeffel of NXP Hamburg for pro-

viding industrial circuits and Tobias Schubert of University of Freiburg for

fruitful discussions on SAT solving.

Second, redundant structures are increasingly used to en-
hance circuit reliability and yield [16,17]. A significant frac-
tion of faults in these structures are not detectable. To accu-
rately estimate the defect coverage, the proof that the fault in
question is undetectable (rather than aborted) is essential.

State of the art in SAT-based ATPG is currently given by
the tool PASSAT [10] which is integrated into NXP’s struc-
tural ATPG framework AMSAL. Performance enhancement
of SAT-based ATPG by utilizing learning techiques has been
discussed in [18].

In this paper we present the ATPG tool TIGUAN (Thread-
parallel Integrated test pattern Generator Utilizing satisfiabil-
ity ANalysis) which is based on the in-house SAT solver Mi-
raXT [19]. MiraXT is a state-of-the-art SAT solver which in-
corporates various optimization techniques developed in the
last few years. Moreover, it supports thread parallelism, thus
fully utilizing the performance of multi-processor systems
or multi-core processors. In contrast to PASSAT, TIGUAN
is tightly coupled with the SAT engine and can dynamically
control its internal parameters such as preprocessing steps to
be performed or number of threads to be used. Moreover,
we present a two-phase method which allows to utilize Mi-
raXT’s inherent parallelism in a meaningful way.

Another feature of TIGUAN is the support of the gen-
eral conditional multiple-stuck-at (CMS@) fault model. The
model allows faulty effects to be present on multiple cir-
cuit lines (victims) simultaneously if a number of conditions
on other lines (aggressors) are satisfied. Many static non-
standard fault models can be mapped to conditional multi-
ple stuck-at faults, making TIGUAN a flexible tool to handle
various defect classes.

Experiments demonstrate that TIGUAN can generate
complete stuck-at test sets for large industrial circuits with
up to several million gates without aborts. For two classes of
non-standard fault models (represented by CMS@ fault lists)
TIGUAN completely classifies all ISCAS and ITC bench-
marks and most industrial circuits. TIGUAN also outper-
forms comparable SAT-based ATPG tools.

The remainder of the paper is organized as follows. The
CMS@ fault model and the mapping of other fault models
to the CMS@ fault model is introduced in the next section.
Section 3 gives the overall flow of TIGUAN. Experimen-
tal results for stuck-at faults as well as more complex faults
mapped to CMS@ faults are reported in Section 4. Section
5 concludes the paper.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.20

227

2 CMS@ Fault Model
TIGUAN considers the conditional multiple-stuck-at
(CMS@) fault model which includes the standard single-
stuck-at fault model and is related to generic fault modeling
approaches such as fault tuples [20] or the Generalized Fault
Model [21]. A CMS@ fault with r aggressor lines and s
victim lines consists of a list {a1/aval

1
, . . . , ar/aval

r } and
a list {v1/vval

1
, . . . , vs/vval

s } , where each ai and each vj

denotes a signal line and all aval
i and vval

j stand for a logical

value (0 or 1). A circuit under a CMS@ fault exhibits faulty
behavior under any input vector which sets every aggressor
line ai to aval

i . In this case, the value on each victim line vj

changes to vval
j .

A single-stuck-at-fault is represented by a CMS@ fault
with an empty aggressor list and a victim list consisting of
one entry. In the following, we explain the mapping of other
fault models to CMS@ faults.

2.1 Gate-exhaustive testing
Gate-exhaustive testing requires that every single-stuck-at
fault at the output of a gate is detected using all valid value
combinations on the inputs of that gate [22]. A stuck-at-1
fault at the output of an AND2 gate would be tested indepen-
dently by three patterns, one justifying 00 at the gate’s inputs,
one justifying 01 and one justifying 10. Gate-exhaustive test-
ing was demonstrated to be effective in identifying hard-to-
detect defects on actual manufactured silicon [22].
Generally, 2n − 1 test patterns must be generated for a

stuck-at-1 fault at the output of an n-input AND or NOR gate
and for a stuck-at-0 fault at the output of a NAND or OR gate.
One pattern must be generated for the opposite stuck-at fault,
respectively. 2n−1 patterns must be generated for a stuck-at-
1 or a stuck-at-0 fault at the output of an XOR or XNOR gate.
Gate-exhaustive testing is easily mapped to the CMS@

fault model. For the example of the stuck-at-1 fault at the
output c of an AND2 gate with inputs a and b, three CMS@
faults are injected. All three faults have the same victim list
{c/1}; the aggressor lists of the three faults are {a/0, b/0},
{a/0, b/1} and {a/1, b/0}, respectively. Similar transfor-
mations are performed for other gate types.

2.2 Resistive bridging faults
Bridging faults with non-zero bridge resistance may impact
the behavior of a digital circuit in a non-trivial way [12, 13].
In general, a short defect with resistance Rsh between in-
terconnect a driven by gate A and interconnect b driven by
gate B imposes intermediate voltages Va and Vb between 0
and VDD on the affected interconnects. These voltages are
interpreted as logic values by the gates driven by a and b,
depending on the logic thresholds of the gates. The volt-
ages Va and Vb are determined by the electrical parameters
of transistors within gates A and B and the number of tran-
sistors which are activated. The latter parameter depends on
the logic values on the inputs of gates A and B. Hence, to
detect a resistive short defect with a given resistance, specific
values on the gates driving the shorted interconnects may be
required, and the fault effect may be visible on one or more
gates driven by the shorted interconnects.

The detection conditions may differ for short defects
which involve the same pair of interconnects but have dif-
ferent resistances Rsh. It has been shown in [23, 24] that
there exists a partition of the continuous space of Rsh values
into m + 1 sections [R0, R1], [R1, R2], . . . , [Rm−1, Rm],
[Rm,∞], where R0 := 0 < R1 < · · · < Rm < ∞, such
that the logical behavior of the circuit is identical for Rsh

values within one section. This means that a test pattern
generated for a short defect with a fixed resistance detects
all defects between the same interconnects with a resistance
from the same section. In other words, to fully cover all pos-
sible resistive short defects between interconnects a and b, it
is sufficient to generate a test set which detectsm + 1 repre-
sentative defects (one from each section).
To demonstrate test generation for resistive bridging

faults, we first generated resistive bridging fault lists by se-
lecting, for each circuit, 10,000 pairs of interconnects ran-
domly. For every pair of interconnects, we calculated the
section information using the tool flow from [24] and as-
suming the same technology parameters as in [24]. For ev-
ery section, we generated one conditional multiple-stuck-at
fault. The aggressor list consisted of the conditions on the in-
puts of the gates driving the shorted interconnects. The vic-
tim list included all inputs of the gates driven by the shorted
interconnects on which an erroneous value was interpreted.

3 TIGUAN
Given a circuit, a CMS@ fault list and a set of parameters
which includes a timeout value, TIGUAN generates a test
set which detects all faults for which a test pattern could be
found within the time budget. All faults in the lists are clas-
sified as either detected, undetectable, or aborted (not classi-
fied within the time budget).

3.1 Test generation procedure

TIGUAN selects a fault from the fault list and attempts to
generate a pattern for this fault by formulating a SAT in-
stance in conjunctive normal form (CNF) and handing it to
the MiraXT engine. The generation of the CNF is described
in detail in [8, 9]. We apply the usual speed-up techniques
such as D-chains [9]. The MiraXT engine incorporates sev-
eral methods to accelerate SAT solving, which are described
in [19] along with details on the multi-threading solving
mechanism. We tuned the performance of MiraXT by ad-
justing several solver-internal control variables to values ap-
propriate for ATPG instances. Based on extensive empirical
data, we decided not to reuse parts of a CNF generated for
one fault when considering other faults.
If MiraXT finds a model (i.e., a satisfying variable as-

signment) of the SAT instance, the test pattern is derived
from the solution. If MiraXT reports that the instance is un-
satisfiable, the fault is proven to be undetectable. TIGUAN
can be started in the fault dropping mode; all yet-undetected
faults in the fault list are simulated with generated patterns
and covered faults are marked detected and excluded from
further processing. We employ an in-house 32-bit pattern
parallel fault simulator, so fault dropping is invoked after 32
new patterns have been accumulated. The ATPG process is
continued until all faults have been classified.

228

Table 1: ATPG for stuck-at faults with fault dropping for NXP circuits, timeout 20 seconds per fault

Circuit # gates # faults # detected # redundant # aborts # patterns Time per fault [s] Total time

CNF gen. SAT FSIM T [s]

p35k 48927 67733 66721 1012 0 11536 0.033 0.0278 0.0007 1364

p45k 46075 68760 68564 196 0 3604 0.005 0.0017 0.0008 47

p77k 75033 120348 113049 7299 0 5318 0.029 0.3455 0.0510 5454

p78k 80875 163310 163310 0 0 468 0.005 0.0006 0.0061 7

p81k 96722 204174 202981 1193 0 7529 0.010 0.0017 0.0015 162

p89k (*) 92706 150538 148604 1934 0 9868 0.007 0.0015 0.0018 154

p100k 102443 162129 161404 725 0 5142 0.006 0.0032 0.0028 91

p141k (*) 185360 282428 279189 3239 0 8893 0.050 0.0337 0.0024 1706

p267k 296404 366871 365423 1448 0 11579 0.020 0.0031 0.0037 447

p269k (*) 297497 369055 367607 1448 0 11633 0.018 0.0031 0.0046 436

p286k (*) 373221 650368 640103 10264 1 20243 0.041 0.0490 0.0062 3456

p295k (*) 311901 472022 468174 3847 1 22786 0.024 0.0053 0.0042 1159

p330k 365492 540758 535070 5656 32 23392 0.038 0.0388 0.0048 3208

p378k 404367 816534 816534 0 0 1107 0.022 0.0007 0.0145 44

p388k (*) 506034 881417 876750 4665 2 11975 0.029 0.0078 0.0065 830

p469k 49771 142751 140869 1762 120 578 0.094 4.4455 1.7238 13139

p951k (*) 1147491 1557914 1542633 15281 0 20899 0.060 0.0011 0.0119 2668

p1522k (*) 1193824 1697662 1681874 15788 0 63549 0.073 0.0099 0.0173 9324

p2927k 2539052 3527607 3412613 114907 87 39842 0.156 0.0308 0.0602 33758

TIGUAN also provides a mode in which the percentage
of don’t cares (Xes) in the generated patterns is maximized.
This property is essential for static as well as dynamic com-
paction [25] and test compression [26]. The injection of Xes
is performed by the SAT engine; on top of that, an input-
output-cone analysis similar to [27] is performed to iden-
tify further Xes. We are currently integrating more elabo-
rate methods of test set relaxation [28, 29] into TIGUAN to
achieve very high don’t care densities comparable to percent-
ages obtained by structural ATPG approaches.

3.2 Multi-threaded solving
Parallel test pattern generation requires an intelligent par-
titioning of the problem being solved into smaller sub-
problems and distribution of these sub-problems to individ-
ual threads. This must be complemented by an appropri-
ate representation of the data shared among the threads and
an efficient mechanism to access this data. In the follow-
ing, we first describe the data organization and then provide
an overview of how TIGUAN partitions the test generation
problem being solved.

3.2.1 Distributed data organization

MiraXT and thus TIGUAN implement parallelism based on
the shared memory paradigm (rather than message passing).
A common clause data base contains pointers to clauses of
the original SAT instance as well as conflict clauses pro-
duced during solving. Note that clauses representing the
fault-free circuit, clauses representing the circuit with the
fault injected and auxilliary clauses from D-chain are treated
equally. Every thread keeps a local list which contains two
selected literals of each clause, called watch literals. If a
thread requires the complete clause information, it must ac-
cess the global data base, which may require inter-processor
communication. State-of-the-art multi-processor and multi-
core systems include mechanisms such as AMD’s Hyper-
Transport Bus which accelerate this kind of communication.

Utilizing a common clause database allows threads to
share clauses. This concept is called knowledge sharing and
basically allows the solver threads to learn from each others’
mistakes (conflicts). Before inserting a clause into the com-
mon database, the thread analyzes whether clauses recently
inserted by other threads are more effective, i.e., prune larger
parts of the search space. An optimized fine-grained lock
management is implemented. It has been shown to reduce
the performance overhead due to lock conflicts to fractions
of a per cent. Clause deletion is implemented by a two-stage
garbage collection strategy which almost eliminates the need
for locks.

3.2.2 Problem partitioning and solving

The solving and the partitioning of the instance is man-
aged by the master control object (MCO) of very limited
complexity. MCO essentially forwards messages between
threads and does not intervene with a thread’s computation
process. MCO also manages running and idle threads which
are waiting for new sub-problems.

After CNF generation, several preprocessing steps are
performed to simplify the instance. The multithreaded solver
starts by giving the complete decision tree to one of the
threads, and it begins the solving process. All other threads
communicate to the MCO that they are idle. Idle threads
are put into sleep mode in which they do not poll and con-
sequently do not cause communication overhead. Running
threads poll the MCO periodically whether any global events
have occurred.

Possible global events are ‘instance has been solved by
another thread’, ‘timeout has been exceeded’, and ‘idle
threads exist’. In the latter case, the running thread divides
its sub-problem into two parts, wakes one of the sleeping
threads and transfers control of one part to this thread. If a
thread’s sub-problem is unsatisfiable, it inserts the required
conflict clauses into the data base and enters the idle state.
The problem is unsatisfiable if all threads become idle.

229

Table 2: ATPG without fault dropping for ISCAS, ITC and

NXP circuits for stuck at faults and comparison with [18]

Circuit Gates Faults TIGUAN PASSAT

Det. Red. Ab. T [s] Ab. T [s]

c0432 203 524 520 4 0 0.5 0 2.6

c0499 275 758 750 8 0 1.0 0 21.0

c1355 619 1574 1566 8 0 4.5 0 32.5

c1908 938 1879 1870 9 0 4.6 0 14.4

c3540 1741 3428 3291 137 0 14.0 0 47.9

c7552 3827 7550 7419 131 0 19.4 0 106.5

s01494 686 1506 1494 12 0 0.6 0 2.7

s05378 3221 4603 4563 40 0 4.1 0 14.3

s15850 11067 11725 11336 389 0 47.8 0 121.3

s38417 25585 31180 31015 165 0 89.7 0 191.3

b10 197 486 486 0 0 0.1 0 0.3

b11 579 1436 1434 2 0 1.0 0 4.8

b12 1127 2827 2826 1 0 1.5 0 5.6

b14 5923 16167 16137 30 0 122.1 0 1426.8

b15 8026 21282 20545 737 0 378.8 0 2673.6

p81k 96722 204174 202981 1193 0 4429 0 12116

p89k 92706 150538 148604 1934 0 2544 0 5755

p100k 102443 162129 161404 725 0 2102 19 15397

p141k 185360 282428 279189 3239 0 29938 236 95452

p951k 1147491 1557914 1542633 15281 0 158875 132 166791

3.3 Two-stage method
It has been noted, e.g. in [4], that sophisticated performance
enhancements are effective for relatively few hard-to-detect
faults while slowing down the processing of easy-to-detect
faults. We observed that, with average SAT solving time per
fault below 0.1 second for most circuits, various optimiza-
tions do not result in a net run time gain. This is also true for
thread parallelism: the overhead to initialize the threads and
set up the communication infrastructure does not appear to
be justified for most faults.
Consequently, we implemented a two-stage ATPG strat-

egy. In the first stage, TIGUAN is run in the single-thread
mode with an aggressive time limit. In the second stage,
TIGUAN is applied to the remaining hard-to-detect faults
employing thread parallelism.

4 Experimental Results

TIGUAN was applied to ISCAS 85 circuits and combina-
tional cores of ISCAS 89 circuits, ITC 99 circuits and indus-
trial circuits provided by NXP. The measurements for stuck-
at faults (Tables 1 – 4) were performed on a 2.8 GHz AMD
Opteron computer with 16 GB RAM, and the measurements
for non-standard fault models (Tables 5 and 6) were per-
formed on a 2.3 GHz machine with 4 GB RAM.

4.1 Single-threaded single-stuck-at ATPG

Table 1 reports ATPG results for industrial circuits using
fault dropping and 20 seconds timeout per fault (a fault was
classified as aborted if no pattern was found within 20 sec-
onds). The name of the circuit, the number of gates and col-
lapsed faults and the distribution of the faults into classes de-
tected, provably redundant and aborted is shown in columns
1 through 6. Column 7 contains the number of generated
patterns.

Table 3: Comparison of number of aborts (Ab.) and run time

for TIGUAN and PASSAT [10] with fault dropping

ITC-99 circuits
Circ. PASSAT TIGUAN

Ab. T [s] Ab. T [s]

b14 0 19.0 0 13.2

b15 0 24.0 0 44.0

b17 0 142.0 0 123.6

b18 0 1350.0 0 341.8

b20 0 56.0 0 29.4

b21 0 59.0 0 33.3

b22 0 95.0 0 36.0

NXP circuits
Circ. PASSAT TIGUAN

Ab. T [s] Ab. T [s]

p35k 0 1561.0 0 1364.0

p81k 0 583.0 0 162.0

p89k 0 573.0 0 154.0

p100k 0 410.0 0 91.0

p141k 0 4740.0 0 1706.0

p469k 77 6180.0 120 13139.0

p951k 1 18300.0 0 2668.0

The time (in seconds) per fault for CNF generation, SAT
solving and fault simulation (fault dropping) can be found in
columns 8 through 10, the total time T [s] in column 11. No
thread parallelism of the MiraXT engine was employed.
Circuits marked by asterisk (*) contain tristate elements.

TIGUAN replaces bufif1 gates by AND gates and notif1 gates
by NAND gates which retains the circuit’s functionality. To
prevent bus contention, an additional clause which ensures
that at most one driver is active at the same time can be gen-
erated. We did not generate such a clause in our experiments.
TIGUAN can handle multi-million-gate designs with very

few aborts and in limited time. The number of patterns is
rather large, however we point out that no compaction tech-
niques such as reverse-order simulation were employed. The
option to maximize don’t cares was not used.
Tables 2 and 3 compare the performance of TIGUAN

(without thread parallelism) with the best published results
by PASSAT available to us [10, 18] (only results for circuits
quoted in [10, 18] are reported in Tables 2 and 3).1 Results
in Table 2 have been generated with fault dropping switched
off and timeout of 20 seconds (as in [18]). We quote the
best numbers achieved by PASSAT among different learning
techniques presented in [18]. Table 3 compares results ob-
tained using fault dropping and timeout of 20 seconds with
columns 4 and 5 in Table VI in [10] (run times were con-
verted into seconds). Although the same industrial circuits
were used in [10,18], some of them were named differently:
circuits p44k, p49k, p80k, p88k, p99k, p177k and p1330k
in [10, 18] correspond to circuits p35k, p469k, p81k, p89k,
p100k, p141k and p951 in Tables 2 and 3, respectively.
TIGUAN outperforms PASSAT both with respect to

aborts and run time. For circuits p89k, p141k and p951k,
part of the run time advantage is due to the simplified en-
coding of tristate elements for the three circuits mentioned
above (PASSAT switches to multi-valued logic which in-
cludes the high-impedance value if a circuit contains tristate
elements). All other circuits are purely Boolean and do not
require multi-valued logic.

4.2 Multithreaded performance

We ran TIGUAN in the two-stage mode described in Section
3.3. The limits for the first and the second stage were 1 and
20 seconds, respectively. Table 4 summarizes the results for
circuits with at least one abort during the first stage. Column

1An AMD Athlon with 2.2 GHz and 1 GB RAM was used in [18]. A

dual-dual-core Xeon with 3 GHz and 32 GB RAM was used in [10].

230

Table 4: Performance of thread-parallel two-stage approach for single-stuck-at faults

Circuit Two-stage approach One-stage No timeout

First stage Second stage approach (no aborts)

(Timeout 1 s) (Timeout 20 s) (Timeout 20 s) T [s]

T [s] Faults 1 thread 2 threads 4 threads From table 1

left aborts T [s] tot.time aborts T [s] tot.time aborts T [s] tot.time Aborts T [s]

p77k 4545 1322 0 2940 7485 0 1354 5899 0 1003 5548 0 5454 5454

p286k 2115 126 1 1459 3574 1 1232 3347 1 1609 3724 1 3456 3497

p295k 1062 3 1 45 1107 1 62 1124 1 66 1128 1 1159 1228

p330k 2376 70 31 806 3182 17 616 2992 16 491 2867 32 3208 23475

p388k 800 2 2 40 840 2 41 841 2 40 840 2 830 1263

p469k 17929 2680 141 10434 28363 28 3343 21272 3 2152 20081 120 13139 30815

p1522k 9295 22 0 63 9358 0 15 9310 0 19 9314 0 9324 9324

p2927k 25856 666 92 3929 29785 80 3298 29154 73 3120 28976 87 33758 50812

2 gives the run time of the first stage. The number of faults
aborted during the first stage and targeted by the second stage
can be found in column 3. The second stage was run for 1,
2 and 4 parallel threads with a timeout of 20 seconds. For
each scenario, the number of aborts during the second stage,
its run time and the cumulative run time of the first and the
second stage are given in columns 4 through 12.

Columns 13 and 14 give the number of aborts and the run
time of the one-stage method from columns 6 and 11 of Ta-
ble 1, respectively. Note that the timeout for the one-stage
method was 20 seconds. The minimal run time of columns
6, 9, 12 and 13 is marked bold. This indicates the minimal
time which is required for the complete ATPG process by ei-
ther two-stage or one-stage approach. The two-stage method
with multithreading always yields less aborts than the one-
stage approach and reduces the ATPG time for more than
half of the circuits. 2-thread parallelism often yields lower
run times while using 4 threads helps to reduce aborts.

For reference, the final column of Table 4 reports the time
which TIGUAN consumes when started without a time limit

Table 5: Results for gate-exhaustive testing with fault drop-

ping, timeout 20 seconds per fault

Circuit Gates Faults Distribution Pats. Run time [s]

Det. Red. Ab. per flt. total

c5315 2608 12084 10194 1890 0 1069 0.0004 4

c6288 2480 9664 7934 1730 0 439 0.0019 18

c7552 3827 15050 12345 2705 0 1227 0.0006 9

cs13207 9441 26004 22950 3054 0 1381 0.0006 15

cs15850 11067 29922 26703 3219 0 1213 0.0009 26

cs35932 19876 60064 46484 13580 0 128 0.0004 23

cs38417 25585 70236 66228 4008 0 2425 0.0003 20

cs38584 22447 75278 64629 10649 0 1549 0.0003 24

b17 25719 138230 97826 40404 0 6041 0.0040 554

b18 76513 396886 292165 104721 0 16084 0.0058 2313

b20 12991 66444 52049 14395 0 5048 0.0028 187

b21 13168 66420 52444 13976 0 5597 0.0029 192

b22 18789 94022 73540 20482 0 5522 0.0026 244

p330k 365492 1166046 1037130 128843 73 36401 0.0102 11934

p378k 404367 1370984 1191909 179075 0 1980 0.0037 5117

p388k 506034 1663442 1463686 199754 2 17317 0.0049 8220

p469k 49771 312784 241562 70844 378 652 0.1618 50603

p951k 1147491 3250198 2884773 365425 0 28050 0.0089 28863

p1522k 1193824 3708692 3350769 357923 0 80404 0.0140 52036

p2927k 2539052 7048378 6253392 794723 263 51340 0.0241 169859

(all faults are classified without aborts). Note that all circuits
not included in Table 4 have already been classified without
aborts using a timeout of one second. Hence, TIGUAN com-
pletely classified all faults in the industrial circuits (as it did
for ISCAS and ITC circuits not included in Tables 1 and 4).

4.3 Non-standard fault models

Table 5 reports the application of TIGUAN to generate gate-
exhaustive test sets for larger ISCAS, ITC and NXP circuits.
The number of faults (column 3) significantly exceeds the
number of gates (column 2). A significant fraction of the
generated faults are redundant (column 5). There are little
aborts (column 6). The run times exceed those for stuck-at
faults but are generally reasonable (column 8).
Table 6 summarizes the performance of TIGUAN for the

resistive bridging fault list generated as explained in Section
2.2. The format of the table is similar to Table 5. The num-
ber of CMS@ faults equals 10,000 multiplied by the average
numberm of sections per resistive bridging fault. This num-

Table 6: Results for resistive bridging faults with fault drop-

ping, timeout 20 seconds per fault

Circuit Faults Distribution Patterns Run time [s]

Det. Red. Aborts per fault total

c5315 28214 19594 8620 0 1661 0.0008 23.50

c6288 33603 20086 13517 0 1320 0.0037 125.28

c7552 32028 19024 13004 0 1224 0.0013 41.94

cs13207 20366 15107 5259 0 1115 0.0007 14.42

cs15850 20061 14803 5258 0 1090 0.0014 28.18

cs35932 27160 9332 17828 0 133 0.0015 41.97

cs38417 25976 20174 5802 0 1619 0.0011 27.34

cs38584 26602 17207 9395 0 1486 0.0012 32.43

b17 41651 7966 33685 0 2925 0.0142 591.01

b18 42881 8753 34128 0 3926 0.0250 1070.18

b20 44378 8073 36305 0 2285 0.0104 461.74

b21 44915 8027 36888 0 2293 0.0104 467.61

b22 44824 8551 36273 0 2170 0.0108 482.63

p330k 23716 20991 2725 0 4428 0.0216 511.33

p378k 27898 23659 4239 0 529 0.0060 166.41

p388k 24637 21495 3142 0 2139 0.0112 274.79

p469k 45528 13444 31837 247 774 0.4523 20594.07

p951k 21967 20106 1861 0 1958 0.0149 326.58

p1522k 22731 19167 3564 0 5731 0.0522 1186.51

p2927k 22638 19351 3286 1 3761 0.0634 1434.36

231

ber ranges between 14,489 for b13 and 45,528 for p469k.
There are again no aborts for almost all circuits while the run
times are reasonable. We also applied the two-stage method,
observing results similar to the case of stuck-at faults: the
number of aborts was reduced, and the run time went down
for circuits with the largest SAT solving time. We are not
aware of comparable results by PASSAT or any other SAT-
based tool.

5 Conclusions
TIGUAN currently can completely classify all single-stuck-
at faults in both large industrial circuits and structurally com-
plex ISCAS circuits without aborts. It is also an effective
and flexible tool to generate tests for non-standard fault mod-
els for which no adequate dedicated ATPG tool is available.
This is achieved by providing a mapping between the non-
standard model and conditional multiple stuck-at fault model
which TIGUAN supports. The two-stage approach allows
to identify hard-to-detect faults for which sophisticated opti-
mization strategies of the SAT engine and thread parallelism
are effective.
One research direction for the future is the incorporation

of state-of-the-art static and dynamic compaction [25,30–33]
and test set relaxation techniques [28, 29] to reduce the pat-
tern count. We also plan to extend the CMS@ concept to
dynamic fault models such as delay faults [34], and power
droop [35]. Moreover, we investigate the theoretical find-
ings on fault vs. search parallelism [36] to better utilize novel
multi-processor and multi-core architectures with ultra-fast
interprocessor communication.

6 References
[1] J.P. Roth. Diagnosis of automata failures: A calculus and a method.

IBM J. Res. Dev., 10:278–281, 1966.

[2] P. Goel. An implicit enumeration algorithm to generate test for com-

binational logic. IEEE Trans. on Comp., 30:215–222, 1981.

[3] H. Fujiwara. FAN: A Fanout-Oriented Test Pattern Generation Al-

gorithm. In IEEE International Symposium on Circuits and Systems,

pages 671–674, 1985.

[4] I. Hamzaoglu and J.H. Patel. New techniques for deterministic test

pattern generation. Jour. of Electronic Testing: Theory and Applica-

tions, 15:63–73, 1999.

[5] P. Tafertshofer and A. Ganz. SAT based ATPG using fast justification

and propagation in the implication graph. In Int’l Conf. on CAD, pages

139–146, 1999.

[6] E. Gizdarski and H. Fujiwara. SPIRIT: A highly robust combinational

test generation algorithm. IEEE Trans. on CAD, 21(12):1446–1458,

12 2002.

[7] C. Wang, S.M. Reddy, I. Pomeranz, X. Lin, and J. Rajski. Conflict

driven techniques for improving deterministic test pattern generation.

In Int’l Conf. on CAD, 2002.

[8] T. Larrabee. Efficient Generation of Test Patterns Using Boolean Dif-

ference. In Int’l. Test Conference, pages 795–801, 1989.

[9] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Com-

binational test generation using satisfiability. IEEE Transactions on

CAD, 15(9):1167–1176, September 1996.

[10] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schlo-

effel, and D. Tille. On acceleration of SAT-based ATPG for industrial

designs. IEEE Trans. on CAD, 27(7):1329–1333, 2008.

[11] R. Aitken. New defect behavior at 130nm and beyond. In Euro-

pean Test Symposium (Emerging Ideas Contribution), pages 279–284,

2004.

[12] M. Renovell, F. Azaı̈s, and Y. Bertrand. Detection of defects using

fault model oriented test sequences. Jour. of Electronic Testing: The-

ory and Applications, 14:13–22, 1999.

[13] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive

bridging and stuck-at faults. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 25(10):2181–2192, Oct. 2006.

[14] Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda, and M. Takakura. A

persistent diagnostic technique for unstable defects. In Int’l Test Conf.,

pages 242–249, 2002.

[15] S. Hillebrecht, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-

T. Cheng. Extraction, simulation and test generation for interconnect

open defects based on enhanced aggressor-victim model. In Int’l Test

Conf., 2008. In press.

[16] D.P. Siewiorek and R.S. Swarz. Reliable Computer Systems – Design

and Evaluation. Digital Press, 1992.

[17] M. Zhang, S. Mitra, T.M. Mak, N. Seifert, N.J. Wang, Q. Shi, K.S.

Kim, N.R. Shanbhag, and S.J. Patel. Sequential element design with

built-in soft error resilience. IEEE Trans. on VLSI, 14(12):1368–1378,

2006.

[18] G. Fey, T. Warode, and R. Drechsler. Reusing learned information in

SAT-based ATPG. In VLSI Design, pages 69–76, 2007.

[19] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In

ASPDAC 2007, Yokohama, Japan, January 2007. 12th Asia and South

Pacific Design Automation Conference.

[20] R. Desineni, K.N. Dwarkanath, and R.D. Blanton. Universal test gen-

eration using fault tuples. In Int’l Test Conf., pages 812–819, 2000.

[21] S. Kundu, S.T. Zachariah, S.-Y. Chang, and C. Tirumurti. On model-

ing crosstalk faults. IEEE Trans. on CAD, 24(12):1909–1915, 2005.

[22] K.Y. Cho, S. Mitra, and E.J. McCluskey. Gate exhaustive testing. In

Int’l Test Conf., 2005.

[23] T. Shinogi, T. Kanbayashi, T. Yoshikawa, S. Tsuruoka, and

T. Hayashi. Faulty resistance sectioning technique for resistive bridg-

ing fault ATPG systems. In Asian Test Symp., pages 76–81, 2001.

[24] P. Engelke, B. Braitling, I. Polian, M. Renovell, and B. Becker. SU-

PERB: Simulator utilizing parallel evaluation of resistive bridges. In

Asian Test Symp., pages 433–438, 2007.

[25] I. Pomeranz, L.N. Reddy, and S.M. Reddy. COMPACTEST: A

method to generate compact test sets for combinational circuits. In

Int’l Test Conf., pages 194–203, 1991.

[26] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded deter-

ministic test. IEEE Trans. on CAD, 23(5):776–792, 5 2004.

[27] S. Eggersglüß and R. Drechsler. Improving test pattern compactness

in SAT-based ATPG. In Asian Test Symp., pages 445–452, 2007.

[28] S. Kajihara and K. Miyase. On identifying don’t care inputs of test

patterns for combinational circuits. In Int’l Conf. on CAD, pages 364–

369, 2001.

[29] A.H. El-Maleh and K. Al-Utaibi. An efficient test relaxation technique

for synchronous sequential circuits. IEEE Trans. on CAD, 23(6):933–

940, 2004.

[30] S. Kajihara, I. Pomeranz, K. Kinoshita, and S.M. Reddy. Cost-

effective generation of minimal test sets for stuck-at faults in com-

binational logic circuits. IEEE Trans. on CAD, 14(12):1496–1504,

1995.

[31] B. Ayari and B. Kaminska. A new dynamic test vector compaction for

automatic test pattern generation. IEEE Trans. on CAD, 13(3):353–

358, 1994.

[32] I. Hamzaoglu and J. Patel. Test set compaction algorithms for combi-

national circuits. IEEE Trans. on CAD, 19(8):957–963, 2000.

[33] E.M. Rudnick and J. Patel. Efficient techniques for dynamic test

sequence compaction. IEEE Trans. on Computers, 48(3):323–330,

1999.

[34] G.L. Smith. Model for Delay Faults Based upon Paths. In Int’l Test

Conf., pages 342–349, 1985.

[35] I. Polian, A. Czutro, S. Kundu, and B. Becker. Power droop testing.

IEEE Design & Test Magazine, 2007.

[36] T. Fujiwara, H.; Inoue. Optimal granularity of test generation in a

distributed system. IEEE Trans. on CAD, 9(8):885–892, 1990.

232

An ILP Based ATPG Technique for Multiple
Aggressor Crosstalk Faults Considering

the Effects of Gate Delays

Kunal Ganeshpure, Sandip Kundu
University of Massachusetts, Amherst

{kganeshp, kundu}@ecs.umass.edu

Abstract - Crosstalk faults have emerged as a significant
mechanism for circuit failure. Long signal nets are of
particular concern because they tend to have a higher
coupling capacitance to overall capacitance ratio. A typical
long net also has multiple aggressors. In generating patterns
to create maximal crosstalk noise on a net, it may not be
possible to activate all aggressors logically or simultaneously.
Therefore, pattern generation must focus on activating a
maximal subset of aggressors switching on or about the same
time the victim net switches, while propagating the fault
effect to a primary output. This is a well-known problem. In
this paper, we present a solution which uses 0-1 Integer
Linear Programming (ILP) in conjunction with circuit
transformation to model gate delays. A major contribution of
this paper is modeling multi-path fault propagation as a
linear programming problem. The proposed technique was
applied to ISCAS 85 benchmark circuits. Results indicate
that percentage of total capacitance that can be switched
varies from 20-80%. Patterns generated by this technique are
useful for both manufacturing test application as well as
signal integrity verification.

Keywords:-Crosstalk noise, Multiple Aggressors, Integer
Linear Programming, Max-satisfiability, Delay fault, Circuit
Transformation

I. INTRODUCTION
Increase in circuit density and switching speed has led

to an increasing number of signal integrity related failures
in VLSI circuits [1]. Capacitive crosstalk is one of the
major sources of such failures. Crosstalk fault results from
parasitic coupling between adjacent signal nets and is more
common in nets that have weaker drivers relative to their
adjacent peers. Current trends in integrated circuit design
indicate that interconnect sidewall coupling capacitances
can be significant, thus increasing the parasitic coupling.

Crosstalk fault effects can be classified into two types:
crosstalk induced pulse and crosstalk induced delay. In the
first case, the victim line remains in a static state, while
one or more aggressor lines are switching. The amplitude
and the width of the pulse depends, among other factors,
on relative switching time of the aggressors, the amount of
coupling capacitance and the relative transition times of
the aggressor and victim nets. In the second case of
crosstalk faults, both the aggressor(s) and victim lines have
simultaneous or near simultaneous transitions.

If it were not for stringent area and performance
requirements, an error due to crosstalk observed during
validation could be eliminated by resizing drivers, re-

routing signals, shielding interconnect lines with power
distribution lines and other such redesign techniques.
However, redesign may be very expensive in terms of
design effort and its effectiveness may be offset by process
variation. Thus, these problems need to be tested during
manufacturing [2].

Crosstalk faults are observed more frequently for long
nets. A long net may have multiple fanouts and may be
routed through multiple levels of interconnect metals.
Thus, a typical long net is capacitively coupled with
multiple aggressors. Due to sharing of logic, it may not be
possible to excite all aggressors while simultaneously
sensitizing a victim net. Moreover, even if all the aggressor
nets are excited, it may not be possible to do so in close
temporal proximity to the victim net due to gate delays.
From an ATPG point of view, the next best solution is to
switch a set of aggressors in close temporal proximity to
the victim net so as to maximize the switching of the total
coupling capacitance.

In this paper, we present a novel ATPG technique to
generate patterns that will excite the worst case delay at
the victim by switching maximal set of aggressors and
propagate the fault effect to a primary output in the
presence of gate delays.

The rest of the paper is organized as follows: in section
II we review previous work. Section III describes the
problem statement. In section IV, the proposed Crosstalk
ATPG algorithm is explained. This is followed by results
for ISCAS85 benchmark circuits in section V. We
conclude and propose future work in section VI.

II. PREVIOUS WORK
Crosstalk noise induced errors are a significant source

of signal integrity problems in deep submicron technology.
Bai, Dey and Krstic proposed a heuristic solution for
multiple aggressor crosstalk ATPG problem [3]. In their
approach, an implication graph is constructed to determine
a feasible set of aggressors (a set of aggressors that could
be switched to cause maximum crosstalk given the
Boolean constraints of the circuit) and then a modified
version of Path Oriented DEcision Making (PODEM)
algorithm is used to determine a pattern pair that satisfies
both feasible aggressor set excitation and fault
propagation. Lee, Nordquist and Abraham presented an
ATPG technique for crosstalk induced glitches but did not

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.10

233

consider crosstalk induced delay [4]. A mixed signal test
generator was proposed by Chen, Gupta and Breuer in [5],
which not only considered static signal values but also
dynamic signals like transitions and glitches as the
possible input signals. Timed test pattern generation for
CMOS domino circuits has been proposed by Kundu and
Blanton in [6]. Both [6] and [7] consider multiple
aggressors but employ computationally expensive circuit
level timing simulations. Kundu et al. proposed
generalized fault model for multiple aggressor crosstalk
faults in [1] but the ATPG aspect was not considered.
Manich and Figueras proposed a circuit transformation
approach to address gate delays for maximizing switching
activity [8]. In their approach, signal activity in temporal
domain of a target circuit is mapped to signal activity in
the spatial domain of a zero-delay transformed circuit, thus
obviating the need for explicit time domain analysis.

In [9] and [10], heuristic ATPG solution for multiple
aggressor crosstalk faults considering zero delay and unit
delay models respectively, have been proposed. These
solutions are based on a heuristic combination of Integer
Linear Programming (ILP) and stuck-at-fault ATPG. The
authors do not claim the heuristic solutions to be optimal;
they only claim them to be practical. In this paper, we
present a unified ILP formulation that is not only optimal
but also practical for the benchmark circuits and would
converge to an exact solution given enough time.
Moreover, we consider gate delays not only for maximal
aggressor excitation but also for fault propagation thus we
obtain much better quality patterns than [9] and [10].

III. PROBLEM STATEMENT
The problem of generating pattern that results in

maximal crosstalk noise has two aspects:
Switching aggressors to cause maximal delay at victim:

As the victim net is coupled with multiple aggressors, we
have to find the subset of aggressors that create largest
delay at the victim node. This is a known max-satisfiability
problem [9]

Propagation of fault effect to the output: In addition to
maximal noise creation, the pattern must also propagate
the fault effect at the victim net to an observable output.

TABLE I INPUT PATTERNS APPLIED TO THE CIRCUIT IN FIGURE 1
Input

pattern
a,b,c,d,e,f

Aggressor
and victim
switching

Weight
switched

Fault
propagation Comment

001↓↓11 {A2,A3V}=
{↑↑↓}

100+20
=120

Through
gates G5 or

G6 by
setting g = 1

Greedy
approach
switching

highly
controllable

nodes

↓11↓↓11 {A1A4A3V}=
{↑↑↑↓} 130

Through G6
if it does
not have

large slack

Better than
Greedy

approach
but bad for

fault
propagation

101↓↓11 {A2A3V}=
{↑↑↓} 120 Through G5

or G6

Optimal
pattern

It may not always be possible to switch all the
aggressors in a desired fashion and at the same time to
propagate the fault effect to an output. So we seek to find
the best that can be achieved. The following example
illustrates the above problems.

Example: In the circuit shown in Figure 1, the gate G0
drives victim net V while the coupled aggressor lines A1,
A2, A3 and A4 are driven by gates G1, G2, G3 and G4
respectively. The numbers in the box associated with the
aggressors indicate the coupling weight. Coupling weight
represents the magnitude of coupling capacitance between
various aggressors and the victim. Total delay introduced
is proportional to the sum of the coupling weights of all the
aggressors switching in opposite direction of the victim
(desired direction of switching).

Table I shows the effect of various approaches for
maximal aggressor excitation and fault effect propagation
for circuit given in Figure 1.

Figure 1. Example circuit showing aggressors and victims
The example above illustrates that the max-

satisfiability problem of switching maximal aggressor
weight is also connected to the propagation problem. The
problem becomes more constrained due to the presence of
gate delays as now the aggressors need to be switched in a
close temporal proximity to the switching time of the
victim net. This can be seen in the example below.

Example: In the circuit shown in Figure 2, the gate G5
drives victim net V while the coupled aggressor lines A1,
A2 and A3 are driven by gates G1, G6 and G4 respectively.
The numbers in the box associated with the aggressors
indicate the coupling weight if the aggressor and victim are
switching in the same timeslot. The numbers below the
logic gates represent the integer gate delays associated
with the gates. Thus a net can only switch at integer time
slots.

Consider the pattern pair {↑,↑,1,↓,↑} at input nodes
{a1,a2,a3,a4,a5}. This will switch the victim V from 1 to 0
while the aggressors A1 and A2 switch in the opposite
direction. Under Zero delay assumption, the total coupling
weight switched is 100+30=130. But in the actual scenario,
due to delay of the gates G2 and G5, the victim V switches
at timeslot 6 while the aggressors A1 and A2 switch at
timeslot 3, hence diminishing the impact of the aggressors
on the victim. A pattern that generates high aggressor

234

switching in zero delay model, may not do as well under
variable delay model.

Figure 2. Aggressors and victim with gate delays for a combinational circuit

Now for pattern {↑,↑,0,↓,↑}= {a1,a2,a3,a4,a5} victim V
switches from 1 to 0 and only one aggressor A3 switches in
the opposite direction. Under zero delay model, this will be
considered a sub-optimal pattern as it switches a weight of
70. But the switching event at aggressor A3 and victim V
occur at the same time slot (8) and therefore has a greater
impact with full coupling weight of 70.

This example shows the importance of gate delays in
generating patterns for Crosstalk maximization.

IV. PROPOSED SOLUTION
Max-satisfiability is known to be an intractable

problem. In this paper we present a complete solution to
our problem by mapping it to an ILP formulation. Thus
provided enough time, we will be able to obtain input
pattern that leads to absolute worst case crosstalk induced
delay on the victim net.

Given a list of aggressors coupled with a victim and the
corresponding coupling weight, the following steps are
followed.
1: Circuit transformation
a. For gate delays

Unit delay model is incorporated by doing a time
domain transformation of the circuit. Here the original
circuit is transformed such that there is a one to one
correspondence between transitions in the original circuit
G and the XOR outputs of the transformed circuit [8] .
b. For Fault Effect Propagation

We perform circuit transformation in the output logic
cone of the victim net in order to generate conditions for
fault effect propagation. In this step the output logic cone
including the victim is duplicated. The original logic cone
represents the good machine while the duplicated logic
cone represents the faulty machine. In addition, a D value
is generated for each gate in the fault propagation cone by
XORing the corresponding gate outputs of the two logic
cones. A D value represents the case where the faulty
value and good value are different i.e. the fault effect is
propagating. ILP formulation is done to propagate the D
value from victim net to the primary outputs.

2: ILP formulation for maximal noise generation and fault
effect propagation

In this step, ILP equations are formulated to represent
Boolean functions of logic gates [11], and to specify the
fault propagation conditions. An objective function that
maximizes the total crosstalk at the victim is generated.
Thus, both the logic circuit and the maximal aggressor
weight equations are represented as ILP equations. Next,
we use an ILP solver to solve simultaneous logic
constraints for maximal aggressor switching requirement.
This represents the final test vector pair. In our solution we
assume that the delay introduced by the pattern pair will be
large enough to always cause an error at the output and
that it does not get subsumed in timing slacks.

A. Circuit Transformation

a) Time domain expansion:
In this phase, the original circuit is expanded to

represent internal switching activities due to unit gate
delays [8]. For c17 benchmark circuit as shown in Figure
6, the numbers at the gate outputs represent the possible
signal arrival times corresponding to the delays of all the
possible paths in the input logic cone of the gate. As
shown in the Figure 7, gates are replicated as many times
as the number of possible arrival times in the original
circuit. For example, gate number 23 is replicated three
times corresponding to three arrival times in timeslots 0t,
2t and 3t. Moreover, the inputs to each of the replicas of
the gate 23 are connected to the replicas of the gates 16
and 19 in previous time slot.

It should be noted that, time domain expansion can be
generalized for arbitrary integer delays by adding unit
delay buffers to the original circuit. Moreover, any floating
point delay can be scaled and approximated as integer
delays without any loss of generality of the solution.

The transition of aggressors and victim nets is
indicated by XORing the corresponding outputs at various
time slots. In our case Xor_V1 is high when the victim
transitions between timeslots t0 and t1.

b) Fault effect propagation:
In this phase the output logic cone of the victim net,

including the victim, is duplicated for fault effect
propagation. In Figure 7 the output logic cone of the
victim net a11_1 (where a11 is gate number and 1 is the
timeslot of the gate) is represented using broken line. The
duplicated gates are renamed by replacing the prefix ‘a’
with ‘b’. Inputs to the duplicated gates which are not a part
of the output logic cone of the victim net are supplied from
the corresponding gates in original circuit. For example,
for the gate b22_3 in the duplicated circuit, the input
(represented by a continuous line) which is not a part of
the output logic cone of the victim comes from the gate
a10_1 of the original circuit. Fault effect propagation is
indicated by XORing the corresponding outputs of the
original and the duplicate circuits to generate D value. For
example, the nets a16_2 and b16_2 are XORed to obtain D

235

value of d16_2. ILP formulation is done using D values for
fault propagation.

B. ILP formulation

a) For Logic gates:
In order to obtain the worst case crosstalk condition in

the circuit, ILP formulation is done for the circuit by
writing the ILP equations for the logic gates [11] which are
formed using clausal description of the function of the
gates [12].

Figure 3. Combinational circuit with internal nodes names
For the circuit shown in Figure 3 the complete set of

ILP equations are shown in Figure 4.
The magnitude of delay induced at the victim depends

on the amount of current flowing through the coupling
capacitance between the aggressor and the victim line.

Figure 5 shows aggressor and victim nets coupled through
a capacitance Ccoupling.

1≥+ fd

} For NAND gate
1≥+ fe

1)1()1()1(≥−+−+− fed
1=+ ec For NOT gate

1)1(≥+− da

} For OR gate
1)1(≥+− db
1)1(≥−++ dab

]1,0[,,,,, ∈fedcba
Figure 4. ILP equations for circuit in the Figure 3

Figure 5. Capacitive coupling causing crosstalk induced delay
Here Icoupling is the current flowing through the coupling

capacitor and is dependent on the slopes and the direction
of the transition at the aggressor and victim nets.

Figure 6. C17 benchmark with various switching times

Figure 7. Circuit transformation

236

))((vacouplingcoupling VVC
dt
d

dt
dQI −== dt

dVkC a
coupling)1(−=

Where: dt
dV

dt
dVk av=

TABLE II DEPENDENCE OF k ON VARIOUS SCENARIOS OF AGGRESSORS

AND VICTIM TRANSITIONS
Aggressor Victim k

↑ ↑ 1
↑ ↓ -1

No transition ↕ 0
↕ No Transition 0

The value of k varies with the aggressor and victim
transitions as shown in Table II.

Moreover, the k is scaled in a manner proportional to
the time difference between the aggressor and victim
transitions as shown in Table III. Thus there is crosstalk
only when the aggressor and victim switch less than 3 time
slot away. This defines the window size of 3.

TABLE III SCALING OF THE K FACTOR
Distance between

transitions in Unit delay k

0 1
1 0.66
2 0.33
3 0

The objective of the ILP formulation is to obtain a
pattern pair that causes aggressor transitions so as to
maximize the value of k.

The following section explains the ILP formulation for
a victim switching at a time slot p . Here

tMaxTimeSlo indicates the last possible time when the
victim could ever switch. For example, for net 1_16a in
Figure 7, current timeslot 1=p and 2=tMaxTimeSlo .

b) Fault effect Propagation
Consider the pair of duplicated output logic cones of

the victim net as shown in Figure 7. For a gate k in
timeslot i , iak _ , ibk _ and idk _ represent the gate in
the original, duplicated circuit and the output of the D
propagation XOR gate respectively. Thus we have

)__(_ ibkiakidk ⊕=
To ensure fault propagation, at least one of the idk _

values at primary outputs (poidk _) must be 1.

∑ ≥ 1_ poidk

Now a D value at a gate output implies that at least
one of the gate inputs in the output logic cone of the victim
net has a D value. Therefore for a gate ik _ with inputs

11 _ ik and 22 _ ik the following implication is obtained:

2211 ___ idkidkidk ∨⇒ .

Therefore 1__)_1(2211 ≥++− idkidkidk
 Finally, in order to initiate fault effect generation at the

victim net, a D value has to be enforced at all the copies

of the victim net jv _ starting from the current time slot
p to the tMaxTimeSlo .

1_ =jdv where tMaxTimeSlopj ...=
Next, we explain the ILP formulation for maximal

aggressor excitation.

c) Maximal aggressor excitation
Consider a pair of capacitively coupled nets having

names A and V. Net A is the aggressor and V is the victim.
After circuit modification, the nodes A and V are renamed
to iA and iV , where tMaxTimeSloi ...2,1,0= is the

timeslot in which A and V belong in the expanded
circuit. The aggressors and victim in the consecutive time-
slots are XOR ed to represent a switching event between
the time slots.

)(_ 1−⊕= iii AAaXor)(_ 1−⊕= iii VVvXor
Let ijO be true when both aggressor in time slot i and

victim in timeslot j are switching in the opposite direction
and ijS be true when aggressor in timeslot i and the victim
in timeslot j are switching in the same direction.

For make the aggressor in time slot i and victim in time
slot j, iaXor _ and jvXor _ have to be true respectively.
For them to switch in the opposite direction the aggressor
value iA at thi timeslot and the victim value jV at the

thj time slot should be opposite. Thus.

)(__ jiji VAvaXor ⊕=
Therefore jijiji vaXorvXoraXorO ____ ••=

Similarly for the aggressor i and victim j to switch in
the same direction iaXor _ , jvXor _ must be true and

ji vaXor __ must be false.

jijiij vaXorvXoraXorS ____ ••=

For the aggressor victim pair },{ ji ,)(jiijij SOk −= .

For each ijk there is an associated coupling capacitance

ijC . Thus the objective function for crosstalk noise

maximization at the victim in thi time-slot is given by

ij
j

ij CkObj ∑ ∗=

where }:{ WindowSizejiNj <−∈
Apart from the above constraints; it has to be made

sure that the victim does not switch after current timeslot
p . Thus extra set of constraints which set the victim value

to a constant after switching are added as follows.

jj VV =+1 where 1.... −∈ tMaxTimeSlopj
The above ILP formulation is solved for the victim net

in all the time slots and the worst case aggressor excitation

237

is selected. If pW is the solution for the victim switching

in thp timeslot, then the worst case switched weight is:

}....1:max{ tMaxTimeSlopWW p ==

V. RESULTS
The crosstalk ATPG was run on all ISCAS 85

benchmark circuits to obtain the results described below.
Crosstalk fault list consists of a victim net that is coupled
with multiple aggressor nets. Ideally, the crosstalk fault list
should be generated as a post-processing step after RC
extraction from a physical layout. However, for the
purpose of this paper, we created the fault list by random
selection of nets as our primary goal is the ATPG process.
The maximum number or aggressors per victim is limited
to 7. Moreover, the coupling capacitance ijC for each
aggressor is also selected randomly between 1 and 0.

TABLE IV RESULTS FOR ISCAS85 BENCHMARKS CIRCUITS

Circuit
name

Total
Num.

of
Aggs.

per
victim

Total
Agg.

Coupling
Cap.
per

victim

Aggressors
switched in

opposite
direction

from ATPG

% of
total

maximum
aggressor

weight
switched

Time
in (sec)

Total
Aggs.
Swt.

Total
Agg.
Wt.

Swt..
C17 1 0.68 1 0.68 100.0 0.17

C432 6 2.61 4 0.82 31.42 4029.27
C499 7 3.23 1 0.88 27.24 3018.75
C880 7 4.64 5 3.17 68.32 4526.6

C1355 5 2.65 2 0.00 0.00 504.46
C1908 7 4.71 2 0.84 17.83 15098.61
C2670 7 2.36 4 1.45 61.44 1505.98
C3540 7 3.88 2 0.95 24.48 9123.39
C5315 7 3.61 4 2.38 65.93 2006.01
C6288 7 3.16 0 0.00 0.00 37827.36
C7552 7 4.98 6 4.52 90.76 5540.59

The ATPG results are presented in Table IV. The
results are generated for a window size of 3 time units.
Moreover, the ILP solver was run using a time out limit of
500 seconds. To illustrate the efficiency of the solution,
Table IV shows the % of total maximum aggressor weight
that is switched by the pattern obtained from our ATPG in
the column 5. No improvement was obtained in the
circuit’s c1355 and c6288 as the solver timed-out. C6288,
which is a multiplier, is a known nemesis for many SAT
solvers [12]. C1355, where a parity tree is modeled by
NAND gates is also known to cause problems for path
oriented ATPG 0. For these problems, a heuristic solution
is more appropriate than an exact solution. All results are
validated using circuit simulation. It can be seen that, for
most circuits the proposed solution is able to switch large
fraction of the switched maximum weight as shown
column 5 in Table IV.

The ILP problem was solved using GLPK, a GNU
Linear Programming Kit [13]. The platform for these
experiments is a Dell PowerEdge 2800 server with 2.8GHz
Dual Core Intel Xeon Processor, 2MB L2 cache and 2GB
RAM.

VI. CONCLUSION
In this paper we presented a novel ATPG technique to

generate a two vector test for multiple aggressor crosstalk
faults for integer delay model. The problem of maximizing
the effect of the aggressor on the victim is a max-
satisfiability problem which is known to be intractable.
Here we solve the problem using ILP which would
converge to an exact solution. We limit the ILP
formulation only to the input and output cones of interest.
Thus the proposed solution is both optimal and scalable.
Arbitrary integer gate delays can be modeled by adding
unit delay buffers, while floating delays may be scaled and
approximated as integer delays without any loss of
generality of the solution.

REFERENCES
[1] S. T. Zachariah, Y. Chang, S. Kundu and C. Tirumurti, “On

Modeling Crosstalk Faults,” Design, Automation and Test in
Europe, 2003, pp.10490

[2] W. Y. Chen, S. K. Gupta and M. A. Breuer, “Test generation in
VLSI circuits for crosstalk noise,” Proceedings of International
Test Conference, 1998, pp. 641–650

[3] X. Bai, S. Dey and A. Krstic, “HyAC: A Hybrid Structural SAT
Based ATPG for Crosstalk,” International Test Conference, 2003,
pp. 112-121

[4] K. T. Lee, C. Nordquist and J. A. Abraham, “Automatic test
pattern generation for crosstalk glitches in digital circuits,”
Proceedings of VLSI Test Symposium, 1998, pp. 34-39

[5] W. Y. Chen, S. K. Gupta and M. A. Breuer, “Test generation for
crosstalk-induced delay in integrated circuits,” Proceedings of
International Test Conference, 1999, pp. 191-200

[6] R. Kundu and R. D. Blanton, “Timed Test Generation Crosstalk
Switch Failures in Domino CMOS Circuits,” VLSI Test
Symposium, 2002, pp. 379-388

[7] B. C. Paul and K. Roy, “Testing Crosstalk Induced Delay Faults in
Static CMOS Circuits Through Dynamic Timing Analysis,”
International Test Conference, 2002, pp. 384-390

[8] S. Manich and J. Figueras, “Maximizing the Weighted Switching
Activity in Combinational CMOS Circuits under the Variable
Delay Model,” In proceedings of European Design and Test
Conference, 1997, pp. 597-602

[9] K. Ganeshpure, S. Kundu, “Automatic Test Pattern Generation for
Maximal Circuit Noise in Multiple Aggressor Crosstalk Faults,”
Design Automation and Test in Europe, 2007

[10] K. Ganeshpure, S. Kundu, “On ATPG for Multiple Aggressor
Crosstalk Faults in Presence of Gate Delays,” ITC 2007

[11] R. Fortet, “Applications de l'algebre de Boole en recherche
operationelle,” Revue Francaise de Recherche Operationelle,
1960,Vol. 4, pp. 17-26

[12] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” IEEE Transactions on Computer-Aided Design,
1992, Vol. 11, No. 1, pp. 4-15

[13] http://www.gnu.org/software/glpk/
 Goel, P., "An Implicit Enumeration Algorithm to Generate Tests

for Combinational Logic Circuits," Computers, IEEE Transactions
on , vol.C-30, no.3, pp.215-222, March 1981

238

Session 4A

Advanced Device Modeling

Concept of “Crossover point” and its application on Threshold Voltage definition
for Undoped-Body Transistors

Ratul Kumar Baruah1 and Santanu Mahapatra2
Nano-Scale Device Research Laboratory, Centre for Electronics Design and Technology

Indian Institute of Science, Bangalore - 560012
1rkbarua@gmail.com & 2santanu@cedt.iisc.ernet.in

Abstract

As the conventional MOSFET’s scaling is approaching
the limit imposed by short channel effects, Double Gate
(DG) MOS transistors are appearing as the most feasible
candidate in terms of technology in sub-45nm technology
nodes. As the short channel effect in DG transistor is con-
trolled by the device geometry, undoped or lightly doped
body is used to sustain the channel. There exits a disparity
in threshold voltage calculation criteria of undoped-body
symmetric double gate transistors which uses two defini-
tions, one is potential based and the another is charge based
definition. In this paper, a novel concept of “crossover
point”is introduced, which proves that the charge-based
definition is more accurate than the potential based defi-
nition. The change in threshold voltage with body thickness
variation for a fixed channel length is anomalous as pre-
dicted by potential based definition while it is monotonous
for charge based definition. The threshold voltage is then
extracted from drain currant versus gate voltage charac-
teristics using linear extrapolation and “Third Derivative
of Drain-Source Current” method or simply “TD” method.
The trend of threshold voltage variation is found same in
both the cases which support charge-based definition.

1 Introduction

In a continuous effort to increase current drive and better
control short-channel effects, MOS transistors have evolved
from classical bulk single-gate devices into multi-gate de-
vices. As the dimensions of transistors are shrinking, the
close proximity between the source and drain reduces the
ability of the gate electrode to control the potential distribu-
tion and the flow of current in the channel region, and unde-
sirable effects, called “short channel effects” starts plaguing
MOSFETs. For all practical perposes, it seems impossible
to scale the dimensions of classical “bulk” MOSFETs be-

low 20nm. In a bulk device (fig. 1(a)), the electric field lines
propagate through the depletion regions associated with the
junctions. Their influence on the channel can be reduced
by increasing the doping concentration in the channel re-
gion. In very small devices, unfortunately, the doping con-
centration becomes too high (1019cm−3) for proper device
operation.
One solution to recover this problem is use of a fully de-

pleted single gate SOI (FDSOI) device, where most of the
field lines propagate through the burried oxide (BOX)before
reaching the channel region (fig. 1(b)). SOI devices have
better current driving capability and they consume less
power than bulk devices. Short channel effects can be re-
duced in FDSOI devices by using a thin burried oxide and
an underlying ground plan (silicon substrate). Most of the
electric field lines from the source and drain terminate on
the burried ground plan instead of the channel region. This
approach, however, has increased junction capacitance and
body effect.
A much more efficient device configuration is obtained

by using the double-gate transistor structure (fig. 1(c)). In
a double-gate device the electric field lines from source and
drain underneath the device terminate on the bottom gate
electrode and canot, therefore, reach the channel region.
Only the field lines that propagate through the silicon film
itself can encroach on the channel region and degrade short
channel characteristics. This encroachment can be reduced
by reducing the silicon film thickness.
Therefore, as the conventional single gate bulk MOS-

FET (Metal Oxide Scale Effect transistor) scaling is ap-
proaching the limit imposed by short channel effects, Dou-
ble Gate(DG) MOSFET is becoming attractive candidate
for future VLSI due to its better gate control over the chan-
nel [1]. In DG MOSFET the short channel effect is con-
trolled by the device geometry and hence undoped (or,
lightly doped) body is used to sustain the channel. Un-
doped body also helps to alleviate several other problems
related to nano-scale CMOS e.g., mobility degradation, ran-
dom dopant fluctuations, compatibility with mid-gap metal

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.41

241

gate etc. There is however a sharp distinction between
the electrostatics of traditional bulk transistors and undoped
body devices. In bulk transistor, where the substrate is suffi-
ciently doped, the inversion charges are located close to the
surface and hence the surface potential solely controls the
electrostatic integrity of the device. However, in undoped
body devices, gate electric field penetrates the body center,
and inversion charge exists throughout the body. Therefore
the definition of threshold voltage needs to be reconsidered
for undoped body devices.

Figure 1. Evolution of Double Gate MOSFET.

Till now two definitions for threshold voltage calculation
in short-channel undoped DGMOSFETs (Fig. 2) have been
proposed. The first one is surface potential based [2], which
is similar to the definition of the threshold voltage of bulk
devices. The second one is based on the amount of charge

Tsi

G1

G2

DS

Tox

Tox
Tsi/2

Tsi/2
x

y

Figure 2. Cross-section of DG MOSFET
adopted in device simulations.

per unit area of the body [3, 4]. It is argued that the charge
based definition is more accurate than the surface potential
based definition as in undoped body devices charge exits
throughout the body [5]. However no proof is found be-
hind this claim. In this paper we introduced the concept of
“crossover point” to solve this dilema. We demontrate that
the body potential versus gate voltage characteristics for DG
MOSFETs having equal channel lengths but different body
thickness pass through a single common point, which we
term a “crossover point”. Using the concept of “crossover
point” it is shown that in case of surface potential based
definition the threshold voltage changes anomalously with
body thickness variation, where in case of charge based de-
fination the threshold voltage increases monotonously with
decreasing body thickness. It is also found that the thresh-
old voltage actually increases monotonously with decreas-
ing body thickness if it is extracted from ID−VG character-
istics using different methodologies (Linear extrapolation
method, TD Method). We therefore justify that the charge
based definition is more appropriate than surface potential
for threshold voltage calculation of undoped body multi-
gate transistors.

2 Results and Discussion

2.1 Calculation of Threshold Voltage

So far two definitions for threshold voltage (VTH) calcu-
lation are used for short-channel undoped body multi-gate
transistors: (i) surface potential based definition [2], which
is similar to the threshold voltage definition of bulk devices

242

and (ii) charge based definition [3, 4], which is based on
the amount of charge per unit area of the body. As in un-
doped body transistors charge exists throughout the body,
the second definition is argued to be more accurate, where
the threshold voltage is defined as the gate voltage at which
the charge per unit area (Q) at the virtual cathode becomes
equal to some critical threshold charge (QTH), andQ is de-
fined as

Q = qni

∫ Tsi/2

0

eΨ(Xc,y)/UT dy (1)

Here, q is the electronic charge, ni is the intrinsic car-
rier concentration of body, Ψ(x, y) is the body potential,
Tsi is the body thickness, L is the channel length, UT

is the thermal voltage, x and y are the directions paral-
lel and perpendicular to the Si/SiO2 interface and (L/2,0)
denotes body center, Xc is the position of virtual cathode(

dΨ
dx

∣∣∣∣
x=Xc

= 0

)
, which is approximately equal to L/2 for

low Vds. Now, as Ψ(Xc, y) is a very complicated function
of y, the above integration cannot be evaluated analytically.
So in common practice the integration is approximated as:

Q ≈ qni
Tsi

2
eΨ(Xc,Tsi/4)/UT (2)

Therefore, the threshold criteria Q = QTH can be ex-
pressed in terms of potential as

Ψ(Xc, Tsi/4)TH = UT ln

(
2QTH

qniTsi

)
(3)

In surface potential based definition the threshold voltage
is defined as the gate voltage when the surface potential
Ψs at virtual cathode becomes equal to some constant crit-
ical value Ψcrit. Taur [2] has taken the value of Ψcrit as
Eg/2, where Eg is silicon bandgap. Since VDD for fu-
ture technology nodes will take values less than 1 V [6],
Ψcrit = Eg/2 appears to be impractical as it results in
threshold voltage of the order of 0.8 V. Ψcrit = Eg/2 con-
dition actually denotes the onset of strong inversion. As
future devices will be operating in moderate inversion re-
gion, Ψcrit = Eg/2 − 4UT = 0.45 V appears to be more
practical definition for threshold voltage.

2.2 Crossover Point and Pseudo Flatband
condition

From numerical device simulation [7] it is observed that
if the body potential of a undoped DG MOSFET is plotted
against gate voltage at y = 0 (body center), y = Tsi/2
(body surface), Tsi/4 (Mid point of surface and body cen-
ter) all characteristics pass through a common point for a
particular gate voltage (VFB) (Fig. 3). This implies that

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

Gate Voltage,Vgs (V)

B
oo

dy
 P

ot
en

tia
l,

Ψ
 (V

)

ΨBody Center
ΨMidpoint between Surface & body center
ΨSurface

L = 15 nm, Tsi = 10 nm
Tox= 1 nm

VFB

Figure 3. Potential vs. Vgs@L/2 curve for
L=15nm, Tsi = 10nm and Tox = 1nm at body
surface, center and midpoint between them
showing VFB .

at VFB there is no potential drop along the radial direction
from body center to the surface. This is precisely the flat
band condition.

10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

Body Thickness,Tsi (nm)

Fl
at

 B
an

d
Vo

lta
ge

,V
FB

 (V
)

L=50,40,30,20,15 nm

Figure 4. Curve showing constant VFB at dif-
ferent body thickness for different L.

But we attribute this situation as “Pseudo Flat Band con-
dition” as there exists potential variation along the lateral
direction. Interestingly, it is also observed that VFB is al-
most independent of the variation of body thickness when
channel length is constant (Fig. 4), or in other words, de-
vices having same L but different Tsi hold same value of
VFB .

Hence, for a given L and different Tsi’s, if we plot
potential as a function of Vgs at a particular radial point
(XC , Tsi.m), where m(< 1

2) is a constant, all the charac-
teristics should pass through the common “flatband” point,

243

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Gate Voltage,Vgs (V)

Ψ
(L

/2
,T

si
/2

)
(V

)

L = 20 nm
Tsi =10,15,25,30 nm

crossover point

Ψcross

(a)

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

Gate Voltage,Vgs (V)

Ψ
(L

/2
,0

)
(V

)

crossover point

Tsi =30,25,15,10 nm
L = 20 nm

Ψcross

(b)

0 0.2 0.4 0.6 0.8 1

Gate Voltage,Vgs (V)

Ψ
(L

/2
,T

si
/4

)
(V

)

Tsi = 30,25,15,10 nm
L = 20 nm

Crossover point

Ψcross

(c)

Figure 5. Body potential versus gate voltage
characteristics for channel length L=20 nm at
body surface (L/2, Tsi/2), center (L/2, 0) and
midpoint betwen them (L/2, Tsi/4).

15 20 25 30 35 40 45 50

0.4

0.42

0.44

0.46

0.48

Channel Length,L (nm)

ψ
cr

os
s (V

)

Ψcrit=0.45V

24nm

Tox=1nm

Figure 6. Variation of “crossover point” po-
tential (Ψcross) as a function of channel
length.

which we termed as “crossover point” (Fig. 5(a), 5(b) and
5(c)).

The body potential related to this point is denoted by
Ψcross. Another observation made in this work is, the
value ofΨcross increases with decreasing channel length as
shown in Fig. 6. This is due to the fact that for long channel
devices surface potential is always greater than body centre
for positive gate voltages. Hence for long channel devices
VFB ≈ 0 (or, more precisely equal to the difference be-
tween gate and body work function). However, for short
channel devices, due to the lateral electric field from drain-
to-source body center potential could be higher than surface
(Fig. 3) for positive VGS . Hence, in order to bring the sur-
face potential equal to body center one needs higher gate
voltage. As a result Ψcross increases with decreasing L.
This phenomena is used to justify the definition of thresh-
old voltage as discussed in the next section.

2.3 Effect of Body Thickness on Thresh-
old Voltage

The relative value between Ψcrit and Ψcross dictates
how the VTH will change with Tsi for a given channel
length if one uses surface potential based definition. If
Ψcrit > Ψcross, the threshold voltage will decrease with
Tsi. However, the opposite trend is observed for devices
having Ψcrit < Ψcross. As Ψcross increases with decreas-
ing L (Fig. 6), it is expected that for small channel lengths
(< 24nm), VTH should increase with Tsi and for large
L (> 24nm) it should exhibit the opposite trend.

Therefore, surface potential based definition results in
anomalous change in threshold voltage for body thickness
variation for any given channel length as shown in Fig.7(a).
Using Charged based definition, the threshold voltage

244

10 15 20 25 30
0.4

0.42

0.44

0.46

0.48

0.5

Body Thickness,Tsi (nm)

Th
re

sh
ol

d
Vo

lta
ge

,V
TH

 (V
)

L=15,20,30,40,50 nm

(a)

10 15 20 25 30
0.35

0.4

0.45

0.5

Body Thickness,Tsi (nm)

Th
re

sh
ol

d
Vo

lta
ge

,V
TH

 (V
)

L=15,20,30,40,50 nm

(b)

Figure 7. (a) VTH calculated from surface po-
tential based definition (b) VTH calculated
from charge based definition.

variation with body thickness is found to follow monotonus
trend for any given channel length (Fig. 7(b)). In this
work we have used potential at (Xc, Tsi/4) and QTH =
8× 10−4C/m2 to compute threshold voltage from Eqn (3).
The trend of VTH vs Tsi characteristics remain unchanged
if other values of QTH are used.
In order to justify which definition is correct, we have ex-

tracted threshold voltage from ID−VG characteristics using
two different methods. First, we use Linear Extrapolation
method. Here, VTH is extracted by linearly extrapolating
the Ids versus Vgs characteristics at low drain voltage from
the point of maximum gm (= dId/dVgs). Second, we use
TD method, where VTH is extracted the point of maximum
∂2gm/∂2Vgs. The extracted VTH are plotted as a function
of body thickness in Fig. 8(a), 8(b).

For both the cases monotonous trend is observed which
is similar to charged based definition (Fig. 7(b)). Therefore,

10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

Body Thickness,Tsi (nm)

Th
re

sh
ol

d
Vo

lta
ge

,V
TH

 (V
)

L=15,20,30,40,50 nm

(a)

10 15 20 25 300.25

0.3

0.35

0.4

0.45

0.5

Body Thickness,Tsi (nm)
Th

re
sh

ol
d

Vo
lta

ge
,V

TH
 (V

)

L=15,20,30,40,50 nm

(b)

Figure 8. VTH versus Tsi characteristics
as extracted from (a) Linear extrapolation
method (b) TD method.

we conclude that for undoped multi-gate devices charge
based model for threshold voltage calculation is more acu-
rate than surface potential model.
It is worth nothing that similar argument is equally

valid for Gate-All-Around (GAA) Cylindrical transistors,
as “crossover points” are also observed in those devices [5].

3 Conclusion

In this work by using a novel concept called “crossover
point”, it is demonstrated the change in threshold voltage
with body thickness variation for a fixed channel length is
anomalous as predicted by potential based definition while
it is monotonous for charge based definition. The trend
of threshold voltage variation extracted from drain current
versus gate voltage characteristics using linear extrapola-
tion and TD methods support the charge-based definition.
Therefore, it is concluded that charge based definition is
more accurate than potential based definition.

245

4 Acknowledgement

This work is funded by Department of Science and Tech-
nology (DST), India, under grant number: SR/FTP/ETA-
05/2006.

References

[1] J.T. Park and J. P. Colinge, “Multiple gate SOI MOS-
FETs: Device design guidelines”, IEEE Trans. Electron
Devices, vol. 49, no. 12, pp. 2222-2229, Dec. 2002.

[2] Y. Taur, “Analytic solutions of charge and capacitance
in symmetric and asymmetric double-gate MOSFETs”,
IEEE Trans. Electron Devices, vol. 48, no. 12, pp.
2861-2869, Dec. 2001.

[3] Hamdy Abd El Hamid, Benjamin Iniguez, and Jaume
Roig Guitart, “Analytical Model of the Threshold Volt-
age and Subthreshold Swing of Undoped Cylindrical
Gate-All-Around-BasedMOSFETs” IEEE Trans. Elec-
tron Devices, vol. 54, no. 3, pp. 572-579, March 2007.

[4] Q.Chen,Â E.M. Harrell, II, and J.D. Meindl,“A physi-
cal short-channel threshold voltage model for undoped
symmetric double-gate MOSFETs” IEEE Trans. Elec-
tron Devices, vol. 50, no. 7, pp. 1631-1637, July, 2003.

[5] Biswajit Ray and Santanu Mahapatra, “Modeling and
Analysis of Body Potential of Cylindrical Gate-All-
Around Nanowire Transistor”, IEEE Trans. Electron
Devices,Vol 55, No. 9, 2008.

[6] The International Technology Roadmap for Semicon-
ductors, Semiconductor Industry Association, San Jose,
CA, 2006.

[7] ATLAS User’s Manual ,Version 5.10.R,Dec 2005, SIL-
VACO INTERNATIONAL.

[8] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI
Devices, Cambrigde, U.K.: Cambridge Univ. Press,
1998.

246

Extended-Sakurai-Newton MOSFET Model for
Ultra-Deep-Submicrometer CMOS Digital Design

Nishant Chandra, Apoorva Kumar Yati, A.B. Bhattacharyya
Jaypee Institute Of Information Technology University, Noida-201307, India

chandra.nishant2005@gmail.com, apoorva.yati@gmail.com, abbhattacharyya@yahoo.com

Abstract—In this paper an extension of the Sakurai and

Newton’s N th power law model, namely Extended-Sakurai-

Newton Model, is proposed. The proposed model (henceforth

referred to as the ESN model) preserves the simplicity and

accuracy of the Sakurai Newton model for the estimation of drain

current in deep submicron CMOS devices and extends it for

varying device widths. Although the Modified Sakurai-Newton

Current Model (MSN Model) also provides an estimation of

transistor drain current with varying transistor widths, it suffers

from the drawback of being more error prone and computation

intensive in parameter extraction. The proposed model matches

with BSIM3v3 level 49 T-SPICE simulations to within an error of

1.8%(3.67% maximum), in 0.18μm and 0.25μm CMOS processes

for a wide range of transistor widths and input rise/fall times.

The proposed model is further used to improve the Elmore Delay

prediction of CMOS inverter operated at low supply voltages.

The centroid-of-current and power based delay metrics [1] are

modified based on the proposed model. The new delay metric is

able to accurately predict the delay of CMOS inverter operated

at low supply voltages. The proposed ESN Model is also applied

to predict the delay of two-input CMOS NAND gate. Hence the

proposed model can be effectively used in the design of digital

CMOS gates involving varying device widths and supply voltages

in the deep submicron region.

I. INTRODUCTION

In CMOS digital design, the drain current, having a decisive
impact on the circuit speed, needs to be modeled in a compact
manner so that the digital building blocks can be designed
and evaluated analytically on a given technology node. VLSI
designers require quick and accurate design methods for esti-
mating the performance of CMOS circuits. These estimations
are then followed by SPICE simulations for arriving at the final
design. The Shockley Model for MOSFETs [2] is widely used
for manual calculations of drain current for MOS transistors
due to compactness of the equations involved. However, this
model hardly reflects the impact of technological scaling on
transistor drain current [3].

Sakurai and Newton [4] proposed an empirical compact
MOSFET model known as Alpha-Power Law Model for the
estimation of transistor drain current which takes care of
scaling related effects and enables quick estimate of CMOS
digital circuit performance. Such an approach is particularly
necessary for the purpose of manual design and pedagogy.
This model takes the velocity saturation effect into account
through a parameter α, which has a value between 1 and 2
depending upon the channel length for a given technology
under consideration. Since, the α-power law model was not
sufficiently accurate, an improved model known as Nth power

law model [3] (henceforth referred to as the SN model) was
proposed later by Sakurai and Newton. Although the SN model
is widely used for CMOS gate design, yet it fails to predict the
drain current of narrow-width transistors for varying widths,
which are usually encountered in such designs. A Modified
Sakurai-Newton (MSN) model [5] has been proposed recently
which attempts to alleviate the problem related to accuracy
of the model with variable width by introducing a separate
width-dependent process transconductance parameter in the
drain current expression of the SN model but, it is found
that the extraction of coefficients related to width-dependence
parameter is computation intensive and prone to error.

The present communication proposes an Extended-Sakurai-
Newton Compact MOSFET model (henceforth referred as the
ESN Model), which improves the accuracy of the Sakurai-
Newton model through an improved procedure for extraction
of width dependent coefficients. We have observed that the
constant process transconductance parameter ‘B’ in the SN
model can itself be modified for varying transistor widths and
hence eliminates the need to derive a separate transconduc-
tance parameter ‘K’ as in [5]. Since the method of parameter
extraction of the ESN model is same as that of the SN model
[3] and is done by solving single variable equation, the chances
of error in computation of model parameters are minimized.
The proposed model matches with the BSIM3v3 level 49 T-
SPICE simulations to within an average error of 1.8%(3.67%
maximum) for 0.18μm and 0.25μm CMOS processes over a
wide range of transistor widths and input rise/fall times. Thus,
the Sakurai-Newton model can be extended to predict the drain
current for varying transistor widths.

It has been shown that the Elmore delay of CMOS gates,
defined as the centroid of the drain current [1] during the
switching process, is the Sakurai-Newton Delay (tpHL,pLH)
[4] for a step input. The performance of the ESN Model
is evaluated by benchmarking it against SPICE simulation,
particularly at low supply voltages (upto VDD = 2VTH)
through the use of the centroid of current based delay metric
presented in [1]. The delay metric failed to accurately predict
the delay for varying supply voltage. The same centroid of
current based delay metric, when modified by the ESN Model
is able to accurately track the SPICE delay for supply voltage
upto 3VTH with a high correlation coefficient of 0.98.

It is worth mentioning that the Sakurai-Newton Model [3] is
an engineering MOSFET model which is capable of providing
a “working formula” for design of nanoscale CMOS gates

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.48

247

and has been shown to model new emerging devices such as
DG MOSFETs and SiGe devices as well [7]. Though it is
apparently empirical, the parameters have been shown to have
physical basis [8] and finds support from extensive technology
scaling experiments as well [9].

The paper is organized as follows. Section II presents
the Sakurai Newton model [3]. In Section III we present
the Extended Sakurai Newton (ESN) Model proposed by us.
Application of the ESN Model to inverter delay, CMOS gate
design and proposed modification to the centroid of current
based delay metric for predicting Elmore delay for low supply
voltage is given in Section IV, followed by conclusion in
Section V.

II. SAKURAI-NEWTON MODEL

The following are the drain current expressions given by
the SN model [3]:

VTH = VTO + γ(
√

2φF − VBS −
√

2φF) (1)

VDSAT = K(VGS − VTH)m (2)

IDSAT =
W

LEFF
B(VGS − VTH)α (3)

ID = IDSAT (1 + λVDS) λ = (λ0 − λ1VBS) (4)

(VDS ≥ VDSAT : saturated region)

ID = IDSAT (1 + λVDS)
(

2 − VDS

VDSAT

)
VDS

VDSAT
(5)

(VDS > VDSAT : linear region)

The parameter ‘α’ is the velocity saturation index where
1 ≤ α ≤ 2. B is the transconductance parameter, VGS ,
VDS , and VBS are gate-source, drain-source and bulk-source
voltage, respectively. VTH is the threshold voltage, VDSAT

is the drain saturation voltage, Leff is the effective channel
length, VDD is the supply voltage and IDSAT is the drain
saturation current. VT0, γ and 2φF describe the threshold
voltage. K and m control the linear region characteristics
while B and n determine the saturation region characteristics.
λ0, λ1 and λ are related to finite drain conductance in the
saturated region. The parameters appearing in the equations
are derived using the I-V characteristics of a MOSFET of a
given width [3].

Limitations of the SN Model: According to (4) and (5), the
drain current given by the SN model is directly proportional
to the transistor gate width as ‘B’ is constant. The SN model
is inaccurate when compared with BSIM3v3 level 49 T-
SPICE simulations as the transistor width increases from the
minimum size. The SN model parameters were derived [3]
for 0.18μm and 0.25μm process technologies for transistor
widths of 0.22μm and 0.36μm respectively and used to predict
the drain current for larger transistor widths. Fig. 1 is a
representative illustration which demonstrates that the SN
model becomes inaccurate as the transistor width increases

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3 0.18μm, 1.8V

V
DS

:Drain Voltage [V], V
GS

:Gate Voltage [V]

I D
S
:D

ra
in

 C
u

rr
en

t
[A

]

I
DS

 vs V
DS

 Plots:

..... SPICE
−.−.−. ESN Model

I
DS

 vs V
GS

 Plot:

___ SPICE
. . . ESN Model

W=1.76μm

W=0.22μm

W=0.44μm

W=0.88μm

Fig. 1. SN Model I-V plots for different NMOS transistor widths(W); for
Leff = 0.18μm.

from the minimum value. This inaccuracy is due to the fact
that the process transconductance parameter ‘B’ does not take
into account the narrow-width effects. In order to get accurate
drain current estimates for larger widths one needs to re-
derive the model parameters for each transistor width, which
is inconvenient and impractical. Thus there is a need for a
model that takes into account the narrow-width effects and
also preserves the simplicity and accuracy of the SN model.

III. THE EXTENDED SAKURAI-NEWTON MODEL

We propose the following modification to the SN model.
The drain current equations are as follows:

IDSAT = B(VGS − VTH)α (6)

VDSAT = K(VGS − VTH)m (7)

ID = IDSAT (1 + λVDS) λ = (λ0 − λ1VBS) (8)

(VDS ≥ VDSAT : saturated region)

ID = IDSAT (1 + λVDS)
(

2 − VDS

VDSAT

)
VDS

VDSAT
(9)

(VDS > VDSAT : linear region)
where, the parameter B is defined as:

B = β1 + β2W + β3W
2 (10)

As is evident from (10), the transconductance parameter
‘B’ is a width-dependent quantity. It is also to be noted that
the parameter ‘B’ is same as the transconductance parameter
described in (3). Hence, its method of extraction is the same
as described in [3] for any given value of transistor width. All
the other model parameters are same as those of the SN model
and hence are extracted in the same manner as given in [3].

For a given technology node, the values of all the SN model
parameters are derived for the minimum transistor width as
described in [3]. In order to extend the SN model to accurately
predict transistor drain current values for higher widths, only
the value of the parameter ‘B’ has to be re-derived for every

248

TABLE I
ESN MODEL PARAMETER VALUES

0.25μm CMOS Process 0.18μm CMOS Process
Parameters NMOS PMOS NMOS PMOS
α 1.1436 1.403 1.0448 1.6181
K 0.7509 1.112 0.66 0.7176
m 0.4182 0.7499 0.3785 1.4235
λ(V −1) 0.0421 0.0612 0.0731 0.051
VT0(V) 0.5935 −0.5785 0.5421 −0.4373

γ(V 1/2) 0.438 0.496 0.457 0.602
2φF (V) 0.866 0.879 0.882 0.872
VDSAT (V) 0.7509(VGS−VTH)0.4182 1.112(VGS − VTH)0.7499 0.66(VGS − VTH)0.3785 0.7176(VGS−VTH)1.4235

β1 2.384 × 10−5 6.304 × 10−6 4.228 × 10−5 1.116 × 10−5

β2 244.1 85.65 402.1 140.1
β3 1.393 × 106 1.543 × 105 −2.091 × 106 2.167 × 106

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

x 10
−3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

x 10
−3

V
DS

:Drain Voltage [V], V
GS

:Gate Voltage [V]

I D
S
:D

ra
in

 C
u

rr
en

t
[A

]

0.18μm, 1.8V

I
DS

 vs V
DS

 Plots:

...... SPICE
−.−.−. ESN Model

___ SPICE
. . . ESN Model

I
DS

 vsV
GS

 Plots:

W=1.76μm

W=0.88μm

W=0.44μm

W=0.22μm

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−3 0.25μm,2.5V

V
DS

:Drain Voltage [V], V
GS

:Gate Voltage [V]

I D
S
:D

ra
in

 C
u

rr
en

t
[A

]

I
DS

 vs V
DS

 Plots:

..... SPICE
−.−.−. ESN Model

I
DS

 vs V
GS

 Plots:

___ SPICE
. . . ESN Model

W=2.88μm

W=0.36μm

W=0.72μm

W=1.44μm

(b)

Fig. 2. ESN-model I-V plots for varying W; (a) 0.18μm (b) 0.25μm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2
x 10

−4 0.18μm, 1.8V

V
DS

:Drain Voltage [V], V
GS

:Gate Voltage [V]

I D
S
:D

ra
in

 C
u

rr
en

t
[A

]

I
DS

 vs V
DS

 Plots:

..... SPICE
−.−.−. ESN Model

I
DS

 vs V
GS

 Plot:

___ SPICE
. . . ESN Model

V
GS

=1.8V

V
GS

=0.6V

V
GS

=1.0V

V
GS

=1.4V

(a)

0 0.5 1 1.5 2
0

1

2

x 10
−4 0.25μm, 2.5V

V
DS

:Drain Voltage [V], V
GS

:Gate Voltage [V]

I D
S
:D

ra
in

 C
u

rr
en

t
[A

]

I
DS

 vs V
DS

 Plots:

..... SPICE
−.−.−. ESN Model

I
DS

 vs V
GS

 Plot:

___ SPICE
. . . ESN Model

V
GS

=2.5V

V
GS

=1.3V

V
GS

=1.7V

V
GS

=2.1V

(b)

Fig. 3. ESN-model I-V plots for varying VGS ; (a) 0.18μm (b) 0.25μm

value of transistor width, keeping all the other parameters
constant. The coefficients β1, β2 and β3 are then determined

by fitting a quadratic to the B vs. W plot as the transistor
drain current is no longer linearly related to the width as the

249

TABLE II
TPHL RESULTS FOR DIFFERENT INVERTER CIRCUIT CONFIGURATIONS

Technology Wp Wn TIN CL T-SPICE ESN Model SN Model Error ESN Error SN
[μm] [μm] [ps] [fF] [ps] [ps] [ps] [%] [%]

0.25 1.44 0.36 50 50 294.78 297.74 295.47 1.0 0.23
100 541.65 539.85 535.68 0.33 1.1

100 50 301.41 304.95 302.68 1.17 0.42
100 548.4 547.06 542.89 0.24 1.0

1.44 50 50 97.96 96.03 81.68 1.97 16.62
100 171.27 167.65 141.73 2.11 17.25

100 50 104.68 103.24 88.89 1.38 15.08
100 177.92 174.87 148.94 1.71 16.29

1.44 2.88 50 50 57.36 55.68 46.55 2.93 18.84
100 94.89 91.96 76.57 3.08 19.31

100 50 64.11 62.5 53.76 2.5 16.14
100 101.56 99.18 83.78 2.34 17.51

4.32 50 50 43.38 42.16 35.24 2.81 18.76
100 68.59 66.68 55.25 2.78 19.45

100 50 50.15 48.8 42.45 2.69 15.35
100 75.26 73.3 62.47 2.6 17

0.18 0.88 0.22 45 45 251.25 253.97 256.53 1.08 2.10
75 399.6 398.05 402.1 0.39 0.63

75 45 255.82 258.72 261.28 1.13 2.13
75 404.23 402.8 406.8 0.35 0.64

0.88 45 45 92.16 91.33 70.68 0.9 23.31
75 141.33 139.54 107.08 1.27 24.23

75 45 97.03 96.08 75.43 0.98 22.26
75 146.21 144.3 111.83 1.31 23.51

0.88 1.76 45 45 55.19 54.16 40.48 1.87 26.65
75 81.27 79.81 58.68 1.79 27.8

75 45 60.16 58.9 45.23 2.09 24.82
75 86.23 84.56 63.42 1.94 26.45

2.64 45 45 41.85 40.44 30.17 3.37 27.91
75 59.6 57.97 42.3 2.73 29.03

75 45 46.9 45.18 34.92 3.67 25.54
75 64.6 62.72 47.05 2.91 27.17

Average Error 1.84 16.4

transistor width decreases.
Fig. 2 and 3 show the comparison between the ESN model

I-V curves and BSIMv3v3 level 49 T-SPICE simulations for
0.25μ and 0.18μ CMOS processes. As shown in the plots,
the proposed model matches with the T-SPICE simulations
for varying widths and input voltages with a high degree
of accuracy. Thus we can infer that by simply deriving the
parameter ‘B’ for different widths, we can accurately predict
the transistor drain current values for varying widths without
the need of deriving an extra parameter ‘K’ as proposed in
[5], thereby preserving the accuracy and simplicity of the SN
model.

The model parameters derived for the ESN Model for
NMOS and PMOS devices are listed in table I.

IV. APPLICATIONS OF THE ESN MODEL

A. CMOS Inverter Delay

We now demonstrate the use of the ESN model in accurately
predicting the propagation delay (tpHL) of a CMOS inverter.
Table II shows the comparison between simulated and calcu-
lated values of the propagation delay for the ESN and the SN
model for varying device widths, output capacitances and input
rise/fall times. We use the same expression for propagation

delay as described in [4].

tpHL, tpLH =
(

1
2
− 1 − vT

1 + α

)
tT +

CT VDD

2ID0
(11)

where, vT = VT H

VDD
, CT is the total output capacitance

discharged (CL + parasitic capacitance), α is the velocity
saturation index, tT is the input rise/fall time and ID0 is the
transistor drain current for VGS=VDS=VDD, except that now
it is calculated by the ESN model equation (8). The model
parameters were derived for minimum-sized transistors for
both the technologies.

As is evident from Table II, the SN model has an average
error of 16.4% whereas, the ESN model has an average
error of 1.84%. It is to be noted that for a given technology
node, with increasing transistor widths, the SN model becomes
increasingly inaccurate whereas the ESN model retains a high
level of accuracy.

B. CMOS Gate Design

The propagation delay of a CMOS gate can be approxi-
mately estimated by converting it into an equivalent inverter.
The size of the PMOS and NMOS used in the equivalent
inverter represent the effective strengths of the actual pull-up
and pull-down paths respectively.

250

For n series-connected transistors, the width-to-length ratio
of the equivalent transistor is [10],(

W

L

)
equivalent

=
1∑

n(on)

1(
W
L

)
n

(12)

Similarly for n transistors connected in parallel, the width-
to-length ratio of the equivalent transistor is [10],(

W

L

)
equivalent

=
∑

n(on)

(
W

L

)
n

(13)

Here, we consider a two-input CMOS NAND gate assuming
that the circuit is driving a load capacitance of 100fF and
needs to satisfy tpHL,pLH ≤ 70ps. Converting the gate into an
equivalent inverter and substituting the parameters for 0.18μm
technology in (8) we get,

I = Beq,n(1.8−0.5421)1.0448(1+0.0731×1.8) = 1.438Beq,n

(14)
Considering the parasitics, the delay tpHL is calculated

using (11) with tT = 0 we get,

tpHL =
117 × 10−15 × 0.9

1.438Beq,n
≤ 70 × 10−12s. (15)

Hence, Beq,n ≥ 1.046× 10−3A/V α. From (10), the equiv-
alent NMOS width comes out to be 2.5321μm and similarly
the equivalent PMOS width comes out to be 5.5045μm. Using
(12) and (13) for the NAND gate for worst case input, the
width of the each NMOS comes out to be 5.0642μm and that
of each PMOS comes out to be 2.7522μm. We get a delay
of 68ps from T-SPICE simulations which meets the delay
requirement of tpHL ≤ 70ps.

C. Elmore Delay of CMOS Inverter for Low Supply Voltages

The Sakurai-Newton (SN) delay approximation [4] is a
widely used closed form delay metric for the CMOS gates
because of simplicity and reasonable accuracy. In [1], it is
shown that when the CMOS gate is modeled as an RC circuit,
for a step input, the SN delay approximation is the exact
Elmore delay of a CMOS gate, which can be viewed as the
centroid of current. For a step input, the Elmore delay of a
CMOS inverter can be expressed as [1],

telmore =

∫ ∞
0

tI(t)dt∫ ∞
0

I(t)dt
(16)

When I(t) in the above equation is substituted by the drain
current expression of the SN model, we get (17).

telmore =
CT VDD

k(VDD − VTH)α
≈ tsn (17)

where tsn is approximated by substituting ID0 with the
SN model drain saturation current given by (3) and the input
rise/fall time (tT =0) in (11). Here k = W

Leff
μnCOX . The SN

metric fails to accurately predict the delay of a CMOS inverter
with varying supply voltages [6]. Thus it may not be applicable
in many low power applications with voltage scaling.

In this section, we demonstrate how the centroid of current
(17) can be modified according to the ESN model to accurately
trace the SPICE delay values with varying supply voltage
upto VDD = 3VTH . Shown below is the modified centroid
of current based delay metric,

tESN =
CT VDD

2B(VDD − VTH)α
(18)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.5

1

1.5

2

2.5

x 10
−10 0.18μm, 1.8V

Supply Voltage V
DD

 [V]

t
[s

ec
o

n
d

s]

t
elmore

 ESN Model

t
elmore

 SN Model

t SPICE

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

6

7
x 10

−10 0.25μm, 2.5V

Supply Voltage V
DD

 [V]

t
[s

ec
o

n
d

s]

t
cp

 ESN Model

t
cp

 SN Model

t SPICE

Fig. 4. T-SPICE delay and the values predicted by the modified centroid of
current metric for CMOS inverter in 0.18μm and 0.25μm technologies. The
supply voltage (VDD) was varied in the range 2VTH to 6VTH with load
capacitance CL=60fF (0.18μm) and CL=120fF (0.25μm), VTH=0.365V
(0.18μm) and VTH=0.381V (0.25μm)

where, CT is the total output capacitance discharged (CL +
parasitic capacitance), VDD is the supply voltage, VTH is the
threshold voltage and α is the velocity saturation index. ‘B’
is the transistor width dependent transconductance parameter
used in the ESN model equation (6). The above equation has
been obtained by substituting the expression for drain current
expression proposed by the ESN Model.

As shown in Fig 4, the modified centroid of current based
metric matches closely with the SPICE delay values for fairly
large variation of supply voltage from 3VTH to 6VTH with a
high correlation coefficient of 0.98. However, it is unable to

251

accurately track the SPICE delay values for supply voltages
below 3VTH .

Since at low supply voltages delay ∝ 1
V 2

DD
, a delay metric

based on the centroid of power dissipation was proposed
as power ∝ (current)2 [11]. In order to track the delay for
supply voltage below 3VTH , we modify the centroid of power
metric presented in [1] as per the ESN Model by replacing
the parameter ‘k’ by the width dependent transconductance
parameter ‘B’ of the ESN model equation (6). The modified
expression is,

tcpESN
=

CT (3V 3
DD + 3V 2

DDVTH − 3VDDV 2
TH + V 3

TH)
6BV 2

DD(VDD − VTH)α

(19)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.5

1

1.5

2

2.5

x 10
−10 0.18μm, 1.8V

Supply Voltage V
DD

 [V]

t
[s

ec
o

n
d

s]

t
cp

 ESN Model

t
cp

 SN Model

t SPICE

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

6

7
x 10

−10

Supply Voltage V
DD

 [V]

t
[s

ec
o

n
d

s]

0.25μm, 2.5V

t
cp

 ESN Model

t
cp

 SN Model

t SPICE

Fig. 5. T-SPICE delay and the values predicted by the modified centroid of
power metric for CMOS inverter in 0.18μm and 0.25μm technologies. The
supply voltage (VDD) was varied in the range 2VTH to 6VTH with load
capacitance CL=60fF (0.18μm) and CL=120fF (0.25μm), VTH=0.365V
(0.18μm) and VTH=0.381V (0.25μm)

Fig. 5 shows that the modified centroid of power metric is
able to accurately track the SPICE delay values for the entire
range of supply voltage from 2VTH and 6VTH with a high
correlation coefficient of 0.99. Hence, we have shown that by
modifying the centroid of current based delay metric according
to the ESN model, we can accurately predict the delay values

for a fairly large range of supply voltage (3VTH to 6VTH). For
supply voltage variation below 3VTH , the modified centroid
of power based delay metric can be used.

V. CONCLUSION

In this paper we propose an extension to the Sakurai
Newton model [3] for accurate estimation of MOSFET I-
V characteristics in the deep submicron region for varying
transistor widths. The new model originates from our obser-
vation that the constant transconductance parameter ‘B’ in the
Sakurai Newton model can be modified into a width dependent
parameter to incorporate the narrow width effects that are
prevalent in DSM CMOS process technologies.

Our proposed model can accurately predict the propagation
delay for CMOS inverters for a wide range of output capaci-
tances, transistor widths and input ramp durations for 0.18μm
and 0.25μm process technologies. Further, we have proposed
modifications to the existing centroid-of-current and power
based delay metrics presented in [1]. The modified centroid-of-
current based metric tracks the SPICE delay with a correlation
coefficient of 0.98 for supply voltages from 3VTH to 6VTH

and the modified centroid-of-power metric tracks the SPICE
delay with a correlation coefficient of 0.99 for supply voltages
from 2VTH to 6VTH . We anticipate the use of this model in
applications where simple and quick analytical treatment of
circuit behavior is required.

REFERENCES

[1] Anand Ramalingam, Sreekumar V. Kodakara, Anirudh Devgan, and David
Z. Pan, “Robust Analytical Gate Delay Modeling for Low Voltage
Circuits”, Proceedings of the 2006 conference on Asia South Pacific
design automation, pp. 61-66, Yokohama, Japan, 2006.

[2] W. Shockley, Proc. IRE, vol. 40, pp. 1365-1376, Nov. 1952.
[3] T. Sakurai and A. R. Newton, “A simple MOSFET model for circuit

analysis,” IEEE Transactions on Electron Devices, vol. 38, no. 4, pp.
887-894, Apr. 1991.

[4] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas,” IEEE Journal
of Solid State Circuits, vol. 25, no. 2, pp. 584-594, April 1990.

[5] Makram M. Mansour, Mohammad M. Mansour, Amit Mehrotra, “Modi-
fied Sakurai-Newton Current Model and its applications to CMOS Digital
Circuit Design”, Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI’03).

[6] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cam-
bridge University Press, 1998.

[7] Hyunsik Im, M Song, T.Hiramoto and T.Sakurai, “Physical Insight into
Fractional Power Dependence of Saturation Current on Gate Voltage in
Advanced Short Channel MOSFETS (Alpha-Power Law Model)”, Pro-
ceedings of the 2002 international symposium on Low power electronics
and design, pp. 13-18, Monterey, California, USA, 2002.

[8] Keith A. Bowmann, Blanca L. Austin, John C. Eble, Xinghai Tang and
James D. Meindl, “A Physical Alpha-Power law MOSFET model,” IEEE
Journal of Solid State Circuits, vol. 34, no. 10, pp. 1410-1414, October
1999.

[9] Kai Chen, Cheming Hu, Peng Fang, Min Ren Lin and Donald L. Wolle-
sen, “Predicting CMOS Speed with Gate Oxide and Voltage Scaling and
Interconnect Loading Effects, IEEE Transactions on Electron Devices,
vol. 44, no.11, November 1997.

[10] Sung-Mo Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits
Analysis and Design, 3rd ed. New Delhi: Tata McGraw-Hill, 2003.

[11] Anand Ramalingam, Sreekumar V. Kodakara, Anirudh Devgan, and
David Z. Pan, “Robust Analytical Gate Delay Modeling for Low Voltage
Circuits”, ASP-DAC 2006 Archives, 1C-1, 2006.

252

Measurement and Analysis of Parasitic Capacitance in FinFETs with high-k
dielectrics and metal- gate stack

Abhisek Dixit (1), Anirban Bandhyopadhyay (1), Nadine Collaert (2), Kristin De Meyer (2),
Malgorzata Jurczak (2)

(1) SRDC-Compact Modeling Group, IBM India Pvt. Ltd., D3-First Floor, Manyata
Embassy Business Park, Nagwara Circle, Outer Ring Road, Bangalore-560045, INDIA.

(2) IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
abhdixit@in.ibm.com

Abstract

FinFET is one of the promising device architectures

for sub-32nm CMOS technology nodes. These non-
planar devices benefit from near bulk-Si processing
and improved control of short channels due to quasi
gate-all-around operation. Their device operation is
well studied and optimized in last half decade by
various research groups. In this paper, we help
evaluate the circuit potential of FinFETs by
experimentally comparing their parasitic capacitance
to that of the planar FDSOI MOSFETs. It is shown
that n- and p-channel FinFETs achieve as high as 50%
and 28% parasitic capacitance reduction compared to
the planar FDSOI MOSFETs respectively.

1. Introduction

CMOS inverter is considered the basic circuit building
block in various CMOS applications [1],[2]. Although
multiple contributions, such as the branching effort and
electrical effort determine the overall logical effort of
an inverter in a given circuit configuration, the concept
of electrical effort is pertinent to device parasitics [3].
The electrical effort of an inverter (H) is defined as the
ratio of its output to the input-capacitance. Critical
logic paths in a digital design require minimum delay.
Consequently, logic circuits often employ buffer chains
as is schematically shown in Fig. 1.

In this context, a buffer is an inverter, sized to a
designed width (Wi) to drive a certain capacitive load.
Thus, in a chain of inverters, the subsequent inverters
(fan-out) determine the output capacitance while the
preceding inverters (fan-in) determine the input
capacitance of the inverter. However, as seen from Fig.
1, the gate-to-source (Cgs) and the gate-to-drain (Cgd)
components of MOSFET's parasitic capacitance act as
an output to input capacitive coupling in an inverter.
For digital applications, these capacitances, represented
by Cp in Fig. 1(A), can be critical to the propagation

delay and power dissipation. For analog applications, a
negative feedback through them will affect the gain-
bandwidth product. Thus, an accurate estimation of
these parasitic capacitances is required to evaluate a
MOSFET's circuit application potential.

Figure 1: Relevance of MOSFET parasitic capacitance
to the digital circuit design: (A) Concept of buffer
chains and electrical effort `H' (B) CMOS inverter
parasitic capacitances. Cgs is the gate-to-source
capacitance and CM is the gate-to-drain capacitance in
presence of the Miller effect. Together these
components form the capacitance Cp shown in (A).

FinFETs with their excellent short-channel control in
un-doped fin configuration may provide an optimal
solution for scaled-LSTP technologies [4]-[7]. Process
induced FinFET parasitics have been addressed and it
was shown that with required control on Fin-LER,
FinFET SRAM cells could achieve superior stability
than their planar bulk counterpart [8]. Amongst
FinFET device parasitics, the S/D resistance was found
to be dominant and raised S/D architecture has been
reported as the viable solution [9]-[11].

The objective of this paper is to aid to the evaluation of
circuit prospects of FinFETs by analyzing the missing
link, namely the parasitic capacitance. The analysis is
performed by comparing FinFET parasitic capacitance
with that of the planar SOI MOSFET. Experimental
data is combined with popular planar MOSFET models

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.80

253

and extraction methodologies to address FinFET
parasitic capacitance.

2. Test Structures and Device Fabrication

Various capacitances encountered in a MOSFET are
shown in Fig. 2, where Cox is the intrinsic gate oxide
capacitance, Cdo is the direct capacitance in the gate-to-
source overlapped region, Cif is the inner fringing
capacitance [12]. Cof is the sidewall fringing
capacitance associated with electric field lines
emerging from the sides of poly-Si gate, going through
the sidewall spacer and ending at S/D regions. Further,
Cpp is the parallel plate capacitance associated with
electric field lines emerging from the sides of poly-
gate, going through the side-wall spacer and ending at
S/D electrodes (contact plugs) [13]. Ctop is the top
fringing capacitance associated with field lines
emerging from top surface of the poly-gate and going
through the first layer of Passivation/planarization
dielectrics and ending at S/D electrodes (contact plugs)
[14].

Figure 2: Capacitive components in a FDSOI

MOSFET. Utilizing the symmetry, only left-half of the
device is shown. BOX is Buried Oxide.

Estimation of parasitic capacitances in a MOSFET

serves many purposes, e.g. it provides a way to
compare efficiency of different layouts, it is essential
for accurate estimation of gate capacitance and to some
extent it reflects effective channel length of a
MOSFET etc. Various models and experimental
approaches to estimating parasitic capacitance of
planar bulk MOSFETs exist [13], [15]-[17]. However,
FinFET being an alternative and SOI architecture is
different from the planar bulk MOSFET both in terms
of the layout as well as layer stack. Therefore, it is
likely that many of these capacitances have different
values in FinFETs, knowing which the FinFET layouts
can be optimized and future FinFET parasitic
capacitance models can be appropriately developed.

Unlike the well contact in planar bulk MOSFETs,

FDSOI architecture of FinFETs does not facilitate a
contact to fins. As a result, only an inversion C-V
analysis can be performed on FinFETs, unless other
dedicated test structures are utilized. Also, many of the
methodologies that are commonly used in planar bulk
MOSFETs for accurately measuring the gate C-V are
based on the C-V analysis in the accumulation region,
and hence are inapplicable to FinFETs [18],[19].
Therefore, to accurately measure the C-V
characteristics of FinFETs, special test structures are
designed, as is shown in Fig. 3. As the purpose of this
analysis is to compare the FEOL capacitances between
FinFET and planar SOI transistors, the reference
structure shown in Fig. 3(C) is utilized for removing
Ctop, Cpp and other buried oxide related capacitive
components from the C-V curves measured on
structures shown in Fig. 3(A) and (B).

Figure 3: Device structures utilized for capacitance

analysis: (A) Planar SOI transistor (B) SOI-FinFET
(C) Reference Structure. Mask patterns for SOI, poly-
Si gate and CA layers are shown.

Depending on the gate-to-S/D overlap area, the

parasitic capacitance is usually a small number in
comparison to the intrinsic gate capacitance. As most
LCR meters utilized for the C-V measurements have a
limited resolution for small capacitances (a few pF), it
is important to keep the gate to S/D overlap area
sufficiently large. In the planar SOI structure shown in
Fig. 3(A), an equivalent gate width of approximately
14,000µm is targeted. The FinFET structure shown in
Fig. 3(B) is designed for fin pitch (Sfin) of 0.35 and
0.2µm with 40,000 fins (fin height Hfin=62nm, fin
width Wfin≈80nm) and 69,200 fins (Hfin=62nm,
Wfin≈53nm) respectively. These devices have been
fabricated utilizing a process-flow, as is briefly
outlined in Table 1. Designed process splits are also
shown in Table 1.

254

Table 1: Process splits and flow for parasitic

capacitance experiments. Contact Etch Stop Layer
(CESL) is utilized to impart a uniaxial strain in the
channel.

3. Measurement and Extraction of FEOL
Parasitic Capacitances in FinFETs

To measure the inversion C-V characteristics of the
fabricated structures, devices have been biased as
shown in Fig. 4.

Figure 4: Transistor biasing for the inversion C-V

measurements. A 30 mV, 1 MHz ac signal is utilized.

In these measurements, the S/D terminals are

grounded with respect to the gate. A small ac signal
(30 mV, 1 MHz) is superimposed on a slowly varying
ramp, which is applied to the gate. In C-V
measurements, actual bias is applied to the largest
electrode in the device, e.g. the bulk contact in a planar
bulk MOSFET. In this case of SOI FinFETs, the actual
bias is applied on the gate terminal, as otherwise
significant attenuation of the ac signal is seen to result
in low measured capacitances.

Introduction of new gate-stacks, e.g. high-k
dielectrics and metal gate, to the CMOS technology

requires a careful investigation of existing capacitance
extraction methodologies. In addition, for novel
architectures, e.g. FinFETs, the analysis becomes even
more vital. Gate dielectrics in modern CMOS
technology are targeted to small EOT values, hence
these are thin. With an appreciably large gate bias
applied across them, these thin dielectrics often cause
leakage and distort the measured C-V curves. An
approach to understanding the usability of measured C-
V curves is through the phase angle analysis [20].
Phase angles for the measured C-V curves are
extracted. One such extracted phase angle vs. gate bias
curves is shown in Fig 5.

Figure 5: Validation of the C-V measurement using

the phase angle analysis for the FinFET structure
shown in Fig. 3(B). Measured n-channel FinFET has
Lgate=0.46µm, Wfin=0.08µm, Sfin=0.35µm and number
of fins (Nfin)=40,000.

Since the capacitance is defined as the imaginary

component of admittance (Y), a value of phase angle
(Ө) close to 900 is desired. In the case of leaky
dielectrics, a high frequency ac signal keeps the
dissipation small and consequently achieves high
values of Ө. C-V curves, measured on the reference
structure, as shown in Fig. 3(C), are first subtracted
from those measured on planar SOI and FinFET
structures shown in Fig. 3(A) and (B). Consequently,
parasitic capacitances associated with the S/D/G pads,
i.e. Ctop and Cpp in Fig. 2 and buried oxide are removed
from the measured C-V curves. Measured C-V curves
after this correction are shown in Fig. 6. In the phase
angle analysis, acceptable portion of the curve shown
in Fig. 5 is marked by the dotted arrows. Beyond this
region, high gate bias can be understood to cause high
leakage and perhaps unusable capacitance values.
Thus, a minimum to maximum workable gate bias
range is obtained for the curves shown in Fig. 6.

255

Further, these curves are normalized to effective gate
width, as is shown in Fig. 7.

Figure 6: Measured FinFET C-V curves. Measured

n-channel FinFETs have Wfin=0.08µm, Sfin=0.35µm
and Nfin=40,000.

Figure 7: FinFET C-V curves shown in Fig. 6,

normalized to the effective gate width.

A key guideline in separating parasitic capacitance

from intrinsic gate capacitance is that the gate
capacitance (normalized to the effective gate width) is
a function of gate length, whereas the parasitic
capacitance is not. Accordingly, the C-V curves shown
in Fig. 7 are independent of Lgate in the Region `A', and
vice versa in Region `B'. The bias point Vg,intON that
marks the boundary between the two regions in Fig. 7
provides a reference for extracting various components
of the parasitic capacitance [15],[16]. To obtain the
total parasitic capacitance Cpara and effective channel
length (Leff), an iterative analysis is performed. In this
analysis, Leff is defined as

Leff=Lgate-ΔLeff...................Equation 1.

Here ΔLeff is the overall reduction in Lgate due to
metallurgical overlap between the gate and S/D
extensions and other carrier injection considerations
[16]. Measured capacitance values shown in Fig. 7 are
plotted as a function of Leff for all the bias points in
Fig. 8.

Figure 8: Measured capacitance, as shown in Fig. 7,

plotted as a function of the effective channel length,
Leff.

First a dummy value of ΔLeff is inserted in Eq. 1 and

curves as shown in Fig. 8 are plotted. The Y-axis
intercepts of the linear fits at ΔLeff =0 provide an
estimate of Cpara at various bias points. These
intercepts, i.e. Cintc, are plotted as a function of the gate
bias in Fig. 9.

Figure 9: Y-intercepts, extracted from the curves

shown in Fig. 8, are plotted as a function of the gate
bias. Analysis on an n-channel FinFET with
Lgate=0.46µm is shown.

Value of ΔLeff in Eq. 1 is adjusted by iterating this
procedure unless Cintc at Vgs=Vg,intON (i.e. at point `A')
equals the minimum Cintc at Vgs>Vg,intON (i.e. point `B')
in Fig. 9. Among the parasitic capacitances shown in
Fig. 2, Ctop and Cpp are already removed from Cintc by

256

subtracting the pad capacitances. Of the remaining Cof
is bias independent. Hence, the minimum value of Cintc
in Fig. 9 represents Cof. In Fig. 9, as the gate bias
increases from -0.5 V, the gate-to-S/D overlapped
regions (n+) go from depletion towards accumulation
mode and Cintc keeps increasing. At this stage, both Cdo
and Cif contribute to Cintc. However, beyond point `A' a
weak inversion in the channel is reached. Once the
inversion layer is formed, it effectively screens
electrical field lines originating from bottom of the
gate and terminating at the inner periphery of the S/D
extensions, thus suppressing Cif [12]. Due to this, Cintc
comes back to the point `B' in Fig. 9. Beyond point `B',
impact of gate leakage is present and Cintc is seen to
increase with gate bias again. After removing Cpara,
which comprises of Cof and Cdo, from the curves shown
in Fig. 6, corrected C-V curves are normalized to the
effective channel area using the knowledge of ΔLeff.
These gate C-V curves are shown in Fig. 10.

Figure 10: C-V curves, as shown in Fig. 6, after

correction for Cpara and normalization to the effective
gate area, taking ΔLeff into consideration.

Since Cif is gate bias dependent and exists only up

to the weak inversion regime, Cpara=Cof+Cdo can be
taken as the effective FEOL parasitic capacitance of
FinFETs. It should be noticed that the post-processed
C-V curves shown in Fig. 10, were originally measured
on devices with variable gate lengths. Assuming that
all the parasitics are removed and capacitances are
normalized to the effective channel area, these curves
should be identical, as is seen in Fig. 10, which
validates this analysis. The same analysis is performed
on various device structures, as listed in Table 2.

Table 2: Nomenclature of device structures utilized

for parasitic capacitance extractions. Sfin is the fin pitch
and Hfin=0.062µm for all the structures. MuGFET is a
synonym of FinFET.

Results of parasitic capacitance extractions on these

structures are summarized in Fig. 11, where extracted
Cpara is shown. It can be seen from Fig. 11 that n- and
p-channel FinFETs (NFF350 and PFF200) achieve as
high as 50% and 28% parasitic capacitance reduction
compared to the planar FDSOI MOSFETs (NPL and
PPL) respectively.

0.0

0.2

0.4

0.6

0.8

1.0
 D03
 D04
 D08

P
F

F
20

0

P
P

L

N
F

F
20

0

N
F

F
35

0

N
P

L

C
pa

ra
 (

fF
/m

ic
ro

n)

Devices

Figure 11: Parasitic capacitances as extracted for

various device structures mentioned in Table 2.

4. Conclusion

FEOL components of FinFET parasitic capacitance
have been analyzed on fabricated device structures. A
parasitic capacitance extraction methodology,
commonly used for planar devices, has been utilized.
In presence of optimal de-embedding of BEOL
capacitances and appropriate planar reference
structures, it is shown that FinFETs with varying fin
pitch have lower parasitic capacitance than their planar
SOI counterparts. Further, the parasitic capacitance is
shown to be higher for the pFETs with respect to
nFETs, as usually is the case with planar MOSFTEs
too. Future experiments shall be carried out to analyze
the impact of raised S/D architecture, utilized to reduce
FinFET S/D resistance, on FinFET parasitic
capacitance. However, our present analysis concludes

257

that FinFETs have better potential for digital circuit
applications over the planar FDSOI MOSFETs.

5. References

[1] N. H. E. Weste et al, Principles of CMOS VLSI Design:
A Systems Perspective, by Addison Wesley Publication
Company, 1998.

[2] J. M. Rabaey, Digital Integrated Circuits: A Design
Perspective, by Prentice Hall of India Pvt. Ltd., 2000.

[3] I. Sutherland et al, Logical Effort: Designing Fast CMOS
Circuits, by Morgan Kaufmann Publishers Inc., 1999.

[4] B. Yu et al, IEDM Tech. Dig., pp. 251, 2002.

[5] B. S. Doyle et al, IEEE Electron Device Lett., 24(4), pp.
263, 2003.

[6] F. -L. Yang et al, 25 nm CMOS Omega FETs, IEDM
Tech. Dig., pp. 255,2002.

[7] A. Asenov, IEEE Trans. Electron. Devices, 45(12), pp.
2505, 1998.

[8] A. Dixit et al, IEDM Tech. Dig., pp. 709, 2006.

[9] N. Collaert et al, IEEE Electron Device Lett., 25(8), pp.
568, 2004.

[10] J. Kedzierski et al, IEEE Trans. Electron. Devices,
50(4), pp. 952, 2003.

[11] A. Dixit et al, IEEE Trans. Electron. Devices, 52(6), pp.
1132, 2005.

[12] Y. Taur et al, Fundamentals of Modern VLSI Devices,
by Cambridge University Press, 1998.

[13] N. R. Mohapatra et al, IEEE Trans. Electron. Devices,
50(4), pp. 959, 2003.

[14] C. H. Wang et al, IEEE Trans. Electron. Devices, 43(6),
pp. 965, 1996.

[15] J.-C. Guo et al, IEEE Trans. Electron. Devices, 41(10),
pp. 1811, 1994.

[16] S. Severi et al, IEEE Electron Device Lett., 27(7), pp.
615, 2006.

[17] K. Romanjek et al, IEEE Electron Device Lett., 25(8),
pp. 583, 2004.

[18] K. J. Yang et al, IEEE Trans. Electron. Devices, 46(7),
pp. 1500, 1999.

[19] Z. Luo et al, IEEE Electron Device Lett., 25(9), pp. 655,
2004.

[20] J. Lin et al, IEEE Conference on Microelectronic Test
Structures, pp. 289, 2004.

258

Session 4B

Application-Specific Architectures
and Reconfigurable Computing

Design, Implementation and Validation of an Open Source IP-PBX/VoIP
Gateway SoC

S. Apostolakos, G. Lykakis, A. Meliones, V. Vlagoulis, E. Touloupis, G. Konstantoulakis
inAccess Networks, 12 Sorou Str., Maroussi 15125, Athens, Greece
{spapost, glyk, meliones, vlv, etoul, gkonst}@inaccessnetworks.com

Abstract

 The telephony world is consistently moving to the
transmission of voice through packet networks, so as to
unify data and voice and to enable the provisioning of
new services in a less costly manner. Service providers
are offloading the task of converting analog voice to VoIP
to the end-points. This allows the ISPs and ITSPs to
reduce their costs and increase the uniformity of their
interfaces with their clients. In this paper we present an
IP-PBX/VoIP Gateway system based on a single SoC that
performs all the required processing. This SoC includes a
CPU for hosting a full-fledged operating system and user
applications, as well as a DSP subsystem for voice
processing. The system targets the low density market of
home gateways and SME IP-PBXs, where cost is the main
factor. We prove it is feasible to implement a 2-4 channel
IP-PBX/VoIP gateway on a SoC based purely on both
software and hardware provided by the open-source
community, reducing both upfront and final product costs
thus allowing new players into the market.

1. Introduction

The telephony world is consistently moving away
from the traditional, circuit-switched architecture to the
transmission of voice through packet networks, so as to
unify data and voice and to enable the provisioning of
new services in a less costly manner.

Moreover, the service providers are offloading the task
of converting analog voice to VoIP to the end-points,
owned by their customers, such as the home gateway, at
present offering the capacity of connecting up to 2
telephones as well as the SME and corporate PBXs,
which are becoming IP-enabled. This allows the ISPs and
ITSPs to reduce their costs and increase the uniformity of
their interfaces with their clients. Nowadays, a broadband
connection (either ADSL or wireless) suffices to convey
voice, data and video to/from the home and business
users. This de-centralization approach has entered the

standards with the introduction of the IP Multimedia
Subsystem (IMS) architecture [1].

In this paper we present an IP-PBX/VoIP Gateway
system, based on a single SoC (called ERMES) that
performs all the required processing. This SoC includes a
CPU, for hosting a full-fledged operating system and user
applications as well as a DSP subsystem for voice
processing complemented with hardware accelerator logic
for special functions. This system targets the low density
market (2-4 concurrent voice channels) of home gateways
and SME IP-PBXs, where cost is the main factor. To this
extent, we have decided to rely not only on an open-
source software platform, but also to use an open source
CPU core, because of the prohibitive costs involved in
licensing a commercial CPU core (e.g. ARM-based).
LEON3, the latest version of the LEON core (see [2]), a
SPARC V8 compliant, 32-bit RISC processor, having
been used successfully in a number of SoC designs, was
selected as the most suitable candidate.

Even though the LEON3 core is totally suitable for the
execution of the operating system and user space
applications, the envisioned SoC is also supposed to
execute signal processing tasks, which a RISC processor
is not expected to handle too well. This is why such
targeted SoCs rely on the integration of specialized DSP
cores, which are equally, if not more costly, compared to
CPUs. The issue then is whether and to what extent the
selected processor can also be used for signal processing.

2. Necessary algorithmic support for the
ERMES SoC

Based on an extensive set of customer requirements
collected over the years, the minimum DSP algorithmic
support necessary to implement an IP-PBX/VoIP gateway
SoC includes 4 voice processing and 2 telephony
signaling algorithms: the G.711 encoder/decoder, the
G.729A encoder/decoder and the telephony tone
signaling tone generator/detector.

The G.711 encoder/decoder functions as a compander
(compressor/expander). Audio data is encoded after

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.47

261

logarithmic scaling so that better precision is achieved in
the representation of low amplitudes as opposed to higher
ones, due to the increased sensitivity of the human ear in
these low amplitudes. G.711 operates on a sample-per-
sample basis and its data rate is 64 Kbits/sec.

G.729A is a parametric codec. It operates on 10 ms
voice frames and parameterizes voice in a way that
achieves high compression rates without compromising
voice quality. Its data rate is 8 Kbits/sec.

The signaling tone generator must have the capability
of producing any sum of 3 sinusoids with programmable
frequencies and amplitudes provided that their
frequencies are within the telephony bandwidth (300-
3400 KHz). It must also support up to 3 programmable
on-off intervals (cadences).

The signaling tone detector must detect the DTMF
tones used during call setup, following specific
requirements defined in the relevant standards.

3. Benchmarking of the DSP algorithms on
LEON3

In order to identify whether the LEON3 core can serve
as the processing element implementing such algorithmic
blocks, an HDL simulator was used to measure the num-
ber of clock cycles required for DSP software execution.

The voice processing algorithms were first imple-
mented in ANSI C and executed on a PC so as to validate
their functionality according to relevant standards using
specific test vectors. Then, they were integrated with ap-
propriate LEON3 initialization functions and executed on
the simulator. The results are summarized in Table 1. The
G.729A codec was executed on a 10 ms voice frame (100
frames per second), while all other algorithms were exe-
cuted on a 5 ms voice frame (200 frames per second).

Table 1. LEON3 cycles and instructions when
executing the ERMES DSP algorithms

Algorithm Cycles
Linear to G.711 A-law encoding (5 ms frame) 6508
Linear to G.711 u-law encoding (5 ms frame) 6158
G.711 A-law to linear decoding (5 ms frame) 1788
G.711 u-law to linear decoding (5 ms frame) 1499
Linear to G.729A encoding (10 ms frame) 1781032
G.729A to linear decoding (10 ms frame) 588112
Signaling tone (DTMF) detector (5 ms frame) 151247
Signaling tone generator (5 ms frame) 14455

Commenting on the table presented above, the
implementation of a full-duplex voice channel requires
some 236,914,400 cycles every second, since concurrent
execution of a voice encoder (G.729A is the worst case)
and a voice decoder (G.729A still the worst case) is
required. The tone generator and DTMF detector operate
only during call setup and the required processing power
is significantly lower. This cycle figure in turn means that

even if an operating frequency of 400 MHz is achieved
for the SoC in an ASIC, not even a second concurrent
voice channel could be supported.

4. Related work

What our analysis indicates up to this point is that it is
desirable to complement the LEON3 core with DSP
hardware support so as to improve its DSP performance
and consequently the achievable voice channel density.

The idea is not new, since it is getting quite common
to equip general purpose embedded CPUs with DSP
capabilities. Most of the modern ARM cores feature cer-
tain DSP commands, like single-cycle multiply/ accumu-
late etc. An implementation of the G.729 codec family on
ARM architecture with DSP extensions is reported in [3].

As far as the LEON core is concerned, [4] presents the
idea of attaching scalar and vector coprocessors to the
LEON core via a custom pipeline coprocessor port. Other
approaches we have evaluated include (i) the implementa-
tion of the DSP logic internally to LEON and the defini-
tion of new instructions for its use and (ii) the implemen-
tation the DSP logic within an external peripheral unit.

Eventually, the latter option was selected because of a
number of advantages it presents: (a) its operation is not
dependent on the host processor and can be used as an
autonomous peripheral unit in other systems; (b) it can
operate in parallel with the CPU, however it needs proper
software design for increased performance; (c) there is no
need to go into time-consuming non-trivial modifications
of LEON3 that can yield design faults that are not easily
traceable and affect the system operation. The option of
the mathematical co-processor was judged insufficient
because the relevant LEON3 interface cannot support
high data rates. On the other hand, DMA can be
employed to implement transfers to/from the peripheral
DSP unit.

5. The ERMES SoC architecture

The ERMES SoC architecture is depicted in Figure 1.
All main interconnections are shown, while trivial details
have been left out for the sake of readability (e.g. IRQ
signals from peripheral units to the interrupt controller).

In order to detach the execution of DSP tasks from
other software, since the execution needs (real-time/non
real-time) differ considerably, a second LEON3 core has
been employed as a DSP processor, together with the
abovementioned peripheral unit (denoted as the Vector
Arithmetic Unit – VAU in the ensuing). This LEON3
configuration used for that purpose is slightly different
than the one used for the CPU, lacking the Memory
Management Unit and using smaller instruction and data
caches.

262

CPU
(LEON3)

Memory
Controller

Ethernet
MAC

Ethernet
MAC

AHB
Bridge

DSP
(LEON3)

Local
Memory

TDM

Primary ΑΗΒ

Se
co

nd
ar

y
A

H
B

AHB
Arbiter

DMADMA

SPI

UART

UART
AHB

Arbiter

APB
Bridge

Debug
Support

Unit

AP
B

GPIO

Timers

Interrupt
Controller

Figure 1. ERMES SoC architecture

ERMES features a dual AMBA AHB architecture (as
per [5]), where a primary system bus serves the CPU and
2 Ethernet units, and a secondary system bus serves the
DSP subsystem, which is further analyzed in section 6.
Each bus employs its own arbitration unit and the two
buses are interconnected via a bridge. This topology
allows the units to communicate as if they were located
on the same bus, while at the same time it allows the
parallel functioning of the CPU and DSP subsystems,
thus increasing the system throughput. Furthermore, an
APB bus is used for the transport of control information
as well as data transfer to/from the low data rate units.

The primary AHB bus interconnects the CPU (master),
the external memory controller (slave), the AHB (mas-
ter/slave) and the APB (slave) bridges, the Debug
Support Unit (master/slave and direct interfacing with
both processors) and the 2 Ethernet units (masters for data
and slaves for control). The bus arbiter uses a round-robin
algorithm.

The secondary AHB bus interconnects the DSP
(master), the local memory (slave), the VAU (master/
slave), the TDM unit (master) and the AHB bridge
(master/slave). The bus arbiter uses a fixed priority
algorithm, with higher priority assigned to the TDM unit.
The APB bus interconnects the SPI unit, the UART
transceivers, the GPIO unit, the timers, and the interrupt
controller. The APB bus is accessed via the APB bridge,
which also decodes the selection signals.

6. DSP subsystem architecture

The DSP subsystem is one of the key elements of the
ERMES SoC. As depicted in Figure 2, it consists of the
DSP (which is actually a LEON3), a local memory, the
VAU autonomous peripheral unit and the TDM unit,
which provides communication with external devices.

The VAU can greatly enhance the DSP capability of
the ERMES SoC, since it is capable of performing vector
arithmetic operations adapted to the particular
requirements of voice processing. The unit exploits the
LEON 32-bit system architecture so that it can transfer
and process two 16-bit operands in parallel.

The VAU has the following modes of operation:
• Vector Multiply and Accumulate (MAC) with 16-bit
operands. The VAU unit is programmable so as to: (i)
Initialize the accumulator or not; (ii) Store the
accumulator value in memory for every iteration or not;
(iii) Hold one of the operands to a constant value for all
operations or not; (iv) Add or subtract the result of each
iteration from the accumulator, and (v) Use an
accumulator 32 or 64 bits wide.
• 16×32 bits vector multiply. The result is 32 bits wide.
The unit is programmable, so that the 16 bit operand is
held to a constant value or not.
• 32×32 bits vector multiply. The result is 32 bits wide.
The unit is programmable, so that one operand is held to a
constant value or not.
• Bit manipulation. The VAU can perform vector bit
insertion and extraction, left or right shifting with or
without rounding.
• The VAU uses saturation arithmetic to carry out all
abovementioned operations and can inform the DSP on
probable overflows.

DSP
memory TDM

Secondary ΑΗΒ

LEON3

Vector Arithmetic Unit

DMA controller

MAC16 M32×16 M32×32

BMU

DSP

DMACache

Figure 2. The DSP subsystem architecture

The TDM unit supports up to 128 TDM channels, has

DMA access to the DSP memory and supports
Least/Most Significant Bit first transfers with a
programmable sample bit width.

7. SoC prototyping

The ERMES SoC has been prototyped using a Xilinx
Spartan3 4000 FPGA, comprising of 4M gates, 27.648
slices and 1.728 Kbits of block RAM. Each slice contains
2 programmable Look Up Tables (LUTs), 2 flip-flops,
multiplexers and arithmetic logic. The Xilinx ISE tool has
been used for synthesis. The maximum operating
frequency is 42 MHz with approx. 60% total utilization of
the FPGA. The distribution of the FPGA resources among
the various system units is depicted in Table 2.

8. System architecture

In order to validate the performance of the ERMES
SoC presented in the previous sections, a system has been
developed to host it. It consists of specialized hardware as
well as software for the CPU and firmware for the DSP.

263

Table 2. FPGA resources allocated to SoC units
System Unit LUTs Flip-flops Block RAMs

CPU 6590 2510 17
DSP 5400 2100 10
VAU 3300 860 -
DSP memory 20 12 32
Ethernet 2650 1450 1
TDM 1730 890 -
Memory controller 650 430 -
Debug Support Unit 1040 490 2
Interrupt controller 470 100 -
Timers 330 160 -
AHB/APB bus logic 980 380 -
UART 260 140 -
SPI 240 130 -

8.1. System hardware

The system hardware is built around the Xilinx FPGA

and supports SDRAM and Flash memories on a 32-bit
system bus, 2 general purpose RS232 interfaces, 1 dedi-
cated RS232 interface for debugging, 2 Ethernet PHYs
connected to the SoC MII ports and 4 FXS codecs, which
interface the system with telephony devices, dealing with
analog signal processing and conversion between analog
and digital signals and offering basic analog telephony
functions, such as ringing, off/on-hook detection and
echo cancellation. Voice data are transferred to/from the
SoC via a TDM bus, while an SPI bus is used for con-
trolling the FXS codecs. The PCB also includes the
power supply, clocking and reset circuits for the SoC and
its peripherals.

8.2. DSP firmware

The architecture of the DSP firmware is depicted in

Figure 3. It comprises of voice processing algorithms
(signaling tone generator/detector, voice encoders/decod-
ers), data transfer interfaces (to/from the TDM unit and
the CPU), a signal router and mixer module and a sched-
uler. A double buffering mechanism is employed to sim-
plify data transfers, providing stability and synchroniza-
tion thus prohibiting data losses. The buffer lengths are
configurable at boot time at an even integer number of
samples. Preferable values are 40 16-bit words (5 ms in-
terval @ 8kHz sampling rate) for communication with the
TDM unit and 64 16-bit words for communication with
the CPU. The latter are larger to accommodate VoIP re-
quirements for voice-concurrent tone signaling and
redundant voice encoding. All metrics presented in the
paper have been extracted for 40/64 16-bit word buffering

The major DSP firmware control entities are: (i) the
synchronization module, which synchronizes the various
tasks with the periodic TDM interrupt requests, (ii) the
channel status table, which is used by the CPU to config-
ure and read the status of each of the supported voice
channels, (iii) the scheduler, which invokes the appropri-

ate signal processing functions, and (iv) the signal router
and mixer, which controls the successive processing steps
per signal. The architecture can be seamlessly expanded
to any number of channels that the DSP processing power
and memory can support.

Tone Detector

Tone Generator

CPU

Channel ControlSynchronization

Voice Coders

Voice Decoders

Time-s lot Interchanger

Signal Router
and Mixer

TDM
Unit

Tone Detector

Tone Generator

CPU

Channel ControlSynchronization

Voice Coders

Voice Decoders

Time-s lot Interchanger

Signal Router
and Mixer

TDM
Unit

Figure 3. DSP firmware architecture

The communication between the CPU and the DSP is
realized over the DSP local memory. The communication
protocol is based on the exchange of packets carrying
control and data information. Synchronization is achieved
with the periodical interrupts produced by the TDM unit.
The control of the communication is performed through
the DSP firmware scheduler and the CPU driver of the
telephony subsystem.

8.3. CPU software

The CPU software is based on the Linux 2.6 operating
system. The general software architecture is presented in
Figure 4. ERMES runs the Linux kernel 2.6.11 with sev-
eral required services and applications. Most of them are
included in the BusyBox toolset, which combines tiny
versions of many common GNU utilities into a single
small executable. The options that are included provide
the expected equivalent functionality.

At the lower level, the device drivers implement the
communication between the OS and the system specific
hardware via standardized Linux interfaces. The ERMES
software employs device drivers for the Ethernet, UART
and telephony devices. The telephony drivers include de-
vice drivers for controlling the FXS codecs over the SPI,
as well as a driver for the communication with the DSP.

Linux OS Kernel
Data Transfer Protocols (TCP, UDP, IP , ICMP,

Firewall, Quality of Service, NAT, VPN

User Interface
(HTTP, Telnet/SSH)

Ethernet
Device
Driver

UART
Device
Driver

DNS SNMP DHCP VoIP Protocols
(SIP , H.323, RTP)

Mini PBX (Asterisk)

Telephony
Subsystem Driver

SPI
Device
Driver

DSP
Driver

CPU Software

Time-slot Interchanger
Signal Router/Mixer

DSP Firmware

Tone
Detector /
Generator

Voice Codecs
(G.711, G.729)

Linux OS Kernel
Data Transfer Protocols (TCP, UDP, IP , ICMP,

Firewall, Quality of Service, NAT, VPN

User Interface
(HTTP, Telnet/SSH)

Ethernet
Device
Driver

UART
Device
Driver

DNS SNMP DHCP VoIP Protocols
(SIP , H.323, RTP)

Mini PBX (Asterisk)

Telephony
Subsystem Driver

SPI
Device
Driver

DSP
Driver

CPU Software

Time-slot Interchanger
Signal Router/Mixer

DSP Firmware

Tone
Detector /
Generator

Voice Codecs
(G.711, G.729)

Figure 4. CPU software architecture

264

The telephony software is built around Asterisk, an
open-source software which implements a mini PBX in a
Linux environment [6]. It provides all basic PBX services
and a lot more typically found in high spec systems. It
allows calls to/from the attached telephony devices and
their interconnection with telephony services, including
VoIP. To this extent, it supports SIP and H.323 signaling
and the RTP protocol. It features a flexible architecture
based on a central call switch and a list of software
functions which can be combined dynamically, depending
on application needs. It can collaborate with the majority
of standardized telephony equipment, if combined with
the appropriate hardware and device drivers.

9. System performance evaluation

In order to evaluate the performance of the system em-
ploying the ERMES SoC, 4 sets of tests have been carried
out. First, the algorithmic performance has been evaluated
against relevant standards, to verify that they operate as
expected. Then, the VAU performance was measured in
an HDL simulator in order to quantify the increase in
performance the DSP extensions offer to the LEON3
core. Afterwards, the performance of the ERMES SoC
regarding the implementation of DSP algorithms has been
measured on the FPGA prototype, without and with use
of the VAU. Finally, delay and packet loss measurements
(FXS to Ethernet port) have been carried out to ensure the
proper operation of the ERMES SoC as a whole (DSP
functionality, drivers and the Asterisk PBX application).

9.1. Algorithmic performance

G.711: The performance was evaluated against the ITU-T
G.711 recommendation. All valid input words (16 bits
yield 65536 different input words) were encoded and the
respective encoder outputs were validated. The same
check was carried out for the decoder. Both the encoder
and decoder functions operate as recommended.
G.729A: The performance was evaluated against the ITU-
T G.729A recommendation using the ITU-T test vectors
for the encoder and the decoder. In all test cases, as
defined by ITU-T, both the encoder and decoder
functions operate as recommended.
Signaling Tone Detector: The performance was evaluated
against the ETSI ES 201 235-3 v.1.2.1, ITU-T Q-24,
EIA/TIA-464A and Bellcore GR-181-CORE standards,
meeting all applicable requirements.
Signaling Tone Generator: The performance of the
DTMF digit detection algorithm was evaluated against
the ITU-T Q.23, ITU-T Q.35/E.180, ITU-T E.182,
Bellcore GR-181-CORE and Bellcore TR-NWT-000506,
meeting all applicable requirements.

9.2. VAU performance on the simulator

The implemented algorithms were executed within the
HDL simulator and the number of CPU cycles and
instructions required for their execution was measured.
The VAU was employed to offload the LEON3 core from
DSP tasks. The reported cycles for G.729A correspond to
the processing of a 80-sample voice frame (the algorithm
is invoked every 10 ms), while all other algorithms
process 40-sample voice frames (invoked every 5 ms).
The results are presented in Table 3 and are directly
comparable to those in Table 1.

All G.711 to linear format conversions (lines 1-4 in the
table below) do not employ the VAU, since they involve
only table lookups. This is why the numbers in Tables 1
and 3 are exactly the same. Comparing Table 3 with
Table 1, it is evident that the VAU greatly improves the
performance of the LEON3 core when it implements DSP
algorithms, which shall also become apparent in the
following paragraph.

Table 3. LEON3 DSP cycles when executing the

ERMES DSP algorithms with the VAU
Algorithm DSP cycles

Linear to G.711 A-law encoding (5 ms frame) 6508
Linear to G.711 u-law encoding (5 ms frame) 6158
G.711 A-law to linear decoding (5 ms frame) 1788
G.711 u-law to linear decoding (5 ms frame) 1499
Linear to G.729A encoding (10 ms frame) 640439
G.729A to linear decoding (10 ms frame) 211560
Signaling tone (DTMF) detector (5 ms frame) 38335
Signaling tone generator (5 ms frame) 4659

9.3. DSP performance on the FPGA prototype

The measurements presented in sections 3 and 9.2
were also carried out on the FPGA prototype, the
operating frequency of which was equal to 40 MHz
(corresponding to a cycle period of 25 ns). The
comparative measurements (with and without the VAU)
are listed in Table 4. They demonstrate a reduction of
60% to 75% in the execution time through the use of the
VAU peripheral unit. No measurements are provided for
G.711 to linear conversions for the reasons already
presented in section 9.2.

Table 4. Comparison of DSP algorithm execution
on the FPGA prototype with and without the VAU

Algorithm Execution time
DSP only

Execution time
DSP + VAU

Linear to G.729A
encoding (10 ms frame) 44.5ms 16.01ms
G.729A to linear
decoding (10 ms frame) 14.7ms 5.29ms
Signaling tone (DTMF)
detector (5 ms frame) 3.78ms 0.94ms

Signaling tone generator
(5 ms frame) 0.36ms 0.11ms

265

9.4. Delay and packet loss performance

The main factors determining the end-to-end Quality
of Service in VoIP telephony are the delay and packet
loss, to which, the operation of the endpoint contributes
to a large extent. In order to measure the overall delay
(Tx and Rx) and packet loss that the ERMES system
introduces to a voice stream, we set up a trial
environment. A PC initiates a VoIP call to the ERMES
SoC and transmits a sequence of RTP packets, which
contain a G.711-encoded reference signal with white
noise characteristics. The ERMES system receives and
processes this sequence and then sends the digital signal
to the FXS codec. The FXS codec has been configured in
digital loopback mode so that the digital signal is fed back
to the SoC, which processes and transmits the signal back
to the network. A logging PC, residing on the same LAN,
uses the Ethereal tool to capture the RTP streams from
both directions. The contents of the RTP packets are
extracted and the two signal sequences are recomposed.
Then, they are aligned in time and their mathematical
cross-correlation is calculated. Since white noise is
aperiodic, it has very good auto-correlation characteristics
and consequently good cross-correlation characteristics
with a lagged version of itself, so the delay can be
accurately measured within the duration of a sample (125
μs).

The averaging of several such measurements revealed
a combined delay (Tx plus Rx) of 40 to 45 ms, which is
in accordance to [7] for a Class A endpoint. The packet
loss was less than 0.05%.

10. Technology evaluation

The results presented in the previous section indicate
that the ERMES SoC operates as required, though about
80 MHz are necessary for the implementation of a voice
channel. This in turn means that an ASIC implementation,
achieving a 200 MHz operating frequency shall be able to
fulfill the requirement for concurrent operation of 2 voice
channels with considerable headroom. [4] presents cycle
measurements on the G.729A voice encoder which are
remarkably close to the ones presented in this paper, since
the deviation is less than 2%. The necessary processing
power is, of course, about 4-8 times higher than that
achieved by commercial implementations of the G.729A
codec on custom DSP chips (see [8] and [9]), but if one
calculates the non-recurring costs involved in the
acquisition of a DSP processor core, this advantage is
quickly negated for small channel densities.

Preliminary investigations also indicate that the
LEON3 core used as the DSP is still the processing bot-
tleneck. So, more LEON3 cores can be used to increase
the channel density and this is where the main advantage

of the VAU peripheral unit comes into the picture, since it
can be accessed by multiple processors over the AMBA
bus. Future work includes the development, verification
and implementation of the ERMES SoC with multiple
DSP LEON3 cores, so as to explore the limits of the
VAU in terms of performance. A 2 DSP core - 1 VAU
combination implementation on a 200 MHz ASIC seems
capable of achieving the 4 channel target.

In conclusion, it is feasible to implement a 2-4 channel
IP-PBX/VoIP gateway on a SoC based purely on both
software and hardware provided by the open-source
community, reducing both upfront and final product costs
thus allowing new players into the market.

Acknowledgment

The described work has been partially supported by
the Greek Secretariat of Research and Development of the
Ministry of Development under the industrial research
contract No. 04BEN34.

References

[1] ETSI standard ES 282 007, V2.0.0, 2008-03

[2] GRLIB IP Library User’s Manual, Version 1.0.15
www.gaisler.com

[3] “G.729E Algorithm Optimization for ARM926EJ-S
Processor”, Technical Report CECS-03-09, Anshuman Tripathi,
Shireesh Verma, Daniel D. Gajski, Center for Embedded
Computer Systems, University of California, Irvine, 21/03/2003

[4] “Configurable scalar and vector coprocessors for
accelerating the G.723.1 and G.729A speech coders”, S. R. Parr,
K. Koutsomyti, V. A. Chouliaras, J.L. Nunez, D. J. Mulvaney,
Proceedings of the IASTED International Conference on Signal
and Image Processing (ACIT-SIP), Novosibirsk, Russia, June
20-24, 2005

[5] AMBA Specification (Rev 2.0), www.arm.com

[6] The official Asterisk site, www.asterisk.org

[7] ITU-T P.1010 Recommendation, “Fundamental voice
transmission objectives for VoIP terminals and gateways”,
07/2004

[8] Application note AN2151, “ITU-T G.729A Implementation
on the StarCore™ SC140/SC1400 Cores”, Freescale
Semiconductor 1/2005

[9] “ITU G.729A/G.729A+B Speech Coder” datasheet, The
SpiritDSP company, 2008

266

Efficient Implementation of Floating-Point
Reciprocator on FPGA

Manish Kumar Jaiswal
M.S.(by Research)

Department of Electrical Engineering,
IIT-Madras,Chennai-36, India.

e-mail: ee06s024@smail.iitm.ac.in

Nitin Chandrachoodan
Assistant Professor,

Department of Electrical Engineering,
IIT-Madras,Chennai-36, India.

e-mail: nitin@ee.iitm.ac.in

Abstract—In this paper we have presented an efficient FPGA
implementation of a reciprocator for both IEEE single-precision
and double-precision floating point numbers. The method is
based on the use of look-up tables and partial block multipliers.
Compared with previously reported work, the modules occupy
less area with a higher performance and less latency. The designs
trade off either 1 unit in last-place (ulp) or 2 ulp of accuracy
(for double or single precision respectively), without rounding,
to obtain a better implementation. Rounding can also be added
to the design to restore some accuracy at a slight cost in area.

Index Terms—Floating-point arithmetic, reciprocator, FPGA,
double-precision, partial block-multipliers, binomial expansion

I. INTRODUCTION

Floating point arithmetic is widely used in many scientific
and signal processing applications. The greater dynamic range
and lack of need to scale the numbers makes development
of algorithms much easier. However, implementing arithmetic
operations for floating point numbers in hardware is very
challenging. Among the operations (add, subtract, multiply,
divide), division is generally the most difficult to implement
in hardware. Division is a fairly common operation in many
scientific and signal processing applications, so there is a need
for efficient hardware implementations for division.

The IEEE standard for floating point (IEEE-754) defines the
format of the numbers, and also specifies various rounding
modes that determine the accuracy of the result. For many
signal processing, and graphics applications, it is acceptable
to trade off some accuracy [1] (in the least significant bit
positions) for faster and better implementations.

A lot of work has been done on obtaining efficient imple-
mentations for this operation. Generally, this operation can
be done into two parts, first take the inverse of divisor and
then multiply with dividend. Because of this, many hard-
ware dividers focus on efficiently obtaining the reciprocal of
floating-point number. Different proposed architectures in the
literature are based on Newton-Raphson method [3], [5], [7],
[10], [11], digit-recurrence method [3], [8], [11], [15], seed-
architecture [12], etc. Previous works had used huge look-up
tables, along-with wider multipliers, which affects the area and
performance.

Our approach also focuses on finding the reciprocal. It is
based on the well known binomial-expansion, contains small
look-up table, and uses partial block-multipliers, resulting in

less area, less delay, and correct up to required level (accuracy
trade off). We have restricted ourselves only to normalized
numbers. All the exceptional cases are detected, and indicated
as invalid input/output. Comparisons of our implementation
with previous works mentioned in the literature show that
we are able to obtain small look-up tables and overall very
efficient hardware.

We have used Xilinx ISE-8.2 synthesis tool, ModelSim
SE 6.1b simulation tool, and X2VP30-7ff896 as our FPGA
platform.

II. APPROACH

The format of a floating-point number is as follows:
For Single Precision

1−bit
︷ ︸︸ ︷

Sign − bit

8−bits
︷ ︸︸ ︷

exponent

23−bits
︷ ︸︸ ︷

mantissa

For Double Precision

1−bit
︷ ︸︸ ︷

Sign − bit

11−bits
︷ ︸︸ ︷

exponent

52−bits
︷ ︸︸ ︷

mantissa

In this paper, we do not discuss the exponent manipulation
as it is a standard process. The benefits of our implementation
are in the computation of the inverse of the mantissa.

Let y be the inverse of the mantissa a. Then,

y =
1

1.a
, where in 1.a, 1 is hidden bit of mantissa.

We have divided the mantissa in two parts, a1 and a2. a1 is
used to fetch some pre-calculated data from a look-up table.

Now,since

y =
1

a1 + a2

= (a1 + a2)−1

= a−1
1 − a−2

1 .a2 + a−3
1 .a2

2 − a−4
1 .a3

2 + · · · (1)

The content of each term of equation(1) will be as follows:

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.12

267

a−1
1 = 0.

full significant bits
︷ ︸︸ ︷

xxxxxxxx

a−2
1 .a2 = 0.

m−zero bits
︷ ︸︸ ︷

00 · · · 00
significant bits

︷ ︸︸ ︷

xx · · ·xx

a−3
1 .a2

2 = 0.

2m−zero bits
︷ ︸︸ ︷

00 · · · 00
significant bits

︷ ︸︸ ︷

xx · · ·xx

a−4
1 .a3

2 = 0.

3m−zero bits
︷ ︸︸ ︷

00 · · · 00
significant bits

︷ ︸︸ ︷

xx · · ·xx

· · · and so on

. where m is the number of bits of a1.

We can see that as we move towards higher terms their
contribution to main result are decreasing. Thus, depending
upon our precision choice we can take suitable number of
terms from equation(1) for calculating inverse, based on value
of m.

For our implementation, based on experiments over a large
number of random test cases, we have chosen the number
of terms as described below. In case of single-precision we
have taken the first three terms, while for the case of double-
precision 7 terms have been taken. The value of m we have
chosen is 8 for both cases. These values were selected based
on available FPGA resources, as will be shown soon. We have
simplified the desired terms in such a way so that we can use
less hardware with low latency and good accuracy.

For single-precision we have taken all the three terms as
available, like

y = a−1
1 − a−2

1 .a2 + a−3
1 .a2

2 (2)

For double precision, simplified form will be as,

y = a−1
1 − a−1

1 [(a−1
1 .a2 − a−2

1 .a2
2)

(1 + a−2
1 .a2

2 + a−4
1 .a4

2)] (3)

Though we can simplify above equations a little more, it will
affect the area, latency and accuracy. The accuracy is affected
due to the fact that floating-point operations are not completely
associative, i.e. u(v + w) may not be exactly equal to (uv +
uw). This is due to the finite number of bits used to represent
the numbers.

III. IMPLEMENTATION

We have shown the implementations for single precision and
double precision separately as different issues arise in each
case.

Some of the design decisions are based on the fact that
multipliers of size 18 × 18 are readily available as hard IP
cores on many common FPGA families. We have based our
computations on the Xilinx Virtex II platform. However, the
basic ideas of saving some of the block multiplications hold
even if a different sized multiplier core is used, although the
exact numbers would change.

BRAM

(8-bit)a1

17-bit
Multiplier

17-bit
Multiplier

17-bit
Multiplier

30-bit
Substractor

30-bit
Adder

a2(15-bit)

23-bit Mantissa

a1
-2

a1
-1a1

-3 a1
-2a2a2

2

a1
-3a2

2 (a1
-1-a1

-2a2)

Stage-1

Stage-2

Stage-3

Stage-4

Fig. 1. Architecture for single-precision floating-point reciprocator

A. Single-precision Floating-point

The architecture of single-precision floating-point recip-
rocator is shown in Fig. 1. It includes a Block-Memory
(BRAM) which contains pre-calculated values of a−1

1 (24 −
bits), a−2

1 (17 − bits), and a−3
1 (17 − bits) in a single data-

word(58-bits), with 8-bit (content of a1) as address bits.
The contents of the BRAM have been calculated using a
separate program written in C, with float data type for the
numbers. The content of a−1

1 has been extended to 30-bits
(by appending 6-bits ”111111” at least significant bit (LSB’s))
for addition/subtraction purpose. Here we can also do above
operation with only value of a−1

1 , but it will increase the total
operation latency and size of multipliers. In both cases we
will use only a single BRAM on FPGA, so we prefer the first
approach.

The architecture has latency of four, though we can include
the BRAM access in the first stage with a slight loss in
maximum operating frequency. By using pipelined multiplier
we can approximately double the overall frequency. We have
shown the result with the latency four. Our aim here is to only
show the use of less necessary hardware. We can do pipelining
in the given architecture very easily.

B. Double-precision Floating-point

The architecture of double-precision floating-point recipro-
cator is shown in Fig. 2. It also includes a single BRAM which
contains pre-calculated values of only a−1

1 (54− bits) with 8-
bit (content of a1) as address bits. The content of BRAM
has been calculated using a C-program, with double as data-
type of floating-point numbers. The content of a−1

1 has been
extended to 60-bits (by appending 6-bits ”111111” at LSB’s)
for addition/subtraction purpose. Here we have a huge saving
on block-memory compared to other methods discussed later.

There are three type of multiplier (based on Xilinx
MULT18x18 block) that have been used. Second, third and

268

BRAM

(8-bit)a1

51-bit partial
block multiplier

block multiplier

block multiplier

block multiplier

60-bit
Substractor

60-bit Adder

51-bit partial
block multiplier

34-bit Full

51-bit partial

60-bit
Substractor

a2(44-bit)

a1
-1

a-1

a-1

(1+a1
-2a2

2+a1
-4a2

4)

52-bit Mantissa

51-bit Reduced
partial

Stage-1

Stage-2

Stage-3

Stage-4

Stage-5

Stage-6

Stage-7

Stage-8

a1
-1a2

a1
-2a2

2

a1
-4a2

4

(a1
-1a2 - a1

-2a2
2)

Fig. 2. Architecture for double-precision floating-point reciprocator

seventh stage has 51-bit partial multiplier, which is shown in
Fig. 3. It uses only six-MULT18x18 block instead of nine, to
produce more than 52-bit (MSB) of correct result, which is
all that we need. Stage six is also a 51-bit partial multiplier,
but due to it’s specific input nature (17-bits of first input is
0x10000 in hex), it contains only three-MULT18x18 block
Fig. 4. The fourth stage multiplier is a 34-bit full multiplier,
but instead of using IP-core for it we have designed it using
four MULT18x18 block (shown in Fig. 5) which is taking less
(about 2/3) glue logic and is faster than the IP-core available
from Xilinx. Overall latency of module is eight, which we can
increase further using pipelining as discussed in the case of
single precision, for better performance.

IV. RESULTS

Hardware utilization and performance of both the single-
precision and double-precision is shown in Table-I. Since our
implementation neglects some of the lower order bits in the
computation, it is important to estimate the impact of this on
the overall accuracy of results. For the error performance 5-

A2 . B2

A3 . B1

A2 . B3

A3 . B2

A3 . B3

17-bits__

This part Ignored

We took sum of this part only, using only 6-MULT18x18.

51-bits

A

B

A1, 17-bitsA2, 17bitsA3, 17-bits

B1, 17-bitsB2, 17-bitsB3, 17-bits

A1 . B1 34-bits

34-bits

34-bits

34-bits

34-bits

34-bits

34-bits

34-bits

34-bits

A1 . B2

A2 . B1

A1 . B3

17-bits__

17-bits__

17-bits__
This part Ignored

Fig. 3. Partial 51-bit multiplier for stages 2,3 and 7

A2 . B2

{B1,0x0000}

A2 . B3
17-bits__

This part Ignored

We took sum of this part, using only 3-MULT18x18.

51-bits

A

B

A1, 17-bitsA2, 17bits0x10000

B1, 17-bitsB2, 17-bitsB3, 17-bits

34-bits

34-bits

34-bits

34-bits

34-bits

34-bits

A1 . B3

17-bits__

{B2,0x0000}

{B3,0x0000}

17-bits

Fig. 4. Reduced Partial 51-bit multiplier for stage 6

millions randomly generated test cases were used to check the
errors. The error performance is shown in Table-II for both
versions of floating-point numbers. The error was obtained by
comparing results from the proposed module with the results
produced by a C compiler on a workstation. In all cases,
it was found that the maximum error in the case of single
precision was 2 ulp (unit last place), while in the case of
double precision numbers, it was 1 ulp. The error we got is
without rounding.

TABLE I
HARDWARE UTILIZATION AND PERFORMANCE TABLE

Parameters Single-precision Double-precision
MULT18x18 3 25
BRAM 1 1
Slices 108 672
Freq(MHz) 192.365 88.594
Latency 4 8

269

A2 . B1

A1 . B2

17-bits__

A

B

A1, 17-bitsA2, 17bits

B1, 17-bitsB2, 17-bits

34-bits

34-bits

34-bits

34-bits

A1 . B1

17-bits__

34-bits

A2 . B2

Sum of all the above give complete result

Fig. 5. 34-bit block multiplier for stage 4

TABLE II
ERROR PERFORMANCE

Error Single-precision Double-precision
Max. ULP 2 1
Mean 4.7867e-08 7.7636e-17
Mean(absolute) 5.0060e-08

(2−24.2518)
7.8125e-17
(2−53.5070)

Variance 2.5959e-15 7.5177e-33
Variance(absolute) 2.3812e-15 7.4415e-33

V. COMPARISON

The basis of our implementation is a well known technique
of using look-up tables and multipliers. The main benefits are
in the optimizations of the resource usage. In this section,
we compare our implementation against many previous ap-
proaches mentioned in the literature.

Our comparisons are based around the Xilinx hardware
resources. Even on this platform, many different multiplier im-
plementations are available with differing speed-area-latency
tradeoffs. By using different instances, we can obtain suitable
tradeoffs. Similarly, on a different platform with different basic
resources, the main ideas developed in this paper will still
hold. Only the details of the hardware usage will differ.

For many of the comparisons, direct FPGA implementations
of the methods are not available. In such cases, we have
estimated the resource usage based on the components in
the design. The number of block RAM cores required to
implement a given look-up table and number of MULT18x18
block required to implement a given multiplication has been
estimated from the Xilinx core generator software.

One of the most popular methods used for computing
reciprocals is the Newton Raphson iterative procedure [3], [5],
[7], [10], [11]. The Newton-Raphson iteration for reciprocal
of A is given by, xi+1 = xi(2 − xi.A). For each iteration
it requires two multiplication and one subtraction. The value
of x0 is usually taken from a look-up table. Thus for two
iterations (results are based on [7]), in the case of single-
precision it requires one look-up table in 8-bit address space,
two 8×16 multiplication and two 16×32 multiplication (equiv-
alently 1 BRAM and 6 MULT18x18). For double-precision it
requires one look-up table in 15-bit address space, two 15×30

multiplication and two 30×60 multiplication (equivalently 28
BRAM and 20 MULT18x18). The error performance of 2-
NR method is discussed in [3], which presents the division of
double-precision floating-point number by combining Newton-
Raphson method and digit-by-digit recurrence method with
a link module. Thus as a whole it will take more area
than 2-NR method. They have shown the error produced
by 2-NR iteration for computing reciprocal is minimum of
1.999999993e-55 and maximum of 1.284729483e-49, which
is more than our method.

Ito et al. [5] implement the reciprocal computation using
multiply-accumulate unit (similar to the NR method). They
mention a linear initial approximation and proposed an accel-
erated convergence method. It results in a speedup with respect
to conventional NR, but requires an additional look-up table.

Hung et al.[6] proposed the computation of division based
on the expression X

Y = X(Yh−Yl)
Y 2

h

where X and Y are 2m-
bits mantissa. Yh is (m+1)-bits MSB of Y , used as address
for look-up table for Y 2

h of (2m+2)-bits. Thus computation
of division is done by first 2m bit Z = X × (Yh − Yl)
multiplication and then (2m+2)-bits Z×Y 2

h multiplication. For
our comparison we are not including the final multiplication.
Even then, for Single precision it needs 213 × 26 − bits
(12 BRAM) look-up table and 4 MULT18x18. For double-
precision 227×56−bits look-up table (impractical on available
FPGA platforms) and 16-MULT18x18.

Ercegovac et al.[7] propose a method in which reciprocal
of Y (m-bit) has been computed in three steps, namely
reduction, evaluation,and post-processing. They are taking
7-MULT18x18 and 1-BRAM for single precision, and 10-
MULT18x18 and 30-BRAM for double-precision. In [12],
the authors propose a method for computing the initial seed
approximation. However, they require look-up tables addressed
by the complete word, making it difficult to use for the 23-bit
and 52-bit mantissas in floating point.

The methods described in [4] and [2] both require relatively
large look-up tables and overall more resources than our
implementation. In [9], Jeong et al. propose an idea that is
based on [6]. Though the area is less than in [6], it is still larger
than our proposed method. In [10] division operation is based
on method in [5]. It first take a initial approximation and then
using NR-iteration compute the reciprocal and then division.
Approximately it will also take same hardware resources as in
[5].

In [8], the authors have reported the floating-point division
and square-root using SRT 1 division method on FPGA. In
terms of performance, the pipelined approach is closest to our
proposed implementation, but requires significantly more area
(3245 slices and 14 BRAM for clock period of 6ns and latency
of 47 cycles). [15] presents another SRT based implementation
that has similar area to ours but considerably less throughput
and speed.

Wang et al. [13] have presented a library for floating-point
operations. For division this library has used the method of [6].

1Sweeney, Robertson and Tocher - inventors of the algorithm

270

Thus for Single precision it needs 213×26−bits (12 BRAM)
look-up table and 4 MULT18x18. For double-precision 227 ×
56 − bits (impractical in available FPGA platforms) look-up
table and 16-MULT18x18. Also for single-precision in spite
of a relatively large latency (14 cycles, while our method only
has 4) the maximum frequency is 129 MHz (we have 192
MHz).

In [16] division of double precision floating point number
has been performed using Goldschmidt’s algorithm, imple-
mented on a ALTERA STRATIX-II FPGA platform. The area
reported is large relative to our design (about 3500 ALMs,
equivalent to about 4600 slices on a Virtex II [17]), and has
less performance and throughput.

In terms of performance, the floating point library from
Sandia Labs [14] and the cores from Xilinx [18] are among the
best. The Sandia implementations reported here obtain high
frequency of operation at the cost of increased latency (33-
cycle for single-precision and 62-cycle for double-precision),
while the reported areas (BRAM sizes are not mentioned in the
paper) are similar to the area for our implementation. These
designs are hand-optimized and are specific to the Xilinx
platform, whereas we have used an HDL implementation that
is easy to re-target.

Table III presents a direct resource comparison across some
of the reported implementations. Since many of the imple-
mentations do not give accurate numbers for RAM usage, it is
difficult to form a proper comparison. However, from this table
and the above explanation it is clear that our implementation
is very efficient in terms of resources. As can be noted from
the operating frequencies mentioned earlier, it is clear that
the proposed implementation also maintains high performance
with less latency.

TABLE III
RESOURCE COMPARISON

Method
Single-precision Double-precision

MULT18x18 BRAM MULT18x18 BRAM
2-NR 6 1 20 28
[2] 14 2 36 2
[5][10] 12 1 48 29
[6][13] 4 12 16 impractical
[7] 7 1 10 30
[9] 8 1 32 50
[12] - impractical - impractical
Proposed
Method

3 1 25 1

VI. CONCLUSION

We have implemented an efficient reciprocal unit on FPGA
for both single and double precision floating-point numbers.
The method uses the idea of neglecting higher order terms
in the partial block multiplication to reduce the number of
multipliers. At the same time, the look-up table requirements
are kept to a minimum, and are the least reported in the
literature for double precision implementation. Initial latency
for our module is also less (4 for single and 8 for double-
precision), that too with promising frequency, which we can

improve by pipelining them very easily. The error performance
is also within acceptable range (1-ulp for double-precision).

The implementation can thus form a useful core for use
in hardware dividers, especially for applications like signal
processing that could be more tolerant of inaccuracies in the
least significant bits.

REFERENCES

[1] J. Hopf, “A parameterizable HandelC divider generator for FPGAs with
embedded hardware multipliers”, IEEE International Conference on
Field-Programmable Technology, Pages 355-358, Dec-2004.

[2] W. F. Wong, Member, IEEE, and E. Goto, “Fast Hardware-Based
Algorithms for Elementary Function Computations Using Rectangular
Multipliers”, IEEE Transactions on Computers, Issue 3, VOL. 43,
March-1994.

[3] P. Montuschi, L. Ciminiera, A. Giustina, “Division unit with Newton-
Raphson approximation and digit-by-digit refinement of the quotient”,
IEE Proceedings - Computers and Digital Techniques, Issue 6, Vol. 141,
Pages 317 - 324, Nov-1994.

[4] W. F. Wong, Member, IEEE, and E. Goto, “Fast Evaluation of the
Elementary Functions in Single Precision”, IEEE Transactions on
Computers, Issue 3, Vol. 44, Pages 453-457, March-1995.

[5] M. Ito, N. Takagi, and S. Yajima, “Efficient Initial Approximation and
Fast Converging Methods for Division and Square Root”, Proceedings
of the 12th Symposium on Computer Arithmetic, Pages 2-9, July-1995.

[6] P. Hung, H. Fahmy, O. Mencer, M. J. Flynn, “Fast division algorithm with
a small look-up table”, 33th Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA., Vol-2, Pages 1465-1468, Oct-
1999.

[7] Milos D. Ercegovac, Tomas Lang, Jean-Michel Muller, Arnaud Tisserand,
“Reciprocation, Square Root, Inverse Square Root, and Some Elementary
Functions Using Small Multipliers”, IEEE Transactions on Computers,
Issue 7, VOL. 49, July-2000.

[8] Xiaojun Wang, B. E. Nelson, “Tradeoffs of designing floating-point
division and square root on Virtex FPGAs”, 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM
2003), Pages 195- 203, Apr-2003.

[9] Jong-Chul Jeong, Woo-Chan Park, Woong Jeong, Tack-Don Han, Moon-
Key Lee, “A cost-effective pipelined divider with a small look-up table”,
IEEE Transactions on Computers, Issue-4, Vol-53, Pages 489- 495, April-
2004.

[10] U. Kucukkabak, A. Akkas, “A Combined Interval and Floating-Point
Reciprocal Unit”, Thirty-Ninth Asilomar Conference on Signals, Systems
and Computers, pages 1366- 1371, Nov-2005.

[11] E. Antelo, T. Lang, P. Montuschi, A. Nannarelli, “Low latency digit-
recurrence reciprocal and square-root reciprocal algorithm and architec-
ture”, 17th IEEE Symposium on Computer Arithmetic, Pages 147- 154,
June-2005.

[12] M. Ercegovac, J. M. Muller and A. Tisserand. “Simple seed architectures
for reciprocal and square root reciprocal”, 39th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, USA., Pages
1167- 1171, Oct-2005.

[13] Xiaojun Wang, Sherman Braganza, Miriam Leeser, “Advanced Compo-
nents in the Variable Precision Floating-Point Library”, 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines(FCCM-
06), Pages 249-258, April-2006.

[14] K. Scott Hemmert, Keith D. Underwood, “Open Source High Perfor-
mance Floating-Point Modules”, 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’06), pages 349-350,
April-2006.

[15] H. Bessalah, M. Anane, M. Issad, N. Anane, K. Messaoudi, “Digit recur-
rence divider: Optimization and verification”, International Conference
on Design & Technology of Integrated Systems in Nanoscale Era, Pages
70-75, Sept-2007.

[16] R. Goldberg, G. Even, P. M. Seidel, “An FPGA implementation of
pipelined multiplicative division with IEEE Rounding”, 15th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2007), Pages 185-196, Apr-2007.

[17] Stratix II vs. Virtex-4 Density Comparison. [Online]. Available:
http://www.altera.com/literature/wp/wpstxiixlnx.pdf

[18] Xilinx Floating-point unit v2.0. [Online]. Available: www.xilinx.com

271

ReConfigurable Technologies

It has been envisioned that in the future it would be possible for the designer to
have the complete flexibility that software offers at the hardware speeds which
will ensure reduction in cost and the product turn-around time substantially.
Optimal performance needs of applications can be met if fine-grained field
reconfigurations can be made possible in hardware. There are several problems
and challenges which need to be addressed – these include specification of
reconfigurable architectures and processors, software environments that support
reconfiguration, increasing heterogeneity and complexity of the systems and
SoCs and power management. It is one of the goals of this talk to stimulate a
discussion on reconfigurable design by introducing some key Issues.

Dr. Mona Mathur has sixteen years of experience with embedded electronics and
its various applications. Currently she is employed with ST Microelectronics and
heads an ST lab set up in the premises of IIT Delhi with an objective of pursuing
state of the art technologies and applications. She has a PhD and MTech in
Electrical Engineering from IIT Delhi and a BTech from NSIT. She has several
publications in notable international journals and has taught in several institutes.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.123

272

Session 4C

Embedded Systems I

High-speed on-chip event counters for embedded systems

Nilanjan Mukherjee, Artur Pogiel*, Janusz Rajski, and Jerzy Tyszer*

Mentor Graphics Corporation
8005 S.W. Boeckman Road

Wilsonville, OR 97070, USA

*Poznań University of Technology
ul. Polanka 3

60-965 Poznań, Poland

Abstract
The paper presents new discrete event counters that are
based on ring generators – high performance linear
feedback shift registers. These devices outperform ear-
lier solutions by providing an unprecedented speed of
operations. A complete data required to implement the
new event counters is also provided.

1. Introduction
State-of-the-art designs routinely require some form of

discrete event counting performed at speed. Observabil-
ity of their internals is crucial for embedded systems
debugging, testing, and monitoring. Some useful events
to be observed may include bus idle and data cycles, the
number of grants, the number of retries, device acquisi-
tion time, device ownership time, error detections, inter-
ruptions, anomalies in gigabit Ethernet interfaces, and
many others. Typically, counters are part of an on-chip
facility that is to handle occurrences and durations often
comparable to switching times of single logic compo-
nents. The content of a conventional binary counter is
easy to interpret and use – its successive stages simply
form a binary number corresponding to the number of
clock cycles applied once the counter is reset and acti-
vated. Unfortunately, the speed of counting is here se-
verely affected by a critical path that spans all stages of a
sequential counter (we do not consider asynchronous
devices as allowing external events to affect a counter
whenever they occur often causes erroneous operations).
Although [2] and [7] present binary ripple-carry counters
which scale to virtually unlimited size yet increment in a

constant time, this design style is quite complex, requires
significant hardware real estate, and introduces unac-
ceptable delays. Other solutions [6], including prescaled
counters or counters with a next state generator, feature
less regular structures and are, therefore, relatively cum-
bersome to set up and use in automated synthesis.

An alternative approach to fast counting assumes the
use of linear feedback shift registers (LFSRs) that feature
much shorter critical paths, and, preferably, implement
primitive characteristic polynomials. It is a non-trivial
task, however, to recover the actual number of events
recorded by a given n-bit LFSR. Assuming the Galois
form of an LFSR (with XOR gates interspersed between
flip-flops), Clark and Weng proposed a discrete loga-
rithm-based method [1] to compute the number of shifts
(events) concealed in the LFSR state. The same authors
used characteristic trinomials in order to reduce the
number of XOR gates to one. Since there are no primi-
tive trinomials of degree 8k, k = 1, 2, … , they resort to
non-primitive trinomials having the longest periods, if
needed. Although the use of characteristic trinomials is
not harmful to the counting itself, it is desirable to em-
ploy LFSRs with primitive polynomials having a larger
number of terms. Such devices are then amenable to
resource sharing, and can serve in a variety of applica-
tions as pattern generators with significantly reduced
dependencies in output sequences, response compactors
with shorter transition periods, on-chip data decompres-
sors with high encoding capabilities, and many more.

In this paper we introduce a new class of discrete
event counters that rest on ring generators (RG). These
circuits enable unprecedented speed of counting and are
free of many drawbacks of earlier solutions. The pro-
posed technique uses, in a synergistic manner, the dis-

11 10 9 8 7 6 5 4 3 2 1 0

12 13 14 15 16 17 18 19 20 21 22 23

x8 x12 x14 x16 x21

k = 8 k = 12

...
2 1 0

21 22 23

x21

k = 14 k = 16

Fig. 1. Ring generator implementing polynomial x24 + x21 + x16 + x14 + x12 + x8 + 1

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.15

275

crete logarithms and several other schemes, including
our O(n2) LFSR simulation algorithm. We also provide a
complete data required to implement ring generator-
based event counters of sizes up to 70.

2. Ring generator as event counter
A ring generator [4], [3] is a linear finite state machine

obtained by applying transition function preserving
transformations to canonical forms of LFSRs in such a
way that the resultant circuit features:
• significantly reduced levels of XOR logic,
• minimized internal fan-outs,
• simplified circuit layout and routing.

Typically (see Fig. 1), a ring generator uses one 2-input
XOR gate per a polynomial term, and each of its internal
fan-outs is reduced to at most two branches. Such design
style maximizes the operating speeds of the circuit and
makes the whole structure highly modular.

There are several techniques of synthesizing ring gen-
erators [4]. A rule of thumb is to form a circle that con-
sists of all memory elements, and then to add gradually
feedback connections (with XOR gates) which corre-
spond to successive terms of a characteristic polynomial.
Given tap xk, the latter step creates a feedback loop by
encompassing k adjacent flip-flops, always beginning
with the leftmost ones, as demonstrated in Fig. 1 for the
polynomial x24 + x21 + x16 + x14 + x12 + x8 + 1. Note that
in this approach, two feedback lines cannot cross each
other. Instead, they can form a very regular ladder-like
structure provided a suitable characteristic polynomial is
deployed. Extensive collections of primitive polynomials
serving this purpose are available in [5] and [3]. It is also
worth noting that both implementations of a feedback tap
x21 (shown in the figure) are equally acceptable. Clearly,
the resultant ring generators will feature different state
trajectories, still producing the same m-sequence though,
just differently phase-shifted in both cases.

In order to count events, a ring generator is initialized
with the value of 10…0, and is subsequently shifted
anytime an event occurs. Successive states visited by the
ring generator will then correspond to a cumulated num-
ber of monitored events. Unfortunately, likewise other
forms of LFSRs, information provided by such a counter
cannot be used directly, and it needs some extra post
processing. In principle, we can use the discrete loga-
rithm-based approach of [1]. However, that method is
only applicable to the Galois LFSRs. Consequently, we
will present how to convert states of a given ring genera-
tor into the corresponding Galois LFSR states before a
result of counting can be eventually determined. Fur-
thermore, we will demonstrate that certain steps of the
discrete logarithm-based scheme can be improved by
using fast simulation of linear finite-state machines.
Interestingly, applicability of this technique goes much
beyond the event counting.

3. State mapping
Despite different state trajectories featured by a Galois

LFSR and its derived ring generator, both circuits pro-
duce identical (though shifted) m-sequences on their
outputs [4]. In particular, there are outputs where m-
sequences are completely aligned. Consider a 10-bit
Galois LFSR and the corresponding RG, both imple-
menting polynomial p(x) = x10 + x8 + x4 + x3 + 1, as
shown in Fig. 2. Table I lists successive LFSR and RG
states assuming the initial state 10…0 in both cases.
Clearly, their most significant bits g9 and r9 yield the
same sequences of bits. In fact, it can be easily verified
that setting the leftmost stage of any n-bit Galois LFSR
to 1 while resetting the remaining bits results, during
subsequent clock cycles, in the following n-bit sequence
observed on the leftmost bit: 10 … 0. The same can be
obtained by setting to 1 the lower rightmost stage of the
corresponding n-bit RG (with all other bits de-asserted).
Hence, these stages produce the identical aligned m-
sequences. Note that only the Galois LFSR performs a
true polynomial division – compare the second column
(a remainder) with the binary content of the Galois LFSR
presented in the subsequent column.

r0

r9

r1

r8

r2

r7

r3

r6

r4

r5

g0g1g2g3g4g5g6g7g8g9

Fig. 2. Galois LFSR & the corresponding RG
In terms of functional correspondence between Galois

LFSRs and ring generators, the question of interest is
what, if any, mapping allows mutual conversions be-
tween states of these two devices. Such a mapping would
allow one to determine a Galois LFSR state correspond-
ing to a given RG state. As a result, once a content of the
RG-based counter is known, the actual number of ap-
plied shifts (or clock cycles) could be retrieved by first
converting this state into the corresponding LFSR state,
and then by applying the discrete logarithm technique to
finally decipher the number of recorded events.

Our solution employs some form of symbolic simula-
tion to create linear expressions in initial variables for
each flip-flop, and for n successive clock cycles. These
expressions are then used to form a set of n equations
associated with the two flip-flops that produce aligned
m-sequences. In each equation, the expression represent-
ing a Galois LFSR is equated with the corresponding
expression obtained for a ring generator. The actual
mapping is then derived by using Gaussian elimination
to reduce the set of equations so that variables associated

276

with the Galois LFSR assume the role of leading vari-
ables. As a result, given the content of a ring generator,
one can easily compute the corresponding state of a
Galois LFSR, as shown in the following example.

Table I. States for circuits of Fig. 2
n xn mod p(x) g9…g0 r9…r0

0 1 1000000000 1000000000
1 x 0100000000 0100000000
2 x2 0010000000 0010000000
3 x3 0001000000 0001000000
4 x4 0000100000 0000100000
5 x5 0000010000 0000010000
6 x6 0000001000 0000001000
7 x7 0000000100 0001100100
8 x8 0000000010 0000110010
9 x9 0000000001 0100011001

10 1+x2+x6+x7 1010001100 1011101100
11 x+x3+x7+x8 0101000110 0100010110
12 x2+x4+x8+x9 0010100011 0110001011
13 1+x2+x3+x5+x6+x7+x9 1011011101 1110100101
… … … …

1023 1 1000000000 1000000000

Example. Consider again the two registers shown in
Fig. 2. Let x9 … x0 and z9 … z0 be initial states of the
Galois LFSR and the ring generator, respectively. Linear
equations over GF(2) in these 20 variables representing
values of bits g9 (left hand side) and r9 (right hand side)
in 10 successive clock cycles are as follows:
 x0 = z0
 x1 = z1
 x2 = z2
 x0 + x3 = z3
 x0 + x1 + x4 = z4
 x1 + x2 + x5 = z5
 x0 + x2 + x3 + x6 = z3 + z6
 x1 + x3 + x4 + x7 = z3 + z4 + z7
 x2 + x4 + x5 + x8 = z4 + z5 + z8
 x9 = z9
The above set of equations reduces to:

x0 = z0, x1 = z1, x2 = z2, x3 = z3 + z0
x4 = z4 + z1 + z0, x5 = z5 + z2 + z1,

x6 = z6 + z2, x7 = z7, x8 = z8 + z0, x9 = z9
Suppose the ring generator has reached state r9 … r0 =

0110001011 (row 12 in Table I). Using the mapping
shown above, we can now compute values of successive
bits of the corresponding Galois LFSR state. For in-
stance, g4 = r4 + r1 + r0 = 0 + 1 + 1 = 0. Thus, g9 … g0 =
0010100011. This can be easily verified by checking row
12 of Table I again.

4. Recovering the number of events
After having determined a particular state of the Ga-

lois LFSR that corresponds to a recorded state of the
RG-based counter, we can now recover the number of
shifts concealed in the LFSR content. One of the sim-

plest solutions is to use a lookup table for all possible
values. Clearly, such an approach is only feasible for
small LFSRs, and thus we resort to a more flexible tech-
nique based on discrete logarithms [1]. In the following,
we recall the major steps of this technique and demon-
strate how its efficiency can be improved.

Let m = 2n – 1 be a period of an n-bit LFSR (we as-
sume the use of primitive characteristic polynomials
here). The following three pre-processing steps are re-
quired in order to arrive with some useful tables:

1. Find a prime factorization m1 · m2 · … · mk of m.
2. For each mi, create a table of size mi, initialize the

LFSR with the state 100…0, and simulate it to obtain
every m/mi state which is then stored in the table.

3. For each mi, find an integer vi (by using, for example,
the extended Euclidean algorithm) such that vi·m/mi ≡
1 mod mi. Numbers vi are required to complete the dis-
crete logarithm-based procedure [1].

Clearly, the best candidates for counters are LFSRs with
decent storage requirements, i.e., those associated with
relatively small prime factors m1, m2, …, mk.

Example. Consider a Galois LFSR implementing the
primitive polynomial x4 + x + 1. A prime factorization of
its period m = 24 – 1 = 15 is comprised of m1 = 3 and m2
= 5. A state trajectory of this LFSR is shown in Fig. 3
along with the corresponding tables of sizes 3 and 5 that
store every 15/3 = 5th and every 15/5 = 3rd state, respec-
tively. Furthermore, for the same circuit we get v1 = 2
and v2 = 2.

Given the state w of a Galois LFSR with characteristic
polynomial p(x), the number of recorded events can be
determined as follows. For each factor mi, determine Si =
wk(i) mod p(x), where k(i) = m/mi, and find, in the respec-
tive table, location ri that corresponds to Si. The number
of applied clock cycles is then equal to

∑
=

⋅
k

i
i

i
i mv

m
mr

1
mod

Example. Suppose the LFSR of Fig. 3 has reached
state 1010, i.e., w = 1·x0 + 0·x + 1·x2 + 0·x3 = x2 + 1.
Since m = 15 and m1 = 3, we have:

wk(1) mod p(x) = (x2 + 1)15/3 mod (x4 + x + 1) = x0 = 1.

As polynomial x0 represents state 1000 (decimally 8), we
look up this state in the respective table to learn that r1 =
0. Similarly, we carry on for m2 = 5:

wk(2) mod p(x) = (x2 + 1)15/5 mod (x4 + x + 1) = x + 1.

Polynomial x + 1 corresponds to state 1100 (decimally
12), and thus r2 = 4 (see Fig. 3). Finally, since v1 = 2 and
v2 = 2, the number of clock cycles that have been applied
is determined as follows:

 (r1·v1·m/m1 + r2·v2·m/m2) mod m =
 (0·2·15/3 + 4·2·15/5) mod 15 = 24 mod 15 = 9.

277

This result can be easily verified by checking the graph
of Fig. 3, where state 1010 is reached in the 9th step.

0123

52

131

80

LFSRr1

124

103

152

11

80

LFSRr2

1000

1100 0001

11111010

8
4

2

1

9

13

15

14
0

7

10

5

11

12

6

3

Fig. 3. Tables for polynomial x4 + x + 1

Computing remainders Si is carried out by iteratively
squaring polynomial w, whereas the actual result is ob-
tained by finding a product of selected powers of w, and
then by dividing the result by p(x). Both operations can
be implemented using n-bit sequences representing
polynomials. In particular, to arrive with certain poly-
nomials modulo p(x), we mimic a Galois LFSR which
accepts successive bits of a dividend polynomial. The
entire process can be illustrated as follows.

Suppose one wants to find R = w58 mod p(x). In prin-
ciple, polynomial w58 can be obtained as w2·w8·w16·w32.
The only difficulty with such an approach is that some
products obtained here may be too large to work with
conveniently. Fortunately, we can compute all intermit-
tent polynomials modulo p(x) too, as shown below:

y ← w2 mod p(x), R ← y,
y ← y2 mod p(x),
y ← y2 mod p(x), R ← R × y mod p(x),
y ← y2 mod p(x), R ← R × y mod p(x),
y ← y2 mod p(x), R ← R × y mod p(x).

Another time-critical aspect is searching tables. The
number of comparisons needed to find locations of the
remainders Sk in a table can take a long time, especially
for counters with large factors mk. This is ameliorated by
using, for instance, hashing, at the price of a certain
increase in storage requirements.

Constructing tables is a time consuming process itself
as it may require almost 2n simulation steps, where n is
the size of the LFSR. A method to quickly determine kth
state of a given n-bit LFSR is therefore instrumental in
running efficient post-processing on data obtained from
LFSR-based counters. The next section presents such a
method. It has ability to handle large finite state ma-
chines and arrives with desired states in at most O(n2)
time.

5. Fast simulation of LFSRs
As detailed in the previous section, the discrete loga-

rithm-based algorithm works with certain tables. They
store selected states of a given n-bit LFSR altogether
with the corresponding indices. These states could be
collected by simply running the LFSR for up to 2n clock
cycles. This naive approach would clearly fail for large
values of n. Therefore, we resort to a more subtle tech-
nique which we sketched in [5]. It allows one to deter-
mine, in a very time-efficient manner, a state that a linear
finite state machine reaches after applying a given num-
ber of clock cycles.

For the sake of illustration, consider a 4-bit ring gen-
erator implementing the primitive polynomial x4 + x + 1
(the procedure described here is applicable to any linear
finite state machine, including canonical forms of LFSRs
and cellular automata). In order to determine a state that
this circuit reaches after a given number of clock cycles,
we will use a lookup table that consists of four rows and
four columns, as shown in Fig. 4. The entry located in ith
row and jth column represents a state which the ring
generator enters after 2i steps assuming that the initial
state features a single one on the jth position in its binary
representation.

3 2 1 0

Initial state 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

After 20=1 step 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0

After 21=2 steps 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0

After 22=4 steps 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1

After 23=8 steps 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0

Fig. 4. Lookup table for fast simulation of RG

It is a matter of single simulation steps to determine
the content of the first row of the table. Recall that it
contains states reachable after applying a single clock
cycle. As a result, the first row entry in column k stores
the state that immediately follows a state comprised of
all zeros but a single one on position k. For instance, the
ring generator of Fig. 4 initialized with state 0010 moves
to state 0011 in one step, and this is represented by the
entry in the first row and the third column of the table.
Entries in the remaining rows of the table can be deter-
mined by using the principle of superposition as follows.

Suppose one wants to determine a state that the ring
generator of Fig. 4 reaches after two clock cycles assum-
ing that its initial state was 0010. This problem reduces
to finding a state that the same circuit reaches after one
clock cycle provided its current state is 0011 (see the
first row of the lookup table). The principle of superposi-
tion allows further decomposition of the problem into
two simpler tasks: finding immediate successors of states

278

0010 and 0001, as these are the states whose superposi-
tion yields state 0011. From the first row of the lookup
table we get that the ring generator moves in one step
from states 0010 and 0001 to states 0011 and 1000, re-
spectively. Their bit-wise sum results in state 1011. This
is exactly the state that should be placed in the second
row and the third column of the lookup table. Entries in
the remaining rows are obtained in a similar fashion by
using iteratively data computed in the previous steps.
Thus, any state that a linear circuit reaches after 2k cycles
is determined by adding respective states reachable after
2k-1 clock cycles.

Using tables as the one shown in Fig. 4, we can find a
state reachable after an arbitrary number C of cycles in at
most n basic steps, each comprising up to n lookups. The
computational complexity of this process is thus O(n2). It
starts by expressing C as a sum of powers of 2, and then
follows the rules presented above. The following exam-
ple illustrates this technique.

1 0 1 0

0 1 0 0 0 0 1 1
+

0 1 1 1

0 0 1 1 1 0 1 1 0 1 0 0

1 1 0 0

0 1 0 1 1 0 1 0

1 1 1 1

Initial state

Result

1 0 0 0 0 0 1 0

1 1

0 1 0 0 0 0 1 0 0 0 0 1

2 2 2

1 0 0 0 0 1 0 0

8 8

+ +

+

Fig. 5. RG fast simulation

 Example. Let the ring generator of Fig. 4 be initially
in state 1010. Suppose we seek a state that this circuit
reaches after next 11 clock cycles. Since 11 = 20 + 21 +
23, we proceed in three steps (see Fig. 5). An immediate
successor of state 1010 can be found by determining
immediate successors of states 1000 and 0010 which are,
according to the lookup table of Fig. 4, states 0100 and
0011, respectively. Their sum yields state 0111. We

decompose this state into three components, lookup
states that can be reached from them in 2 steps, and find
their sum, i.e., 1100. Eventually, the same approach is
applied to state 1100, this time by retrieving states reach-
able in 8 clock cycles, and by computing the final state
which is 1111.

6. Recommended RG-based counters
This section provides a list of primitive polynomials of

degree up to 70 over GF(2) with 5, 7 and 9 terms, which
are recommended for ring generator-based event count-
ers. The polynomials are presented in Table II altogether
with additional data needed to run the algorithms de-
scribed in the previous sections. For example, a sequence
16 10 7 4 0 stands for the polynomial x16 + x10 + x7 + x4 +
1. Since the prime factors of the period 216 − 1 are m1 =
3, m2 = 5, m3 = 17, and m4 = 257, the corresponding
coefficients v1, v2, v3, and v4 assume the values of 2, 3, 4,
and 128, respectively. The last column provides the total
storage (in bytes) required to maintain the respective
lookup tables.

It is worth noting that some degrees n are omitted in
the table due to the fact that the corresponding periods 2n
– 1 feature prime factors of unacceptably large values,
including Mersenne primes. More specifically, Table II
reports only polynomials whose periods feature prime
factors smaller than 1,000,000.

Table II. RG-based event counters
n Polynomials [5] mi vi LUT

16
16 10 7 4 0
16 13 12 9 6 3 0
16 15 13 10 8 6 4 2 0

3, 5, 17, 257 2, 3, 4, 128 564

18
18 15 9 4 0
18 14 12 9 6 3 0
18 16 13 11 9 6 4 2 0

33, 7, 19, 73 22, 6, 13,
47 378

20
20 13 9 5 0
20 17 13 10 6 3 0
20 17 15 12 9 7 4 2 0

3, 52, 11, 31,
41

1, 7, 10, 8,
9 333

21
21 17 11 5 0
21 17 13 10 6 3 0
21 18 15 12 10 7 5 2 0

72, 127, 337 29, 85, 249 1539

22
22 16 12 5 0
22 17 12 10 6 3 0
22 19 17 14 11 8 5 2 0

3, 23, 89, 683 2, 19, 60,
569 2394

23
23 17 11 5 0
23 19 15 11 7 3 0
23 19 15 12 10 6 4 2 0

47, 178481 15, 121519 536K

24
24 20 11 5 0
24 19 16 13 8 5 0
24 20 17 15 12 9 6 3 0

32, 5, 7, 13,
17, 241

1, 2, 1, 11,
14, 163 876

25
25 18 12 6 0
25 22 17 13 8 4 0
25 22 18 15 12 9 6 3 0

31, 601, 1801 25, 126,
1772 9732

26
26 17 13 6 0
26 21 17 13 9 4 0
26 23 20 16 13 9 6 3 0

3, 2731, 8191 1, 455,
4096 44K

279

27
27 20 13 7 0
27 24 19 14 10 5 0
27 23 20 16 12 9 6 3 0

7, 73, 262657 4, 7, 87381 1.05M

28
28 21 15 7 0
28 25 20 15 10 5 0
28 26 22 18 14 10 6 3 0

3, 5, 29, 43,
113, 127

2, 1, 1, 25,
30, 32 1280

29
29 20 14 8 0
29 24 19 14 10 5 0
29 25 21 17 14 10 6 3 0

233, 1103,
2089

101, 137,
924 13.7K

30
30 20 13 8 0
30 24 19 14 9 5 0
30 27 22 18 13 9 6 3 0

32, 7, 11, 31,
151, 331

8, 5, 3, 26,
143, 112 2160

32
32 25 15 7 0
32 27 21 16 10 5 0
32 28 23 20 17 12 8 4 0

3, 5, 17, 257,
65537

1, 4, 2, 64,
32768 263K

33
33 25 16 8 0
33 29 23 17 11 5 0
33 29 24 20 16 12 8 4 0

7, 23, 89,
599479

2, 5, 40,
28449 3.00M

34
34 24 15 7 0
34 27 20 16 10 5 0
34 30 26 21 16 12 8 4 0

3, 43691,
131071

2, 36409,
65536 874K

35
35 27 17 8 0
35 28 23 17 10 5 0
35 31 26 22 17 12 8 4 0

31, 71, 127,
122921

9, 1, 51,
36141 616K

36
36 25 17 8 0
36 29 24 18 12 6 0
36 31 27 22 17 13 8 4 0

33, 5, 7, 13,
19, 37, 73,

109

11, 3, 3, 3,
16, 1, 60,

70
1360

38
38 28 20 9 0
38 33 26 20 12 6 0
38 33 28 23 18 14 9 4 0

3, 174763,
524287

1, 29127,
262144 3.50M

39
39 28 18 9 0
39 32 26 19 13 7 0
39 34 29 24 19 14 9 5 0

7, 79, 8191,
121369

6, 50, 5461,
102343 648K

40
40 29 21 10 0
40 34 27 19 12 6 0
40 36 30 26 20 15 10 5 0

3, 52, 11, 17,
31, 41, 61681

2, 16, 5, 5,
4, 25,
12699

309K

42
42 31 19 10 0
42 34 28 20 14 7 0
42 36 31 26 21 16 11 5 0

32, 72, 43,
127, 337,

5419

7, 39, 31,
106, 293, 7 35.9K

44
44 31 22 11 0
44 37 29 21 14 7 0
44 38 32 27 23 17 11 5 0

3, 5, 23, 89,
397, 683,

2113

1, 2, 21, 30,
339, 626,

520
19.9K

45
45 32 22 10 0
45 37 31 23 16 8 0
45 39 33 27 22 16 11 5 0

7, 31, 73,
151, 631,

23311

1, 7, 48, 45,
12, 15310 145K

48
48 38 26 13 0
48 41 34 25 16 7 0
48 43 36 30 25 19 12 6 0

32, 5, 7, 13,
17, 97, 241,

257, 673

5, 1, 4, 12,
7, 63, 202,

214, 12
7.91K

50
50 39 24 12 0
50 43 34 24 16 8 0
50 44 37 30 25 18 12 6 0

3, 11, 31,
251, 601,

1801, 4051

1, 4, 28,
187, 63,
886, 235

47.2K

51
51 39 25 12 0
51 42 33 25 16 8 0
51 44 37 31 25 19 12 6 0

7, 103, 2143,
11119,
131071

5, 14, 641,
2046,
87381

1.01M

52
52 37 25 12 0
52 43 34 25 17 9 0
52 45 38 31 24 18 12 6 0

3, 5, 53, 157,
1613, 2731,

8191

2, 4, 28,
113, 729,

1593, 2048
89.3K

54
54 40 27 13 0
54 46 36 27 18 9 0
54 47 40 33 26 19 13 6 0

34, 7, 19, 73,
87211,
262657

76, 2, 17,
40, 58169,

175019
2.45M

55 55 41 26 13 0 23, 31, 89, 3, 17, 24, 1.44M

55 47 38 28 18 9 0
55 47 39 31 24 18 12 6 0

881, 3191,
201961

857, 2991,
28564

60
60 44 31 16 0
60 51 39 30 19 9 0
60 52 45 37 29 22 15 8 0

32, 52, 7, 11,
13, 31, 41,

61, 151, 331,
1321

4, 19, 6, 7,
7, 13, 3, 39,

147, 56,
646

16K

63
63 46 29 14 0
63 52 42 31 21 10 0
63 54 46 38 30 21 14 7 0

72, 73, 127,
337, 92737,

649657

26, 3, 113,
83, 32774,

609917
5.94M

66
66 48 33 16 0
66 55 45 33 23 11 0
66 59 52 43 34 25 16 8 0

32, 7, 23, 67,
89, 683,
20857,
599479

2, 1, 14, 47,
20, 645,
13180,
313964

5.59M

68
68 49 33 17 0
68 56 44 34 22 11 0
68 59 51 42 34 25 17 8 0

3, 5, 137,
953, 26317,

43691,
131071

1, 1, 75,
670, 1303,

40050,
32768

1.82M

70
70 52 35 17 0
70 58 46 35 22 11 0
70 61 52 43 35 26 17 9 0

3, 11, 31, 43,
71, 127, 281,

86171,
122921

2, 6, 20, 10,
36, 89, 76,

67632,
79531

1.89M

7. Conclusion
In this paper, we present very fast synchronous event

counters. As these devices build on ring generators, they
feature significantly improved structural properties and
remarkably enhanced overall performance, as compared
to previous schemes based on LFSRs. Advantages of the
proposed technique include a single level of XOR logic,
reduced internal fan-outs, and simplified circuit layout
and routing. Consequently, one can synthesize highly
modular counters that can operate at much higher speeds
than earlier solutions.

8. References
[1] D. W. Clark and L.-J. Weng, “Maximal and near-maximal

shift register sequences: efficient event counters and easy
discrete logarithms,” IEEE Trans. Comput., vol. 43, No. 5,
1994, pp. 560-568.

[2] M. D. Ercegovac and T. Lang, “Binary counter with
counting period of one half adder independent of counter
size,” IEEE Trans. Circuits and Systems, vol. 36, No 6,
1989, pp. 924-926.

[3] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer,
“High performance dense ring generators,” IEEE Trans.
Comput., vol. 55, No. 1, 2006, pp. 83-87.

[4] G. Mrugalski, J. Rajski, and J. Tyszer, “Ring generators –
new devices for embedded deterministic test,” IEEE
Trans. CAD, vol. 23, No. 9, 2004, pp. 1306-1320.

[5] J. Rajski and J. Tyszer, “Primitive polynomials over
GF(2) of degree up to 660 with uniformly distributed co-
efficients,” Journal of Electronic Testing: Theory and Ap-
plication, vol. 19, 2003, pp. 645-657.

[6] M.R. Stan, A.F. Tenca, and M.D. Ercegovac, “Long and
fast up/down counters,” IEEE Trans. Comput., vol. 47,
No. 7, 1998, pp. 722-735.

[7] J.E. Vuillemin, “Constant time arbitrary length synchro-
nous binary counters,” Proc. IEEE Symp. Computer
Arithmetic, 1991, pp. 180-183.

280

A Workbench for Analytical and Simulation based Design Space Exploration of

Software Defined Radios

T. Kempf, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr
Institute for Integrated Signal Processing Systems, RWTH Aachen University, Germany

kempf@iss.rwth-aachen.de

Abstract— This paper presents a workbench addressing the

issue of early design space exploration for Software Defined Ra-

dios (SDRs). Key contribution is a pre-simulation mathematical
analysis based on Synchronous Data Flow (SDF) graphs, which

supports system architects in their soft- and hardware design de-

cisions at early design stages. The analysis is integrated into an

Electronic System Level (ESL) based simulation framework al-

lowing a seamless design flow from purely mathematical analysis

down to the final implementation of the SDR. In a case study of

an exemplary selected physical layer processing the usefullness of

the workbench is highlighted.

1 Introduction

The application of multiple wireless communication standards in

today’s communication networks opens completely new opportunities
in future, like cognitive radios and networks. Current implementations

of such different communication standards on one wireless device de-

mand designers to apply multiple dedicated hardware parts. To cope

with this issue, industry and research opts for an SDR, where differ-

ent radios are implemented as software allowing reuse of hardware

components. However, development of such SDRs is a complex task

as both soft- and hardware have to be developed under stringent real-

time constraints along with energy efficiency. Those real-time con-

straints occur particularly within so called feedback-loops and critical

paths [1]. Prominent examples of such are the automatic gain control

or the channel prediction.

The SW development of today’s applied wireless standards can

consume a significant amount of effort. This effort is surely in the

range of several man years and is expected to increase for future wire-

less communication standards. Therefore, this high investment in ef-

fort and cost forces system architects to validate before starting the

real implementation if the addressed implementation of both soft- and

hardware fulfills the given requirements.

Early performance exploration is a key technology to ensure the

adherence of such requirements right from the start of the design

process. To enable a performance exploration of the complete SDR

system, designers have to investigate the timing characteristics of the

SDR including both soft- and hardware. Unfortunately, timing char-

acteristics of even a single task are mostly unknown or just estimated

at the start of the design. Additionally, the task’s implementation is

yet not known or not completed. Therefore, new performance evalu-

ation methods have to be incorporated at early design stage to allow

validation of the SDR performance characteristic and to avoid taking

cost intensive false decisions.

In this paper an SDR1 workbench for early design space explo-

ration is presented. It is based on a mathematical analysis to allow

1This paper focuses on SDRs, however the proposed methodology can be
applied to any kind of Multi-Processor System-on-Chips (MPSoCs).

Constraints,
e.g.latency,
throughput,
...

C

Implementation Model

Mathematical
based

Abstract simulation
based

Instruction Set
Simulation based

B
ack

 an
n
o
tatio

nM
o
d
el

 r
ef

in
em

en
t

Analysis

Simulation

Parameter
estimates Pi

^

Mapping
Refinement

Loop

SDR implementation
(HW & SW)

SDR HW Specification:
- Processing Elements
- Communication Architectures
- Memories

SDR SW Specification:
- Temporal & Spatial Task Mapping

Figure 1: Iterative design process with analysis/simulation
based evaluation

system architects to evaluate their design decisions at early design

stage and supports them in their further design process. The analyti-

cal workbench is combined with an existing Electronic System Level
(ESL) based workbench allowing a seamless refinement process of

the implementation model down to the final SDR implementation as

illustrated in Figure 1.

The structure of the workbench allows for an iterative design loop,

which is as follows: The performance parameters serve as an opti-

mization for the later design process. In the domain of wireless com-

munication those parameters mostly relate to latency and throughput

requirements. Starting with an initial guess of a suitable hardware

platform and a temporal & spatial task mapping the design loop is en-
tered. In a first design iteration an implementation model based on

estimated parameters is composed. Based on this model system ar-

chitects can iterate over different design decisions and evaluate their

characteristics by the proposed mathematical analysis discussed in

Section 3 later. With one or multiple identified implementation candi-

dates the implementation model can be refined to the next abstraction

level. Moving from the mathematic based analysis to an abstract simu-

lation, system architects can evaluate their implementation candidates

in a more fine grained manner. The abstract simulation model [2] can

seamlessly re-use the mathematical models in early design steps. By

a later model refinement each part of the soft- and hardware is refined

till a final Instruction Set Simulation based implementation model ex-

ists. This can later serve as basis for lower level implementations like

Register Transfer Level and below. Unfortunately, the design process
is mostly not that straightforward, thus the proposed workbench offers

at each point in time a back annotation of the necessary information.

This paper focuses on the mathematical implementation model and

the respective implementation analysis. The link to the abstract sim-

ulation based level and finally to ESL designs and Virtual Platforms

(VPs) exists by a refinement of the implementation model. The pro-

posed refinement flow is sketched in Section 3.3.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.24

281

After the subsequent discussion of the related work, the mathe-

matical analysis is introduced. Here first the overall technology is

highlighted followed by a detailed discussion of the underlying tech-

nique and the link to simulation based implementation models. Fi-

nally, in Section 4 the case study illustrates the design process and the

capabilities of the proposed approach on an exemplary physical layer

processing.

2 Related Work

With the increasing demand for early design space exploration

a wide range of performance evaluation approaches have been pro-

posed. The urge of HW and SW design decisions even in early steps

of the design process leads to the trade-off between estimation ac-

curacy, evaluation time and existence of an executable model. The

approaches to the evaluation of a single design point can be classi-

fied into two kinds: simulation based and analytical frameworks [3].

System-level simulation frameworks are available with support for

mixed levels of abstraction utilizing different types of architecture and
application modeling. Today most of the available Electronic Sys-

tem Level (ESL) simulation frameworks are based on SystemC [4],

which has become in 2005 the IEEE Standard 1666TM-2005. Such

frameworks typically operate on cycle and instruction accurate level

by the technique of Instruction Set Simulation (ISS). Recently Virtual

Platforms (VPs) have originated from such frameworks. Prominent

Virtual Platforms, which focus on fast simulation to allow SW de-

velopment before the HW is available, are provided by Synopsys [5],

CoWare [6] among many others. For design space exploration on a

particular early design stage those frameworks suffer by nature from

the following key issues:

• HW and Compiler: ISS based simulation requires a fixed and de-

fined processor core as well as a compiler to generate object code

from the SW, mostly developed in C programming language. At

early design stage typically neither the instruction set e.g. of an

Application Specific Instruction Set Processor (ASIP) is fixed,
nor is a compiler available. Unfortunately, those are required to

develop optimized SW and to evaluate the performance. There-

fore, the designers have to wait till both are available, which is

far too late in the design process.

• SW: Due to the tight constraints of baseband processing, SW

has to be typically optimized for the specific architecture. Espe-

cially for performance critical parts like SW executed on DSPs

and ASIPs the impact of such HW specific optimizations can be

significant, e.g. in [7] a speed-up factor of up to 15 for DSPs has

been measured. At early design stage the final SW implemen-

tation is mostly not finalized or even not started. In best cases

only the actual performance of the SW can be measured, which

might be far off the final one. In worst cases the simulation is

just infeasible due to the lack of the SW implementation.

To cope with these issues, particular approaches increase the ab-

straction level to an abstract processor modeling, which allows for

design space exploration without or with approximate SW available.
Those abstract models such as the ones described in [8],[9], [10] and

[2] work on the principle of timing annotation. Recent case studies

from industry have proven the capabilities of such abstract simula-

tion [11].

Those abstract simulation models are well suited for early design

space exploration and can be used to evaluate different points of the

large design space in a simple and fast manner. However, system

architects have to define a first suitable HW platform and temporal

& spatial task mapping by an initial guess. Additionally, simulation

based approaches are in comparison to mathematical analysis of e.g.

worst case execution time (WCET) comparably slower. Also those

approaches depend on the simulation stimulus which makes it chal-

lenging to cover all different cases. Here analytical models can sup-

port design decisions and provide an initial guess before entering the

simulation based evaluation of the system.

Contrary to simulation based approaches analytical ones can only

be applied in case of deterministic or at evaluation of WCET behav-

ior. Recent research has focused on event stream based models, like

the ones proposed by Richter et. al [12] and Wandeler et. al [13]. Here

the basic principle is to compute the system-level behavior on basis of

event streams represented as so called arrival curves. Such analyti-

cal models can speed-up the exploration of different design points and

help to find corner cases. However, those cannot replace simulation
models completely as they are inaccurate in their results compared to

cycle accurate simulation and cannot detect dynamic effects. Addi-

tionally, application of such analytical models suffer from the follow-

ing:

• Development of analytical models with a certain degree of pre-

cision can be extremely difficult and can take significant devel-

opment effort [14].

• Such analytical models lack the real implementation, therefore

additionally to the time consuming process of analytical model

development, the final SW has to be developed completely sep-

arated within a different environment.

Combining both analytical and simulation based approaches has

mostly been performed to inspect memory and cache behavior in the

past. Here trace-based performance analysis as discussed in Ref. [15]

is key e.g., the frameworks introduced in [16] and [17]. Lahiri et.

al [18] have extended the scope to design space exploration of the

communication architectures. Other approaches utilize an analytical

approach with initial calibration based on simulation results in the do-

main of network processing [19].

In this paper an analytical model based on Synchronous Data Flow
(SDF) [20] graphs is proposed which extends a simulation based

framework for SDR design space exploration. It is directly embed-

ded into the design process to allow a seamless refinement from high

analytical model down to an Electronic System Level (ESL) based

implementation.

3 Analytical Workbench

In Figure 1 the overall design process including the proposed anal-

ysis is illustrated. Within the following section this analysis shall be

discussed in more detail, which has been implemented using Mat-

lab [21]. First an overview will be given, followed by a detailed dis-

cussion of the underlying technique of the analysis. Finally, the link

to simulation based analysis will be sketched.

3.1 Analysis Overview

In SDRs tight constraints for critical paths (CPs) such as feedback

loops exist. The proposed analysis aims to determine at an earliest

possible design stage the two main issues: (i.) a suitable HW archi-
tecture including Processing Elements, Communication Architecture

and Memories and (ii.) a suitable temporal & spatial task mapping.

The proposed mathematical analysis is based on the concept of a

workbench, thus no automatic mapping and HW architecture explo-

ration is performed. However, system architects can evaluate a certain

specified design point. This allows analysis if the given constraints

are likely to be accomplished or not. In such case it gives hints where

modifications should be applied either to the HW platform or to the

mapping. To ensure addressing critical parts first the workbench gives

hints for the implementation order of tasks.

In the design space of wireless communication the assumption for

applications, such as a mode of a wireless standard, is that those can

282

Figure 2: Exemplary analysis components

be considered as a Synchronous Data Flow (SDF) task graph. Addi-

tionally, static schedulers e.g. round-robin or other time slicing sched-
ulers are applied. Different modes or standards can be described by

multiple applications each composed out of an SDF graph.

On a simplified example in Figure 2 the analysis is highlighted here
and in the subsequent section. The general application decomposed

into multiple tasks (Fig. 2a) is mapped temporally & spatially (Fig.

2c) on the depicted HW architecture (Fig. 2b). For this particular case

the workbench allows the evaluation of the latency and throughput of

the CPs (Fig. 2a). This evaluation needs sufficiently precise charac-

terization of the processing and communication behavior of each task

on its mapped processing element (Fig. 2d). Unfortunately, those are

not known or bonded with a particular uncertainty at such early de-

sign stage. Thus an iterative design loop is mandatory to validate the

system at each design step with the available knowledge.

The task’s execution and communication characteristic is con-

ceived in a random variable Xi = X(Task,PE). The uncertainty

of those characteristics is tightly coupled to the designer’s knowledge

of the task ranging from complete knowledge of the execution, e.g.

an FIR filter implementation, to merely algorithmic level where only

rough estimates of the required operations exist. Respectively these

characteristics can be described by a probability density function (pdf)

given e.g. in the first case by a dirac delta function (Fig. 2d.I) whereas
it might be given in second case as a gaussian-like distribution with

a high variance (Fig. 2d.II). Please note that the proposed analysis

operates on those estimates, such that better ones obtain results which

better match the real final implementation. This implies at the start of

the design phase a particular degree of uncertainty. During the design

process taken measurements, for instance acquired by simulation, can

provide more specific implementation knowledge which can help to

remove the uncertainty.

Since the analysis is based on estimates the result can not just be

given by a boolean decision, rather it is based on a likelihood whether

the analyzed SDR is feasible to work or not. Therefore the result for

each CP is a random variable determined by its pdf. Figure 3 depicts

possible results:

• Likely feasible (Fig. 3.a): The highlighted random variable

keeps most likely the threshold. Depending on the margin de-

velopers might consider modifications of the HW and/or task

mapping since such systems tend to be overdesigned.

• Uncertainty dominated (Fig. 3.b): The high margin between

threshold and expected value makes it likely feasible that in spite

of the failure probability which might be caused by imprecise es-

timates the system should work. In such cases developers should

focus on the implementation of tasks with a high uncertainty, re-

spectively tasks with imprecise knowledge, first. After imple-

mentation more precise values can be determined and analysis

texec texec texec texec
tmax tmax tmax tmax

a) Likely feasible b) Uncertainty
dominated

c) Expected value
dominated

d) Unlikely feasible

p
d

f

p
d

f

p
d

f

p
d

f

Figure 3: Exemplary analysis results for latency constraints

should be re-run to verify that the addressed implementation still

holds true.

• Expected value dominated (Fig. 3.c): Here the pdf shows only
a minor variance, but only a small margin between the expected

value and the threshold exists. Such systems tend to fail due

to unexpected behavior. Therefore system architects should in-

spect deeply if the envisioned implementation has to be modified

or if the system really has to work on its limits to achieve this

requirement.

• Unlikely feasible (Fig. 3.d): Since a high probability exists that

the given constraint can not be satisfied, system architects have

to re-consider either the addressed HW or task mapping.

Before applying the given analysis workbench to a more realistic

application from the wireless communication domain the underlying

methodology of the analysis is discussed in the subsequent section.

3.2 Analysis Methodology

The analysis algorithm is a graph based calculation of the random

variables describing the performance of the evaluated critical paths.

Inputs to the algorithm are the task graph, the architecture descrip-

tion, and the temporal & spatial task mapping for the processing ele-

ments as depicted in Figure 2. The task graph TG = (T, E, r, d) is

a Synchronous Data Flow graph [20]. The TG is composed of tasks

T forming the nodes and directed edges E representing the data flow.

The edges have a static annotation r : E → N × N of the number of
tokens, that are produced and consumed by the corresponding tasks.

In addition, inter-iteration data flow d : E → N is visualized in the

form (+i). This inter-iteration annotation is of particular interest for

feedback loops, e.g. adaptive filters, where a particular input influ-

ences the processing of later samples. Furthermore the critical paths

CP = {(ti, .., tj) : ti, .., tj ∈ T} are the evaluated constraints.

The analysis workflow partly depicted in Algorithm 1, is structured

into the following three phases:

1. Initialization phase: Prior to the analysis phase the TG is modi-

fied into a directed acyclic graph (DAG). The applied operations

are mainly duplication of tasks and unrolling of the instances as

necessary for the inter-iteration dependencies. For each of the

PEs a control flow graph (CFG) is generated based on the un-

derlying temporal mapping (Figure 2c). In a joint representation

of those the overall CFG is a clustered DAG representing the

temporal & spatial task mapping. To allow an analysis of the

critical paths an Analysis Graph (AG) is formed by combining

the TG and the CFG (lines 1-11). The construction of the AG

is as follows: In the first step for each node a random variable
Xi, describing the tasks execution characteristic, is stored as a

probability density function. In the succeeding step, nodes are

inserted for the data transfers, that induce a delay2 based on the

underlying communication architecture cac. Finally, the con-

trol flow dependency edges are inserted. Since the critical paths

are related to the AG, critical paths over several instances, e.g.

containing feedback loops, are enabled.

2For simplification in later examples in this section the communication
nodes are neglected. However, the analysis takes those into account.

283

Algorithm 1: The analysis algorithm

Input: Modified Task Graph TG, Control Flow Graph CFG, Communication
Architecture Mapping ca(t), Processing Element Mapping pe(t), List of
evaluated Critical Paths CP

Output: Performance characteristic distributions Xcp for CPs
AG = (V (TG), ∅);1

foreach vi ∈ V (AG) do2

X(vi) = mapped performance characteristic(vi, pe(vi));
foreach (vt, vh) ∈ E(TG) do3

if transfer c = (vt, vh) has communication delay d > 0 then4
Add new vertex vc to V (AG);5

X(vc(t,h)) = mapped performance characteristic(c, ca(c));6

E(AG) = E(AG) ∪ {(vt, vc), (vc, vh)};7

else8
E(AG) = E(AG) ∪ (vh, vt);9

end10

E(AG) = E(AG) ∪ E(CFG);11

(AG, X) = complexity reduction(AG, X);12

VS = {v ∈ V (AG) : |{(v, vi) ∈ E(AG), vi ∈ V (AG)}| > 1};13

VJ = {v ∈ V (AG) : |{(vi, v) ∈ E(AG), vi ∈ V (AG)}| > 1};14

ṼJ = sort(VJ); /* Ordered set subject to reachability */15

foreach vj ∈ ṼJ do16
Vpredec = {v ∈ V : ∃(v, vj) ∈ E};17

VD = ∅;18
foreach vp ∈ Vpredec do19

Add vertex vd in AG;20

E(AG) = (E(AG) \ (vp, vj)) ∪ {(vp, vd), (vd, vj)};21

end22
vs = first common split on reverse paths;23
foreach vd ∈ VD do24

X(vs,..,vd) = calculate performance characteristic(vs, vd);25

end26
foreach vd ∈ VD do27

Xm = max({X(vs,..,vi)
: ∀vi ∈ Vd \ {vd}});28

Xd = max(0, Xm − XP (s,i));29

end30

end31

foreach cp = (vs, .., ve) ∈ CP do32
Xcp = calculate execution characteristic(vs, ve);33

end34

2. Pre-Analysis phase: In this phase short-cuts are eliminated from

the AG and vertices are merged where possible for complex-

ity reduction (line 12). Those short-cuts are defined as edges

(vt, vh) that could also be reached through a path (vt, .., vh).

Furthermore, dependency delay vertices are pre-calculated (lines

13-31), that are necessary for critical paths starting in parallel

paths as described subsequently.

3. Analysis phase: Here the critical paths and feedback loops
are analyzed according to the AG (lines 32-34). The applied

analysis differentiates between two patterns in critical paths

(vs, .., ve) and their evaluation, which are:

a) Straight Paths & Parallel Execution Paths:

For straight paths the execution characteristic of a critical path

is in general the sum of the random variables along its path. For

the previous example CP1 (Fig. 4), while neglecting the com-

munication delays for the sake of clarity, this computes to:

XCP1 = X1 + X2 + X4

In case more than one path exist for a pair (vi, vj) in a critical
path (vs, .., vi, .., vj , .., ve) this path is referred as a parallel exe-
cution path. Hence, the maximum of the parallel paths p1, .., pn

from vi to vj is used in replacement for these paths:

XCPi = Xs + .. + max(Xp1 , ..,Xpn) + .. + Xe.

For example, in the critical path CP2 (Fig. 4) T5 can not start

execution before both paths from T2 to T5 finished their execu-
tion such that CP2 computes to:

XCP2 = X2 + max(X4 , X3) + X5 + X5.

Figure 4: Exemplary AG with Critical Paths and added depen-
dency vertices for computation of CP3 = (T 3, T 6)
(For simplification the communication nodes have not been illus-

trated, which are taken into account by the proposed analysis.)

b) Critical Path starts in Parallel Paths:

When calculating a critical path CPk = (vs, .., ve) starting

in a subgraph of parallel paths, one has to consider that de-

pendency delays D(i, j) exist. Those may exist for so called

joins: VJ = {vj ∈ V : |{(vi, vj) ∈ E}| > 1}. If a join

has incoming edges, that are not part of the subgraph, that is

spanned by the paths from vs to ve, those dependency delays

have to be considered, i.e. for joins vj that fulfill the condition

∃(vi, vj) ∈ E : ∄(vp, .., vi), vp ∈ CPk. Then the computation

of the CP is in general again the sum of the random variables
including the dependency delays along the CP:

XCPi = Xs + .. + XD(i,j) + .. + Xe.

The critical path CP3 in the previous example is such a

path (Fig. 4). When assuming As-Soon-As-Possible (ASAP)

scheduling a delay between the finish of T3 and the start of T5

induced by the execution characteristic of T4 may occur. To

consider this a dependency delay vertex D(4, 5) is added in the
incoming edge of T5 as illustrated in Figure 4 and Algorithm 1

in lines 17-30. For the final calculation of the critical path the

both preceding patterns are applied.

As discussed in Section 2 analytical models typically lack the link

to simulation based approaches and the final implementation. Since

the proposed design process combines analysis and simulation based

design space exploration the subsequent section highlights the link

between those approaches.

3.3 Simulation Link

Both analytical and simulation models have their own advantages

and disadvantages. Typically those approaches are completely sep-

arated, which requires twice development effort in two different en-
vironments. To bridge this gap in SDR and MPSoC design flows

the proposed analytical analysis is integrated into a simulation based

framework. Figure 5 depicts the refinement flow from the mathemati-

cal down to the abstract simulation model.

Figure 5: Refinement of the implementation model

284

CPPHY < CPPHY,krit

CPAGC < 3.2µs CPSYNC < 25.6µs

(a) Application: Physical layer processing including iterative synchronization loop and critical paths (b) HW architecture

Figure 6: Case study application and HW architecture with configurations: (I-II) SW centric, (III-IV) SW with HW accelerator

Accordingly at the start of the design process a mathematical im-

plementation model is developed based on the previous discussed

analytical workbench. This computes for each critical path the

characteristic {XCPi} based on the individual task characteristics

X(task,PE). If a suitable candidate has been identified, develop-

ers can seamlessly refine the mathematical model to a SystemC sim-

ulation model based on the framework discussed in [2]. The central
element in this framework is an abstract processor simulator operat-

ing on timing annotation to reflect the task’s execution characteristic.

The seamless refinement is supported by the Time Retrieval Engine

which samples from the pdf X(task, PE) a timing annotation ∆t

at run-time (∆t ∼ X(task,PE)). This timing annotation value is

then propagated to the abstract processor simulator which annotates

this. Thus, without any modification the mathematical implementa-

tion model can be evaluated in a simulation based framework. En-

countered effects within the simulation can be iteratively back anno-

tated to the mathematical implementation model.

Since the final implementation is naturally the goal of such a

design process, developers can refine the abstract simulation model

further to an Instruction Set Simulator (ISS) based implementation

model. This step comprises on the one hand implementation of the
SW mostly in C programming language and on the other hand replace-

ment of the abstract processor simulator by an ISS. Such simulation

models allow measurement of the actual performance in terms of in-

struction or cycle accurate behavior. Again the acquired results can

be back annotated to the abstract simulation and mathematical im-

plementation model. Here, as previously discussed, uncertainty due

to unknown implementation knowledge can be reduced with the ac-

tual measured performance. This enhances the estimates and provides

results which are closer to the real implementation in later design it-

erations.

In the following section the proposed analysis is applied and the

refinement step to the abstract simulation model is briefly introduced.

4 Case Study

To demonstrate the feasibility of the proposed approach a simple

physical layer processing (Fig. 6) including an iterative synchroniza-

tion loop from the domain of wireless communication has been se-

lected. Such physical layer processing is today dominated by Digital

Signal Processors (DSPs) and HW accelerator based designs. Upper
protocol layers are mostly processed on General Purpose Processors

(GPPs). For simplification the design space has been restricted to the

following standard elements:

• GPP processor cores: ARM926EJ-S

• DSP processor cores: TI C55x and C64x

• HW accelerators: arbitrary in type and number

• Communication architecture: point-to-point and bus based

• Memories: arbitrary

Based on those components a suitable HW architecture along with

a temporal & spatial task mapping shall be determined for the appli-

cation meeting the given constraints (Fig. 6a,b). Following the basic

idea of SDRs would lead to a complete SW implementation of the ap-

plication either on the DSP or GPP. Since the data rates close to the

RF part are very high an initial calculation is performed:

• Symbols each having an I/Q value with two times 16 bit (=32bit)

arrive at a data rate of R = 40Msamples

second
at the RF frontend.

Respectively the sample time is ∆tsample = 25 ns
sample

.

• Unfortunately this time is mostly too short for a general SW

implementation (5 cycles at 200 MHz clock frequency). Re-

spectively those tasks are directly mapped onto HW accelera-

tors. Since they have a fixed latency and throughput the critical

path CPAGC has been once verified and does not need further

analysis in the following.

To determine suitable candidates for such an SDR application an

analysis based on the proposed workbench is performed. The first
investigated mapping and HW is DSP centric (Fig. 6b configura-

tion I). Here the remaining physical layer processing is mapped to a

TI C55x DSP (clock frequency 200MHz) and the upper protocol lay-

ers are mapped to an ARM926EJ-S GPP (clock frequency 250MHz).

Based on the functionality of each task the processing and HW char-

acteristics have been defined by a system architect. Those are based

on HW and SW estimates as well as on TI’s DSP Libraries [22]. The

results depicted in Figure 7 highlights that configuration I fails to meet

the required constraints. Inspecting the results more in depth reveals

that the Soft Viterbi and Reed-Solomon decoder are the dominating

tasks on the latency.

From an engineering perspective one simple solution to cope with

this is to replace the unsuited processor core by a more powerful one.

In configuration II (Fig. 6b) the C55x is replaced by a C64x DSP
(clock frequency 500MHz). The results in Figure 7 highlight a signif-

icant speed-up compared to configuration I. The sketched constraints

can be satisfied with this configuration. In typical TI SoC platforms

addressing much more complex physical layer processing than the dis-

cussed one, a Viterbi Co-Processors (VCP)[23] running at the third of

the processor’s clock frequency is added to relieve the DSP in comput-

ing the algorithm. Evaluation of platforms including such a VCP can

be simply applied by adding a VCP processing element and modify-

ing the mapping in the underlying description stored in XML format.

Please note that this rather simple physical layer processing does not

need the accelerator to match the constraints. However, to demon-

strate the exploration and the link to simulation of realistic platforms

the impact of such a HW accelerator is evaluated.

The VCP is investigated in two configurations. In configuration III

the VCP is directly connected to the DSP by FIFOs, whereas in IV it

is connected to the bus like in TI’s platforms. The retrieved analysis

results are illustrated in Figure 7. Moving the Viterbi decoding to the

VCP is a classical trade-off decision. On the one hand parallelism is

added to the system since the Deinterleaver and Reed-Solomon decod-

ing of the previous frame can be executed in parallel on the DSP. On

the other hand this parallelism introduces communication overhead to

the system as the data has to be transfered to the VCP and back again.

Due to this overhead the frame latency increases as visible in Fig-

ure 7c. While utilizing direct FIFO communication links between the

DSP and the VCP (configuration III) this overhead is rather low as no

285

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

−4

5 10 15
0

1

2

3

4

5

6

7

microseconds

8
x10

8

−4
x10

I

IIII IIIIII

IV
IV

(a) Feedback loop CPSYNC (III-IV)

0 2 4 6 8 10 12 x10
0

1

2

3

4

5

6

7

x10
−5

frames/second

4

II
III

IV

(b) Throughput (II-IV)

120 130
0

1

2

3

4

5

6

7

210 210

microseconds

x10
−4

I

II III

IV

(c) CPPHY (I-IV)

Figure 7: Mathematical analysis results for the evaluation of
the synchronization loop, the corresponding throughput and the
latency of the physical layer processing.

microseconds

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
x 10

−3

III IV

(a) CPSYNC (III-IV)

frames/second

0 2 4 6 8 10 12 x 10
40

1

2

x 10
−4

III
IV

(b) Throughput (III-IV)

microseconds

112 116 120 124
0

1

2

3

4

5
x 10

−4

III IV

(c) CPPHY (III-IV)

Figure 8: Abstract simulation based analysis results for the
evaluation of the synchronization loop, the corresponding
throughput and the latency of the physical layer processing.

contentions on the communication architecture occur. Therefore, both

the synchronization loop latency (Fig. 7a) and the frame throughput

(Fig. 7b) gain performance as the effect of parallelization outweights

the communication overhead. Contrary, configuration IV trades ap-

proximately the achieved gain by parallelization against the commu-

nication overhead. Please note that the execution times on the one

hand of the Viterbi decoder and the other hand of the De-Interleaver

and Reed-Solomon decoder differ by approximately a factor of three.

Thus the possible parallelism cannot be exploited optimally. Future

HW modifications and mapping decisions can and should address this

issue.
However for the given case study both VCP HW configurations

are supposed to be selected candidates for an implementation. In the

previous section the seamless design flow from abstract mathemati-

cal analysis down to the final implementation has been sketched. To

demonstrate this both have been set-up according to the abstract sim-

ulation framework [2]. The simulation results are illustrated in Fig-

ure 8. Here only the marked design points have been measured in

simulation. To form the random variables an interpolation has been

performed. The measurements show that the mathematical analysis

differs in the expected value of the throughput, the frame and synchro-

nization loop latency less than 10% compared to the abstract simula-

tion based results. Main reason for this difference is the conservative

estimate of the communication behavior in the mathematical analysis.

This information could now be back annotated to the mathematical

analysis model to improve the analysis results.
The proposed candidates achieve the given requirements, thus de-

velopers might start with one of those with the refinement of the appli-

cation and hardware till the final system implementation is available.

Otherwise developers can quickly step back and evaluate other imple-

mentation options on the high abstraction layers.

5 Conclusion

In this paper a mathematical analysis for SDR design has been

proposed. This analysis and the developed workbench are fully inte-

grated into a seamless design flow from high statistical analysis down

to the final implementation in Electronic System Level (ESL) design.

As exemplary illustrated in a case study the high level analysis al-

lows at early design stage the identification of different design solu-

tions. Those identified ones have then been evaluated seamlessly by

an abstract simulation based environment to invest dynamic behavior

of such SDRs. Our future work will concentrate on larger case studies

including refinement to instruction and cycle accurate Instruction Set

Simulators.

References

[1] M. Speth, H. Dawid, and F. Gersemsky. Design & Verification Chal-
lenges for 3G/3.5G/4G Wireless Baseband MPSoCs. In MPSoC’08, June
2008.

[2] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, and
B. Vanthournout. A Modular Simulation Framework for Spatial and
Temporal Task Mapping onto Multi-Processor SoC Platforms. In Proc.

Design, Automation and Test in Europe (DATE’05), 2005.

[3] M.Gries. Methods for evaluating and covering the design space during
early design development. Integration, the VLSI Journal, 38(2), 2004.

[4] Open SystemC Initiative. http://www.systemc.org.

[5] Synopsys Inc. http://www.synopsys.com.

[6] CoWare Inc. http://www.coware.com.

[7] T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat, and
M. Antweiler. SDR Baseband Processing Portability: A Case Study.
In SDR’08, Washington, D.C., USA, October 2008.

[8] G. Schirner, A. Gerstlauer, and R. Domer. Abstract, Multifaceted Mod-
eling of Embedded Processors for System Level Design. In Proc. Asia
and South Pacific Design Automation Conference ASP-DAC ’07, pages
384–389, 2007.

[9] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, and A.A. Jerraya.
Using abstract CPU subsystem simulation model for high level HW/SW
architecture exploration. In Proc. Asia and South Pacific Design Automa-
tion Conference the ASP-DAC 2005, pages 969–972, 2005.

[10] A. Gerstlauer, Haobo Yu, and D.D. Gajski. RTOS modeling for system
level design. In Proc. Design, Automation and Test in Europe Conference
and Exhibition, pages 130–135, 2003.

[11] D. Piergentili and D. Coupe. ESL Methods for Optimizing a Multi-media
Phone Chip. EDA DesignLine, May 2008.

[12] K. Richter, M. Jersak, and R. Ernst. A Formal Approach to MpSoC
Performance Verification. Computer, 36(4):60–67, 2003.

[13] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse.
System architecture evaluation using modular performance analysis: a
case study. International Journal on Software Tools for Technology
Transfer (STTT), 8(6):649–667, November 2006.

[14] P. Ienne. Analytical Models of Communication for MPSoCs. In MP-

SoC’08, June 2008.

[15] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a survey.
ACM Comput. Surv., 29(2):128–170, 1997.

[16] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. A design frame-
work to efficiently explore energy-delay tradeoffs. In Proc. Ninth Inter-

national Symposium on Hardware/Software Codesign CODES’01, 2001.

[17] T.D. Givargis, J. Henkel, and F. Vahid. Interface and cache power explo-
ration for core-based embedded system design. In IEEE/ACM Interna-
tional Conference on Proc. Digest of Technical Papers Computer-Aided

Design 1999, pages 270–273, 1999.

[18] K. Lahiri, K. Lahiri, A. Raghunathan, and S. Dey. Performance analysis
of systems with multi-channel communication architectures. In Proc.

Thirteenth International Conference on VLSI Design, 2000.

[19] T. Wolf and M.A. Franklin. Performance models for network processor
design. 17(6):548–561, 2006.

[20] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[21] The MathWorks Inc. MATLAB. http://www.mathworks.com/.

[22] Texas Instrument. DSP Libraries for TMS320C64x and TMS320C55x.
http://www.ti.com/.

[23] Texas Instruments. TMS320C645x DSP Viterbi-Decoder Coprocessor 2
Reference Guide. http://www.ti.com/litv/pdf/spru972, April 2006.

286

Improved-quality Real-time Stereo Vision Processor

Sang-Kyo Han1, SeongHoon Woo2, Mun-Ho Jeong2, Bum-Jae You2

1University of Maryland, College Park, MD, U.S.A
sangkyo@umd.edu

2Korea Institute of Science and Technology, Seoul, South Korea
mhjeong@kist.re.kr

Abstract

This paper presents a stereo vision processor with
the form of ASIC that achieves enhanced quality depth
maps and real-time performance. Our vision processor
can be used broadly in practical applications. To
improve depth map quality, pre- and post-processing
units are adopted, and SFRs (Special Function
Registers) are assigned to vision parameters for
controllable quality. To meet real-time requirements,
the stereo vision system is implemented on hardware
using sophisticated design. We integrate image
rectification, bilateral filtering, depth estimator and
left-right consistency check blocks on a single silicon
chip. This processor is fabricated in a 0.18-um
standard CMOS technology, and can operate at
120MHz clock frequency achieving over 140 frames/s
depth maps with 320 by 240 image size and 64
disparity levels. The system exploits 8-bit sub-pixel
disparities for depth accuracy, and shows the
throughput over 707 million PDS, which is better than
results of any published work. The unrectified and
unfiltered images taken at real environment are used
as test inputs for performance and quality evaluation.
Comparisons with previous ASIC implementations are
presented to verify the improvement of this task.

1. Introduction

Stereo vision can produce depth information from
two or more images taken on slightly different
positions. The advantage over prevalent distance
measurement devices like ultrasonic or laser
equipments is that a complete scene is captured at
once, yielding a contact-free acquisition of the spatial
impression [1]. Therefore, stereo vision has potential
uses in autonomous navigation, object recognition and
surveillance systems, providing much more detailed
information than devices based on wave reflection. For
these applications, stereo vision should provide real-

time performance and high quality depth (or disparity)
map.

However, since to establish the correspondence
between a pair of images has the computational
complexity, this requires high performance for stereo
matching. Moreover, a matching method affects on the
quality of disparity map. Thus, various matching
algorithms have been devised, and they can be
classified into the area-based, the feature-based and the
phase-based types. At the area-based approach, the
correspondence between image points is solved by
matching image intensity patterns. The feature-based
method is first to detect edges and then to seek matches
between these edges' intersections. The resulting maps
are not as detailed as the area-based type to calculate
the depth for every pixel. It is also ineffective in image
regions without edges. At the phase-based algorithm,
the depth is proportional to the phase displacement due
to transform of the images using FFT (Fast Fourier
Transform).

Recently, to meet the real-time requirement, these
algorithms have been implemented on hardware
instead of software. [2], [4] and [6] employed the area-
based approaches such as dynamic programming, SAD
(Sum of Absolute Differences) algorithm and Census
transform, respectively, for stereo matching on FPGAs.
[3] and [5] configured an FPGA-based stereo system
using the phased-based method. Besides, stereo vision
processors with the form of ASICs have been reported
[1][7][12][13]. However, further improvement and
development are required for vision to be ubiquitously
used in practical applications.

Our research aims to develop high quality and real-
time stereo vision processor on an ASIC, which can be
used broadly in consumer products. We integrate the
depth estimator based on SAD algorithm, pre- (image
rectification, bilateral filtering) and post-processing
(consistency check and more) units on a single silicon
chip using a 0.18-um CMOS standard cell library. This
processor can run at 120MHz clock frequency,

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.89

287

achieving over 140 fps dense depth maps with image
size of 320*240 and 8-bit sub-pixel disparities. Our
processor has the following advances different with
previous stereo vision hardware.

First of all, image rectification, one of the pre-
processing steps, is integrated on an ASIC to solve
matching problem more efficiently. Rectification is to
transform the images so that the epipolar lines are
aligned horizontally, and thus simplifies stereo
matching from a 2-D area search to a 1-D search along
the epipolar line. In case of arbitrary placement of
camera, (which is common), the epipolar line is
skewed and the 1-D search will be ineffective [9].
Therefore, rectification is indispensable for stereo
vision to be applicable to real world. In general, image
rectification requires first camera calibration that
obtains the intrinsic and the extrinsic parameters of
camera. We find the homography matrix (H) from
these parameters and apply it to unrectified images.

Secondly, we adopt the bilateral filtering [10] as
another pre-processing step to improve the accuracy.
Image filtering is obviously necessary for preserving
the signal details while removing the noise [8]. In
addition, any stereo algorithm should compensate for
photometric variations between the cameras of the
stereo rig [11]. It has been verified that the bilateral
filter is suitable for these goals. Considered the real-
time requirement, conventional filters with iterative
property in algorithm are not adequate to vision
applications.

Finally, this processor provides the consumer with
adjustability and flexibility. Vision parameters which
have impacts on the depth map quality are assigned to
SFRs (Special Function Registers). Thus, users can
control the quality of depth images. By parameter
setting, output from each block can be easily adjusted.

This paper is organized as follows. Section 2 deals
with backgrounds of stereo matching based on SAD,
pre- and post-processing. In section 3, the architecture
of vision processor and its operations are described in
detail. Section 4 evaluates the quality of disparity map
in real environment, discusses on chip performance
and presents comparison data with previous works.
Concluding remarks can be found in Section 5.

2. Backgrounds

A. Stereo matching based on SAD

Figure 1 shows the basic geometry of the parallel
camera at which rectified images come out. The

x
),(11 yxA),(22 yxB

leftO rightO

y

Figure 1. Basic geometry of stereo vision

baseline (T) denotes a line connecting the centers of
two lenses, and the focal length (f) means a distance
from a center of lens to image plane. When one point P
on 3-D object is projected onto two image planes by
perspective projection, two points indicate A and B,
respectively. The pixel B onto which P is projected in
right image is called the corresponding pixel of A. A
plane through the baseline and point P is termed an
epipolar plane, and the two straight-line intersections
of an epipolar plane with the two image planes are
called epipolar lines. Due to y1 = y2, each point in one
image must be observed in the other image on a known
epipolar line, which is the epipolar constraint. Suppose
that the window size on each image is M ×N, every
number in the matrix indicates a pixel of the window.
The disparity (d) denotes a distance between the
centers of two windows. The SAD algorithm is one of
the area-based approaches and defined as

SAD(x, y, d) =

∑ ∑
−

−−=

−

−−=

+++−++
2

1

2
1

2
1

2
1

|),(),(|

M

Mu

N

Nv

RL vyduxIvyuxI (1)

SAD becomes 0 in case of exact matching of two
windows.

B. Image rectification

At the previous section it is assumed that two
images were already rectified, but this is not realistic.
As a pre-processing step of stereo matching, image
rectification is an essential operation to simplify the
correspondence problem. The task transforms the
images so that the epipolar lines are aligned

288

horizontally. In this case the stereo matching can easily
take advantage of the epipolar constraint, and the
search area is reduced from two dimensional to one
dimensional horizontal line. Given a pair of images
with general epipolar geometry, rectification exploits
the homography matrices with one per image.
However, since an arbitrary arrangement of cameras
makes the epipolar line be skewed, to obtain a proper
homography generally needs camera parameters that
can be known by calibration. Although stereo rigs are
highly analogous each other, its cameras don’t usually
have same intrinsic and extrinsic parameters, which
means different H matrix each rig. Therefore, in order
to use effectively vision systems, the homography
matrix should be able to be adjusted according to
stereo system. In addition, the radial distortion of lens
should be considered at rectification step. To meet the
requirements, we assign the homography matrix and
radial distortion parameters to SFRs on vision
processor.

C. Bilateral filtering

Toward improved stereo vision, a filtering that
does not blur across range discontinuities and
compensates for photometric variations between a pair
of cameras takes an important position. A conventional
filtering with an iterative property conflicts with the
real-time requirement. Recently, C. Tomasi and R.
Manduchi [10] proposed an alternative non-iterative
bilateral filter. This is a weighted average of the local
neighborhood samples, where the weights are
computed based on temporal (or spatial in case of
images) and radiometric distances between the center
sample and its neighbors. In [11], Ansar suggested a
novel approach incorporating a bilateral filtering into a
background subtraction step, and verified that it is
superior to conventional methods such as Laplacian
filtering, DoG (Difference of Gaussians) filtering,
Rank and Census Filtering. We adopt the bilateral
filtering as another pre-processing stage, and the
following describes its algorithm. Typical background
subtraction method is composed of a low-pass filtering
and a subtraction of the low-filtered image from an
original image as follows;

)(arg elGIII σ∗−=′ (2)

where I is an original image,)(arg elG σ is a Gaussian

mask with a variance el argσ . In Ansar’s approach, the
low-pass filtering with a Gaussian mask is replaced
with a bilateral filtering, which computes the weighted

average of the pixels with the weights depending on
both the spatial and intensity difference between the
central pixel and its neighbors [11]. The filter returns

)(xB at x in I as follows;

∑
∑

Ω∈

Ω∈=

ξ

ξ

ξξξ

ξξξξ

dxIIsxc

dxIIsxcI
xB

))(),((),(

))(),((),()(
)((3)

where Ω is the filter support,)(xI is the intensity
at x , and c and s are the weight functions defined as

))(
2
1exp(),(2

d

x
xc

σ
ξ

ξ
−

−= (4)

))
)()(

(
2
1exp())(),((2

r

xII
xIIs

σ
ξ

ξ
−

−= (5)

where dσ and rσ are the standard deviations of the
spatial component and the intensity component,
respectively. Finally, the filtered output is obtained as

BII −=′ (6)

D. Left-right consistency check

Since stereo images are taken from a different
position, there are areas that are visible to one camera
only. This is because protruded objects hide objects in
the background. This is called occlusion effect and
results in unmatched points. This problem can be
overcame by left-right consistency check, in which
stereo matching is performed twice from left to right
(LR) and from right to left (RL). Matched points are
confirmed only when the minimum disparity of LR
matching is very close to that of RL matching. In our
system, when the difference of minimum disparities
between two matches comes within a threshold value,
the pixel is finally recognized as a matched point. High
threshold increases the number of candidates of
matching points while the accuracy of depth map
decreases. On the contrary, low threshold decreases the
number of candidates and even some of points can be
left unmatched. Therefore, the adjustable threshold
disparity value like our processor will be one effective
way to generate reliable disparity maps.

3. ASIC Architecture

A. Top level architecture

289

Figure 2 shows the top level architecture of our
stereo vision processor with the form of ASIC. CIS
Interface, Image Rectification, Bilateral Filtering,
Depth Estimator, Interface Block and SFRs are
integrated on a single silicon chip. A pair of CMOS
Image Sensor (CIS) cameras composes of a stereo
camera. Through CIS Interface, input images of
320*240 sizes from cameras transfer to Image
Rectification in which images are rectified using the
homography matrix. In Depth Estimator, bilateral
filtered images are processed to extract disparity maps
with 3-D information. Interface Block delivers dense
depth maps with 8-bit sub-pixel disparities to user’s
machine, and receives user’s values to set SFRs. The
followings are parameters assigned to SFRs:
homography matrix, radial distortion of lens, threshold
disparity value and so on.

Figure 2. Top level architecture of stereo
vision processor

B. Image rectification block

Figure 3 presents the diagram of image
rectification block. The diagram incorporates image
rectification and compensation of radial distortion.
Frame Buffer stores images from CIS Interface, and
provides pixel addresses and data to other blocks.
Matrix Calculation block generates the address of
transformed pixel using the homography matrix from
SFR, and delivers it to Radial Distortion block that
offsets radial distortion of lens. With results of two
computations, New Pixel Generator produces the
address of new pixel, and then fetches 4 pixels data
including its neighbors from Frame Buffer. Finally, a
rectified image comes out after interpolation based on
4 pixels. Notice that computations are mainly
composed of findings of address because rectification
is a mapping of pixel onto a new location.

Figure 3. Block diagram of image rectification

C. Bilateral filtering block

Figure 4 describes the block diagram of bilateral
filtering. We adopted 11*11 bilateral background
subtraction with dσ =3.7, rσ =30 in (4) and (5),
respectively. In order to filter one pixel, 11*11 pixels
are required and they are stored at vertical buffers.
Weight calculation block finds weights depending on
both the spatial and intensity difference between the
central pixel and its neighbors. The spatial and
intensity difference values are stored at each table with
121 levels and 256 levels, respectively. ABS block
calculates absolute difference between weighted
average and original image pixel value, that is,

BII −=′ in (6). [8] deals with more details about the
architecture below.

Figure 4. Block diagram of bilateral filtering

D. Depth estimator block

Figure 5 shows the block diagram of depth
estimator with left-right consistency check. In LR SAD
block, a window with the size of 11*11 around
candidate pixel is taken at each image along epipolar

290

lines, and then SAD is computed at the condition of
fixed left window and moving right window by 64
disparity levels. This computation is performed for
every pixel at right image. RL SAD block also
performs same tasks except fixed right window and
moving left window. Local Minima block enhances the
disparity accuracy. This unit finds the disparity to have
minimum SAD satisfying local minimum among 3
neighboring SAD values, which are also used at Sub-
pixel Processing block. In Consistency Check block,
minimum disparity from Local Minima is compared
with disparity from RL SAD. If the difference falls
within a threshold value, matching is successful.

 Figure 5. Block diagram of depth estimator

4. Results and Discussion

The stereo vision processor described in this paper
generates 320 by 240 depth images with 64 disparity
levels based on 8-bit sub-pixel processing. At the
120MHz operating clock frequency, a dense disparity
map can be produced at the rate of 144 frames/s. The
design integrates image rectification, bilateral filtering,
depth estimator with LR check and more on a single
silicon chip that is fabricated using 0.18um CMOS
technology. In Table 1, the performance and
specifications of our system are compared with
previous works based on ASIC implementation. From
listed processors, we can say that presented design not
only achieves better performance, but is the improved
system at overall aspects. Especially, a high disparity
level is remarkable because it has an important role at
system quality. Besides, to integrate rectification block
and to adopt SFRs for quality control are unique tasks.

To measure the throughput of presented vision
system, we apply one common comparison metric,
which is the PDS (Points times Disparity per Second).
From a simple calculation (320*240*144*64), the
processor achieves about 707 million PDS that is better
result than any published work [1][2][14][15]. We
verify the design with input images taken at real world.
As shown in Figure 6 (a) and (b), unrectified and
unfiltered stereo images are used as left-right test
inputs. Two images are skewed each other within 5
pixels. Note that right image is a little obscure due to

photometric or geometric variations of right camera,
which can be occurred in every stereo rig. Figure 6 (c)
and (d) are rectified images, where red straight lines
are used to mark the difference of y-coordinates after
rectification. We could find that bilateral filtering
operates as an edge-preserving smoother in Figure 6
(e) and (f). Figure 6 (g) is the depth map extracted
from filtered images, and closer objects have more
intensity in our system. At the object boundary,
disparity data is blurred a little bit. However, this is
mainly because the processor was designed to
invalidate uncertain matches. In order to reduce errors,
it is considered that to invalidate uncertain matches is
better as long as correct matches are not invalidated
radically [16].

(a) input left image (b) input right image

 (c) rectified left image (d) rectified right image

 (e) filtered left image (f) filtered right image

 (g) depth map image

Figure 6. Output images from real inputs

5. Conclusions

We have presented a stereo vision processor
extracting disparity images with improved quality in
real-time. For stereo vision to be ubiquitously used in
practical applications, the system was fabricated on

291

ASIC form. By integrating pre- and post-processing
units on a single chip, improved depth maps with the
size of 320*240 are generated with the speed of 144
fps. It makes for vision parameters to be assigned to
SFRs the quality of depth map controllable. The
processor achieves significantly high throughput over
707 million PDS and provides 8-bit sub-pixel
disparities.

Acknowledgement
This work was supported by the IT R&D program of
MKE/IITA, 2006-S-028-01, Development of
Cooperative Network-based Humanoids Technology.

Table 1. Comparison of ASIC implementations

 [7] (2002) [1] (2004) [13] (2004) [12] (2006) Ours

Technology 0.25um 0.25um 0.18um 0.18um 0.18um
Clock Freq. 100MHz 75MHz 125MHz 100MHz 120MHz
Performance -

(80GOPS)
50fps 10fps 1000fps

(estimated)
144fps

(707M PDS)
Image Size 512*480 256*192 320*240 32*32 320*240

Disparity Levels N/A 25 N/A N/A 64
Rectification Without Without Without Without Integrated
Image Filter Filter Median Filter Without Without Bilateral Filter

Stereo Algorithm SAD SSD & Census SAD SAD SAD
Post-processing LR Check LR Check Without Without LR Check
Other Feature Motion Estimator - - - SFRs

6. References

[1] M. Kuhn et al., “Efficient ASIC Implementation of a

Real-time Depth Mapping Stereo Vision System”,
Circuits and Systems, Proceedings of the 46th IEEE
International Midwest Symposium on Volume 3, 27-30
Dec. 2003 Page(s):1478 - 1481.

[2] S. Park and H. Jeong, “Real-time Stereo Vision FPGA
Chip with Low Error Rate”, Multimedia and Ubiquitous
Engineering, International Conference on, 26-28 April
2007 Page(s):751 – 756.

[3] Divyang K. Masrani and W. James MacLean, “A Real-
Time Large Disparity Range Stereo System using
FPGAs”, Computer Vision Systems, IEEE International
Conference on, Publication Date: 04-07 Jan. 2006
page(s): 13- 13.

[4] M. Hariyama et al., “FPGA implementation of a stereo
matching processor based on window-parallel-and-
pixel-parallel architecture”, IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, Volume E88-A, Issue 12, Dec 2005,
Page(s):3516-3522.

[5] A. Darabiha, J. Rose and W.J. MacLean, “Video-Rate
Stereo Depth Measurement on Programmable
Hardware”, Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, Volume 1, 18-
20 June 2003 Page(s):I-203 - I-210.

[6] J. Woodfill and B.V. Herzen, “Real-Time Stereo Vision
on the PARTS Reconfigurable Computer”, Proceedings
of the 5th IEEE Symposium on FPGA-Based Custom
Computing Machines, Page(s):201, 1997.

[7] P.J.Burt, “A pyramid-based front-end processor for
dynamic vision applications”, Proceedings of the IEEE,
July 2002, Volume: 90, Page(s): 1188-1200.

[8] Sang-Kyo Han et al., “Architecture and Implementation
of Real-Time Stereo Vision with Bilateral Background
Subtraction”, Lecture Notes in Computer Science, 2007,
Volume: 4681, Page(s): 906-912.

[9] H.-H.P. Wu et al., “Projective rectification based on
relative modification and size extension for stereo image
pairs”, IEE Proc. Image Signal Processing, Oct 2005,
Volume: 152, Page(s):623-633.

[10] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images”, in Proc. IEEE Intl. Conf. Computer
Vision, 1998, pp. 839-846.

[11] Adnan Ansar, Andres Castano and Larry Matthies,
“Enhanced Real-time Stereo Using Bilateral Filtering”,
in Proc. Intl. Symp. on 3D Data Processing,
Visualization, and Transmission, 2004, Page(s):455-462.

[12] Masanori Hariyama et al., “1000 frame-sec Stereo
Matching VLSI Processor with Adaptive Window-Size
Control”, Solid-State Circuits Conference, 2006.
ASSCC 2006. IEEE Asian, Page(s):123 – 126.

[13] Masanori Hariyama et al., “VLSI processor for reliable
stereo matching based on window-parallel logic-in-
memory architecture”, VLSI Circuits, 2004. Digest of
Technical Papers. 2004 Symposium on, Page(s):166 -
169.

[14] Divyang K. Masrani and W. Janes MacLean, “A Real-
Time Large Disparity Range Stereo-System using
FPGAs”, Computer Vision Systems, 2006 ICVS '06.
IEEE International Conference on, Page(s): 13- 13.

[15] Javier Diaz et al., “High Performance Stereo
Computation Architecture”, Field Programmable Logic
and Applications, 2005. International Conference on,
2005, Page(s): 463-468.

[16] Heiko Hirschmuller, “Improvements in Real-time
Correlation-Based Stereo Vision”, Proceedings of the
IEEE Workshop on Stereo and Multi-Baseline Vision
(SMBV'01). Page(s): 141.

292

Session 5A

SRAM and Random Number
Generation

A 7T/14T Dependable SRAM and Its Array Structure to Avoid Half Selection

Hidehiro Fujiwara, Shunsuke Okumura, Yusuke Iguchi, Hiroki Noguchi, Hiroshi Kawaguchi,
and Masahiko Yoshimoto

Graduate school of Engineering Kobe University, Kobe, Japan
fujiwara@cs28.cs.kobe-u.ac.jp

Abstract

We propose a novel dependable SRAM with 7T cells
and their array structure that avoids a half-selection
problem. In addition, we introduce a new concept,
“quality of a bit (QoB)” for it. The dependable SRAM
has three modes (normal mode, high-speed mode, and
dependable mode), and dynamically scales its
reliability and speed by combining two memory cells
for one-bit information (i.e. 14T/bit). Monte Carlo
simulation demonstrates that, in a 65-nm process
technology, the minimum voltages in read and write
operations are improved by 0.20V and 0.26V,
respectively, with a bit error rate of 10-8 kept. The cell
area overhead is 11%, compared to the conventional
6T cell in the normal mode.

1. Introduction

Recently, they have paid attention to dependable
computing systems, as silicon LSIs support massive
infrastructure in society. However, the advanced
process technology tends to cause accidental errors like
a soft error and negative bias temperature instability
(NBTI), more frequently. In addition, there might be
some errors left in a design, manufacturing, or test
phase. It is supposed to be almost impossible to
perfectly eliminate these human-induced errors in a
future complicated LSI. That is, a product will be
shipped with some errors, and accidentally malfunction.
We no longer expect error-free LSIs with sufficient
operating margins.

Since reliability is varied with operating conditions
(speed, supply voltage, temperature, and even altitude
corresponding to a soft error), it is desirable to
dynamically improve the reliability on worse
conditions. Furthermore, required reliability depends
on an application software, which indicates that the
reliability should be changed in accordance with the
application.

Considering this background, we propose an
SRAM that can dynamically control its reliability. An
SRAM has recently dominated operating margins of a
chip due to a large number of transistors [1-7]. Other
than the reliability, the proposed SRAM also achieves
fast operation and/or low-poer operation, with the same
reliability kept as the conventional SRAM. Namely,
the proposed SRAM can change quality of its
information, in terms of reliability, speed, and/or
power.

In the next section, we describe the overview of the
proposed SRAM. In Section 3, we propose a novel 7T
memory cells to dynamically improve the quality of
information, and introduce a new concept called
“quality of a bit” (QoB). In Section 4, we discuss the
reliability of the proposed memory cell, from view
points of a cell current and a bit error rate. In Section 5,
we mention the new cell array structure for the
proposed SRAM to avoid the half-selection problem.
The final section summarizes this paper.

2. Dependable SRAM: Overview

Operating conditions affect reliability of an SRAM,
while the reliability depends on an application software
that uses the SRAM. An encryption program and a
screen saver program demand different levels of
reliability. This means that the reliability is changed by
the operating conditions, and is dependent on the
application.

In our proposed dependable SRAM, reliability and
speed of an SRAM can be dynamically changed on a
block-by-block basis, as illustrated in Figure 1. In the
normal mode (Blocks 0-3), assignment is as usual as
one memory cell has one bit. On the other hand, in the
dependable or high-speed mode (Blocks 4 and 5), one-
bit information is stored in two memory cells by
combining a pair of memory cells. This mechanism
selectively realizes the high reliability or high speed,
while the memory capacity becomes a half in these
modes.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.54

295

MC MC

MC MC

1bit

Normal mode
Dependable mode
or high-speed mode

MC MC

MC MC

Block
0

Block
1

Block
2

Block
3

Block
4

Block
5

MC: memory cell

Figure 1. Dependable SRAM.

However, this dynamic switching between the

typical dependability and high dependability opens up
new resource allocation in an SRAM. For instance, an
operating system (OS) can allocate an encryption
program to the high-dependability block. An
application software can also change the reliability of
its data by system call. Encryption data or personal
information should be in the high-dependability block.
If memory utilization of programs and data is 50% or
less, the high-dependability mode can be aggressively
exploited by the OS, without the memory-capacity
overhead. A small code with small data always runs in
the high-dependability mode.

In the next section, we explain how to achieve the
proposed dependable SRAM on the circuit level.

3. Dependable Memory Cell and the
Concept of the Quality of a Bit (QoB)

Figure 2 depicts the proposed 7T cell (14T for two
cells). Two pMOSes are added to internal nodes (“N00
and N10”, “N01 and N11”) in a pair of the
conventional 6T memory cells shown in Figure 3.

3.1. Normal Mode

If the additional transistors are turned off (/CTRL =

“H”), the 7T cell acts as the conventional 6T cell. This
is called “a normal mode” in this paper.

WL[0]

WL[1]

BL /BL

/CTRL

N00 N01

N11N10

M00 M01

M02 M03

M04 M05

M10 M11

M12 M13
M14 M15

M20 M21

(a)

WLA[0]

WLB[0]

WLB[1]

WLA[1]

/CTRL

VD
D

B
LB

[0
]

B
LA

[0
]

G
N

D

/B
LA

[0
]

/B
LB

[0
]

VD
D

(b)

M01M00 M02 M03

M04 M05

M15M14

M10 M11

M20

M12 M13

1.
20

 µ
m

2.16 µm

M21

Figure 2. Proposed 7T memory cell:

(a) schematic and (b) layout.

WL[0]

WL[1]

BL /BL

/CTRL

N00 N01

N11N10

M00 M01

M02 M03

M04 M05

M10 M11

M12 M13
M14 M15

(a)

M00M02

M01 M03M04

M05

M11

M10M12

M13

M15

M14

WL[0]

WL[1]

G
N

D

B
L

VD
D

/B
L

G
N

D

1.
20

 µ
m

1.94 µm
(b)

Figure 3. Conventional 6T memory cell:
(a) schematic and (b) layout.

296

3.2. High-Speed Mode

Alternatively, if the additional transistors are turned

on (/CTRL = “L”), and the internal nodes are shared by
the pair of memory cell. The high speed is achieved
when both WL[0] and WL[1] are driven, which
enables a faster readout.

3.3. Dependable Mode

The most significant usage of the proposed 7T

memory cell is the dependable mode. The additional
transistors are activated, but either WL[0] or WL[1] is
asserted. Thus, only one word line is asserted. By
doing so, a larger β ratio and static noise margin can be
obtained because the dependable mode has two access
transistor but four drive transistors in a memory cell.

3.4. Quality of a Bit

As mentioned above, we have three modes in the
proposed 7T memory cell. Table 1 summarizes these
modes. In the normal mode, one-bit datum is stored in
one memory cell, which is the most area-efficient. In
the high-speed mode and dependable mode, one-bit
datum is stored in two memory cells although the
quality of the information is different from the typical
mode. The “higher-speed” or “more dependable”
information can be obtained. We call this concept
“quality of a bit (QoB)”. The quality of the information
is scalable in our proposed memory cell.

Table 1. Three modes in 7T memory cell.

“L” (on)12 (14T/bit)Dependable

“L” (on)22 (14T/bit)High-speed

“H” (off)11 (7T/bit)Normal

/CTRL# of WL drives# of MCs
comprising 1 bit

4. Dependability Simulation

In this section, we discuss the dependability of our
proposed memory cell from view points of a cell
current and a bit error rate.

4.1. Cell Current

Figure 4 exhibits the distributions of the cell
currents in the conventional 6T cell and proposed high-
speed cell (SS corner, VDD=1.0V, high temp.). The
worst case cell current in the high-speed mode is
increased by 133%. Statistically, it is very unlikely that

two memory cells are both the worst, which is the
reason why the cell current is more than double.

Figure 5 compares their worst-case bitline delays
(SS corner, VDD = 1.0V, high temp.) in the read
operation. The bitline delay is defined as a period from
a time at which a WL rises to VDD/2 to a time at
which a differential voltage between BL and /BL is
expanded to 100 mV. The worst-case bitline delay time
is improved by 53% in the high-speed mode.

Furthermore, the high-speed mode has higher
tolerance of bitline leakage, thanks to the on current
improvement [3-5].

0

2000

4000

6000

8000

20 40 60 80 100 120

65-nm process, SS corner
VDD=1.0V, Temp. = 125 °C

of Monte Carlo: 20000

33.6
(worst)

78.4
(worst)

133%

47.2
(average)

94.4
(average)

Conv.(6T)
High-speed (14T)

Cell current (nA)

of

 b
its

Figure 4. Cell current distributions in the

conventional 6T cell and proposed high-speed
cell.

0

1.0
0.9

0

1.0
0.9

0 0.2 0.4 0.6 0.8
Time (ns)

Vo
lta

ge
 (V

)
Vo

lta
ge

 (V
)

0.5

0.5

0.08 ns

0.17 ns

53%
BL
WL

BL
WL

(a)

(b)

65-nm process, SS corner, VDD = 1.0V, Temp. = 125 ºC, # of Monte Carlo: 20000

Figure 5. The worst case bitline delay

simulation: (a) conventional and (b) proposed
high-speed cell.

297

4.2. Bit Error Rate (BER)

Figure 6 shows comparisons of static noise margins
(SNMs) and write trip points (WTPs) between the
proposed and conventional memory cells [6-7]. The
number of Monte Carlo simulation sample is 2,000.
SNMs and WTPs of the proposed memory cells are in
the dependable mode and the high-speed mode,
respectively. The proposed memory cell has larger
operating margins compared with the conventional one.
Respective improvement of the worst case SNM and
WTP are 40 mV and 60 mV.

0.2

0.3

0.4

0.5

0.1 0.2 0.3
SNM (V)

W
TP

 (V
)

Conv.(6T)

Prop.(14T)

65-nm process
TT corner
VDD = 1.0 V
Temp. = 25 °C

40 mV 60 mV

of Monte Carlo = 2000

Figure 6. Static noise margins (SNMs) and

Write trip points (WNMs).

Figure 7 (a) illustrates a bit error rate (BER) in the
read operation [8-9]. The dependable mode works fine
below 0.62 V with a BER of 10-8 kept even in the
worst-case condition (FS corner, high temp.). The
minimum operating voltage and BER are improved by
0.20 V and 4.0 x 10-5, compared with the normal mode.
The dependable mode is the most reliable in the read
operation.

Figure 7 (b) is a BER in the write operation (worst-
case condition: FS corner, low temp.). The dependable
mode is inappropriate because the conductance of the
access transistor is not sufficient. Instead, in the write
operation, the high-speed mode should be exploited
even in the usage of the dependable mode. In the high-
speed mode, the conductance of the access transistors
is doubled, and variation is suppressed. Thereby, the
write margin becomes larger. The proposed memory
cell functions at 0.69 V with a BER of 10-8 kept. The
minimum operating voltage and BER are improved by
0.26 V and 3.2 x 10-3, compared with the normal mode.

Furthermore, the high-speed and dependable modes
sustain lower retention voltages, as illustrated in Figure
7 (c). This is because a retention voltage in a memory
cell is averaged each other by the additional transistors.

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

VDD (V)

B
ER

65-nm process, FS corner
Temp. = 125 °C

of Monte Carlo: 20000

0.62V

4.0x10−5

0.82V
0.20V

(a)

Conv. (6T)
Normal (7T)
High-speed (14T)
Dependable (14T)

(b)

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

VDD (V)
B

ER

0.69V
0.95V

0.26V

3.2x10−4

65-nm process, SF corner
Temp. = −40 °C

of Monte Carlo: 20000

Conv. (6T)
Normal (7T)
High-speed (14T)
Dependable (14T)

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

B
ER

VDD (V)
0.1 0.2 0.3 0.4 0.5

65-nm process, FS corner
Temp. = 125 °C

of Monte Carlo: 20000

(c)

0.33V 0.38V50mV

1.0x10−3

Conv. (6T)
Normal (7T)
High-speed (14T)
Dependable (14T)

Figure 7. Bit error rates (BERs): (a) read

operation, (b) write operation, and (c) retention.

Figure 8 compares the standby leakage powers
between the conventional and proposed cells at the
minimum operating voltages [10]. The 14T cell lowers
the leakage power by 61% and 32% per cell in the
typical and worst-case conditions, respectively. In
particular, the gate leakage is decreased by more than
75%. This indicates that, even if one bit is stored in a
memory cell pair, the 14T cell pair has a less leakage
than one 6T cell in the typical condition. As well, the
proposed memory cell mitigates the NBTI due to its
low-voltage operation.

298

0

1

2

6T cell
(VDD = 0.95V)

14T cell
(VDD = 0.69V)

St
an

db
y

le
ak

ag
e

 p
ow

er
 (n

W
/c

el
l)

(a)

6T cell
(VDD = 0.95V)

14T cell
(VDD = 0.69V)

(b)

65-nm process , TT corner
Temp. = 25 °C

61%

Gate leakage Subthreshold leakage

0

10

20

30

40

50

32%

65-nm process , FF corner
Temp. = 125 °C

St
an

db
y

le
ak

ag
e

 p
ow

er
 (n

W
/c

el
l)

Figure 8. Standby leakage power per cell: (a)

TT corner, 25 °Cand (b) FF corner, 125 °C.

1.0E-09

1.0E-08
1.0E-07

1.0E-06
1.0E-05

1.0E-04
1.0E-03

1.0E-02
1.0E-01

1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VDD (V)

B
ER

65-nm process, FS corner, Temp. = 125 °C, # of Monte Carlo: 20000

Conv. (6T)
6T with ECC
6T with MMR
Dependable (14TP)

Figure 9. Comparison of BERs among the

conventional methods and 14TP dependable
mode.

Figure 9 illustrates the comparison of BERs among

the error correction code (ECC), the multi-module
redundancy (MMR) and proposed dependable mode, in
the read operation. The proposed memory cell achieves
the best BER.

In the proposed dependable SRAM, we can select
an appropriate mode, in terms of area overhead, speed
or dependability. The proposed SRAM is also suitable
to fine-grain dynamic voltage scaling (DVS) for low-
power operation because it works in a low-VDD region.

5. Design in 65-nm Process Technology

The proposed SRAM possibly incurs the half-
selection problem [11]. Two wordlines in a memory
cell pair have to be activated in the write operation,
which might cause unexpected flips in unselected
memory cells. Figure 10 portrays the situation.
Although only the selected pair needs to be written in,
the neighbors are half-selected. Unfortunately, the
static noise margin in the half-selected pairs is as much
as the high-speed mode, which is smaller than the
dependable mode.

WL[2n]

WL[2n+1]

WL[2(n+1)]

WL[2(n+1)+1]

BL
[0

]

/B
L[

0]

BL
[1

]

/B
L[

1]

/B
L[

2]

BL
[2

]

Selected pairHalf-selected pairs

“H”

“H”

Pair of MCs

On transistor

/CTRL

/CTRL

Figure 10. Conventional memory cell array

structure with half-selection problem

WLA[2n]
WLB[2n]

WLA[2n+1]
WLB[2n+1]

WLA[2(n+1)]
WLB[2(n+1)]

WLA[2(n+1)+1]
WLB[2(n+1)+1]

B
LB

[0
]

B
LA

[0
]

/B
LA

[0
]

/B
LB

[0
]

B
LB

[1
]

B
LA

[1
]

/B
LA

[1
]

/B
LB

[1
]

/B
LA

[2
]

/B
LB

[2
]

B
LB

[2
]

B
LA

[2
]

“H”

“H”

Selected pair

(a)

Pair of MCs

On transistor

/CTRL

/CTRL

(b)

WLBWLBWLAWLAWLBWLBWLAWLAWL[2(n+1)+1]

WLBWLBWLBWLBWLAWLAWLAWLAWL[2(n+1)]

WLBWLBWLAWLAWLBWLBWLAWLAWL[2n+1]

WLBWLBWLBWLBWLAWLAWLAWLAWL[2n]

BL[7]BL[6]BL[5]BL[4]BL[3]BL[2]BL[1]BL[0]

Figure 11. Proposed memory cell array: (a)
memory cell array structure without half-

selection problem, and (b) wordline mapping.

To solve this problem, we adopt a new array
structure in Figure 11 (a). In every other column blocks,
we shift a memory cell pair as much as a cell height,
and introduce a wordline pair: WLA and WLB. There
is no cell area overhead paid for the wordline pair since
they are laid out on a metal-4 layer (see Figure 2 (b)).
Figure 11 (b) is wordline mapping for WLA and WLB.
When the hatched pair is selected, WLA[2n+1] and
WLA[2(n+1)] have to be asserted. This memory cell
array structure solves the half-select problem up to
eight column blocks.

299

Fig. 12 is a micrograph of a dependable 64-kb
SRAM test chip, designed and fabricated in a 65-nm
CMOS process technology.

3232--kb SRAM blockkb SRAM block
(128 rows x 8 columns x 32 bits/word)(128 rows x 8 columns x 32 bits/word)

6464--kb SRAMkb SRAM

3232--kb SRAM blockkb SRAM block
(128 rows x 8 columns x 32 bits/word)(128 rows x 8 columns x 32 bits/word)

610 µm

24
0

µm
65-nm process

Fig. 12. Chip micrograph and layout

6. Conclusion

We designed a dependable SRAM with 7T/14T
memory cells, which have three modes (normal mode,
high-speed mode, and dependable mode), in a 65-nm
process technology. The proposed SRAM can
dynamically change its speed and dependability, based
on the concept of “quality of a bit (QoB)”. By running
Monte Carlo simulation, we confirmed that the
minimum voltages in read and write operations are
improved by 0.20V and 0.26V, respectively, with a bit
error rate of 10-8 kept. In addition, we proposed the
new memory cell array structure to avoid the half-
selection problem. The proposed SRAM will open up
new memory allocation in an LSI system. Users can
change its performance, depending on reliability, speed,
supply voltage (dynamic voltage scaling: DVS),
standby power, and/or application.

Acknowledgements

This work was supported by VLSI Design and
Education Center (VDEC), the University of Tokyo in
collaboration with Cadence Design Systems, Mentor
Graphics and Synopsys, Inc.

References

 [1] International Technology Roadmap for
Semiconductors 2007
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[2] H. Pilo, J. Barwin, G. Braceras, C. Browning, S.
Burns, J. Gabric, S. Lamphier, M. Miller, A. Roberts, F.
Towler, “An SRAM Design in 65nm and 45nm Technology
Nodes Featuring Read and Write-Assist Circuits to Expand
Operating Voltage,” 2006 Symposium on VLSI Circuits
Digest of Technical Papers, pp. 15-16, June 2006.

[3] N. Verma, A. P. Chandrakasan, “A 65nm 8T Sub-
Vt SRAM Employing Sense-Amplifier Redundancy,” ISSCC
2007 Digest of Technical Paper, pp. 328-329, February 2007.

[4] T. H. Kim, J. Liu, J. Keane, C. H. Kim, “A High-
Density Subthreshold SRAM with Data-Independent Bitline
Leakage and Virtural Ground Replica Scheme,” ISSCC 2007
Digest of Technical Papers, pp. 330-331, February 2007.

[5] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy, “A
32kb 10T Subthreshold SRAM Array with Bit-Interleaving
and Differential Read Scheme in 90nm CMOS,” ISSCC 2008
Digest of Technical Papers, pp. 398-300, February 2008.

[6] E. Seevinck, F. J. List, and J. Lohstroh, “Static-
Noise Margin Analysis of MOS SRAM Cells”, IEEE JSSC,
vol. 22, no. 5, pp. 748-754, October 1987.

[7] E. Grossar, M. Stucchi, K. Maex, and W. Dehaene,
“Statistically Aware SRAM Memory Array Design,” ISQED,
pp. 25-30, March 2006.

[8] M. Yamaoka, N. Maeda, Y. Shinozaki, Y.
Shimazaki, K. Nii, S. Shimada, K. Yanagisawa, And T.
Kawahara, “90-nm process-variation adaptive embedded
SRAM modules with power-line-floating write technique,”
IEEE J. Solid-State Circuits, vol. 41. no. 3, pp. 705-711,
March 2006.

[9] Y. Morita, H. Fujiwara, H. Noguchi , K. Kawakami,
J. Miyakoshi, S. Mikami, K. Nii, H. Kawaguchi, and M.
Yoshimoto, “A Vth-Variation-Tolerant SRAM with 0.3-V
Minimum Operation Voltage for Memory-Rich SoC under
DVS Environment,” 2006 Symposium on VLSI Circuits
Digest of Technical Papers, pp. 16-17, June 2006.

[10] K. Nii, Y. Tsukamoto, T. Yoshizawa, S. Imaoka, Y.
Yamagami, T. Suzuki, A. Shibayama, H. Makino, and S.
Iwade, “A 90-nm low-power 32-kB embedded SRAM with
gate leakage suppression circuit for mobile applications,”
IEEE J. Solid-State Circuits, vol. 39. no. 4, pp. 684-693,
April 2004.

[11] H. Yamauchi, T. Suzuki, and Y. Yamagami, “A
1R/1W SRAM Cell Design to Keep Cell Current and Area
Saving against Simultaneous Read/Write Disturbed
Accesses,” IEICE Trans. Electronics, vol. E90-C, no. 4, pp.
749-757, April 2007.

300

A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant
All-Digital True Random Number Generator in 45nm CMOS
Suresh Srinivasan Suresh Srinivasan*, Sanu Mathew, Vasantha Erraguntla*, Ram Krishnamurthy

*Circuits Research Lab, Bangalore Design Lab, Intel Corporation, Bangalore, India
Circuits Research Lab, Hillsboro, OR 97124, USA

suresh.srinivasan@intel.com, sanu.k.mathew@intel.com, ram.krishnamurthy@intel.com
Krishnam

Abstract
This paper describes an all-digital on-die true random
number generator implemented in 45nm CMOS
technology, with random bit throughput of 4Gbps and
total energy consumption of 0.57pJ/bit. A 2-step tuning
mechanism enables robust operation in the presence of
up to 20% fabrication-time process variation as well as
immunity to run-time voltage and temperature
fluctuation. The 100% use of digital components
enables a compact layout occupying 1024µm2 with high
entropy/bit of 0.94, and scalable operation down to
0.5V, while passing all NIST RNG tests.

1. Introduction
High-entropy randomness is the foundation of data

encryption, secure web communications and complex
statistical analyses. Random number generators are
therefore key blocks of processor platforms,
responsible for generating secure keys in cryptography
algorithms, session-IDs in secure internet protocols,
mobile-internet-device IDs, Monte-Carlo simulations,
and various operating system protocols. The quality of
random numbers has a significant impact on the
vulnerability of security algorithms and the accuracy of
statistical simulations. Additionally, performance of
secure mail/web servers and kernel scheduling routines
is often limited by system stalls caused due to an
insufficient pool of random numbers. Therefore there is
a need for a high bit-rate high-entropy true random
number generator that can be fabricated in a digital
CMOS process with robust operation in the presence of
process, voltage and temperature (PVT) variations. An
all-digital design is motivated by the need for an on-die
scalable energy-efficient implementation that can be
easily ported to sub-32nm process technologies.

Software generated random numbers are pseudo-
random in nature due to their dependence on events
such as user-interface interrupts, page-faults, incoming
TCP/IP requests and kernel system calls. Since these
events are linked to user activity, they can be
manipulated by malicious attackers, resulting in
security loopholes [1]. True Random Number
Generators (TRNGs) on the other hand, extract entropy
from natural phenomena, such as device/thermal/flicker
noise, or radioactive decay and are therefore immune to
side-channel attacks. Among these natural sources,

thermal noise is the most widely-used entropy source in
TRNG designs. Thermal noise voltage is generated due
to small fluctuations in channel current caused by the
thermal vibrations of charge carriers in a conducting
channel. This noise can be harvested by (i) amplifying
the differential voltage across a pair of resistors using
several stages of high-gain differential amplifiers and
A/D converters [2][3][4], (ii) extracting edge-jitter from
parallel chains of long ring-oscillators [5][6] (iii)
sampling resolution state/time of meta-stable cross-
coupled inverters [7][8] (iv) engineering SiN devices to
increase the magnitude of thermal noise [9].

The resistor-amplifier-ADC based designs use analog
circuit techniques that do not scale well to future digital
process technologies and also require a very stable
operating environment, free from deterministic sources
of noise such as power-supply fluctuations, neighboring
conductor coupling and temperature variations. The
entropy of these designs may be disrupted due to
random/systematic process variation or device drift due
to aging. Mechanisms to counter device variation exist
for ring-oscillator and meta-stability based schemes.
These designs examine the generated bits to detect
deterministic biases and introduce a counter-bias to
offset the inherent mismatch. The counter-bias may be
in the form of an analog bias voltage generated using a
conditionally clocked capacitive charge-pump [7][8] or
an external voltage source[5]. Once again, these bias
generators are slow, do not scale easily to future
process technologies and result in large area and power
consumption. Robust operation of these designs in an
environment of dynamic voltage scaling (1.1V down to
0.5V) is extremely challenging. As a result, hardware
TRNGs are typically fabricated in older process
technologies and housed in the chipset, where the
communication between the off-chip RNG and
processor becomes vulnerable to side-channel attacks
and bus snooping.

In this work we propose the first all-digital on-die
TRNG generating high-entropy random numbers with a
throughput of 4Gbps in 45nm CMOS technology. The
proposed TRNG design uses only digital components
and is tolerant to both static and dynamic (aging based)
process variations and also resilient to dynamic changes
in voltage and temperature.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.69

301

2. Meta-stability Based TRNG

A cross-coupled inverter (Fig. 1) can be driven
towards a meta-stable state by forcing input/output
nodes ‘a’ and ‘b’ to identical values. This is achieved
by using a pair of pre-charge devices to initialize both
nodes to ‘1’ when the CLK=0. At the rising edge of

CLK, the bi-stable element enters a meta-stable state
(Fig 2), where nodes ‘a’ and ‘b’ both settle to a value
Vmeta, which represents the intersection point of the
VTCs of inverters I1 and I2. Resolution to either stable
states of (a=0,b=1) or (a=1,b=0) depends on the
magnitude of differential noise at ‘a’ and ‘b’ during the
meta-stable period. A random noise source such as
thermal noise at nodes ‘a’ and ‘b’ will result in a
random resolution state during each evaluation phase of
the clock. Thus a random bit is generated every cycle.
This behavior of the bi-stable element forms the basis

of the proposed digital TRNG. The meta-stable state of
the system can be disturbed by two events: (i) Noise on
nodes ‘a’ and ‘b’ (ii) Device mismatch in the cross
coupled inverters I1 and I2. Figure 3 shows the behavior
of the bi-stable element in the presence of noise.
Thermal noise magnitudes up to 3mV on nodes ‘a’ and
‘b’ quickly push the system out of meta-stability. As a
result the element settles into the stable state of (a=1,
b=0). A device mismatch in the cross-coupled inverters
can introduce an intrinsic bias that will always push the

bi-stable element in the direction of this bias, as it
comes out of meta-stability. 1% mismatch in the PMOS
device (Fig. 4) introduces a static bias that pushes
inverter I1 to resolve towards 1. As a result, even in the
absence of thermal noise, the system will always
resolve to the state (a=0, b=1), disrupting the random
behavior of the system. Thermal noise magnitude will
now have to be large enough to overcome the intrinsic
bias caused due to device mismatch. This imbalance
can significantly impact entropy of the generated bits. It
should be noted that a systematic drift in PMOS/NMOS
strengths may change the absolute values of inverter
P/N skew, and impact the meta-stable point (Vmeta).
However, as long the relative P/N skews of I1 and I2
match each other, the behavior of the bi-stable element
remains unchanged.

In a matched bi-stable element, a perturbation in the
supply voltage presents itself as common-mode noise at
nodes ‘a’ and ‘b’. Since the meta-stable behavior of the

cross-coupled system is affected only by differential
noise, supply bounce should not affect the working of
the system. Figure 5 shows the impact of 10% power
supply noise injected into a matched system, while
nodes ‘a’ and ‘b’ are at their meta-stable values. Supply
noise affects the absolute value of Vmeta, but does not
tip the element out of meta-stability. However, in the
presence of mismatch between the inverter devices,
common-mode supply noise at Vcc will propagate
differential components to nodes ‘a’ and ‘b’, resulting
in the disruption of the system from the meta-stable
point. This undesired behavior can be avoided by

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Time (ps)

a

CLK
b

1.1015

1.101

1.1005

1.1

1.0995

1.099

1.0985

3m
V

V
ol

ta
ge

 (V
)

b

a

Figure 3: Bistable element behavior with thermal noise

a b

CLK

I1

I2

P=2.424µm

P=2.4µm

Figure 4: Bi-stable element behavior with 1% device
mismatch, no thermal noise

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60

V
ol

ta
ge

 (V
)

Time (ps)

a

b

CLK

a b

CLK

I1

I2

Figure 1: Bi-stable element: Entropy source

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

V
ol

ta
ge

 (V
)

Vmeta

CLK

a

b

Figure 2: Bi-stable element in meta-stable state

Time (ps)

302

minimizing the mismatch between the cross-coupled
inverters of the bi-stable element.

0

0.2

0.4

0.6

0.8

1

1.2

V
ol

ta
ge

 (V
)

Thus we see that in order to accurately harness the

entropy of thermal noise using a bi-stable element,
we have to provide a mechanism for countering
static and dynamic mismatches in the cross-coupled
inverters. This would ensure that the resolution state
of the system is solely governed by differential
thermal noise at the two nodes, resulting in a random
series of bits at nodes ‘a’ and ‘b’.

3. PVT Tolerant All-Digital TRNG
A bi-stable cross-coupled inverter structure (Fig.

6) is used as the entropy harvester in the proposed
all-digital TRNG. During pre-charge phase, a pair of
pre-charge PMOS devices forces the system into a
meta-stable state. A common NMOS transistor is used
as a footer device to eliminate the short-circuit current
that may exist due to the conducting NMOS devices
during pre-charge. Successful generation of high-
entropy random bits from such a system would require
tuning mechanisms to counter mismatches between the
inverters I1 and I2. Two techniques are introduced to
handle mismatches that can disrupt the symmetry in the
bi-stable element:

A. Coarse-grained Tuning using Programmable
Inverters:

Inverters I1 and I2 are converted to programmable
inverters with 8 digital configuration bits, pconf[3:0]
and nconf[3:0] that control effective drive strengths of
the PMOS and NMOS transistors respectively (Fig. 7).
These scannable bits are used to conditionally turn ON
parallel PMOS/NMOS legs, thereby controlling the P/N
skew of the inverter. An increase in NMOS device

strength in inverter I1 can be countered by turning ON
an appropriate number of parallel NMOS legs in
inverter I2. The legs are weighted to tune out device
mismatches in a range of 0-19% with a granularity of
~1% (Table I). This provides a coarse-grained knob for
tuning out imbalances in the bi-stable element caused
due to device width variation. The configurable
inverters can also be programmed to tune out drive
strength imbalances caused due to Vt mismatches. Vt
variations result in a shift in inverter P/N skew from the

Delay

CONF2

CONF0

CONF1

CONF3

clk0 clk1CLK

RANDOM BIT

Delay

Figure 6: All-digital TRNG Organization

I1

I2

303

nominal designed value. This shift can be countered
using either NMOS or PMOS configuration bits.
Choosing the appropriate value of nconf[3:0] enables
tuning out up to 158mV Vt mismatch (Table II).
Pconf[3:0] can also be used to compensate for Vt

mismatches up to 24mV at a finer granularity than
nconf[3:0]. Thus with the right combination of
pconf[3:0] and nconf[3:0] a large range of process
variation induced imbalances can be countered.

B. Fine-grained Tuning using delayed clocks:

A finer granularity of tuning can be achieved by
separating out the pre-charge clocks and introducing a

tunable skew between them using programmable delay
generators (Fig. 8). By controlling the pre-charge
release times for nodes ‘a’ and ‘b’, relative delay is
introduced between the start of evaluation phase at each
node, thereby injecting a directional bias on one side of
the bi-stable element. This bias may be used to counter
inherent voltage/temperature biases present in the
system. Configuration bits conf[3:0] in the
programmable clock delay element (Fig. 9) are scanned
in through the scan-chain to control the PMOS drive

strengths of the clock inverter, providing a tunable
rising clock edge. This tuning mechanism provides
finer granularity of control, enabling mismatch
compensation as small as 0.05% in NMOS devices and
0.35% in PMOS devices. It will be demonstrated in
section 4 that this level of granularity is sufficient to
effectively tune out all residual mismatches, enhancing
the sensitivity of the system to differential thermal
noise.

Table II: Tuning out Vt mismatch using nconf

nconf
NMOS Vt
mismatch

(mV)

PMOS Vt
mismatch

(mV)
0001 1.5 7.8
0010 2.7 13.8
0011 3.1 23.8
0100 4.0 31.8
0101 6.0 41.8
0110 8.0 47.8
0111 10.0 57.8
1000 11.0 81.8
1001 12.0 91.8
1010 14.0 97.8
1011 14.5 107.8
1100 16.0 117.8
1101 18.0 137.8
1110 20.0 147.8
1111 21.0 157.8

 Table I: Tuning out device size mismatch

conf[3:0] % NMOS size
mismatch

% PMOS size
mismatch

0000 0 19
0001 1 18
0010 3 17
0011 4 16
0100 5 14
0101 6 13
0110 7 12
0111 8 11
1000 10 8
1001 11 7
1010 12 6
1011 13 5
1100 14 3
1101 15 2
1110 16 1
1111 17 0

clk0 clk1Delay
Element

Delay
Element

CLK

CLK

Figure 8: Separate pre-charge clocks for finer control

Figure 9: Programmable clock delay element

C
L

K

co
nf

[0
]

cl
k0

2.0

0.1 0.2 0.3 0.4

0.5

co
nf

[1
]

co
nf

[2
]

co
nf

[3
]

304

Table III: NIST Test Suite
Frequency test Measures ratio of 1’s vs. 0’s in bitstream

Block frequency test Frequency test at a block level
FFT Examines periodicity of sequence

Long runs Flags long runs of 0’s or 1’s
Cumulative sums Computes sub-sequence partial sums

ACF Plot Bitstream autocorrelation for lags 0-200

Table IV: Test Results with 0% mismatch, 1.1V, 110oC
Frequency test Pvalue = 1.00 Pass

Block frequency test Pvalue = 0.608 Pass
FFT Pvalue = 0.746 Pass

Long runs Pvalue = 0.676 Pass
Cumulative sums Pvalue = 0.629/0.38 Pass

4. 45nm CMOS Implementation Results
In a 1.1V, 45nm CMOS process [10] the TRNG

operates at 4GHz and generates 1 random bit each
cycle, resulting in a throughput of 4Gbps, and total
power consumption of 2.26mW, with leakage
component of 0.3mW. RMS thermal noise at the
inverter nodes is ~1.5mV. Six RNG tests (Table III)
from the NIST suite [11] were applied to a bit-stream
of 500 consecutive bits generated by the TRNG. Each
test generates a P-value, an indicator of bit-stream
entropy. A threshold of P-value>0.01 is the essential
pass criteria for a test. A frequency test P-value=1

indicates a bit-stream with equal number of 1’s and 0’s.
Table IV shows the p-values for the test suite in a

perfectly balanced TRNG (0% mismatch) at 1.1V,
110oC. These results indicate that the magnitude and
entropy of raw thermal noise at the inverter nodes, with
the device sizes shown in Fig. 7, is high enough to
generate a random bitstream that easily passes all NIST

tests. As explained earlier, the presence of mismatch
can reduce the sensitivity of the design to this thermal
noise. A 2-step tuning mechanism is used to eliminate
the effect of any process-variation-induced imbalance
in the system. In the first step, the coarse-grained
control is adjusted by scanning in 16 configuration bits
(CONF0 and CONF1 in Fig. 6). Figure 10 shows the
effect of coarse-grained tuning on the frequency test
results in the presence of NMOS device mismatch
ranging from 0% to 17%. Effective mismatches in Vt,
transistor width/length, via/line resistance are simulated
by varying the NMOS device size on inverter I1 (or I2)
from its nominal value of 3µm to a max value of
3.51µm at a granularity of 0.05%. The programmable
inverter I2 (or I1) is then configured to counter this
mismatch. Coarse-grained tuning successfully
counterbalances all mismatches that fall in the
neighborhood of settings in Table I. This condition is
represented by the peaks in p-value in Figure 10. It may
also be observed that though the granularity of

adjustment in this step is ~1%, we obtain passing p-
values for mismatches that fall outside this window.
This is due to the fact that the magnitude of thermal
noise is large enough to independently overcome up to
0.4% imbalance in device sizes. Mismatches greater
than 0.4% result in failing p-values. These mismatches
require the fine-grain control provided by the clock
delay generator. In the 2nd step of tuning, the relative
skews of pre-charge clocks clk0 and clk1 (Fig. 8) is
adjusted. At the end of this step, devices can be

balanced to within 0.05% of perfect balance, well
within the range of thermal noise sensitivity.
Mismatches that caused the frequency test to fail in the
first step of tuning are handled by scanning in the
appropriate clock configuration bits (CONF2 and
CONF3 in Fig. 6). At the end of the second tuning step,
mismatches have been minimized to the extent that
random thermal noise injects sufficient entropy into the

Fr
eq

ue
nc

y
te

st
 p

-v
al

ue

NMOS device size (µm)
Fig 11: Fine-grained tuning using clock delay generator

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
3.

00
3

3.
00

3.
00

6

3.
02

5

3.
01

0

3.
03

7

3.
04

3

3.
04

0

3.
04

6

3.
06

5

3.
05

0

3.
08

0

3.
09

5

3.
08

4

3.
11

0

3.
11

8
3.

12
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.
00

3.
04

3.
08

3.
11

3.
15

3.
18

3.
22

3.
25

3.
29

3.
32

3.
36

3.
38

3.
42

3.
44

3.
48

3.
50

Fr
eq

ue
nc

y
te

st
 p

-v
al

ue

NMOS device size (µm)
Fig 10: Coarse-grained tuning to counter device mismatch

Table V: NIST Test Results with 20% mismatch
Operating Conditions Vcc=1.1V, T=110oC

Configuration
Nconf0=0000, Nconf1=1111
Pconf0=0000, Pconf1=0000

Clkconf0=0010, Clkconf1=1100
Frequency test Pvalue = 0.33 Pass

Block Frequency test Pvalue = 0.38 Pass
FFT test Pvalue = 0.88 Pass

Long Runs test Pvalue = 0.96 Pass
Cumulative Sums test Pvalue = 0.48/ 0.30 Pass

305

bit-stream (Fig. 11). Similar results are obtained for all
NIST tests on a run of 500 consecutive bits obtained
from the TRNG with a worst-case mismatch of 20% on
the NMOS device in inverter I1. (Table V). The 2-step

tuning process minimizes effective device mismatch to
a small enough magnitude such that any remnant
imbalance is overcome by thermal noise. In this
condition, the system is also immune to common mode
noise events like power supply noise or temperature
variations (Fig. 12). The all-digital nature of the TRNG
results in good Vcc scaling behavior. Sensitivity of the
RNG to thermal noise increases at low voltage,

resulting in probabilities approaching ideal values as
supply approaches 0.5V (Fig. 13). NIST autocorrelation
tests at different voltages and temperatures with 20%
mismatch show zero correlation with 95% confidence
for up to 200 lags (Fig. 14). This confirms the

robustness of this design to common-mode events like
voltage/temperature variations.

C
lo

ck
 d

el
ay

el

em
en

t

5. Summary and Conclusion

An all-digital TRNG targeted for an on-die
encryption engine with high tolerance to PVT
variations is implemented in 45nm CMOS technology.
A 2-step coarse/fine tuning mechanism provides
tolerance to 20% mismatch in device characteristics,
enabling 4Gbps throughput, generating an output bit-
stream that passes NIST RNG tests with entropy/bit of
0.94. The use of 100% digital components ensures a
compact layout measuring 1024µm2 (Fig. 15) with a
low energy consumption of 0.57pJ/bit. The design
shows good Vcc scaling behavior with entropies
approaching ideal values at supply voltages around
0.5V and good robustness to temperature and voltage
variations.

6. Acknowledgments
The authors thank C. Dike for discussions and

valuable feedback and M. Haycock, G. Taylor, S.
Borkar and J. Schutz for encouragement and support.

7. References
[1] Z.Gutterman et al, “Analysis of the Linux RNG”, IEEE Symposium on

Security and Privacy, pp 371-385, May 2006.
[2] R. Brederlow, et al, “A low-power TRNG using random telegraph noise of

single oxide-traps”, ISSCC Dig. Tech. Papers, pp. 536-537,Feb., 2006.
[3] B. Jun and P. Krocher, “The Intel RNG”, White Paper,

http://www.cryptography.com/intelRNG.pdf, 1999
[4] C. Petrie and J. Connelly, “Noise-based IC RNG for applications in

cryptography,” IEEE Trans. Circuits & Systems-I, vol. 47, no. 5, pp.615-
621, May 2000

[5] M. Bucci, L. Germani, R. Luzzi et al., “A high-speed oscillator-based truly
random number source for cryptographic applications on smart card IC,”
IEEE Trans. on Computers, vol. 52, pp. 403-409, April 2003.

[6] S. Fujita, et al., “Si nanodevices for RNG circuits for cryptographic
security”, ISSCC Dig. Tech. Papers, pp. 294-295, Feb. 2004.

[7] D. Kinniment and E. Chester, “Design of an on-chip random number
generator using metastability,” Proc. ESSCIRC., pp. 595-598, Sep., 2002.

[8] C. Tokunaga, et al, “TRNG with a metastability-based quality control,”
ISSCC Dig. Tech. Papers, pp. 404-405, Feb. 2007.

[9] Mari Matsumoto et al, “1200μm2 Physical RNG based on SiN MOSFET for
Secure Smart-Card Application”, ISSCC Dig. Tech. Papers, pp. 414-415,
Feb. 2008.

[10] K. Mistry et al., A 45nm Logic Technology with High-k+Metal Gate
Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning,
and 100% Pb-free Packaging, Proc. IEEE IEDM, Dec. 2007, pp. 247-250.

 [11] National Institute of Standards and Technology, “A Statistical Test Suite
for the Validation of Random Number Generators and Pseudo Random
Number Generators for Cryptographic Applications,” Pub 800-22, 2001

0.46

0.47

0.48

0.49

0.50

0 20 40 60 80 100

Fig. 12: Effect of temperature on randomness
Temperature (oC)

Pe
rc

en
ta

ge
 o

f 1
's

Stream of 3000 consecutive bits: Matched at min granularity

45nm Simulation
1.1V

0.47

0.48

0.49

0.50

1.1 1 0.9 0.8 0.7 0.6 0.5

Fig. 13: Impact of Vcc on randomness
Vcc (volts)

Pe
rc

en
ta

ge
 o

f 1
's

Stream of 3000 consecutive bits: Matched at min granularity

45nm Simulation
110oC

Fig. 14: Effect of Voltage/Temperature on Autocorrelation

A
ut

oc
or

re
la

tio
n

Fa
ct

or

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
(110C,1.1)
(110C,0.7V)
(25C,1.1V)
(25C,0.7V)
95% Bound

Autocorrelation Lag
20010050 1500

306

Single Ended Static Random Access Memory for
Low-Vdd, High-Speed Embedded Systems

Jawar Singh, Jimson Mathew, Saraju P. Mohanty∗ and Dhiraj K. Pradhan
Department of Computer Science, University of Bristol, UK.

Department of Computer Science and Engineering, University of North Texas, USA.∗

email-ID: jawar@cs.bris.ac.uk, saraju.mohanty@unt.edu

Abstract— Single-ended static random access memory (SE-
SRAM) is well known for their tremendous potential of low
active power and leakage dissipations. In this paper, we present a
novel six-transistor (6T) SE-SRAM bitcell for low-Vdd and high-
speed embedded applications with significant improvement in
their power, performance and stability under process variations.
The proposed design has a strong 2.65× worst case read static
noise margin (SNM) compared to a standard 6T SRAM. A strong
write-ability of logic ‘one’ is achieved, which is problematic in
SE-SRAM cells even at lower voltage. The proposed bitcell design
is mainly targeted for word-organized SRAMs. A 16 × 16 × 32
bit SRAM with proposed and standard 6T bitcells is simulated
(including parasitics) for 65nm CMOS technology to evaluate
and compare the different performance parameters, such as, read
SNM, write-ability, access delay and power. The dynamic and
leakage power dissipation in the proposed 6T design is reduced by
28% and 21%, respectively, as compared to standard 6T design.

I. INTRODUCTION

Embedded systems particularly targeted towards low duty-
cycles and portable applications such as mobile phone or PDAs
require extremely low energy consumption as they are often
battery powered. In such systems, a significant amount of
power is consumed during memory accesses which determines
the battery life. Hence, efficient active and leakage power
saving SRAM designs need to be explored for higher reliable
and longer operation of battery powered applications. There
are mainly two areas with strong potential of active power
saving: (a) reduction in charging capacitance or static current
by partial activation of multi-divided word and bit lines and
(b) lowering operating voltage resulting from external power
supply reduction and half-Vdd precharging [10]. In [13], 30%
to 70% of the total active power is dissipated in bit lines
charging and discharging during read and write operation.
Hence, reduction in charging capacitance or static current
has strong prospect of active power saving. In the proposed
design we have exploited this fact to reduce the active power
despite of full-Vdd precharging of the bitline. The precharging
of bitline to full-Vdd is mainly to achieve strong write-ability
of logic ‘one’ into the bitcell which makes easier to operate
the SRAM at lower Vdd.

Lowering supply voltage to reduce power (energy) con-
sumption is one of the first choice of designers for ultra-
low-power applications. However, ultra-low-power design of

0This research is supported in part by NSF award number 0702361.

Fig. 1. The proposed single-ended 6T SRAM cell with dotted read and write
assist transistors shown in (b) with respect to standard 6T SRAM cell shown
in (a).

high-density SRAMs in which the operating voltage is below
the transistor threshold voltage is extremely challenging. This
is due to reduced static noise margin (SNM) and increased
variability in design and process parameters in the nanoscale
CMOS (nano-CMOS) technology. As we move from 130nm
to 65nm technology node, the area occupied by the memory
increases from 71% to 82% [1]. In modern system on chips
(SoCs) when total power and total area is dominated by the
SRAM, reduction in Vdd for SRAMs can save both active
energy and leakage power [9]. Also for system integration,
SRAM must be compatible with subthreshold combinational
logic operating at ultra-low voltages [14]. However, this leads
to increase in sensitivity of design and process parameter vari-
ability. This problem will worsen in nanometer technologies
with ultra-low voltage operation and makes SRAM design and
stability analysis more challenging. These practical challenges
limit standard 6T SRAM bitcells and architectures to higher
Vdd. A standard 6T SRAM bitcell in 65nm CMOS technology
is shown in Fig. 1 (a) [11]. The data storage node Q and QB in
standard 6T bitcell are most vulnerable to capacitive coupling
noise due to bitlines (BL and BLB) and voltage division effect
between access transistors and pulldown transistors. A proper
sizing of these transistors is important to maintain data stability
and functionality as shown in Fig. 1(a).

This paper introduces a 6T bitcell and its word-organization
for robust and high density SRAMs in the subthreshold regime.
In proposed 6T SEIO bitcell: 1) read current path is isolated
from the data storage node Q and QB hence, less vulnerable
to noise; 2) isolation of read current path improves the read
SNM 2× compared to standard 6T bitcell with β = 2 and at

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.38

307

Fig. 2. A 32-bit word organization of the proposed 6T SE-SRAM cell with
dotted read and write assist transistors.

Vdd = 0.2V and 1.0V ; 3) process variation degrade the read
SNM of proposed 6T and standard 6T SRAM bitcells by up to
13% and 50% respectively thereby, 2.65× tolerance to process
variability. A model for determining the size of the read/write
assist transistors is developed for estimation of read access
delay with accuracy of up 95%. The dynamic and leakage
power dissipation in the proposed 6T design is reduced by
28% and 21%, respectively, as compared to its counterpart
design.

The rest of the paper is organized as follows: Section II
introduces the proposed bitcell and word-organized SRAM
design. In Section III, statistical analysis of parametric failures
is presented. Read and write assist transistors sizing issues are
discussed in Section IV. In Section V, dynamic and leakage
power of the standard and proposed designs are compared.
Section VI provides a summery of the key conclusions.

II. A PROPOSED SEIO 6T SRAM BITCELL DESIGN

Fig. 1 (b) shows the proposed single ended input/output
6T SRAM bitcell schematic with minimum feature sized
transistors for a 65nm CMOS technology. The proposed 6T
SRAM bitcell consists of a cross coupled inverter pair (INV1
and INV2) connected to a bitline (BL) using access transistor
(M5) and a storage node isolation transistors (M6). The dotted
transistors in the figure (MWA and MRA) represent read and
write assist transistors, respectively, for a memory word. A
memory word can be 8, 16, or 32 bit. Three control signals
W , its complement W0 and R are used for controlling the
write and read operations. The write operation is controlled by
W and W0. These signals are respectively connected to M5
and MWA. While read operation is controlled by R which is
connected to MRA.

In the following, we illustrate the word-organized SARM
design architecture with proposed bitcell. Let, n be the number
of cells in a word-organized memory which contains more
than 1-bit per word, that is, n ≥ 2. For instance, the word-
organization of the proposed 6T SRAM bitcell for n = 32, is
shown in Fig. 2. Since read and write operations access the n
bits of a word simultaneously, one could share the read/write
assist transistors of a bitcell as shown dotted in Fig. 1(b).
Therefore, we need only one read/write assist transistor per
word. Consequently, each bitcell in a word consists of six
transistors with two additional dotted transistors per word
(Fig. 2). Sizing issues of these shared (dotted) transistors are

Fig. 3. Layout of the proposed word-organized 6T SRAM bitcell with four
bitcells and read/write assist transistors in the middle.

explained in Section IV.
Fig. 3 shows the layout of the proposed word-organized

6T SRAM bitcell with four bitcells and read/write assist
transistors. We present only four cells for clarity. The propped
bitcell layout area is 0.68μm2 (0.55μm × 1.22μm), which is
8% higher (because of additional contacts) than the standard
6T SRAM bitcell for β = 2. While, read/write assist transistors
occupies merely half of the bitcell area per word. We have
used three metal layers (M1, M2 and M3). Metal layer M1
is used for routing the supply rails (Vdd and Gnd), M2 is
used for routing the shared contacts among bitcells, read and
write signals. While, M3 is used for routing the bitlines. The
design has been successfully laid-out for different word sizes.
Parasitic were extracted and included in a SPICE deck for
simulation results presented in this paper.

A. Read Operation

Information read out from the proposed SRAM bitcell is
carried out via single ended bitline (data-line). Prior to read
operation, BL is precharged to Vdd and the read signal (R)
is asserted high (W is low) to turn on the MRA, which is
essentially applicable for reading ‘0’. For reading ‘1’, BL
has to remains at precharged level (∼ Vdd) because transistor
M6 is turned off. It is important to notice that only the read
‘0’, high to low transition is affected by the insertion of the
MRA and that the read ‘1’, low to high transition will not
be affected. As a result, reading ‘1’ is directly sensed from
the precharged BL. In both the cases either reading ‘1’ or
‘0’, storage nodes are isolated from the read current path. It
results reduced capacitive coupling noise due to BL and hence,
significantly enhancing the data stability during read and hold
state. Also compared to standard 6T bitcell the read current
path has equal number (two) of series connected transistors
with minimum feature size resulting in better performance of
proposed 6T bitcell.

Read static noise margin (SNM) of the proposed 6T and
standard 6T SRAM bitcells are shown in Fig. 4 for a com-
parative perspective. The proposed 6T bitcell has an SNM of
0.302V , while the standard 6T bitcell SNM is 0.152V at a
supply voltage of 1.0V and β = 2 (Fig. 4(a)). The SNM of
the proposed 6T bitcell at a supply voltage of 0.3V is equal to
that of the standard 6T bitcell at 0.5V and β = 4 (Fig. 4(b)).
However, the SNM normalized to supply voltage for different

308

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Node voltage Q [V]

N
od

e
vo

lta
ge

 Q
B

 [V
]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

Vdd [V]

S
N

M
 /

V
dd

 [%
]

Prop. 6T
Std. 6T Beta2
Std. 6T Beta3
Std. 6T Beta4

(a) (b)

0.302V

0.152V

Prop. 6T
Std. 6T

Fig. 4. SNM comparison of standard SRAM and proposed SRAM cell during
a read operation at Vdd = 1V in Fig. (a). SNM normalized to supply voltage
for different cell ratio (β = 2, 3 and 4) is shown in Fig. (b).

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Node voltage Q [V]

N
od

e
vo

lta
ge

 Q
B

 [V
]

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Node voltage Q [V]

N
od

e
vo

lta
ge

 Q
B

 [V
]

(a) (b)

0.10 V

0.265V

Fig. 5. Monte Carlo simulation of voltage transfer characteristics (VTCs)
shown with worst case SNM during read operation under process variations:
(a) for standard SRAM and (b) for proposed SRAM bitcell.

cell ratio (β= 2, 3 and 4) in Fig. 4(b) shows that the variation
of SNM in the proposed 6T bitcell (for minimum feature size)
is smaller than that of the standard 6T bitcell, which is mainly
because of reduced capacitive coupling noise due to BL and
isolation of read current path from the storage node Q and
QB.

B. Write operation

It is well known that the write operation in single ended
SRAM cell is difficult because of strongly cross coupled
inverters. A write assist transistor MWA is used to alleviate
this problem, which is controlled by W0 for a successful write
operation. The usage of MWA is to weaken the cross coupling
of proposed 6T SRAM bitcell inverters during write access
time.

Initially assume that the node Q= 0 and QB= 1, we need
to change these node states. In write mode, write signal (W)
is asserted high to turn on the write access transistor M5
that connects the precharged bit line to node Q. As both
the inverters (INV1 and INV2) are strongly cross coupled
so forcing the node Q to ‘1’ is difficult through an NMOS
(M5) pass device. Hence, we weaken the pull down strength of
INV2 by inserting a series transistor MWA, which is controlled
by a complement of write signal W0 to turned off during
write operation. In other words, MWA is used to weaken the
strongly cross coupled inverters.

The timing waveforms of read and write control signals (R
and W), input and output data (Data-Write and Data read),
and bitcell node Q are shown in Fig. 6. While the timing

0 1 2 3 4

0

1

[V
]

0 1 2 3 4

0

1

Time [ns]

[V
]

R
Data−Read

Node Q
W
Data−Write

Fig. 6. Timing simulation waveforms for write and read operations of
proposed 6T bitcell.

waveforms of clock, decode, precharge, and sense stage signals
are not shown. One can observed that the information has
been effectively written and readout from the proposed word-
organized 6T SRAM bitcell design.

III. STATISTICAL ANALYSIS OF PARAMETRIC FAILURES

The variations in threshold voltage of an SRAM cell transis-
tors due to random dopant fluctuations is the principal reason
for parametric failures [4]. Parametric failures in standard
6T SRAM bitcell can occur due to (a) destructive read (cell
may flip when access for read), (b) un-successful write i.e.,
bitcell cannot be written within the write access time, which
is measured in terms of trip voltage of an inverter, and (c)
read access failure i.e., incorrect read operation, which is a
strong determinant of performance and power of the SRAM.
For parametric failure analysis, we assume a 15% variation
in Vth with 3σ as an independent random variable for all the
transistors in SRAM cell with a Gaussian distribution.

A. Destructive read

Data retention of the 6T SRAM bitcell during the read and
hold operation is an important functional constraint, which is
measured in terms of read and hold SNM. The SNM is a
widely used metric for stability analysis of an SRAM bitcell
usually defined as the maximum value of dc noise voltage
(Vn) that can be tolerated by the SRAM cell without flipping
the node states. During the read operation, voltage at node
QB (= 0) is most vulnerable to noise due to potential divider
action in read current path of M5 and M2 to a positive value
of Vn. If Vn is higher than the trip voltage of the INV2, then
the cell flips resulting destructive read failure. In the proposed
6T SRAM bitcell the nodes (Q and QB) are is isolated from
the read current path to circumvent the noise vulnerability.
Process variations in Vth degrade the read SNM of standard
6T and proposed 6T SRAM cell by up to 50% and 13%
respectively compared to nominal design corner as shown in
Fig. 5. The proposed 6T SRAM bitcell provide 2.65X higher
worst-case read SNM as compared to the standard 6T SRAM
bitcell under same process variations. Thus, the proposed 6T
bitcell has better noise margin, worst-case read stability and
process variation tolerant.

309

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

50

100

150

200

250

300

350

400

Trip voltage of INV1 [V]

C

el
ls

Prop. 6T: 1 −> 0 Prop. 6T:0 −> 1 Std. 6T

0.33V

0.45V

0.32V

Fig. 7. Monte Carlo simulation of write trip voltage of the standard and
proposed 6T SRAM bitcell.

B. Un-successful write

Write ability of a standard 6T SRAM bitcell is best char-
acterize using write trip voltage which is defined as the
maximum voltage on the bitline needed to flip the bitcell
content [6]. Due to asymmetric nature of the proposed 6T
SRAM bitcell, we need to analyzed both the state write ‘1’ and
‘0’. In order to write ‘1’ (Q= 1 and QB = 0) to a cell storing
‘0’ (Q = 0 and QB = 1), low internal node Q of the cell is
pulled up above the trip voltage of the INV1. Since, pull down
strength of the INV2 has been weaken during write access time
due to stacked transistor MWA, which makes pulling up of
low internal node Q above the trip voltage easier. Similarly,
writing ‘0’ (Q = 0 and QB = 1) to a cell storing ‘1’ (Q
= 1 and QB = 0), high internal node Q of the cell has to
discharge via bitline (BL) well below the trip voltage of the
INV1 so that the cross-coupled inverter pair starts working
and the cell content gets flipped. To guarantee that a correct
write operation will occur, it is important that the node Q
should be pulled up (down) above (below) the trip voltage of
INV1 within the write access time when W is high otherwise
a write failure will occur. Under process variation, statistical
analysis of write-ability shows that the mean value of the write
trip voltage for writing 1 → 0 is 0.32V , whereas for writing
0 → 1 is 0.45V . However, mean value of write trip voltage for
writing ‘1/0’ of standard 6T bitcell is 0.33V . The write trip
voltage standard deviation due to process variations in standard
and proposed 6T bitcells are almost equal of about 10mV , as
shown in Fig.7. Thus, the write ability of the proposed bitcell
has not degraded under process variation

C. Read access failure

The bitcell read access time or critical path in SRAM memo-
ries typically determines the memory performance and ensures
the correct read operation. For a successful read operation,
read access time is defined as the time required to produce
a pre-specified voltage difference between two bit lines of a
standard 6T SRAM bitcell [3], [12]. In proposed 6T SRAM
bitcell the critical read access time correspond to reading ‘0’,
which determines the performance of the proposed bitcell.
Since ‘1’ is directly sensed from the precharged bitline. The
read access time (for ‘0’) of the proposed bitcell is defined as
the time required to produce a pre-specified voltage difference
between reference and single bitline voltage. Statistical read

0.44 0.46 0.48 0.50 0.52 0.54 0.56

100

200

300

400

500

600

Read access time [ns]

C

el
ls

Prop. 6T Std. 6T

Fig. 8. Monte Carlo simulated read access time of the standard and proposed
6T SRAM bitcells.

access time distribution of standard and proposed 6T SRAM
bitcells are shown in Fig. 8. Under process variation, mean
value of the read access time of standard 6T bitcell is 0.53ns,
which is 4% higher (0.51ns) than the proposed 6T bitcell.
While, standard deviation in read access time of standard 6T
bitcell (0.020ns) which is 14% higher (0.017ns) than the
proposed 6T bitcell. Thus, the proposed cell has better process
variation acceptance than the standard 6T bitcell.

IV. SIZING OF READ AND WRITE ASSIST TRANSISTORS

Proper sizing of read/write assist transistor is very crucial
because whole functioning and performance of a memory
block depends on these transistors. If we overestimate their
size, then there is a wastage of valuable silicon area and
increase of switching power dissipation because of larger
loading. Similarly, if we underestimate the size, then the read
and write operations would be too slow because significant
delay due to the increased resistance to ground. Usage of
both the transistors is fundamentally different because one
(read assist) transistor has to provide low resistive path to read
current during read operation. On the other hand (write assist)
transistor has to provide high resistance path for successful
write operation to weaken the cross coupling of bitcell invert-
ers. As both read and write requirements are conflicting in
nature, so we need to analyze the sizing issues separately for
read and write assist transistors.

A. Sizing of read assist transistor

As we have seen in Section III, the read assist transistor
forms the critical path, essentially when reading ‘0’ from the
proposed bitcell. Hence, performance of the proposed SRAM
is determined by the ‘0’ read access time, which is mainly
dependent on the size of MRA. Consequently, size of the
MRA in word-organized SRAM design when a word has
common read assist transistor (MRA) is critical for proper
functioning of SRAM. We have developed a simple model
to determine the minimum size of MRA and corresponding
‘0’ read access delay for a single cell, which is extended for
proposed word-organized SRAM design. The proposed model
is inspired by well-established power gating techniques in
which sleep transistor is used to gate the power supply [7].
In the literature [7], [8], it was shown that the sleep transistor
can be approximated as a linear resistor to create a virtual
ground because Vds < (Vgs − Vth) of sleep transistor. Here,

310

this sleep transistor is referred as read assist transistor (MRA).
The amount of current flowing through the linearly-operating
MRA transistor can be approximated as [5]:

IRA ≈ μnCox

(
W

L

)
RA

(Vdd − Vth)VRA, (1)

where μn is the mobility of electrons, Cox is the oxide
capacitance and Vth is the threshold voltage. Since, the MRA

is approximated as linear resistor and operating in a linear
region, then the MRA resistance RRA ≈ VRA

IRA
. Thus, the size

of the read assist transistor can be expressed as:(
W

L

)
RA

=
1

RRAμnCox(Vdd − Vth)
. (2)

If RRA is known, then the size of the read assist transistor
(W/L)RA can be determined by using the above expression 2.
The MRA affects only high to low transition or reading ‘0’
to discharge the precharged bitline. Since, bitline capacitance
CBL is discharging, and neglecting the node VRA parasitic
capacitance, any charge flowing out of the source of M6
will flow through the read assist resistor RRA of MRA. This
phenomenon is modeled as a R-C circuit, which comprises of
series resistor RRA and bit line capacitance CBL charged at
voltage Vdd. Thus, the relationship among these parameters
can be expressed as follows:

VRA = Vdd × exp

(−t

τ

)
. (3)

Where τ is the time constant, the read sensing circuitry will
detect the transition high to low i.e. read ‘0’ only when the
bit line is discharged to about 36.8% of the Vdd after a certain
amount of delay from the assertion of read control signal,
which is defined as a read access delay. Under this condition
the read access delay τd is equal to time constant (τ):

τd = RRACBL. (4)

In the word-organized SRAM array shown in Fig. 2, let
the word is n-bit wide i.e. there are n-bitcells in each word
and all are having individual MRA. These individual MRA

of n-bitcells in a word are replaced by an equivalent MRA to
reduce the transistor count and silicon area overhead. The size
of MRA in worst case pattern (i.e. when all the n-cells having
‘0’ at node Q) determines the read access delay or operating
frequency of the SRAM. As we have approximated the MRA

of a cell as a linear resistor, then all the n-bitcells MRA will
form a parallel combination of n-linear resistors in worst case
pattern. In this case, the MRA resistance will be equivalent to
MRA/n. Similarly, n-precharged bitlines capacitance (neglect-
ing the node capacitance) will be replaced by an equivalent
capacitance nCBL because of parallel combination they form.
Once we have an equivalent resistance, capacitance and target
read access delay then from eqns. 2- 4, we can determine the
size of the MRA for any word size. The SPICE simulation
and estimated results for read assist transistor size (W/L) and
read access delay for different word sizes (n =8, 16, 32 and
64) of the proposed word-organized SRAM designs are shown

0 2 4 6 8 10 12
0

0.25

0.50

0.75

1.00

X [W/L]

D
ea

ly
[n

s]

8 Cells

0 2 4 6 8 10 12
0

0.5

1.0

1.5

2.0
16 Cells

X [W/L]

D
ea

ly
[n

s]

0 2 4 6 8 10 12 14 16 18
0

0.5

1.0

1.5

2.0
32 Cells

X [W/L]

D
ea

ly
[n

s]

0 2 4 6 8 10 12 14 16 18
0

0.5

1.0

1.5

2.0

64 Cells

X [W/L]

D
ea

ly
[n

s]

Simulated
Estimated

Simulated
Estimated

Simulated
Estimated

Simulated
Estimated

Fig. 9. Estimation of read access delay for different read assist transistor
size (W/L).

in Fig. 9. One can observe that the proposed model archives
up to 95% accuracy in estimation of read access delay for
different word sizes.

B. Sizing of write assist transistor

In the proposed word-organized SRAM array, all individual
SRAM bitcell’s MWA transistors are replaced by a single
equivalent transistor (MWA). Thus, MWA should be sized
properly so that all the cells in that word written correctly.
In worst case scenario, that can be either writing ‘1’ or ‘0’
in all the cells. The MWA has to weaken the cross coupled
inverters by floating the INV2 of all the bitcells in that word.
Weakening of the loop doesn’t matter whether we are intended
to write ‘1’ or ‘0’ in all or fewer cells in that word. The
weakening of the loop of a single bitcell or all the bitcells in
a word is equivalent because Vds of MWA is always higher
than the ‘0’, when VGS of MWA is zero. Thus, a minimum
sized transistor would be well suited for this purpose. Also
after the write access time MWA has to provide a ground to
node VRA of all the bitcells. For providing a ground to node
VRA, MWA has to provide only the leakage current path to
all the bitcells either they are having ‘0’ or ‘1’ at node Q.
Since, the transistor M3 (when node Q at ‘0’) and transistor
M4 (when node Q at ‘1’) are in cutoff mode, therefore, there
is only leakage current has to flow through MWA. As MWA

has to provide only the leakage current path to all the bitcells
of a word which will always less than the dynamic current of
a transistor even when all the cells are writing either ‘1’ or ‘0’
simultaneously. Also, for minimum leakage and data retention
it is recommended to use minimum size of transistor. The
SPICE simulation for different word size of SRAM reveals
that there is no significant improvement in the write-ability of
the SRAM with increasing the size of MWA.

V. POWER CONSUMPTION

A 16 × 16 × 32 bit SRAM memory with 32 bitcells in
a word using standard and proposed 6T bitcell designs was
simulated in SPICE, operated at a clock speed of 1GHz and
Vdd = 1V . The simulation results are based on the BPTM of
65nm-technology node [2]. The dynamic power consumption
of a standard and proposed bitcells under different read and

311

1.4 1.5 1.6 1.7 1.8
0

50

100

150

200

250

300

Power [mW]

S

am
pl

es

Std. 6T Prop. 6T

Fig. 10. Statistical distribution of leakage power for the proposed and
standard SRAM.

W0_1 R0_1 W1_1 R1_1 W1_0 R1_0 W0_0 R0_0 Avg.
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Operation [W/R]

P
ow

er
 [u

W
]

Prop. 6T Std. 6T

28%

Fig. 11. Dynamic power pattern for different read/write operations of
proposed and standard 6T SRAM bitcells.

write operations is shown in Fig. 11. Because proposed bitcell
is asymmetric, its dynamic power consumption pattern is also
asymmetric. In Fig. 11, operation W0 1 stands for writing ‘1’
into the cell while its original content is ’0’. Similarly, R1 0
stands for reading ‘0’ from the cell, while previous output
was ‘1’. The dynamic power consumption of the proposed
bitcell under diffract combinations are quite different because
of asymmetric nature. For operations W1 1 and R1 1, the
dynamic power of proposed 6T bitcell is very low as compared
to standard 6T bitcell, because both the operations are per-
formed without discharging the bitline of the proposed bitcell.
Under such operations precharged bitline can be used for
future read/write operation. Alternatively, in standard bitcell
one bitline has to discharge during these operations. However,
the dynamic power for operations R1 0 and R0 0 in proposed
6T bitcell is 21% and 29% higher than the standard 6T
bitcell. The average dynamic power under different read/write
operations of the proposed 6T SRAM bitcell is 28% lower
than the standard 6T bitcell [Fig. 11].

In 16X16X32 bit SRAM memory using proposed bitcells,
reading a word “1110 1110....1110” consumes an average
power of only 31% (3.86mW) of the standard 6T SRAM
memory array because of the reuse of the charged bitline.
While, reading a word “0001 0001....0001” consumes 128%
(15.94mW) of the standard 6T SRAM memory. Reading a
word with alternating values “1010 1010....1010” uses 68%
(8.47mW) of the standard 6T SRAM memory array power.

The leakage contribution pattern of the proposed bitcell is
also asymmetric. When node Q= 0, it leaks more as compared
to Q= 1 because the read current path transistor M6 is turned
on. However, average leakage contribution in the proposed

cell is 37% less than the standard bitcell. For total leakage in
16×16×32 bit SRAM memory array (using proposed bitcells)
in standby mode, when all the bitlines are charged to Vdd,
access transistors (M5) of a word are cutoff and control signal
read and write are clamped at ‘0’. Similarly, for standard 6T
memory array bitlines are charged to Vdd, and control signals
are clamped at ‘0’. The leakage power distribution under
process variation for the proposed and standard SRAM array
is shown in Fig. 10. The average leakage power consumption
of the proposed SRAM array is 1.4mW , which is 21% lower
than the counterpart SRAM array. The standard deviation in
leakage power of the proposed SRAM array is 42% higher
(32μW) than the standard SRAM array (23μW).

VI. CONCLUSION

A SEIO 6T bitcell design and its word-organization for
robust and high density SRAMs is presented. The immunity
to process variations (robustness) and high density in the
proposed design is achieved by isolating the read current path
and using minimum feature size transistors. The improved read
and write-ability (data stability), reduced dynamic and leakage
power dissipation compared to standard 6T, makes the new
approach attractive for nanoscale technology regime in which
process variation is a major design constraint. Experimental
results shows that the proposed design has tremendous poten-
tial for nano-CMOS SRAM design.

REFERENCES

[1] International technology road map for semiconductors, test and test
equipments. http://public.itrs.net/, 2006.

[2] BPTM, http://www.device.eecs.berkeley.edu/ ptm/download.html/, 2008.
[3] K. Agarwal and S. Nassif. Statistical analysis of sram cell stability. In

Proc. 43rd annual conf. Design automation, pages 57–62, 2006.
[4] A.J.Bhavnagarwala, X. Tang, and M. J.D. The impact of intrinsic device

fluctuations on cmos sram cell stability. IEEE Journal of Solid-State
Circuits, 36:658–665, Apr 2001.

[5] M. Anis, S. Areibi, and M. Elmasry. Design and optimization of
multithreshold cmos (mtcmos) circuits. IEEE Trans. CAD of Integrated
Circuits and Systems, 22(10):1324–1342, Oct. 2003.

[6] E. Grossar, M. Stucchi, K. Maex, and W. Dehaene. Read stability and
write-ability analysis of sram cells for nanometer technologies. IEEE
Journal of Solid-State Circuits, 41(11):2577–2588, Nov 2006.

[7] J. Kao, A. Chandrakasan, and D. Antoniadis. Transistor sizing issues
and tool for multi-threshold cmos technology. Proceedings of the 34th
Design Automation Conference, pages 409–414, Jun 1997.

[8] J. Kao, S. Narendra, and A. Chandrakasan. Mtcmos hierarchical sizing
based on mutual exclusive discharge patterns. In Proceedings of the
35th annual conference on Design automation, pages 495–500, 1998.

[9] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Circuit and
microarchitectural techniques for reducing cache leakage power. IEEE
Trans. Very Large Scale Integr. Syst., 12(2):167–184, 2004.

[10] I. Kiyoo, S. Katsuro, and N. Yoshinobu. Trends in low-power ram circuit
technologies. In Proc. of the IEEE, vol. 83, pp. 524–543, April 1995.

[11] Z. Liu and V. Kursun. Characterization of a novel nine-transistor sram
cell. IEEE Trans. VLSI Systems, 16(4):488–492, April 2008.

[12] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling and estimation
of failure probability due to parameter variations in nanoscale srams for
yield enhancement. In Proc. VLSI Circuits Symposium, pp. 64–67, 2004.

[13] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for
cache energy reduction. In International Symposium on Microarchitec-
ture, pages 214–220, 2000.

[14] A. Wang and A. Chandrakasan. A 180 mv fft processor using sub-
threshold circuit techniques. In Proc.IEEE ISSCC Dig. Tech. Papers,
pages 229–293, 2004.

312

Session 5B

Secure VLSI Design

Encoding of Floorplans through Deterministic Perturbation

Debasri Saha and Susmita Sur-Kolay
A.C.M. Unit, Indian Statistical Institute, Kolkata, India. {debasri r, ssk}@isical.ac.in

Abstract

Recent trends in VLSI design involve rapid growth of de-
sign reuse and electronic Intellectual Property (IP) com-
merce. For VLSI physical design, the risk of misappro-
priation of design IP stored in design repositories, or the
threat of hacking the same during its web-based transmis-
sion, mandates design file encryption. However, encryption
of GDSII/OASIS design files, too large in size and complex
in format, is troublesome, time consuming and also prone to
typical cryptanalysis. The idea of an alternate efficient ap-
proach of encoding by deterministic perturbation of design
IP resulting in a degraded design of negligible IP value, is
proposed here to ensure security during design storage or
transmission. From the highly degraded design only autho-
rized person can quickly regenerate the optimized design.
In this paper, the technique for design encoding through
perturbation is applied for floorplanning stage. Encoding
moves for various floorplan representations are analyzed
and a novel technique for encoding tree-based representa-
tions is proposed. Experimental results on floorplan pertur-
bation for MCNC benchmarks are encouraging.

Keywords: Direct intellectual property protection, VLSI
physical design, floorplan representations, encoding moves.

1 Introduction

With the advent of DSM VLSI technology, rapid in-
crease in design complexity of integrated circuits, increas-
ing market demands on shorter design cycle time encourage
design reuse. The circuit components in a design, available
in electronic form and known as virtual components, signify
intellectual property (IP) of the design. However, infringe-
ment of design IP is quite likely. Hence intellectual property
protection (IPP) of VLSI design is a prime concern.

Techniques to protect IP of VLSI design can be of two
types – direct and indirect. Direct IP Protection includes
proper protection of design repositories, secure web trans-
mission of design IP during electronic design commerce be-
tween two parties, whereas embedding of watermarks and
fingerprints into the design for future establishment of iden-

tity of legal owner and buyer of design is covered under
indirect IPP. In this paper, we concentrate only on direct
IP protection of VLSI physical design. An idea of protec-
tion through deterministic degradation of the design, based
on a certain key K is proposed so that only an authorized
person can recover the original optimized design from the
perturbed one using the same private key K . For a de-
sign developed through multi-objective combinatorial op-
timization, the perturbed version is of negligible IP value,
and if intercepted, is of no use. Generating optimized de-
sign from the degraded one is equivalent to starting from
scratch. Here, a novel technique for encoding floorplans
through perturbation is developed.

This paper is organized as follows. Previous works are
outlined in Section 2. Section 3 analyzes existing floorplan
representations and various floorplan moves for design IP
encoding. A novel binary tree encoding scheme is given
in Section 4. The proposed technique of floorplan encod-
ing through degradation and its analysis are presented in
Section 5. Experimental results on benchmarks appear in
Section 6 and concluding remarks in Section 7.

2 Previous Works and Motivation

The IPP technique, discussed in [1], emphasizes on cryp-
tographic encryption for ensuring direct IPP. In [2], an en-
cryption protocol for secure transmission of FPGA design
is proposed but it is hardware-supported and applicable to
FPGAs only. A design layout file either in GDSII or OA-
SIS format contains repetitions and is large in size (tens of
GB) leading to high encryption time and huge transmis-
sion overhead. So GDSII compression using GDSIIzip or
GDSII optimization using Bantam software (timing require-
ment 1min/GB) is essential prior to its encryption. More-
over, physical design in any intermediate stage cannot be
protected using standard encryption techniques unless it is
converted to binary/ASCII format compatible for encryp-
tion tools. Binary format is not directly generated by the
CAD tools and has the limitation of fixed field size whereas
ASCII format suffers from much slower parsing. These is-
sues motivate us towards secure yet efficient design pro-
tection through deterministic design degradation. Our ap-

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.49

315

Table 1. Characteristics of Floorplan Representations
Floorplan Solution Packing Space Type of Encoding

representation space time complexity floorplan friendly
SP O((n!)2) O(n2) 2nlgn General Medium

Fast-SP [4] O((n!)2) O(nlglgn) 2nlgn General High
BSG n!C(n2, n) O(nlgn) O(nlgn) General Medium
TCG O((n!)2) O(n2) O(n2) General Medium

TCG-S O((n!)2) O(nlgn) O(n2) General Medium
Q-Seq F(n) O(n) 3nlg3n General Low

O-tree O(n!22n/n1.5) O(n) nlgn + 2n Compact Medium
B* tree [5] O(n!22n/n1.5) O(n) nlgn + 2n Compact High

CBL [6] O(n!23n/n1.5) O(n) nlgn + 3n Mosaic High
ECBL O(Cn

�λn�n!23�λn�−4/�λn�1.5) + 3�λn� − 4 O(�λn�) �λn�ln�λn� Extended to General Medium

TBS O(n!23n/n1.5) O(n) nlgn + 3n Mosaic extended Low
to General

proach can directly protect any intermediate as well as the
complete physical design. In [3] and [11], some prelimi-
nary techniques for design perturbation are addressed. A
more efficient and reliable technique is proposed here.

3 Encoding of VLSI Floorplans

Of all the stages in VLSI physical design, the output
of the partitioning stage is not significantly value-added,
whereas the IP value of the routed design greatly depends
on the quality of its floorplan. Encoding of floorplan is at-
tempted as it contributes significant IP value to the design.

3.1 Issues in Encoding of Floorplans

Here we justify the encoding of a floorplan to another
valid floorplan as opposed to an invalid one analyzing vari-
ous kind of attacks against security. In case of encoding to
a valid floorplan, in addition to time for checking validity,
time for checking floorplan quality is also required by the
hacker to realize that the hacked file is not directly useful.
It reduces the probability of active attack, so valid-to-valid
encoding is preferable.

The next issue is choosing a floorplan representation
scheme suitable for encoding. A floorplan representation
scheme with fewer redundancies (the closer is the represen-
tation space to the possible number of floorplans of a partic-
ular type) is desirable for floorplan encoding as otherwise it
requires relatively longer encoding time to ensure sufficient
perturbation and may even lead to an invalid floorplan. Low
packing time and space complexity are the other two desir-
able properties. A floorplan representation scheme is said to
be encoding-friendly if it satisfies the above three properties
and there exists a good floorplan encoding technique for it,
satisfying the following properties:

P1: If floorplan Fo is encoded to Fe with the key K , Fo

can be recovered uniquely from Fe using the same key K .
P2: The perturbation of Fe from Fo in terms of alteration

in floorplan topology and adjacency of modules should be

high, guaranteeing sufficient degradation.
P3: Total time for encoding and decoding, key bits re-

quirement for encoding and space/ transmission overhead
(other than key bits for correct recovery) should be low.

3.2 Analysis of Floorplan Representations
and Encoding Techniques

For a floorplan with n modules, properties of several
popular floorplan representations [8] are shown in Table 1.
For general floorplans, the encoding friendliness of differ-
ent floorplan representations are ranked depending on their
solution space, packing time and space complexity. Unlike
SP and Fast-SP, TCG and TCG-S, capable of supporting
incremental update for cost evaluation reduce the robust-
ness of an encoding scheme against the attempt of generat-
ing an optimized floorplan from the perturbed one. Hence,
Fast-SP, being faster than SP, is chosen for encoding general
floorplan. The encoding friendliness of the representations
for compact and mosaic floorplans cannot be ranked based
on the properties of Table 1. For that purpose, several pop-
ular encoding moves are described below.

M1: Swapping of two modules. It changes the adjacen-
cies of the modules but has no effect on the topology.

M2: Deletion of a module with its subsequent insertion
to a different site. It alters the adjacencies of modules and
topologies at each site.

M3: Single rotation on a floorplan-based tree. Adjacency
of the module and its local topology are changed.

M4: Swapping two subtrees of a floorplan-based tree.
Both the adjacencies and topologies along the boundary of
corresponding subsets of the floorplan are altered.

M5: Alteration of directive relations of the modules. It
has global impact on adjacencies and topologies.

The time and space/transmission requirements of these
encoding moves for several floorplan representations are
shown in Table 2. For TBS representation, ′×′ indicates an
invalid move which destroys the twin property of the two
binary trees. B* tree for encoding compact floorplan and

316

Table 2. Complexity of floorplan encoding moves for various floorplan representation schemes
Floorplan <Time complexity, Preprocessing time, Key bits required, Space/transmission overhead>

rep. M1 M2 M3 M4 M5
Fast-SP <O(1),-,O(lgn), -> <O(1), O(n), O(lgn), -> NA NA <O(1), O(n), O(lgn), ->
O-tree <O(1),-,O(lgn), -> <O(n), -, O(lgn), O(1)> <O(1), -, variable, O(lgn)> <O(n),-, O(lgn), -> NA
B* tree <O(1),-,O(lgn), -> <O(n), -, O(lgn), O(1)> <O(1), -, O(lgn), O(1)> <O(n),-, O(lgn), -> NA

CBL <O(1),-,O(lgn), -> <O(n), -, O(lgn), O(1)> <O(1), O(n), O(lgn), O(1)> <O(n),-, O(lgn), -> NA
TBS <O(1),-,O(lgn), -> × <O(1), O(n), O(lgn), O(1)> × NA

Unranking

 Extended form of the

 subtree Tai to be replaced

[1 3 4 4 2]

Level Number
 Sequence

Ranking

r = 3
 Encoding with K

r’ = 11

[3 3 3 3 1]
Level Number
 Sequence

 Binary tree T’ai
 for replacement

 (a)

t-arm

T’aj T’a
k

t’-arm

x=3, y=2;
x’=1, y’=4

 Engraft subtrees

 (T’aj, T’a
k
) t-arm

T’a
k

t’-arm

T’aj
 (b)

aj ak aj
ak

Figure 1. (a) Subtree Replacement (b) Sub-
tree Grafting

CBL for mosaic floorplan are selected considering their be-
havior towards popular encoding moves in Table 2.

Table 2 reflects that, for Fast-SP representation, there are
encoding moves with constant time complexity and zero
space/transmission overhead. But for the tree-based rep-
resentations, a topology-changing encoding move has ei-
ther O(n) time and zero space overhead or O(1) time and
space overhead each. Such move, applied for O(n) times
to ensure sufficient floorplan perturbation, results in ei-
ther O(n2) timing requirement or O(n) space/ transmis-
sion overhead. Hence, a new encoding move Tree Encode
to encode a binary tree is described next and employed in
an efficient encoding scheme for tree-based representations.
Binary tree encoding using Tree Encode has overall O(n)
timing requirement and zero space overhead.

4 A Novel Binary Tree Encoding

The following definitions and illustrations are needed to
explain the proposed scheme Tree Encode.
Left-arm(B) (or Right-arm(B)) is the path from leftmost (or
rightmost) leaf to the root of the binary tree B. Left-arm(B)
appended with Right-arm(B) constitutes arm(B).
In-subtree (ai) is the right-subtree for node ai ∈ left-
arm(B) and vice versa.
Here we use level number sequence representation of binary

trees. The level numbers of the leaves from left to right of
the extended binary tree of B having n vertices, constitute a
sequence of (n + 1) integers which uniquely represents B.

Algorithm Tree Encode(B)
Input: A binary tree B, symmetric key K
Output: An encoded binary tree
1. for each node ai ∈ arm(B)

if k, the size(in-subtree(ai))> sTh

Tree Encode(in-subtree(ai));
else { Find r = Rank(in-subtree(ai), k);

Encode r to r′ using K;
Compute unrank(r′ , k) to generate subtree T ′

ai
;

Assign T ′
ai

to in-subtree(ai); }
2. for i = 1 to m/2 do /* m = |arm(B)|*/

Select distinct nodes aj , ak on arm(B) and arms t and t′;
Let x=|t-arm(in-subtree(aj))|, y=|t′-arm (in-subtree(ak))|
Select integer x′ ∈ [1, x + y), Compute y′ = x + y − x′;
if x′ > x, let az=(y − y′)th node of t′-arm(in-subtree(ak))

else, az = (x − x′)th node of t-arm(in-subtree(aj))
if t �= t′, Reflect(az); /*swap subtrees of az*/
Separate Tg , the subtree rooted at az from rest of the tree;
if x′ > x, Append Tg to t-arm(in-subtree(aj));
else, Append to t′-arm(in-subtree(ak));

3. Let σ be the sequence of the next m bits of K;
for i = 1 to m do

if σi = 1, Reflect(ai); /* ai is ith node in arm(B)*/
4. Compute r, the position of root ar on arm(B);

Encrypt r with K to find new root position q;
Apply series of rotations about root to obtain new root aq;

This representation [9] of a binary tree lends it to efficient
generation of a lexicographic listing of all the binary trees
of same size, i.e., number of vertices, also known as Catalan
family Cn having Cn = 1

n+1

(
2n
n

)
members [10].

Rank(B, k) of B with k vertices is the number of binary
trees that precede it in the lexicographic ordering of Ck.
Unrank(p, k) generates the binary tree with k vertices, hav-
ing integer p as its rank in the lexicographic ordering of Ck.

The key idea of step 1 of Tree Encode(B) is to re-
place an in-subtree Tai by another binary tree T ′

ai
of same

size. First, the level number sequence of Tai is determined
and its rank r is computed in the lexicographic ordering of
Ck. Based on the key K , r is then encoded to another dis-
tinct rank r′, followed by replacing the current in-subtree
Tai by the binary tree T ′

ai
with rank r′ [Figure 1(a)]. In

step 2, the nodes in arm(B) are paired up. Let nodes

317

a1

 ai

Ta
i

Ta
1

ar+1

aj

Tar+1

Step 1

Taj
a1

 ai

T’ai

T’a
1

ar+1

aj

T’ar+1

T’aj

a1

 ai

T’ai

T’a1

aj

T’ar+1

T’aj

Step 2

a1

ai-1

T’ai-1

T’a1

 ai

 T’ai Step 3
 a1

ai-1

T’ai-1

T’a1

 ai

 T’ai

a1

T’a1

ar+1

T’ar+1

Step 4

ar

 aq

a

1

T’a
1

ar+1

ar

T’ar
T’ar+1

T’ar-1

ar-1

 T’aq

T’aq+1

T’aq+1

aq

aq+1

left arm right arm

Engraft in-subtrees

 (T’ai
, T’aj

)

Reflect (ai)

 Replace
 in-subtrees

ar-1

aq+1
 T’ar-1

 New root aq
through

 Rotations

ar ar ar

ar+1

ar
ar

Figure 2. Steps of Tree Encode

aj , ak be such an ordered pair, and x and y be the sizes
of t-arm(in-subtree(aj)) and t′-arm (in-subtree(ak)) where
t, t′∈ {left, right}. Grafting a portion of in-subtree(aj)
upon in-subtree(ak) or vice-versa is performed through in-
teger partitioning of (x + y) into x′ and y′. If x′>x
(x′<x), subtree rooted at (y − y′)th ((x− x′)th) node of t′-
arm(in-subtree(ak)) (t-arm(in-subtree(aj))) is separated and
subsequently prepended to t-arm(in-subtree(aj)) (t′-arm(in-
subtree(ak)). If t �= t′, subtree is reflected before prepending
[Figure 1(b)]. Figure 2 shows all the steps of Tree Encode.

Time Complexity of Tree Encode(B): The binary tree
generation algorithm and the ranking-unranking algorithm
have linear time complexities [10]. Hence time complexity
of step 1 is O(n), n=# nodes. For step 2, it is O(n) and for
step 3 and step 4, it is O(m) each, m=|arm(B)|, m≤n.

Average Perturbation Distance between Original and
Perturbed Floorplan: The average distance ds (min. num-
ber of rotations required to transform one to the other) of all
pairs of Catalan family binary trees Cs of size s is greater
than s/2. For large s, ds is close to (s − 1). For replace-
ment of m in-subtrees, each of average size s, average dis-
tance between the encoded and the original tree is greater
than ms/2. For both B* tree and CBL, a rotation, resulting
at least one change in topology and one loss of adjacency of
module, contributes unit perturbation distance. Hence per-
turbation distance due to step 1 is greater than ms/2.
Relocating a subtree of size s i.e. a subset of s modules for
B* tree changes at least adjacency of 4s1/2 modules placed
on the perimeter of the subset (considering all modules are
of nearly equal size). So, step 2 and step 3 alter on average,
at least adjacencies of 2ms′1/2 and 4ms1/2 modules respec-
tively, s′ = size of the subtree relocated in step 2. Relocat-
ing a subtree of size s of the unlabeled binary tree, drawn
from the T sequence of CBL, changes T junction coverage,

hence the adjacency of all s modules. So, for CBL, step 2
and step 3 alter on average at least 1

2ms′ and ms adjacen-
cies of modules respectively. Hence, perturbation distance
between original and perturbed floorplan, causing degrada-
tion of the design, is O(ms) i.e. O(n), n = # modules.

5 The Proposed Floorplan Degradation

5.1 Basics of Floorplan Degradation

Let Fo be an optimized floorplan with n original mod-
ules and K be the symmetric key, known to the IP owner.
In case of floorplan transmission, K is encrypted using
public-key-encryption RSA [7] and transmitted through
ultra-secure channel from owner to buyer. Now, for pro-
tection, a floorplan can be degraded in following two ways:

1. n′ (2 ≤ n′ ≤ lgn) dummy modules are inserted on
the given floorplan. lglgn bits of K determine the value of
n′. Each dummy module contains selective part of the cir-
cuits of two or more strongly interconnected original mod-
ules such that entire circuit of certain original modules are
duplicated in dummy modules. So simple deletion of the
modules with entirely duplicated parts of the circuit fails to
retain all the original modules. Dummy modules are placed
in the floorplan in a specified manner so that those can be
identified later and deleted [3]. The value of n′ is restricted
to lgn to limit the transmission overhead. This step protects
the valuable partitioning information of the design.

2. Encoding of the floorplan with total N = n + n′ mod-
ules is achieved through altering the adjacency relationships
of all the modules in the floorplan.
Benefits: Design is degraded due to (i) increased area of
perturbed floorplan (because of dummy modules and huge
dead spaces between the modules) (ii) increase in total wire-

318

Original Floorplan (XEROX)

Perturbed Floorplan for XEROX

BLKLL

BLKLR

BLKP

B
L
K
T

BLKUR

BLKRC
BLKB

BLKRS

BLKUL
BLKD

BLD1

BLD2

BLKLR

BLKD

BLKT
BLKUL BLKRS

BLKLL

BLKRC

BLKB

BLKUR

BLKP

Figure 3. Perturbation of Floorplan Xerox

length and critical path delay.
Figure 3 shows the perturbation of Xerox floorplan.

5.2 Encoding based on Floorplan Type

5.2.1 General floorplan as Fast-SP

Fast-SP consists of an ordered pair of module name se-
quences S = (Γ+, Γ−), where Γ+(Γ−) represents the or-
der of positive (negative) loci from top-left to bottom-right
(from bottom-left to top-right).
1. Apply move M1 by selecting module names M1, M2

based on K and swapping M1, M2 in both Γ+ and Γ−.
Repeat move M1 for N times.

2. Apply move M2 by choosing the three module names
M1, M2 and M3 based on K and placing the module just
after M1 in Γ+, after M2 in Γ+ and after M3 in Γ−.
Repeat move M2 for N times.

3. Move M5: Select a particular sequence, either Γ+ or
Γ−, and a subsequence of it based on K . Reverse the sub-
sequence within that selected sequence.

5.2.2 Compact floorplan as B*-tree

1. Permute S, the inorder sequence of B*-tree B, using
move M1 N times to generate module name sequence S′.
2. Apply Tree Encode(B) to encode B to Be.
3. Generate the encoded B* tree B′ with the topology of Be

and inorder sequence S′.

5.2.3 Mosaic floorplan as CBL

CBL represents a mosaic floorplan with three-tuple
<S, L, T>. S is a permutation of module names, L consists
of (N−1) orientation bits and T has no more than (2N−2)
bits representing T junction coverage. Append ′0′(s), if re-
quired, to T to generate the sequence Te of length 2N − 2
so that Te corresponds to the bit-string representation of an
unique binary tree [10].
1. Apply move M1 for N times to permute S to S′.
2. Bitwise XOR L with (N − 1) key-bits to generate L′.
3. Construct binary tree Bt from the sequence Te, encode

Bt to B′
t using Tree Encode(B) and regenerate bit-string

representation T ′ of B′
t.

< S′, L′, T ′ > represents the encoded floorplan.

5.3 Analysis of Proposed technique

Time Complexity: Each of the steps of floorplan encod-
ing techniques for three different floorplan representations
is of O(N) time, so the time complexities of the techniques
are linear in total number of modules of the floorplan.

Strength of Proposed Techniques: The strength of the
floorplan encoding schemes against brute-force attack [7]
for three chosen floorplan representations are as follows.

Fast-SP: The number of bits, required to define move
M1, M2, M5 are 2lgN , lgN + 2lg(N − 1) and lgN +
lg(N −1)+1 respectively. So the robustness of step 1, step
2 and step 3 are O(N2), O(N(N−1)2) and O(2N(N−1))
respectively. Hence the robustness of the technique against
brute-force attack is O(2N3N+1(N − 1)2N+1). Packing
time of Fast-SP is O(NlglgN) and computation of HPWL
of the floorplan requires O(E) times (E = # net terminals).
As Fast-SP does not support incremental updates of pack-
ing, O(2N3N+1(N − 1)2N+1(NlglgN + E)) time is re-
quired to certainly obtain the desired high quality floorplan.

B* tree: Algorithm Tree Encode(B) provides robust-
ness of O(Cm

s), O(m!m′m/2), O(2m) and O(m) in step
1, step 2, step 3 and 4 respectively, where m=|arm(B)|,
Cs = 1

s+1

(
2s
s

)
, s = the average size of in-subtrees and

m′=|arm(in-subtree(a)|, a∈arm(B). So the robustness
of Tree Encode(B) is O(mm!(2m′ 12 Cs)m). Hence for
B* tree, perturbed floorplan can be generated from any
of O(N2Nmm!(2m′ 12 Cs)m) possible floorplans. Con-
sidering time for packing and computation of HPWL,
O(N2Nmm!(2m′ 12 Cs)m(N + E)) time is required to cer-
tainly obtain the desired optimized compact floorplan.

CBL: Robustness of steps 1, 2 and 3 of the floorplan
encoding technique with CBL representation are O(N2N),
O(2(N−1)) and O(mm!(2m′ 12 Cs)m) respectively. Hence,
O(N2N2(N−1)mm!(2m′ 12 Cs)m(N + E)) time is required
to obtain desired mosaic floorplan.

The perturbation of the floorplan estimates the strength
the technique against any attempt of generating the desired
floorplan from the perturbed one.

6 Experimental Results

The proposed technique of floorplan perturbation was
implemented in C on 1.2 GHz Sun Blade 2000 machine
using Sun OS 9 and was tested on MCNC floorplan bench-
marks. We started with two sets of floorplan results, shown
in Table 3 – floorplan set I: a set of compact floorplans as
Fast-SP and B* tree representations, floorplan set II: a set
of mosaic flooplans represented as CBL, which are to be

319

Table 3. Benchmark Floorplans before Encoding
Benchmark # Blocks # Nets Floorplan Set I Floorplan Set II
Floorplan (for encoding with Fast-SP, B* Tree) (for encoding with CBL)

Area (mm2) HPWL (mm) Area (mm2) HPWL (mm)
Apte 9 97 47.31 363 47.30 363

Xerox 10 203 20.02 366 20.70 374
Hp 11 83 9.27 143 9.27 153

Ami33 33 103 1.19 75 1.20 83
Ami49 49 408 37.13 892 37.30 953

Table 4. Area and HPWL Degradation due to Proposed Encoding Technique
Benchmark Fast-SP B* tree CBL
Floorplan % increase % increase % increase % increase % increase % increase

in area in HPWL in area in HPWL in area in HPWL
Apte 183.5 208.3 181.0 195.0 185.1 189.7

Xerox 176.1 267.2 142.8 253.3 306.4 285.3
Hp 202.7 264.1 218.8 262.6 321.9 293.9

Ami33 235.0 226.2 174.2 211.8 250.9 236.2
Ami49 294.9 245.8 172.1 202.7 246.8 241.4

perturbed. The degradation in high quality flooplans due
to insertion of dummy modules and alteration of adjacen-
cies of the modules is measured in terms of increase in area
and HPWL and shown in Table 4. This degradation is more
compared to that in [11]. The perturbation distance between

Table 5. Effect on Adjacencies of Modules
and Transmission Overhead

Benchmark % change in %
Floorplan adjacency of modules overhead in

Fast-SP B* tree CBL transmission
Apte 87.5 85.5 81.2 22.22

Xerox 86.7 86.4 85.0 20.00
Hp 87.3 81.2 88.1 18.18

Ami33 94.4 94.1 92.1 12.12
Ami49 96.0 95.7 94.4 8.16

input floorplan and perturbed floorplan [Table 5] is mea-
sured by % change in the adjacencies of modules averaged
on all the modules. For a particular module say M, it is
|A − B|/|A|, where A={x|x ∈ adjacent(M) before per-
turbation}, B={y|y ∈ adjacent(M) after perturbation}. %
overhead in transmission, due to insertion of dummy mod-
ules in the floorplan, decreases with size of the floorplan.

7 Conclusion and Future Scope

An effective approach of encoding a design IP through
perturbation instead of design file encryption is proposed
to protect VLSI physical design in repositories and during
web transmission of the design. Popular floorplan represen-
tations are analyzed for various encoding moves and a novel
way of encoding tree-based floorplan representations is sug-
gested. Experimental results reflecting huge degradation in
the floorplan quality ensure robustness of the technique.

The technique for floorplan encoding can be extended
for placed and routed design in future.

References

[1] E. Charbon and I. H. Torunoglu, On Intellectual Property
Protection, Proc. of the IEEE Custom Integrated circuit Con-
ference, 2000, pp. 517-522.

[2] W. Adi, R. Ernst, B. Soudan, A. Hanoun, VLSI Design Ex-
change with Intellectual Property Protection in FPGA En-
vironment Using both Secret and Public-Key Cryptography,
Proc. of Int. Symposium on VLSI, 2006.

[3] D. Saha, P. Dasgupta, S. Sur-Kolay, S. Sen-Sarma, A Novel
Scheme for Encoding and Watermark Embedding for IP Pro-
tection of VLSI Physical Design, Proc. of Int. Conf. on Com-
putation: Theory and Application, 2007, pp. 111-116.

[4] X. Tang and D. F. Wong, Fast SP: A Fast Algorithm for
Block Placement Based on Sequence Pair, Proc. of ASP De-
sign Automation Conference, 2001, pp. 521-526.

[5] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, B*-
trees: A New Representation for Non-Slicing Floorplans,
Proc. of Design Automation Conference, 2000, pp. 458-463.

[6] X. Hong, S. Dong, G. Huang, Y. Cai, C. Cheng, Corner
Block List Representation and Its Application to Floorplan
Optimization, IEEE Trans on CAS, Vol. 51, No. 5, 2004.

[7] A. Menezes, P. V. Oorschot, S. Vanstone, Handbook of Ap-
plied Cryptography, CRC Press, 1996.

[8] H. H. Chan, S. N. Adya and I. L. Markov, Are Floorplan
Representations Important In Digital Design?, Proc. of Int.
Symposium Physical Design, 2005.

[9] F. Ruskey, T. C. Hu, Generating Binary Trees Lexicograph-
ically, SIAM J. of Computing, Vol. 6, 1977, pp. 745-758.

[10] J. Lucas, D. Baronaigien, F. Ruskey, On Rotations and the
Generation of Binary Trees, J. of Algorithms, 1993, pp. 1-25.

[11] D. Saha, S. Sur-Kolay, An Analytical approach for Direct IP
Protection of VLSI Floorplans, Proc. of ICIIS, 2008.

320

Design Optimization and Automation for Secure Cryptographic Circuits

Kuan Jen Lin+, Yi Tang Chiu and Shan Chien Fang
Department of Electronic Engineering, Fu Jen Catholic University, Taiwan

+kjlin @mail.fju.edu.tw

Abstract

Various logic design styles have been proposed to
counteract DPA (Differential Power Analysis) attacks
for secure cryptographic IC design. However, only a
couple of papers addressed the automatic synthesis and
optimization for these secure logic circuits. This paper
attempts to identify common optimization issues in
typical masking-based countermeasures. They include
(1) constrained Reed-Muller (RM) logic minimization,
(2) minimum decomposition of multi-input AND gates
and (3) minimum number of mask bits used to
randomize power consumption. An OFDD-based
heuristic method is proposed to minimize the RM logic
with emphasis on literal number. The latter two
optimization problems are formulated as zero-one
integer linear programming and graph coloring
problems respectively. Based on these formulations
and optimizations, an automated design flow for secure
cryptographic IC design was implemented in C
language.

1. Introduction

Securing information systems can be divided into
several kinds of different layers. The algorithm layer
such as AES (Advanced Encryption Standard) has been
designed to be secure against computational
cryptanalysis. Thus, as long as the key is kept hidden
from an attacker, the encrypted information can be
considered secure. However, the physical
implementation of cryptographic algorithms leaks the
so-called side channel information such as power
consumption and electro-magnetic emanation during
the computation of cryptographic algorithms, and that
can be exploited by an attacker to find the secret key.

In 1998, Kocher et al. first reported that the power
consumption of a smart card could reveal the secret key
of the cryptographic algorithm [7]. They found that the
power consumption of a device executing a
cryptographic algorithm is correlated with the
intermediate data and an attacker can use statistical
analysis to find the key from power traces of data
processing. The attack called Differential Power
Analysis (DPA) has been considered as the most
dangerous attack to the security of cryptographic

devices. Hereafter, there is a lot of research conducted
on corresponding countermeasures against the DPA
attack. An excellent survey can be found in the book
written by S. Mangard et al [11]. They classified the
countermeasures into two kinds: hiding and masking.
A popular method of hiding is to make the power
consumption constant and regardless of what
intermediate result being produced [e.g. 9, 18].
However, it is hard to implement the approach using
standard semi-custom design flow. The masking
method attempts to randomize the intermediate
computed data and make the power consumption
unpredictable. Many logic styles which mask data at
the gate level and mostly can be realized with common
standard cell libraries have been proposed [e.g. 5, 10,
14]. Although secure masked cells or logic structure
may be different among them, the design flows for
these masking approaches basically are similar.

Only a couple of papers addressed the automatic
synthesis and optimization for securing cryptographic
IC design against DPA attacks [6, 8, 18], which all are
about hiding-based methods. This paper attempts to
identify common optimization issues in typical
masking-based countermeasures. They include (1)
constrained Reed-Muller logic minimization, (2)
minimum decomposition of multi-input AND gates and
(3) minimum number of mask bits used to randomize
power consumption. An OFDD-based heuristic method
is proposed to minimize the RM logic with emphasis
on literal number. The latter two optimization
problems are formulated as zero-one integer linear
programming and graph coloring problems respectively.
Based on these formulations and optimizations, an
automated design flow for secure cryptographic IC
design was implemented in C language..

 In the next section, a typical design flow for
secure cryptographic IC design and common
optimization issues will be described. Three key
optimizations will be discussed in the following three
sections. Finally, experimental results will be given.

2. Design Flow for Secure Cryptographic

Circuits
One of popular countermeasures is to mask computed

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.57

321

data to make each probably attacked signal
unpredictable. It is achieved by exclusive-oring (XOR)
a signal b with an uniformly distributed random
variable mb (i.e. p(mb=0)=p(mb =1)=1/2) and is
independent of b) to get bm=b ⊕ mb. The masking
approach replaces each cell that is to be protected with
a masked cell, as shown in Fig. 1. For example, a 2-
input XOR function g=a ⊕ b can be replaced with gm=
am ⊕ bm and mg= ma ⊕ mb. The mg is called as a
correction mask. Note that the value of ma must differ
from that of mb. A masked cell for 2-input AND g=ab
proposed in [5] is derived as follows:

bmammammabmam mambambammamg +++= .

Its corresponding correction mask is mb. In MDPL
style [14], it allows that ma=mb and all masks even use
the same mask. However, a recent paper has shown
that single-bit masking can be broken by filtering of the
masked probability density function [16]. Therefore,
for security, the mask values for two input signals of a
2-input masked AND should be different.

 Another important characteristic of cryptographic
circuits is the use of XOR gates. Specifically, its circuit
structure often is AND-XOR style, i.e. Reed Muller
(RM) form, rather than AND-OR style. It is well-
known that RM logic style usually can save much area
from AND-OR style for cryptographic applications.

We now summarize a typical design flow for
masking-based cryptographic circuits against DPA
attacks, as described in Fig. 2. The first step is to
transform a general circuit to be the RM form. The
second step is to replace unmasked cells with masked
cells. Up to now, secure masked AND cells all have
fan-in constraint. Namely, only 2-input masked AND
cells are provided. Therefore, the main task of this step
is to decompose multi-input AND gates into a network
of 2-input AND gates. Furthermore, a masked AND
cell is much more expensive than a masked XOR cell.
For example, to have resistance against a DPA attack
exploiting glitch and early propagation effect, a masked
2-input AND cell needs more than 5 times of area of a
unmasked 2-input AND cell in a recent design iMDPL

[15]. Based on these observations, we draw two
optimization issues:

Optimization issue 1: The logic minimization of RM

expression should put emphasis on the number of
literals rather than the number of product.
 Optimization issue 2: Multi-input AND gates must be
decomposed to a network of 2-input AND gates. The
total number of 2-input AND gates should be
minimized without violating timing constraint.

The third step is to assign random masks to all

attackable signals in each round. The assignment must
satisfy the constraint: the masks used for two inputs of
a masked cell need to be independent of each other. A
true RNG (Random Number Generator) is used to
produce these masks. To save the complexity of the
RNG design, we have the following issue:

Optimization issue 3: The mask bits should be
minimized without violating the independency
constraint.

 After the masked circuit netlist is obtained, some
additional schemes such as pre-charge or dual-rail
coding can be added. They are not considered in this
paper.

3. Constrained RM Logic Minimization
3.1 Fixed Polarity Reed-Muller Expansion

An n-variable Boolean function can be expressed as
exclusive sum-of-product form, i.e. AND-XOR form,
which is known as Reed-Muller Form. If every variable

Fig 1: A 2-input unmasked cell G and a corresponding
masked cell Gm and correction-mask generator Mg, where
am=a ⊕ ma, bm= b ⊕ mb, and gm=g⊕ mg.

Unmasked
cell G

g

b

a Masked
cell Gm

gmbm
am

mb
ma

mg
Correction-
mask
generator
Mg,

Gate-Level netlist

Constrained RM logic minimization

Masked-cells binding

Masks assignment

Correction-masks generation

Masked netlist

Fig. 2: Design flow for masked
cryptographic circuits.

322

appears either true or complemented, but not in both
form, the expression is defined as Fixed Polarity Reed-
Muller Form (FPRM).The advantage of the FPRM is
that the resulting circuit needs at most n inputs in
contrast to up to 2n inputs in Mixed Polarity (MP) RM
representation. Although the MPRM usually needs less
number of gates, the FMRM can save wring area. The
RM expression under our consideration will be the
FMRM form. A polarity is specified by an integer p,
0�p�2n-1, which can be written as a binary n-tuple
p=(pnpn-1…p1). Given a polarity p, an n-variable
Boolean function can be expressed by the FPRM form
as:

� ∑
−

=
− ⊕=

12

0
11)...(

n

i
iinn bxxxf π

where the integer subscript i, 0�i�2n-1, can be written
as a binary n-tuple i=(in-1in-2…i0), ‘�Σ’is the XOR
operation, bi ∈{0,1} denotes whether the πi exists, the
pi-term πi can be represented as

⎪
⎩

⎪
⎨

⎧

==
==

=
=

= −

1,1
0,1

01

:... 11

jjj

jjj

j

j

nni

pix
pix

i
x

xxxπ

 The number of product terms largely depends on the
polarity. The problem to find the best polarity with a
least cost is computationally extensive in both space
and time. A lot of research has been conducted to the
minimization of FPRM expression. Tabular methods
and Matrix transformations [e.g. 12, 17] need at least
O(2n) complexities for both space and computation
time. Several works have shown that the use of OFDD
(Ordered Function Decision Diagram) to represent an
FPRM expression generally needs less memory and
less computation time than tabular and matrix methods
[e.g. 1, 2, 4].

3.2 OFDD-Based FPRM Expansion

The goal of most previous works [e.g. 1, 2, 4] is to
minimize the number of product terms.The proposed
minimization will put emphasis on the number of
literals rather than the number of product (see
optimization issue 1). For mixed polarity RM forms,
there are several works that addressed the issue [e.g.
13]. However, the key idea behind them is to search
products with k-distance to be combined to single
product. It is not applicable for FPRM expressions. In
this paper, we proposed an OFDD-based approach. The
OFDD is a kind of ordered decision diagram, which is
constructed by Davio expansion [3]. For an n-input
Boolean function),,,,,,()(121 xxxxxfXf inn ⋅⋅⋅⋅⋅⋅= − , the

positive and negative Davio expansions about index
variable xi are given as follows:

Positive Davio expansion: 20 fxff i⊕= ;
Negative Davio expansion: 21 fxff i⊕= .

Where),,,0,,,(1210 xxxxff nn ⋅⋅⋅⋅⋅⋅= − is f(X) with xi

replaced by 0,),,,1,,,(1211 xxxxff nn ⋅⋅⋅⋅⋅⋅= − , ix replaced
by 1, and the Boolean difference 2f , 102 fff ⊕= [3].

A simple example of OFDD representing the
function 12123123123),,(xxxxxxxxxxxf ++= is shown in
Fig. 3. The variable order from root to leaf is x1 -> x2 -
> x3. The polarity selection is 123 xxx .

Given a polarity assignment, only one
decomposition type of Davio expansion (either positive
or negative) about the same index variable is carries
out at all nodes on the same tree level. The
decomposition is performed until all non-decomposed
nodes being a 1- or 0- terminal, denoted by a square
box, whose function equals 1 and 0 respectively. The
resultant OFDD is called as FPRM tree in this paper.
The corresponding FPRM expression is derived as
follows:

∑
∈

⊗=
Uv

Xf)((NPP(v)), where U is the set of all 1-

terminals and the NPP(v) (Node Path Product) is the
product of all the literals on the path from the root to
the node v. For example, the NPP(V6) is 32xx . By
finding the NPP for all 1-terminals, we get

3211 xxxf ⊕⊕= from Fig. 3.

3.3 Cost Estimates
The following cost estimates are proposed to determine
the polarity during the tree decomposition and evaluate
the cost of an FPRM tree.

 weight (ni): equals the number of literals in the
path from root to the node i. The followings can be

1x

1

10

1

121231230)(xxxxxxxxVf ++=

2231)(xxxVf += 1)()(223232 =+⊕= xxxxxVf

34)(xVf =

2x

3x

V0

V1
V2

V3 V4

V5 V6

Fig. 3: An OFDD for 12123123123),,(xxxxxxxxxxxf ++= ,
where the selected polarity is 123 xxx .

323

easily derived:
weight(ni ->low_successor)=weight(ni);
weight(ni ->high_successor)=weight(ni)+1;

 Pnumber(f): For a Boolean function f, if f=1
(f=0), Pnumber(f)=1(0). Otherwise, Pnumber(f)
equals the number of its product terms while not
counting any one-literal term.

Let Sj be the node set with the same decision
variable xj.

))(()(0 0∑
∈

×=
ji

j
Sn

iix nfPnumbernweightC

))(()(1 1∑
∈

×=
ji

j
Sn

iix nfPnumbernweightC

For a 1-terminal node, the weight value equals
the number of literals of its node-path product.
The total Literal Cost (LC) of a PFRM tree is
defined as follows:
 ∑

>∧∈
=

1)(
)(

ii nweightVn
inweightLC

where V is the set of 1-terminal nodes.

3.4 Algorithms
The proposed heuristic algorithm attempts to build an
FMRM tree with a minimum LC. It consists of three
main steps:

(1) Transform a circuit description from SOP
form to DSOP (Disjoint SOP) form: The task is
performed by running ESPRESSO [19]. The DSOP
simplifies the XOR operation between two expressions.

(2) Construct an initial FPRM tree from the
DSOP representation: The variable order is derived
according to the number of literals occurring in the
DSOP expression. During the tree construction, the
cost estimates

jxC0 and
jxC1 are used to determine the

polarity for variable xj.
(3) Refine the FPRM tree iteratively: The initial

FPRM tree is reconstructed by changing the polarity
for one of variables. For an n-input function, there are n
trees reconstructed. If the result with the least LC
among the n FPRM trees has less LC than that of the
initial FPRM tree, its polarity assignment is chosen.
Otherwise, the refinement stops. If there are two trees
to have the same LC, the one with fewer product terms
is chosen. One variable at most changes its polarity
once. Once a better assignment is obtained, the same
scenario is repeated for all those variables having not
yet polarity changed. In the worst case, this step will
construct at most O(n2) trees.

4. Decomposition of Multi-Input AND
Gates

Because only 2-input masked AND cells are provided,

multi-input AND gates must be decomposed into a
network of 2-input AND gates. It is not trivial to find a
decomposition that uses the minimum number of 2-
input AND gates when simultaneously considering a
set of multi-input AND gates. We formulate the
minimization as a problem of zero-one integer linear
programming by using a binary decision variable:
X={xi,j; i=1, 2,…, n; j=1, 2,…, n}, where n is the
number of variables. In an FMRM expression, this
means that there are at most n different literals. We let
them be v1, v2,…, vn. There are at most (n2-n)/2
different 2-input terms and n different one-literal term
in the decomposition. The xi,j = 1 (0) means that the
product term vivj is (not) selected. If i=j, the term has
only one literal. For each multi-input AND gate, we
derive a set of conditions. For example, the term v1v3v4
implies the following conditions must be satisfied

1
1
1

443414

333413

111413

≥++
≥++
≥++

xxx
xxx
xxx

The three conditions ensure that each variable will
be contained in a selected term. Subject to such
conditions derived for all multi-input AND gates, the
problem is to minimize

∑
=
=

nj
ni

ijij xB
,...,1
,...,1

 where i≦j and if i≠j, Bij=1,otherwise Bij=n2.

The solution will use one-literal terms as less as
possible. A solution of the integer linear programming
problem defines a set of xij =1. Each multi-input AND
gate then can be decomposed into several terms from
this set. Finding a minimum decomposition (i.e. with
minimum terms) corresponds to a minimum covering
problem. Since the input number is often small, exact
solution can be easily derived. The above derived
solution is the first level decomposition. Each selected
2-literal term will be replaced with a new variable.
Then, the same formulation is applied to drive the
second level decomposition. The same approach is
repeated to get the output.

5. Mask Assignment

In mask assignment, we attempt to use the
minimum number of bits to satisfy the independency
constraint: no any two inputs of a masked cell carry the
same random mask. The procedure of mask assignment
is shown in the Fig. 4. It traverses the circuit from
primary outputs to its primary inputs. Each wire will be
labelled with a string, which will be used to
differentiate the assignment. Fig. 5 shows an example

324

of how the procedure mask_assignment() to label the
string on each wire. The three primary outputs O0, O1
and O2 are labelled with a, b and c. Then the strings are
backward passed to cells’ inputs. If a wire has more
than one branch, the strings of its branches are
concatenated to become its label string.

After all primary inputs are labelled, we construct a
conflict graph, in which a node represents a primary
input and an edge (v, u) exists if LS(v) ∩ LS(u) ≠∅,
which means that the label strings of v and u contain
at least one common literal. According to the
independency constraint, they must be assigned with
different masks. Fig. 6 shows such a conflict graph for
the example in Fig. 5. Since only one of inputs affects
the mask of the masked AND cell’s output, we can let
I3 and I5 to share the same mask. This is why they are
combined to be one supernode in Fig. 6. Based on the
above formulation, the minimization of mask
assignment can be transformed to a graph colouring
problem. In this example, it needs 4 mask bits.

6. Experimental Results

The section mainly reports the current result of our
heuristic approach to derive FMRM logic. The
proposed FMRM logic synthesis that tries to minimize
the number of literals was implemented in C language
and run under a PC that has 2.01 GHz AMD dual-core
Athlon processor. A set of MCNC benchmark circuits
was used to evaluate the method. Table 1 shows the
results obtained. The solutions with a minimum LC are
derived by exhaustive searching. However, due to the
computation time exploding (over 72hr), the minimum
for several cases were not determined, which are
indicated by “-“. Note that there are five examples
whose FPRM expression has a minimum LC but not a
minimum number of product terms. The column
“Ours” shows the results derived by our approach.
Compared to those determined minimums, our results
need additional 1% cost only. It is noticeable that the
OFDD-based works in [1, 4] need more 10% product

terms than those minimums. As for the computation
time, the circuit apex3 and apex5 take about 25 and 35
minutes respectively. Other circuits synthesized can be
obtained within one minute.

We used the lp-solve to derive optimal
decomposition for multi-input AND gates. The circuits
with LC less than 5000 can be solved within one hour.
However, other circuits may take unacceptable time.
For example, we cannot get the optimal solution for
table3 even running 48 hours. Similarly, it is also
impossible to derive exact minimization for mask
assignment for larger circuit using graph coloring
method. Hence, heuristic techniques must be exploited.

7. Conclusion
In this paper, common optimization issues in typical
masking-based countermeasures have been identified,
which include (1) constrained Reed-Muller logic
minimization, (2) (2) minimum decomposition of
multi-input AND gates and (3) minimum number of
mask bits used to randomize power consumption. An
OFDD-based heuristic method has been proposed to
minimize the RM logic with emphasis on the literal
number. The latter two optimization problems have
been formulated as zero-one integer linear
programming and graph coloring problems respectively.
Based on these formulations and optimizations, an
automated design flow for secure cryptographic IC
design was implemented in C language.

I1

I2

{I3, I5}

I4

I6

Fig. 6: A conflict graph for the example in Fig. 5.

I0

a

I6

Fig. 5: An example of mask-assignment() that labels
all wires from POs to PIs.

a

b

b b

c

b

b

ab

c

a
AND

XOR
I0

I1

I2

I5

I4

I3

O0

O1

O2

a

c

ab

bc

AND

AND

ab

bc

ab

XOR

XOR

XOR

mask_assignment(Circuit C) {
 //LS(v) is the label string of a wire v

Traverse backward the circuit from POs to PIs:
Label different literals to each PO
For each gate,

copy the output’s LS to all inputs as their LS
If a wire v forks, LS(v)=∪ LS(ui), where ui is a

branch of v.
 Construct a conflict graph

Assign masks to each PI by graph colouring :

}

Fig. 4: The procedure of mask assignment.

325

8. Acknowledgments
The authors would like to thank the anonymous
reviewers for their comments to improve the quality of
this paper. This work was supported by Taiwan NSC
under Contract No. NSC 96-2221-E-030-015-MY2.

9. References
[1] S. Aborhey, “Reed-Muller Tree-based Minimization of

Fixed Polarity Reed-Muller Expansions,” IEE. Proc.,
Comput. and Digit. Tech., pp. 63-70, 2001.

[2] B. Becker, and R. Dreschler, “OFDD based
Minimization of Fixed Polarity Reed-Muller
Expressions Using Hybrid Genetic Algorithms,” IEE
International Conference on Computer design, pp.
106-110, 1994.

[3] M. Davio, J.P. Deschamps, and A. Thayse, “Discrete
and Switching Functions,” McGraw-Hill Int’l, 1978.

[4] R. Drechsler, M. Theobald, and B. Becker, “Fast
OFDD-based Minimization of Fixed Polarity Reed-
Muller Expansions,” IEEE Trans. Comput., pp. 1294-
1299, 1996.

[5] J. D. Golić and R. Menicocci, “Universal Masking on
Logic Gate Level,” Electronics Letters 40(9), pp. 526–
527, 2004.

[6] S. Guilley et al., “Secured CAD Back-End Flow for
Power-Analysis-Resistant Cryptoprocessors,” IEEE
Design and Test of Computers, pp. 546-555, No. 6,
2007.

[7] P. Kocher, J. Jaffe, and B. Jun, “Differential Power
Analysis,” Advances in Cryptology – CRYPTO ’99,
LNCS, vol. 1666, pp. 388-397, 1999.

[8] K. J. Kulikowski, A. Smirnov and A. Taubin
“Automated Design of Cryptographic Devices
Resistant to Multiple side-Channel attacks,” 2006,
LNCS, vol. 4249, pp. 399-413, 2006.

[9] K. J. Kulikowski, M. Su, A. B. Smirnov, A. Taubin,
M. G. Karpovsky and D. MacDonald, “Delay
Insensitive Encoding and Power Analysis: A
Balancing Act,” ASYNC 2005, pp. 116-125, 2005.

[10] K. J. Lin, S. C. Fang, S. H. Yang and C. C. Lo,
“Overcoming Glitches and Dissipation Timing Skews
in Design of DPA-Resistant Cryptographic Hardware,”
IEEE/ACM DATE, pp. 1265-1270, 2007.

[11] S. Mangard, E. Oswald and T. Popp, Power Analysis
Attacks Revealing the Secrets of Smart Cards, Springer,
2007.

[12] J. F. Miller, and P. Thomson, “Highly Efficient
Exhaustive Search Algorithm for Optimizing
Canonical Reed-Muller Expansions of Boolean
Functions,” Int. J. Electron., pp. 37-56, 1994.

[13] A. Mishchenko and M. Perkowski, “Fast Heuristic
Minimization of Exclusive-Sums-of-Products,” Proc.
Reed-Muller Workshop, pp. 242-250, 2001.

[14] T. Popp and S. Mangard, “Masked Dual-Rail Pre-
charge Logic: DPA-Resistance Without Routing
Constraints,” CHES 2005, pp.172-186, 2005.

[15] T. Popp, M. Kirschbaum, T. Zefferer and S. Mangard2,
“Evaluation of the Masked Logic Style MDPL on a
Prototype Chip,” CHES, LNCS 4727, pp.81-94, 2007.

[16] P. Schaumont1 and K. Tiri, “Masking and Dual-Rail
Logic Don’t Add Up,” CHES, LNCS 4727, pp. 95-106,
2007.

[17] E.C. Tan, H. Yang, ”Fast Tabular Technique for
Fixed-Polarity Reed-Muller Logic with Inherent
Parallel Process,” Int. J. Electron., pp. 511-520, 1998.

[18] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P.
Schaumont, and I. Verbauwhede, “A Digital Design
Flow for Secure Integrated Circuitsg”, IEEE Trans. On
CAD, pp. 1197~1208, vol. 25, no. 7, 2006.

[19] Espresso, http://embedded.eecs.berkeley.edu/.

Table 1: Experimental results.

Circuits Inputs Outputs Ours (LC) Minimum (LC)
5xp1 7 10 164 164

9sym (1) 9 1 464 462
alu4 14 8 21945 21945

apex3 54 50 7091 -
apex4 9 19 1664 1661
apex5 117 88 6741 -
b12 15 9 224 199
bw 5 28 43 43
clip 9 5 790 790
con1 7 2 32 32
cps 24 109 2756 2756

duke2 22 29 1755 1755
e64 64 64 2064 -

ex1010 (1) 10 10 4078 4078
ex5 8 63 343 343

f51m (1) 8 8 138 138
inc 7 9 131 131

misex1 8 7 48 48
misex2 25 18 377 377
misex3 14 14 24729 24729
misex3c

()
14 14 11707 11672

pdc 16 40 11583 11583
rd53 5 3 25 25
rd73 7 3 126 126
rd84 8 4 245 245
sao2 10 4 634 607
seq 41 35 17378 -
spla 16 46 11781 11781

squar5 5 8 33 33
t481 16 1 28 28

table3 14 14 14706 14706
table5 17 15 22009 22009
vg2 25 8 58280 -
xor5 5 1 0 0

z5xp1 7 10 164 164
z9sym (1) 9 1 462 462
Total (2) 133184 133092

(1) The FPRM expression has a minimum LC but not a
minimum number of product terms.
(2) The total excludes those undetermined minimums.

326

A Novel Sustained Vector Technique for the Detection of Hardware Trojans

Mainak Banga and Michael S. Hsiao
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, Virginia - 24061
Email: {banga, mhsiao}@vt.edu

Abstract—Intentional tampering in the internal circuit struc-
ture by implanting Trojans can result in disastrous operational
consequences. While a faulty manufacturing leads to a nonfunc-
tional device, effect of an external implant can be far more
detrimental. Therefore, effective detection and diagnosis of such
maligned ICs in the post silicon testing phase is imperative, if
the parts are intended to be used in mission critical applications.
We propose a novel sustained vector methodology that proves
to be very effective in detecting the presence of a Trojan in an
IC. Each vector is repeated multiple times at the input of both
the genuine and the Trojan circuits that ensures the reduction of
extraneous toggles within the genuine circuit. Regions showing
wide variations in the power behavior are analyzed to isolate
the infected gate(s). Experimental results on ISCAS benchmark
circuits show that this approach can magnify the behavioral
difference between a genuine and infected IC up to thirty times
as compared to the previous approaches. 1

I. INTRODUCTION

With the decreasing per component cost for silicon ICs,
companies are searching for new avenues to reduce the manu-
facturing cost. This has led to the outsourcing of the fabrication
process. Consequently, the question of security and integrity of
the embedded product comes forth as a prime concern. Thus,
the design company has to ensure that no subtle intentional
alterations had been subjected to the original logic during
fabrication. The tiny circuits that are implanted to the original
design to make it work contrary to the expected in certain rare
and critical situations are called as Trojans.

Trojans have been common in the software domain and are
commonly referred to as virus. Although viruses and Trojans
are not exactly the same, their end consequences are similar.
Viruses are necessarily malicious and interfere with the normal
operation of the host on which they reside, whereas Trojans are
passive monitors for most part of their operational life cycle
until they are triggered. Solutions to counteract virus attacks
exist in the form of anti-virus softwares. But currently there
are no such remedies for Trojan attacks in hardware.

Trojans have distinguishing features that make them unique.
They are stealthy in nature, which implies that they do not
manifest their presence in normal operational conditions of
the IC. This also suggests that they are not associated with
internal gates that are either highly controllable or highly
observable. They are very small in size, occupying only a
small fraction of chip area which enables the third party
vendor to accommodate them in the same die without altering
the physical dimensions of the chip. Although test patters

1Supported in part by NSF grant 0840936

generated from an ATPG can detect most of the manufacturing
faults, no such scheme is available to uncover the Trojans
because they have an unknown triggering scenario which is
difficult to assess and occurs rarely. Additionally, Trojans can
have varying spatial locations on the IC and different logical
behaviors (counter-based Trojans, sequence-detector Trojans
etc.) [6] which complicate the detection mechanism. Finally,
Trojans may not affect any of the primary outputs even if they
are triggered. As a result, irrespective of whether a Trojan
resides in an IC or not, there may not be a difference in the
circuit’s output behavior. Trojans can be selectively implanted
and its absence in one IC does not guarantee its absence on
any other. So destructive testing is also not a viable option. On
one hand, destructive testing incurs a yield loss where a chip
that has been cut open for analysis has to be discarded, while
on the other it cannot guarantee genuineness of the other parts
not subjected to such testing.

Moreover, on-chip testing structures like Built In Self Test
(BIST) are also common to check on chip defects and reduce
the test time [7], [8], [9]. However, similar to the problems
with scan-based testing, BIST patterns may not be able to
trigger the embedded Trojan which requires a specific se-
quence of input data. Hardware security based on cryptogra-
phy and public and private key has been prevalent in industry.
Physically Unclonable Functions (PUF) based structures have
been proposed recently [11], [12] to characterize individual IC
security key. While PUF based schemes are very effective in
preventing external attacks to extract out the internal informa-
tion from the ICs, Trojan attacks are on-chip intrusions and
hence require a different approach. The intelligent nature of
Trojans make them immune to such conventional checking
procedures. This has directed the researchers to search for
newer methods to detect the presence of Trojans. Since one
has a limited access to the logical behavior of the device (only
at the inputs and the outputs), researchers have identified the
use of physical characteristics such as power, circuit delay or
radiation behavior to act as a signature for the IC. Methods
based on side channel signal analysis have been used in [1],
[2] where the authors have used a random sequence of test
patterns to differentiate between the actual and the Trojan
circuits. However, the magnitude in the difference between
the circuit under test (CUT) could be very small and may not
be detectable considering process variations. With the process
geometries sinking down in the nanometer regions, leakage
and process variations continue to increase. Thus it is of utmost
priority that the discrepancies in the genuine and maligned ICs

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.22

327

are highlighted as much as possible so that their probability
of detection increases.

In [3], [4], the authors have proposed partition mechanisms
to isolate parts of the circuitry that might account for the
Trojan. Results show that these methods are helpful in filtering
out the infected regions. However, in those papers the Trojans
are assumed to be associated with flip-flops of the circuit. This
is a restricted assumption since embedded Trojans can monitor
any signals in the circuit. Moreover, in [4], the regions under
consideration are filtered out based on the flip-counts. A Trojan
based on gate inputs may be missed using these techniques.

In this work, we propose a sustained vector methodology
that magnifies the power consumption differences between the
actual and the Trojan circuitry to a value which is much higher
than the process variation. In certain cases the power differen-
tial can vary by more than an order of magnitude. Each vector
is repeated multiple times to both the genuine and the Trojan-
embedded circuits that ensures the reduction of toggles within
the genuine circuit. This is needed so that the power dissipation
outside of the Trojan will not drown out the extra power from
the Trojan. In addition, we propose a scheme to suggest the
locations susceptible to Trojan implantations. Regions showing
wide variations in the power behavior are analyzed to isolate
the infected gate(s). Our method is generalized for detecting
Trojans that may be connected to any gate(s) in the circuit.
There is no pre-silicon on-chip processing requirement which
means that the methodology has no silicon overhead.

The rest of the paper is organized as follows. Section II
gives the background on side channel analysis and kinds of
Trojans. Section III details our approach. Section IV describes
the Trojans inserted in our experimental setup. Section V
discusses the results, and Section VI concludes the paper.

II. PRELIMINARIES

In this section we present a brief overview of the concepts
and terms that we will use throughout this paper.

A. Side Channel Analysis

With the improvement in cryptographic algorithms it is
becoming increasingly difficult for the attackers to infringe the
system dynamics in the conventional manner. This has forced
them to explore other methods to access internal information.
Physical parameters such as timing information, power con-
sumption or electromagnetic leaks (side channel signals) have
been shown to provide valuable information about the internal
operations going on inside the system. Since side channel
signals contain useful information which can reveal the in-
ternal functionality of the operating device, it is employed as
a powerful non-destructive method of system analysis. The
process of extracting internal data from a concealed system
by tracking one or more side channel signals is called as side
channel analysis.

In our work we have used power consumption as our side
channel signal. The total dynamic power consumed in an IC
is proportional to the operating frequency f, the switching

capacitance C and the supply voltage V and are related by
the following equation [5]:

P = CV2f (1)

As the supply voltage V and the operating frequency f remain
constant for an IC, the parameter for analysis is the switching
capacitance C. This depends on the number of gates that
undergoes toggle(s) in a system for any given vector pair.

B. Trojan Types

Combinational Trojan: An embedded combinational cir-
cuit that monitors static signal conditions with no memory of
the signal’s previous conditions.

Sequential Trojan: An embedded finite state machine
(FSM) that is triggered upon the appearance of a specific
sequence(s) of internal signal conditions.

The Trojans in our experiments are sequential Trojans
and have been further categorized according to the toggling
frequency of the signals from which they receive their inputs.
More details will be given later in the paper.

C. Power Profile

A power profile represents the pattern of power consumption
in a system. Power consumption for any pair of vectors is
dependent on the total number of gates that switch which
accounts for the switching capacitance (other factors in Equa-
tion 1 remaining the same). In our paper we have used the
terms activity profile or power profile interchangeably because
number of gate switches in a circuit is directly proportional
to the dynamic power consumed by it. Also, a gate refers to
any combinational or sequential element in the CUT.

III. OUR APPROACH

There are two steps in our approach. The first step aims
to detect the presence of a Trojan while the second tries to
isolate the region within the circuit that may contain it. We
call the first step as Toggle Minimization and the second as
Infected Region Isolation respectively.

A. Step 1: Toggle Minimization

In the context of earlier discussion, power consumed in a
circuit depends on the amount of signal switchings for any
given vector pair. Since Trojans are minuscule circuits relative
to the entire circuit, it is intuitive that the power consumed
by the Trojan will also be very small. To observe the extra
power that is contributed by the Trojan circuit over the genuine
circuit, it is essential that the overall power consumption in the
genuine circuit should be minimized. This would highlight
the power contributed from the Trojan circuit which is the
key to detect its presence. In the process, we also need to
ensure that there is at least some kind of activity going on
inside the circuit. In other words, the circuit should not be
allowed to enter some sleep mode, which may also make the
Trojan dormant. Sophisticated tools to measure very low on-
chip currents are available which can sample the input power
pins of the chip and measure the current [13].

328

S
T
A
T
E

B
I
T
S

S
T
A
T
E

B
I
T
S

PRIMARY INPUTS

PRIMARY INPUTS

(a)

(b)

CUT

CUT

Fig. 1. Concept of activity minimization. In (a) circuit activity is created by
both flip-flops and PIs whereas in (b) only by flip-flops

Circuit activity within the combinational frame of the circuit
is induced in two ways: (1) with the changing inputs and
(2) with the changing state. While primary inputs are fully
controllable, the state variables are not. In order to limit
the switching activity within the circuit, we can restrict the
input variations to an extent such that the state variables are
the only factor for inducing toggles. This is achievable by
sustaining the same vector at the input pins over multiple
clock cycles. Statistically in a purely random scenario each
new vector will have at least half of the input bits toggled
from the previous vector. These toggles will propagate through
the transitive fanout cones of the respective inputs to generate
further toggles in the circuit. If we ensure not to create any
toggles at the input itself, it helps us reduce the circuit activity
to a good extent because in such situation the state bits are
the only factor for generating activity in the circuit. Moreover,
we prefer scenarios where fewer state bits change as we
keep the input vector at a stable value. Additionally, it also
helps in reducing the synergistic transitions. That is, there are
gates in the circuit which derives its inputs from the state-
bits as well as from the inputs and they transition when more
than a single input changes. If the changing state is the only
dynamic variable during the operational mode, chances are
less that such synergistic transitions will occur as compared
with the random scenarios. Naturally these help in minimizing
the overall circuit activity and keep the power consumption of
the overall circuit low, which is our primary objective. We
note that without sustaining a vector, the power consumption
generally is much higher, closer to consuming an average
power level of the circuit. The concept of Toggle Minimization
by sustaining a vector is shown in Figures 1 (a) and (b).

0

100

200

300

400

500

600

700

1 11 21 31 41 51 61 71 81 91

Vector Number

%
 P

o
w

e
r

D
if

fe
re

n
c
e

Power difference for
sustained vector V1 at

time instance t1

0

100

200

300

400

500

600

700

1 11 21 31 41 51 61 71 81 91

Vector Number

%
 P

o
w

e
r

D
if

fe
re

n
c
e

Power difference for
sustained vector V1 at

time instance t1+1

g3

g1
g2

g4

TROJAN

(b)

g3

g1
g2

g4

TROJAN

(a)

Fig. 2. Power differential measurement between vectors to isolate the gates
connected to the Trojan

In our experiments, we generated a set of 1000 random
input vectors, each of which is sustained to a maximum of 25
cycles. For a vector V, after sustaining it k times (k < 25),
if we find that the system has reached a stable state where
no further change in the state variables occurs, we move on
to the next vector. Thus, a vector set for any particular circuit
contains a maximum of 25000 input sequences. While holding
the same vector at its input helps the circuit to traverse a local
state space, changing the input vector to sustain next serves as
a jump to explore some other regions of the state space. We
apply this test sequence to both the genuine and the Trojan
circuits in our experiments and obtain the differential power
numbers (expressed in %) between them. The resultant plot is
the Differential Power Profile Plot for the CUT.

B. Step 2: Infected Region Isolation

We use the Differential Power Profile Plot information from
Step 1 to identify the region(s) of the circuit that are likely
to be insertion points of the Trojan. We focus on vector pairs
that produced high differential power as starting points.

Let us consider a sustained vector V1 with which the
CUTs shows a noticeable difference in the power profile in
simulation cycles t and t+1. This is shown in Figure 2. Let
g1 to g4 be the four internal gates in the circuit that are
actually connected to the Trojan. Since the Trojan derives its
inputs from the gates in its transitive fanin cone, any activity
produced in the Trojan implies activity in its inputs. From
the lower portion of the figure it shows that as the gates g1,
g2, g3 and g4 underwent transition from 1010 to 0111, there
is an observable difference in the differential power in the
circuit. Thus a transition in gates g1, g2 and g4 gives rise to a
significant increase in the differential power ratio between the
Trojan circuit and the genuine circuit, marking these gates as
a potential suspect for the Trojan implantation.

We keep two counters for each gate: TrojanCount and
NonTrojanCount. Each time a gate toggles by a vector pair

329

Algorithm 1 Isolate gate(s) accountable for Trojan activity
Require: GenuineCkt, TrojanCkt, InputVector
Ensure: Plot of gate weights corresponding to their probability of Trojan association

1: PowerDifferentialThreshold ⇐ 5.0
2: TrojanCount ⇐ 0
3: NonTrojanCount ⇐ 0
4: ToggledGateList ⇐ Simulate(GenuineCkt, InputVector)
5: PowerNumbers(GenuineCkt) = PowerSimulate(GenuineCkt, InputVector)
6: PowerNumbers(TrojanCkt) = PowerSimulate(TrojanCkt, (InputV ector))
7: for all (Vi, Vi+1)εInputVector do
8: %PowerDifferential ⇐ (abs (PowerNumbers(TrojanCkt,(Vi,Vi+1)−PowerNumbers(GenuineCkt,(V i,Vi+1))))

PowerNumbers((GenuineCkt),(Vi,Vi+1))
∗ 100)

9: if %PowerDifferential > PowerDifferentialThreshold then
10: IncrementWeight(TrojanCount, ToggledGateList(Vi, V i + 1))
11: else
12: IncrementWeight(NonTrojanCount, ToggledGateList(Vi, V i + 1)
13: end if
14: end for
15: BuildPowerProfileP lots(PowerNumbers(GenuineCkt), PowerNumbers(TrojanCkt))
16: for all giεGenuineCkt do
17: GateWeight = TrojanCount(gi)

NonTrojanCount(gi

18: end for

TABLE I
FUNCTIONS OF ALGORITHM 1

Function Purpose
Simulate(Ckt, Vector) Simulate Vector set on given Ckt
PowerSimulate(Ckt, Vector) Simulate vector set on given Ckt to compute the power numbers
BuildPowerProfilePlots(PowerNumbers(Ckt1), PowerNumbers(Ckt2)) Plot the differential power between Ckt1 and Ckt2
IncrementWeight(CountArray, ToggledGateList(Vi, Vi+1) Increment weights of all gates that toggled between Vi and Vi+1 in CountArray

that shows differential power greater than the PowerDif-
ferentialThreshold (which is set to 5%, a typical value of
process variation [1]), its TrojanCount is incremented and
vice versa. After this analysis is over we compute the ratio
TrojanCount/NonTrojanCount which is called as gate weight.
A high value of the gate weight indicates that the gate(s) are
most likely to be associated with the Trojan.

The entire procedure is outlined in Algorithm 1 and the
functions used in the algorithm are explained in Table I.
PowerDifferentialThreshold is the maximum differential power
accounted for process variation. The two counters TrojanCount
and NonTrojanCount are as described above. Evidently, a
highly active gate which is not associated with the Trojan will
most likely toggle between vectors when power differential
is above the threshold. In that case its TrojanCount will
increase as per our algorithm. To compensate for such spurious
increments, we keep the NonTrojanCount which increments
the count of a gate which toggles when the Differential Power
is below PowerDifferentialThreshold. Whenever the number
of points above the threshold is less than the points below the
threshold for a given gate, the ratio of these two parameters
would turn out to be small, thereby filtering out highly active
signals that may not be associated with the Trojan.

a1

a3

a2

OUTPUT

D

C

Q

Q0

D

C

Q

Q1

CLOCK

D

C

Q

a4

Fig. 3. Example of a Trojan circuit

IV. TROJAN DESCRIPTION

Typical Trojan structures used in our experimental setup is
shown in Figure 3, and its size is less than 1% of the original
circuit for large circuits. For small circuits, we keep it less than
3%. The sequence that the Trojan attempts to detect is 1011,
0001 and 0010 in this order. The Trojan inputs a1, a2, a3

and a4 as well as the Trojan output referred as OUTPUT
is connected to internal nets. Table II shows the sizes of
the Trojans in terms of percentage gate counts used in our
experiments.

We also insert the Trojan to different locations in the
original circuit. We classify the gates in the circuit into three
different classes depending on their activity. To compute the

330

TABLE II
TROJAN SIZE (% OF TOTAL GATE COUNT)

Circuit High-activity Medium-activity Low-activity
s1196 2.61 2.96 2.61
s5378 0.66 0.56 0.56
s9234 0.29 0.32 0.36
s15850 0.19 0.20 0.18
s38584 0.09 0.09 0.10

TABLE III
AVERAGE % ACTIVITY OF GATES ASSOCIATED WITH TROJAN

Circuit High-activity Medium-activity Low-activity
s1196 40.4 18.8 5.3
s5378 48.2 37.4 10.6
s9234 49.7 25.5 11.6
s15850 37.7 27.7 9.9
s38584 41.8 31.7 0.4

activity of a gate in the circuit we apply a sequence of 10000
non-sustained random vectors to the circuit and then compute
the toggle count of each gate. Each signal is classified as High-
activity, Medium-activity or Low-activity. After classifying the
signals, we embed Trojans with the groups identified. The
inputs to a Trojan can come from any of the three categories.
Table III shows the average percentage activity at the inputs
of the Trojans for our setup.

In order to make sure that the Trojan is really stealthy we
choose a triggering sequence which is very rarely occurring
within the set of signals chosen. To make it undetectable we
connect the Trojan output(s) to an internal gate for which
the non-triggered value at the output(s) of the Trojan is non-
controlling for the gate to which it is input. For instance, if
the Trojan produces an output of 0 under normal operating
conditions, this net is connected to an OR/NOR gate so that
it does not produce any effect unless the Trojan is triggered.
Further, in Step 1 of the algorithm, we check that even when
the Trojan is triggered, the effect does not reach any primary
output, which otherwise would be a functionally detectable
Trojan. This is possible because any controlling value in the
propagation path of the gate affected by the Trojan output
would mask its effect.

V. EXPERIMENTAL RESULTS

The results are presented in two parts corresponding to
the two steps in our methodology. Table IV shows the
maximum percentage power differential between the genuine
and Trojan circuits obtained from both random vectors and
vectors generated by our approach. We embedded Trojans
three different ways as discussed before: Trojans monitoring
high-activity signals, medium-activity signals, and low-activity
signals, respectively. Rnd and Ours used in the table stand
for Random Approach and Our Approach respectively. It is
evident that for nearly all cases our approach enhances the
percentage differential power. For example, for both s1196
and s5378, more than an order of magnitude improvement
was achieved using our approach when compared with random
vectors. The enhanced power differential helps us to isolate the

TABLE IV
COMPARISON OF % POWER DIFFERENTIAL BETWEEN GENUINE AND

TROJAN CIRCUITS ACHIEVED BY RANDOM AND OUR APPROACH

Trojan Type High-activity Medium-activity Low-activity
Circuit Rnd Ours Rnd Ours Rnd Ours

s1196 10.71 300 27.08 650 18.75 600
s5378 4.18 133.33 2.24 18.18 2.79 7.46
s9234 30.77 50 30.77 50 22.22 66.66
s15850 13.04 38.7 10.07 9.46 3.28 5.68
s38584 0.74 4.62 0.8 1.66 0.68 6.52

region where the Trojan may be embedded, which is discussed
next.

The results of the second part of our analysis is shown in
Figures 4, 5, 6, 7 and 8. The x-axis represents the gate numbers
and the y-axis represents the computed gate weight. Recall that
relative GateWeight is a direct indication of the probability
that the gate is connected to the Trojan. In larger circuits,
gates have higher count value in the NonTrojanCount because
PowerDifferentialThreshold is exceeded less frequently during
the application of the sustained vectors. As a result, the
fraction GateWeight generally decreases as the circuit size
increases. Nevertheless, it is the relative weights that count.
As we can see from Figure 8, only a fraction of Total gates of
the circuit is actually assigned a weight which means that the
algorithm sieves out most of the gates from the larger circuits.
The dotted circle in the figures correspond to the gates that
are indeed connected to the Trojan in the actual circuit. As
evident, in most cases the Trojan gates weigh out to a high
value relative to other gates.

There are a few cases in which this method was not able
to make a distinction. Our analysis on such cases led to two
reasons for such anomalies:

1) Not all signals connected to the Trojan undergo tran-
sition when the Trojan is switching. As an example,
for signals g1, g2, g3 and g4 connected to the Trojan
if the triggering sequence is 1010 followed by 1111,
then corresponding to every such sequence occurring
during simulation g2 and g4 will have higher count
in TrojanCount than g1 and g3. So during GateWeight
computation, g2 and g4 will get more weight than g1

and g3, and this effect will show up in the GateWeights
plot.

2) The FSM nature of the Trojan may be such that the
internal state of the Trojan may change even if the inputs
to the Trojan are stable. In such a case, if the overall
circuit activity happens to be low, the differential power
between the CUTs will be highlighted. But the toggling
signals corresponding to such high differentials need not
necessarily be connected to the Trojan.

We note that for nearly all the test cases, our approach was
able to identify the signals responsible for the Trojan, and the
anomalies mentioned above occur infrequently.

VI. CONCLUSION

We have presented a novel sustained vector methodology
that is very effective in detecting the presence of a Trojan.

331

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451 501 551

Gate Numbers

G
at

e
W

ei
gh

t

Fig. 4. Plot of Gate Weights for s1196 Medium-active Trojan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301 351 401 451 501 551

Gate Numbers

Ga
te

 W
ei

gh
t

Fig. 5. Plot of Gate Weights for s1196 High-active Trojan

0

0.5

1

1.5

2

2.5

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Gate Number

G
at

e
W

ei
gh

t

Fig. 6. Plot of Gate Weights for s9234 Low-active Trojan

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Gate Numbers

G
at

e
W

ei
gh

t

Fig. 7. Plot of Gate Weights for s15850 Low-active Trojan

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 1501 3001 4501 6001 7501 9001 10501 12001 13501 15001 16501 18001 19501

Gate Numbers

G
at

e
W

ei
gh

t

Fig. 8. Plot of Gate Weights for s38584 High-active Trojan

Even if the Trojan constitutes only a tiny fraction of the
chip area, our experimental results show that this technique
enhances the power profile difference between the genuine and
Trojan circuits by up to more than one order of magnitude as
compared with the random vectors. Furthermore, this method
is effective irrespective of the activity behavior of the gates
which is evident from the fact that it is successful in detecting
most of the High-activity, Medium-activity and Low-activity
Trojans in the benchmark circuits. Finally, in many cases, our
approach was able to pinpoint the actual location of the Trojan
in the circuit.

REFERENCES

[1] D. Agarwal, S. Baktir, D. Karakoy, P. Rohatgi and B. Sunar; Trojan
Detection using IC Fingerprinting, IBM Research Report, 2006.

[2] K. Nowaka, G. Carpenter, F. Gebara, J. Schaub, D. Agarwal, P. Rohatgi,
W. E. Hall, S. Baktir, D. Karakoyunlu and B. Sunar; IC Fingerprinting
and Stable IS Sensors for Enhanced IC Trust,2006.

[3] M. Banga, M. Chandrasekar, L. Fang and M. Hsiao; Guided Test
Generation for Isolation and Detection of Embedded Trojans in ICs,
ACM Great Lake Symp. on Very Large Scale Integration, 2008, pp.
363-366.

[4] M. Banga and M. Hsiao; A Region Based Approach for the Detection of
Hardware Trojans, IEEE Int. Wkshop on Hardware-Oriented Security
and Trust, 2008, pp 43-50.

[5] S. Pilli and S. Sapatnekar; Power estimation considering statistical IC
parametric variations, ISCAS 1997, pp. 1524 - 1527, vol.3.

[6] X. Wang, M. Tehranipoor and J. Plusquellic; Detecting Malicious
Inclusions in Secure Hardware: Challenges and Solutions, IEEE Int.
Wkshop on Hardware-Oriented Security and Trust, Jun 2008, pp 15-22.

[7] C. Fagot, O. Gascuel, P. Girard and C. Landrault; On Calculating
Efficient LFSR Seeds for Built-In Self Test, Proc. Of European Test
Wkshop, 1999, pp 7-14.

[8] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan and
J. Rajski; Logic BIST for large industrial designs: real issues and case
studies, ITC, 1999, pp. 358-367.

[9] W. T. Cheng, M. Sharma, T. Rinderknecht and C. Hill; Signature Based
Diagnosis for Logic BIST, ITC 2006, Oct. 2006, pp. 1 - 9.

[10] C. H. Kim and J. J. Quisquater, How can we overcome both side channel
analysis and fault attacks on RSA-CRT?, Wkshop on Fault Diagnosis
and Tolerance in Cryptography, 2007, pp. 21 - 29.

[11] J. Guajardo, S. S. Kumar, G.-J. Schrijen and P. Tuyls, Physical Unclon-
able Functions and Public-Key Crypto for FPGA IP Protection, Int.
Conf. on Field Programmable Logic and Applications, Aug. 2007, pp.
189 - 195.

[12] B. Gassend, D. Clarke, M. van Dijk and S. Devadas, Controlled physical
random functions, 18th Annual Proceedings of Computer Security
Applications Conf., Dec. 2002, pp. 149 - 160.

[13] http://cp.literature.agilent.com/litweb/pdf/5988-0687EN.pdf

332

Session 5C

Embedded Systems II

Efficient Placement of Compressed Code for Parallel Decompression

Xiaoke Qin and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville FL 32611-6120, USA

{xqin, prabhat}@cise.ufl.edu

Abstract
Code compression is important in embedded systems design

since it reduces the code size (memory requirement) and thereby
improves overall area, power and performance. Existing re-
searches in this field have explored two directions: efficient com-
pression with slow decompression, or fast decompression at the
cost of compression efficiency. This paper combines the advan-
tages of both approaches by introducing a novel bitstream place-
ment method. The contribution of this paper is a novel code
placement technique to enable parallel decompression without
sacrificing the compression efficiency. The proposed technique
splits a single bitstream (instruction binary) fetched from mem-
ory into multiple bitstreams, which are then fed into different
decoders. As a result, multiple slow-decoders can work simul-
taneously to produce the effect of high decode bandwidth. Our
experimental results demonstrate that our approach can improve
decode bandwidth up to four times with minor impact (less than
1%) on compression efficiency.

1 Introduction

Memory is one of the most constrained resources in an em-
bedded system, because a larger memory implies increased area
(cost) and higher power/energy requirements. Due to dramatic
complexity growth of embedded applications, it is necessary to
use larger memories in today’s embedded systems to store ap-
plication binaries. Code compression techniques address this
problem by reducing the storage requirement of applications by
compressing the application binaries. The compressed binaries
are loaded into the main memory, then decoded by a decompres-
sion hardware before it’s execution in a processor. Compression
ratio is widely used as a metric of the efficiency of code com-
pression. It is defined as the ratio (CR) between the compressed
program size (CS) and the original program size (OS) i.e., CR =
CS / OS. Therefore, a smaller compression ratio implies a better
compression technique. There are two major challenges in code
compression: i) how to compress the code as much as possible;
and ii) how to efficiently decompress the code without affecting
the processor performance.

The research in this area can be divided into two categories
based on whether it primarily addresses the compression or de-
compression challenges. The first category tries to improve code
compression efficiency using the state-of-the-art coding meth-
ods such as Huffman coding [1] and arithmetic coding [2]. The-
oretically, they can decrease the compression ratio to its lower

bound governed by the intrinsic entropy of code, although their
decode bandwidth usually is limited to 6-8 bits per cycle. These
sophisticated methods are suitable when the decompression unit
is placed between the main memory and cache (pre-cache).
However, recent research [3] suggests that it is more profitable
to place the decompression unit between the cache and the pro-
cessor (post-cache). In this way the cache retains data still in a
compressed form, increasing cache hits, therefore achieving po-
tential performance gain. Unfortunately, this post-cache decom-
pression unit actually demands much more decode bandwidth
than what the first category of techniques can offer. This leads
to the second category of research that focuses on higher decom-
pression bandwidth by using relatively simple coding methods
to ensure fast decoding. However, the efficiency of the compres-
sion result is compromised. The variable-to-fixed coding tech-
niques [12] are suitable for parallel decompression but it sacri-
fices the compression efficiency due to fixed encoding.

In this paper, we combine the advantages of both approaches
by developing a novel bitstream placement technique which en-
ables parallel decompression without sacrificing the compres-
sion efficiency. This paper makes two important contributions.
First, it is capable of increasing the decode bandwidth by us-
ing multiple decoders to work simultaneously to decode a sin-
gle/adjacent instruction(s). Second, our methodology allows de-
signers to use any existing compression algorithms including
variable-length encodings with little or no impact on compres-
sion efficiency.

The rest of the paper is organized as follows. Section 2 in-
troduces related work addressing code compression for embed-
ded systems. Section 3 describes our code compression and bit-
stream placement methods. Section 4 presents our experimental
results. Finally, Section 5 concludes the paper.

2 Related Work

A great deal of work has been done in the area of code com-
pression for embedded systems. The basic idea is to take one or
more instruction as a symbol and use common coding methods
to compress the code. Wolfe and Chanin [1] first proposed the
Huffman-coding based code compression approach. A Line Ad-
dress Table (LAT) is used to handle the addressing of branching
within compressed code. Lin et al. [4] uses LZW-based code
compression by applying it to variable-sized blocks of VLIW
codes. Liao [5] explored dictionary-based compression tech-
niques. Lekatsas et al. [2] constructed SAMC using arithmetic
coding based compression. These approaches significantly re-

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.71

335

duces the code size but their decode (decompression) bandwidth
is limited.

To speed up the decode process, Prakash et al. [6] and Ros
et al. [7] improved conventional dictionary based techniques by
considering bit changes of a 16-bit or 32-bit vectors. Seong et al.
[8] further improved these approaches using bitmask based code
compression. These techniques enable fast decompression but
they achieve inferior compression efficiency compared to those
based on well established coding theory.

Instead of treating each instruction as a single symbol, some
researchers observed that the number of different opcodes and
operands are quite smaller than that of entire instructions.
Therefore, a division of a single instruction into different parts
may lead to more effective compression. Nam et al. [9] and
Lekatsas et al. [10] broke instructions into several fields then
employed different dictionary to encode them. CodePack [11]
divided each MIPS instruction at the center, applied two prefix-
dictionary to each of them, then combined the encoding results
together to create the finial result. However, in their compressed
code, all these fields are simply stored one after another (in a se-
rial fashion). The variable-to-fixed coding technique [12] is suit-
able for parallel decompression but it sacrifices the compression
efficiency due to fixed encoding. The variable size encodings
(fixed-to-variable and variable-to-variable) can achieve the best
possible compression. However, it is impossible to use multiple
decoders to decode each part of the same instruction simultane-
ously, when variable length coding is used. The reason is that the
beginning of next field is unknown until the decode of the cur-
rent field ends. As a result, the decode bandwidth cannot benefit
very much from such an instruction division. Our approach al-
lows variable length encoding for efficient compression and pro-
poses a novel placement of compressed code to enable parallel
decompression.

3 Efficient Placement of Compressed Binaries
Our work is motivated by previous variable length coding ap-

proaches based on instruction partitioning [9, 10, 11] to enable
parallel compression of the same instruction. The only obstacle
preventing us from decoding all fields of the same instruction
simultaneously is that the beginning of each compressed field is
unknown unless we decompress all previous fields.

A B A B

} }32bits 32bits

(a) Uncompressed code (b) Compressed code

Figure 1. Intuitive placement for parallel decompression.

One intuitive way to solve this problem, as shown in Figure
1, is to separate the entire code into two parts, compress each
of them separately, then place them separately. Using such a
placement, the different parts of the same instruction can be
decoded simultaneously using two pointers. However, if one

part of the code (part B) is more effectively compressed than
the other one (part A), the remaining unused space for part B
will be wasted. Therefore, the overall compression ratio will be
hampered remarkably. Furthermore, the identification of branch
targets will also be a problem due to the unequal compression.
As mentioned earlier, fixed length encoding methods are suit-
able for parallel decompression but it sacrifices the compression
efficiency due to fixed encoding. The focus of our research is
to enable parallel decompression for binaries compressed with
variable length encoding methods.

The basic idea of our approach to handle this problem is to
develop an efficient bitstream placement method. Our method
enables the compression algorithm to make maximum usage of
the space automatically. At the same time, the decompression
mechanism will be able to determine which part of the newly
fetched 32 bits should be sent to which decoder. In this way, we
exploit the benefits of instruction division in both compression
efficiency and decode bandwidth.

3.1 Overview of Our Approach

In our approach, we use branch blocks1 [4] as the basic unit
of compression. In other words, our placement technique is ap-
plied to each branch blocks in the application. Figure 2 shows
the block diagram of our proposed compression framework. It
consists of four main stages: compression (encode), bitstream
merge, bitstream split and decompression (decode).

During compression (Figure 2a), we first break every input
storage block (containing one or more instructions) into sev-
eral fields, then apply specific encoders to each one of them.
The resultant compressed streams are combined together by a
bitstream merge logic based on a carefully designed bitstream
placement algorithm. Note that the bitstream placement cannot
rely on any information invisible to the decompression unit. In
other words, the bitstream merge logic should merge streams
based on only the binary code itself and the intermediate results
produced during the encoding process.

During decompression (Figure 2b), the scenario is exactly the
opposite of compression. Every word fetched from the cache is
first split into several parts, each of which belongs to a com-
pressed bitstream produced by some encoder. Then the split
logic dispatches them to the buffers of correct decoders, accord-
ing to the bitstream placement algorithm. These decoders de-
code each bitstream and generate the uncompressed instruction
fields. After combining these fields together, we obtain the final
decompression result, which should be identical to the corre-
sponding original input storage block (containing one or more
instructions).

From the viewpoint of overall performance, the compres-
sion algorithm affects the compression ratio and decompression
speed in an obvious way. Nevertheless, the bitstream placement
actually governs whether multiple decoders are capable to work
in parallel. In previous works, researchers tend to use a very
simple placement technique: they appended the compressed
code for each symbol one after the other. When variable length
coding is used, symbols must be decoded in order. In this paper,

1The instructions between two consecutive branch targets.

336

U
n
co

m
p
re

ss
ed

 B
in

ar
y
 C

o
d
e Input Buffer

C
o
m

p
re

ss
ed

 C
o
d
e...Encoder1 EncoderNEncoder2

Bitstream

Merge Logic

(a) Compression technique

C
o
m

p
re

ss
ed

 C
o
d
e

fr
o
m

 C
ac

h
e

Output Buffer

D
ec

o
d
e

B
u
ff

er

Decoder1 DecoderN

D
ec

o
d
e

B
u
ff

er

D
ec

o
m

p
re

ss
ed

 C
o
d
e

to
 P

ro
ce

ss
o
r

Decoder2

D
ec

o
d
e

B
u
ff

er ...

Bitstream

Split Logic

(b) Decompression mechanism

Figure 2. Proposed code compression framework.

we demonstrate how a novel bitstream placement enables par-
allel decoding and boosts the overall decode performance. The
remainder of this section describes the four important stages in
our framework: compression, bitstream merge, bitstream split
and decompression.

3.2 Compression Algorithm

In our current implementation, we use Huffman coding as
the compression algorithm of each single encoder (Encoder1 -
EncoderN in Figure 2 (a)), because Huffman coding is optimal
for a symbol-by-symbol coding with a known input probability
distribution. To improve its performance on code compression,
we modify the basic Huffman coding method [1] in two ways:
i) instruction division and ii) selective compression. As men-
tioned earlier, any compression technique can be used in our
framework.

Similar to previous works [9, 10, 11], we believe that com-
pressing different parts of a single instruction separately is prof-
itable, because the number of distinct opcodes and operands is
far less than the number of different instructions. We have ob-
served that for most applications it is profitable to divide the
instruction at the center. In the rest of this paper, we will use
this division pattern, if not stated otherwise.

Selective compression is a common choice in many compres-
sion techniques [8]. Since the alphabet for binary code compres-
sion is usually very large, Huffman coding may produce many

dictionary entries with quite long keywords. This is harmful to
the overall compression ratio, because the size of the dictionary
entry must also be taken into account. Instead of using bounded
Huffman coding, we address this problem using selective com-
pression. First, we create the conventional Huffman coding ta-
ble. Then we remove any entry e which does not satisfy Equa-
tion 1.

(Length(Symbole)−Length(Keye))∗Timee > Sizee, (1)

Here, Symbole is the uncompressed symbol (one part of an
instruction), Keye is the key of Symbole created by Huffman
coding, Timee is the total time for which Symbole occurs in the
uncompressed code, and Sizee is the space required to store this
entry. For example, two unprofitable entries from Dictionary II
(Figure 3) are removed.

00001110

00000100

00000000

10000000

00000000

10001110

00000000

00000000

10000000

Original

Program

0 1 1 1110

0 1 1 0100

0 1 0 0

0 0 0 0

0 1 0 0

0 0 1 1110

0 1 0 0

0 1 0 0

0 0 0 0

0 = compressed

1 = uncompressed

 Dictionary I Dictionary II

Key Symbol Key Symbol

 1 0000 0 0000

 0 1000 10 0100

 11 1110

Compressed

Program

Stream1 Stream2

Figure 3. Code compression using modified Huffman coding

Once the unprofitable entries are removed, we use remaining
entries as the dictionary for both compression and decompres-
sion. Figure 3 shows an illustrative example of our compression
algorithm. For the simplicity of illustration, we use 8-bit bi-
naries instead of 32 bits used in real applications. We divide
each instruction in half and use two dictionaries, one for each
part. The final compressed program is reduced from 72 bits to
45 bits. The dictionary requires 15 bits. The compression ra-
tio for this example is 83.3%. The two compressed bitstreams
(Stream1 and Stream2) are also shown in Figure 4.

Stream1 Stream2

Symbol Value Symbol Value

A1 01 B1 11110

A2 01 B2 10100

A3 01 B3 00

A4 00 B4 00

A5 01 B5 00

A6 00 B6 11110

A7 01 B7 00

A8 01 B8 00

A9 00 B9 00

 Figure 4. Two compressed bitstreams from the code com-
pression example in Figure 3

3.3 Bitstream Merge

The bitstream merge logic merges multiple compressed bit-
streams into a single bitstream for storage. We first explain

337

 (a) (b) (c)

Stream1 Stream2

A1A2… A9 B1B2… B9

A3A4… A9 B
”

1B2… B9

A5A6… A9 B
”

2B3… B9

A5A6… A9 B6B7B8B9

A9 B6B7B8B9

A9 B
”

8B9

Decoder1 Decoder2

Input Buffer Len1 Decoding Input Buffer Len2 Decoding

A1A2 4 Null B
’
1 4 Null

A2A3A4 6 A1 B
’
2 3 B1

A3 A

4 4 A2 B3B4B5 6 B2

A4A5… A8 10 A3 B4B5 4 B3

A5A6A7A8 8 A4 B5B6B

7B
’
8 10 B4

A6A7A8A9 8 A5 B6B7B8B9 11 B5

A7 A8A9 6 A6 B7B8B9 6 B6

A8A9 4 A7 B8B9 4 B7

A9 2 A8 B9 2 B8

 0 A9 0 B9

Slot 1 (4bits) Slot 2 (4bits)

A1 (2bits) A2 (2bits) B
’
1(4bits)

A3 (2bits) A

4(2bits) B
”

1 B
’
2 (3bits)

B
”

2 (2bits) B3 (2bits) B4 (2bits) B5 (2bits)

A5 (2bits) A6 (2bits) A

7(2bits) A

8(2bits)

B6 (5bits) B7 (2bits) B
’
8

A

9(2bits) B

”

8 B9 (2bits)

Cycle 6

Cycle 1

Cycle 2

.

.

.

Step 6

Step 1

Step 2

.

.

.

Figure 5. Bitstream placement using two bitstreams in Figure 4. (a) Unplaced data remaining in the input buffer of merge logic, (b)
Bitstream placement result, (c) Data within Decoder1 and Decoder2 when current storage block is decompressed2.

some basic models and terms which we will use in the follow-
ing discussion. Next, we describe the working principle of our
bitstream merge logic.
Definition 1: Storage block is a block of memory space, which
is used as the basic input and output unit of our merge and split
logic. Informally, a storage block contains one or more consecu-
tive instructions in a branch block. Figure 6 illustrates the struc-
ture of a storage block. We divide it into several slots. Each of
them contains adjacent bits extracted from the same compressed
bitstream. In our current implementation, all slots within a stor-
age block have the same size.

Slot 1 Slot 2 . . . Slot N

Figure 6. Storage block structure

Definition 2: Sufficient decode length (SDL) is the minimum
number of bits required to ensure that at least one compressed
symbol is in the decode buffer. In our implementation, this num-
ber equals one plus the length of an uncompressed instruction
field.

Our bitstream merge logic performs two tasks to produce each
output storage block filled with compressed bits from multiple
bitstreams: i) use the given bitstream placement algorithm
(BPA) to determine the bitstream placement within current stor-
age block; ii) count the numbers of bits left in each buffer as
if they finish decoding current storage block. We pad extra bits
after the code at the end of the stream to align on a storage block
boundary.

Algorithm 1 is developed to support parallel decompression
of two bitstreams. The goal is to guarantee that each decoder
has enough bits to decode in the next cycle after they receive the
current storage block. Figure 5 illustrates our bitstream merge
procedure using previous code compression example in Figure
3. The size of storage blocks and slots are 8 bits and 4 bits
respectively. In other words, each storage block has two slots.
The SDL is 5. When the merge process begins (translates Fig-
ure 5a to Figure 5b), the merge logic gets A1, A2 and B′

1, then
assigns them to the first and second slots2. Similarly, A3, A4,

2We use ′ and ′′ to indicate the first and second parts of the same compressed
instruction in case it does not fit in the same storage block.

B′′
1 and B′

2 are placed in the second iteration (step 2). When
it comes to the third output block, the merge logic finds that
after Decoder2 receives and processes the first two slots, there
are only 3 bits left in its buffer, while Decoder1 still has enough
bits to decode in the next cycle. So it assigns both slots in the
third output block from Stream2. This process repeats until both
input (compressed) bitstreams are placed. The “Full()” checks
are necessary to prevent the overflow of decoders’ input buffers.
Our merge logic automatically adjusts the number of slots as-
signed to each bitstream, depending on whether they are effec-
tively compressed.

Algorithm 1: Placement of Two Bitstreams
Input: Every Storage Block
Output: Placed Bitstreams

if this is the first block then
Assign Stream 1 to Slot 1 and Stream 2 to Slot 2

else
if !Ready(1) and !Ready(2) then

Assign Stream 1 to Slot 1 and Stream 2 to Slot 2
else if !Ready(1) and Ready(2) then

Assign Stream 1 to Slot 1 and 2
else if Ready(1) and !Ready(2) then

Assign Stream 2 to Slot 1 and 2
else if !Full(1) and !Full(2) then

Assign Stream 1 to Slot 1 and Stream 2 to Slot 2
end
Ready(i) checks whether the ith decoder’s buffer contains
at least SDL bits.
Full(i) checks whether corresponding buffer has enough
space to hold more slots.

3.4 Bitstream Split

The bitstream split logic uses the reverse procedure of the bit-
stream merge logic. The bitstream split logic divides the single
compressed bitstream into multiple streams using the following
guidelines:

• Use the given BPA to determine the bitstream placement
within current compressed storage block, then dispatch dif-

338

ferent slots to the corresponding decoder’s buffer.
• If all the decoders are ready to decode the next instruction,

start the decoding.
• If the end of current branch block is encountered, force all

decoders to start.

We use the example in Figure 5 to illustrate the bitstream split
logic. When the placed data in Figure 5b is fed to the bitstream
split logic (translates Figure 5b to Figure 5c), the length of the
input buffers for both streams are less than SDL. So the split
logic determines the first and the second slot must belong to
Stream1 and Stream2 respectively in the first two cycles. At
the end of the second cycle, the number of bits in the Decoder1

buffer, Len1 (i.e., 6), is greater than SDL (i.e., 5), but Len2 (i.e.,
3) is smaller than SDL. This indicates that both slots must be
assigned to the second bitstream in the next cycle. Therefore, the
split logic dispatches both slots to the input buffer of Decoder2.
This process repeats until all placed data are split.

3.5 Decompression Mechanism

The design of our decoder is based on the Huffman decoder
hardware proposed by Wolfe et al. [1]. The only additional op-
eration is to check the first bit of an incoming code, in order
to determine whether it is compressed using Huffman coding or
not. If it is, decode it using the Huffman decoder; otherwise
send the rest of the code directly to the output buffer. There-
fore, the decode bandwidth of each single decoder (Decoder1 to
DecoderN in Figure 2 (b)) should be similar to the one given in
[1]. Since each decoder can decode 8 bits per cycle, two parallel
decoders can produce 16 bits per cycle. Decoders are allowed to
begin decoding only when i) all decoders’ decoder buffers con-
tains more bits than SDL; or ii) bitstream split logic forces it to
begin decoding. After combining the outputs of these parallel
decoders together, we obtain the final decompression result.

3.6 Bitstream Placement for Four Streams

In order to further boost the output bandwidth, we have also
developed a bitstream placement algorithm which enables four
Huffman decoders to work in parallel. During compression, we
take every two adjacent instructions as a single input storage
block. Four compressed bitstreams are generated by high 16 bits
and low 16 bits of all odd instructions, as well as high 16 bits and
low 16 bits of all even instructions. We also change the slot size
within each output storage block to 8 bits, so that there are 4
slots in each storage block. We omit the complete description of
this algorithm here due to the lack of space. However, the basic
idea remains the same and it is a direct extension of Algorithm
1. The goal is to provide each decoder with sufficient number
of bits so that none of them are idle at any point. Since each
decoder can decode 8 bits per cycle, four parallel decoders can
produce 32 bits per cycle.

Although we can still employ more decoders, the overall in-
crease of output bandwidth will slow down by more start up
stalls. For example, we have to wait 2 cycles to decompress the
first instruction using four decoders in the worst case. As a re-
sult, high sustainable output bandwidth using too many parallel

decoders may not be feasible, if its start up stall time is compa-
rable with the execution time of the code block itself.

4 Experiments
The code compression and parallel decompression experi-

ments of our framework are carried out using different appli-
cation benchmarks compiled using a wide variety of target ar-
chitectures.

4.1 Experimental Setup

We used benchmarks from MediaBench and MiBench bench-
mark suites: adpcm en, adpcm de, cjpeg, djpeg, gsm to,
gsm un, mpeg2enc, mpeg2dec and pegwit. These benchmarks
are compiled for four target architectures: TI TMS320C6x,
PowerPC, SPARC and MIPS. The TI Code Composer Studio
is used to generate the binary for TI TMS320C6x. GCC is used
to generate the binary for the rest of them. Our computation of
compressed program size includes the size of the compressed
code as well as the dictionary and all other data required by our
decompression unit.

We have evaluated the relationship between the division posi-
tion and the compression ratio on different target architectures.
We have observed that for most architectures, the middle of each
instruction is usually the best partition position. We have also
analyzed the impact of dictionary size on compression efficiency
using different benchmarks and architectures. Although larger
dictionaries produce better compression, our approach produces
reasonable compression using only 4096 bytes for all the archi-
tectures. Based on these observations, we divide each 32-bit
instruction from the middle to create two bitstreams. The maxi-
mum dictionary size is set to 4096 bytes. The output bandwidth
of the Huffman decoder is computed as 8 bits per cycle [1] in our
experiments. To the best of our knowledge, there have been no
work on bitstream placement for enabling parallel decompres-
sion of variable length coding. So we compare our work (BPA1
and BPA2) with CodePack [11], which uses a conventional bit-
stream placement method. Here, BPA1 is our bitstream place-
ment algorithm in Algorithm 1, which enables two decoders to
work in parallel, and BPA2 represents our bitstream placement
algorithm in Section 3.6, which supports four parallel decoders.

4.2 Results

Figure 7 shows the efficiency of our different bitstream place-
ment algorithms. Here, “decode bandwidth” means the sustain-
able output bits per cycle after initial stalls. The number shown
in the figure is the average decode bandwidth over all bench-
marks. It is important to note that the decode bandwidth for
each benchmark also shows the same trend. As expected, the
sustainable decode bandwidth increases as the number of de-
coder grows. Our bitstream placement approach improves the
decode bandwidth up to four times. As discussed earlier, it is
not profitable to use more than four decoders since it will intro-
duce more start up stalls.

We have studied the impact of bitstream placement on com-
pression efficiency. Figure 8 compares the compression ratios
between the three techniques on various benchmarks on MIPS

339

0

8

16

24

32

TI PowerPC SPARC MIPS

CodePack [10] BPA1 BPA2

Figure 7. Decode bandwidth of different techniques

0.55

0.6

0.65

CodePack [10] BPA1 BPA2

Figure 8. Compression ratio for different benchmarks

architecture. The results show that our implementation of bit-
stream placement has less than 1% penalty on compression effi-
ciency. This result is consistent across different benchmarks and
target architectures as demonstrated in Figure 9 which compares
the average compression ratio of all benchmarks on different ar-
chitectures.

0.55

0.6

0.65

TI PowerPC SPARC MIPS

CodePack [10] BPA1 BPA2

Figure 9. Compression ratio on different architectures

We have implemented the decompression unit using Verilog
HDL. The decompression hardware is synthesized using Synop-
sis Design Compiler and TSMC 0.18 cell library. Table 1 shows
the reported results for area, power, and critical path length. It
can be seen that “BPA1” (uses 2 16-bit decoders) and Code-
Pack have similar area/power consumption. On the other hand,
“BPA2” (uses 4 16-bit decoders) requires almost double the
area/power compared to “BPA1” to achieve higher decode band-
width, because it has two more parallel decoders. The decom-
pression overhead in area and power is negligible (100 to 1000
times smaller) compared to typical reduction in overall area and
energy requirements due to code compression.

Table 1. Comparison using different placement algorithms
CodePack [11] BPA1 BPA2

Area/µm2 122263 137529 253586
Power/mW 7.5 9.8 14.6

Critical path length/ns 6.91 5.76 5.94

5 Conclusions
Memory is one of the key driving factors in embedded sys-

tem design since a larger memory indicates an increased chip
area, more power dissipation, and higher cost. As a result, mem-
ory imposes constraints on the size of the application programs.
Code compression techniques address the problem by reducing
the program size. Existing researches have explored two direc-
tions: efficient compression with slow decompression, or fast
decompression at the cost of the compression efficiency. This
paper combines the advantages of both approaches by intro-
ducing a novel bitstream placement technique for parallel de-
compression. We addressed four challenges to enable parallel
decompression using efficient bitstream placement: instruction
compression, bitstream merge, bitstream split and decompres-
sion. Efficient placement of bitstreams allows the use of multi-
ple decoders to decode different parts of the same/adjacent in-
struction(s) to enable the increase of decode bandwidth. Our
experimental results using different benchmarks and architec-
tures demonstrated that our approach improved the decompres-
sion bandwidth up to four times with less than 1% penalty in
compression efficiency.

References

[1] A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded RISC architecture,” MICRO 81-91, 1992.

[2] H. Lekatsas and Wayne Wolf, “SAMC : A code compression
algorithm for embedded processors,” IEEE TCAD, 18(12), 1999.

[3] H. Lekatsas, J. Henkel and W. Wolf, “Code compression for low-
power embedded system design,” DAC, 294–299, 2000.

[4] C. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for
VLIW embedded systems,” DATE, 76–81, 2004.

[5] S. Liao, S. Devadas, and K. Keutzer, “Code density optimiza-
tion for embedded DSP processors using data compression tech-
niques,” IEEE TCAD, 17(7), 601–608, 1998.

[6] J. Prakash et al., “A simple and fast scheme for code compression
for VLIW processors,” DCC, pp 444, 2003.

[7] M. Ros and P. Sutton, “A hamming distance based VLIW/EPIC
code compression technique,” CASES, 132–139, 2004.

[8] S. Seong and P. Mishra, “Bitmask-based code compression for
embedded systems,” IEEE TCAD, 27(4), 673–685, April 2008.

[9] S. Nam et al., “Improving dictionary-based code compression in
VLIW architectures,” FECCS, E82-A(11), 2318–2324, 1999.

[10] H. Lekatsas and W. Wolf, “Code compression for embedded sys-
tems,” DAC, 516–521, 1998.

[11] C. Lefurgy, Efficient Execution of Compressed Programs, Ph.D.
Thesis, University of Michigan, 2000.

[12] Y. Xie et al., “Code compression for embedded VLIW processors
using variable-to-fixed coding,” IEEE TVLSI, 14(5), 2006.

340

FPGA based High Performance Double-precision
Matrix Multiplication

Vinay BY. Kumar Siddharth Joshi Sachin B. Patkar H. Narayanan
vinayby@iitb.ac.in {s joshi, patkar, hn}@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology, Bombay

India, Mumbai - 400076

Abstract—We present two designs (I and II) for IEEE 754
double precision floating point matrix multiplication, an impor-
tant kernel in many tile-based BLAS algorithms, optimized for
implementation on high-end FPGAs. The designs, both based on
the rank-1 update scheme, can handle arbitrary matrix sizes,
and are able to sustain their peak performance except during
an initial latency period. Through these designs, the trade-offs
involved in terms of local-memory and bandwidth for an FPGA
implementation are demonstrated and an analysis is presented
for the optimal choice of design parameters. The designs, im-
plemented on a Virtex-5 SX240T FPGA, scale gracefully from 1
to 40 processing elements(PEs) with a less than 1% degradation
in the design frequency of 373 MHz. With 40 PEs and a design
speed of 373 MHz, a sustained performance of 29.8 GFLOPS is
possible with a bandwidth requirement of 750 MB/s for design-II
and 5.9 GB/s for design-I.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are increasingly
being seen as a promising avenue for High Performance
Computing (HPC), especially with the introduction of high-
end FPGAs like Virtex-4/5. These FPGAs are a very attractive
choice due to their abundant local memory, embedded high-
speed resources like DSP blocks, PCIe endpoints etc., and their
reconfigurability and lower power consumption compared to
general purpose hardware.

An inspection of Level-3 BLAS routines shows that ma-
trix multiplication (dgemm) and triangular equation solution
(dtrsm) form the building blocks for many important linear
algebra algorithms, in fact, the dtrsm itself can be expressed in
terms of dgemm. MEMOCODE-07 hosted a challenge problem
requiring a hw/sw codesign based acceleration of complex
integer matrix-multiply. Underwood [1] chose matrix multipli-
cation as one of the three main routines for FPGA acceleration
in order for HPC. Matrix-Multiplication, therefore, presents as
an important candidate for hardware acceleration.

In this paper, we present designs for double precision
floating point matrix multiplication, based on the rank-1 update
algorithm, targeted at the Virtex-5 SX240T, a high-end Xilinx
FPGA. As compared to others this algorithm enables better re-
use of data from the input matrices. The processing elements
(PEs) use off-the-shelf floating point operators from Xilinx
Coregen, unlike other related work, resulting in advantages
such as the choice of custom-precision, short-design time,
portability across devices, better IEEE 754 compliance, etc.

The PEs are designed so as to scale linearly in terms of
resources with negligible (<1%) degradation in speed. Some
of the recent work [2] reports 35% speed reduction associated
with scaling, which is typically due to increased routing
complexity. The proposed design(II) is tolerant to burst-like
input which suits well with a high performance I/O bus like
PCIe – allowing it to scale seamlessly across multiple FPGAs.

The under utilisation of device primitives and the over-
dependence on the distributed memory available in FPGAs
results in lower performance with respect to scaling. The
designs presented in this work have evolved by careful use
of the high-performing resources on modern FPGAs. Special
care has been taken to address issues related to scaling for
large FPGAs, setting this work apart from related art.

The following sections are organised as follows — Sec-
tion II discusses related work with a quick background on
the subject, Section III discusses the underlying algorithm,
Section IV elaborately discusses both the designs, Section V
presents an evaluation of the design, Section VI presents an
analysis on design parameters, Section VII critically compares
our design with the best among the related work, and finally
Section VIII concludes the paper.

II. BACKGROUND

The rank-1 update algorithm used in this paper is an
elementary idea, variations of which have also been applied
to cache-aware computing on general purpose processors [3],
though not as aptly. This was chosen to be implemented on an
FPGA since it is particularly suitable for the task as verified
by both Dou and Prasanna.

Much of the related work are designs targeted and optimised
for Virtex II Pro, which is an entry level device for HPC that
made floating point computation feasible for the first time on
FPGAs.

A. Related Work

The two most recent significant designs are those by Dou [4]
and Prasanna [2]. They propose linear array based processing
elements which are able to sustain their performance using a
technique called memory switching.

Dou has proposed the design of a matrix multiplier highly
optimised for the Virtex II Pro series of FPGAs. The design
included an optimized custom 12-stage pipelined floating point

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.13

341

Fig. 1. The rank-1 update scheme

MAC, but with a few limitations like no support for zero and
other denormal numbers. This design required the subblock di-
mensions to be powers of two. The bandwidth requirement was
low at 400 MBps with 12.5 Mb of local memory utilization
and they report a PE design with a synthesis frequency of 200
MHz and therefore estimated a 15.6 GFLOPS performance
accommodating 39 PEs on a Virtex II pro XC2V125, a large
theoretical device. As these are only synthesis results, the real
frequency after placing and routing 39 PEs could be much less.
Also, correcting the limitations of MAC would affect resource
usage and speed.

Zhou and Prasanna have reported an improved version
[2] of their design reported in [5]. The recent one reports
2.1 GFLOPS for 8 PEs running at 130 MHz on a cray
XD1 with XC2VP50 FPGAs. About 35% speed degradation
was observed when scaled from 2 to 20 PEs. In the earlier
paper they presented a design with a peak performance of 8.3
GFLOPS for the Virtex II Pro XC2V125, where the clock
degradation was 15% when the number of PEs increases from
2 to 24.

III. ALGORITHM

The rank-1 update scheme for matrix multiplication, illus-
trated in the Figure 1, has been described here for the conve-
nience of the reader. The paper partly follows the notation
introduced by Dou [4] as both are variations of the same
algorithm. Consider A, B and C of dimensions M×N, N×R
and M×R respectively. The objective is to compute C = AB.
When a Si×N panel of A (say, PA) and a N×Sj panel of B
(say PB) are multiplied, the result is a subblock of the matrix C
with dimensions Si×Sj . The outer product of the kth column
of the vector (uk) from PA and the kth row vector(vk) from
PB is an intermediate result and accumulation of such results
with k ranging over the panel length (from 1 to N) is the
required subblock of C.

For an outer product, each element of vector uk multiplies
each element of vector vk. Thus, n(vk) or Sj elements are
re-used n(uk) or Si times with Sj multiplications each time.
What also follows is that if one element of uk and all the
elements of vk are available to the system then each of the

Fig. 2. Overview of Design-I

products can be carried out independently. This design exploits
these key ideas. With this, the focus for the design now
shifts to effective utilization of resources like BRAMs, DSP48
blocks etc.

IV. IMPLEMENTATION

The designs have been optimised to effectively use the high
performance primitives available on a modern high-end FPGA.
This section describes two designs, I and II. The goals for the
first design were full utilisation of PEs and overlapping I/O
and computation and thereby sustaining peak performance.
These were achieved at the cost of a high I/O bandwidth
and sub-optimal use of available resources. The second design
addresses all the limitations of the first design, and the section
on design II describes its evolution in terms of more effective
use of the previous data-path and resources.

Broadly, broadcasting elements of PA to all PEs and the
streaming in of elements of PB to the prefetch registers is
central to both the schemes and the relative rate at which
they are streamed in, and the manner of their re-use is what
essentially differentiates the two.

A. Design-1

This design assumes P = Sj and Si = Sj , where P is the
number of PEs. The Si > Sj case is also acceptable. Figure 2
gives an overview of this design. The following enumerated
list will describe all the major labeled components, shown in
Figure 3, of the PE. It will be clear shortly that this design
requires 2 words per design clock.

Component Description:
1) B Prefetch Unit: This unit is used to prefetch Sj

elements of the next row of PB while the current row
is used. The input to the first of such units is a stream
of elements from the matrix B, in a row major fashion.
Each unit has one data input and two data outputs: a
serial-shift-forward, which happens every clock cycle
and a parallel-load-down which happens every P shifts

342

Fig. 3. 1 PE: Design-I

(or Si clocks if Si > Sj). These P words are available
at the output for at most Si clocks.

2) FIFO1 : When the B Prefetch units were connected
directly to the multipliers, a severe and unexpected drop
in the design frequency was observed. This drop was
inferred to be due to the routing overhead in bringing
the data lines from a 64 bit register to the 13 DSP48
blocks which make up a double precision multiplier.
A FIFO built out of BRAM was placed in the path
in order to reduce the length of the routing path thus
ensuring the expected design frequency. Due to the
physical proximity of the BRAMs to the DSP blocks on
Xilinx FPGAs, complicated routing is avoided and also,
now, the 64 bits have to route to one BRAM instead of
13 DSP48s.

3) Multiplier : A standard double precision floating point
multiplier IP(version v3.0) from Xilinx is used for this
block. A latency of 19 cycles gives it a maximum clock
speed of about 431 MHz using 13 DSP48 units. One
input to the multiplier comes from the prefetch unit
via the FIFO1 and the other input is the element from
matrix A which is broadcast to all multipliers. The
output of this multiplier is one of the inputs to the adder.
The recent floating-point v4.0 is superior in terms of
area resource(DSP48) usage and latency, especially for
Virtex-5 series, but reduces the speed, hence is not used
in the design.

4) Dual-Port BRAM : This dual port blockram is used
as the storage space for the accumulation step of the
algorithm. The adder writes back to the RAM using port
A and reads from the RAM using Port B. The output of
port B is duplicated as the input to Mux2 as well.

5) Mux1 : This mux ensures ’0’ is added to the incoming
product stream, whenever a new panel is read in, while
the previous result in the BRAM is copied into FIFO2’s.

6) Adder : A standard double precision floating point adder

IP(version v3.0) from Xilinx is used for this block.
It receives two inputs, one from the multiplier and
one from the Mux1. It writes back to blockram at the
appropriate location considering its own latency.

7) Mux2 : The mux is used to switch connections between
the BlockRAM (Result-backup mode), and the other
instances of FIFO2 (Serial-dataout mode).

8) FIFO2: In order to ensure that there is no stalling in
the pipeline the result needs to be backed up. Since
both the ports of the result BRAM are busy, a separate
memory unit is used for the back-up, in the form of
FIFO2. The final updated data of the result sub-matrix
’C’ (one column of ‘C’ when we talk about 1 PE) will
be loaded into the corresponding FIFOs (Result-backup
mode) of the PEs. When the result has been copied into
the FIFO, input of the FIFO gets connected to the output
of FIFO2 of the previous PE, thus allowing us to take
the output in a streaming fashion (Serial-dataout mode).

Data Flow - design 1: The inputs, elements from PA and
PB are streamed in column major and row major order respec-
tively. First, one of the rows from PB (vk) shifts into the B
prefetch unit. Once a complete row is shifted-in (Sj = P), the
’prefetch-line’ registers are full and this data is loaded down
to the ‘working-line’ registers. In the meanwhile the prefetch-
line continues to shift-in the next row from PB (vk+1). At this
point, when working-line is available and connected to one of
the inputs of the multiplier, elements from the corresponding
column (uk) from A are broadcast to the second input of all the
multipliers. After a latency period of the multiplier (say, Lm)
the first result of multiplication is available at the output along
with the appropriate handshaking signals which are used to
trigger accumulation of the outerproducts at the storage area.

Once the pipeline of the multiplier has been filled it shall not
be stalled since no data dependencies exist between subsequent
multiplications. This allows continuous feeding of the data at
the maximum design frequency. The result of the addition,
available after a latency period (say, La), is stored in the
BRAM. We will see later that the pipeline may stall in one
case. Zero is accumulated with the product stream during
the first outer product of each new PA×PB, after which the
accumulation happens with the appropriate location in the
BRAMs. The FIFOs responsible for the output are loaded with
the values parallely from the BRAMs once the final value of
the result subblock CSi×Sj

is ready. After the loading/backup
is completed, these FIFOs switch modes allowing us to stream
the data out in a serial fashion.

Merits and Summary: The design described above requires
that Si ≥ Sj = P , implicitly assuming a bandwidth of 2-
words per design clock cycle. PCIe is capable of such high
bandwidths, and is the norm for today’s large FPGAs. The
merits and demerits of this design have been summarised in
the following list, details about the performance and analysis
are presented in a later section.

1) Overlaps I/O and computation completely. Therefore,
except for the initial latency period, all the processing

343

Fig. 4. 1 PE: Design-II

elements (both the floating point operators) are in use
all the time, thus sustaining peak performance.

2) The design scales seamlessly (< 1% reduction in speed)
as seen from Table I.

3) Uses off-the-shelf Coregen floating point adders and
multipliers, allowing for portability across technologies
and generations, custom-precision option, better IEEE
compliance etc.

Drawbacks:
1) The design requires a sustained bandwidth of 2-words

per cycle corresponding to the design frequency. For
a design speed of, say, 350 MHz this translates to a
5.6 GBps bandwidth requirement, which can well be
provided by today’s standards, but is high nonetheless.

2) Little to almost no flexibility in the choice of Si and
Sj which might affect the overall runtime even with the
sustained peak performance.

3) Si cannot be less than the latency of the floating point
adder as otherwise there would arise a data dependency.
Practically this is not usually a problem due to the large
sizes of matrices under question.

B. Design-II

Design-I assumed Si ≥ Sj = P and so Sj = P elements of
B were being reused Si times. The design-II ensures more re-
use by allowing Si and Sj to be greater than P , (i.e., Si, Sj ≥
P), however Sj needs to be a multiple of P .

As shown in the Figure 4 the data-path is similar to that
of design-I. The design actually evolved from design-I in
an attempt to find a better use of the existing components,
especially the dummy FIFO1 used earlier. The following
enumerated list describes the major modifications as

1) B Prefetch Unit: This is the same as described earlier in
design-I, however two sets of registers are not necessary.
‘BRAM Cache’ is made part of the working-line by
using it for storage.

2) B Cache: The design-I employed a dummy FIFO1
(BRAM based) to prevent the design frequency from
falling drastically. This component now assumes a cen-
tral role in design-II. Each BRAM now stores Sj/P
consecutive elements of a row from the chosen panel of
the matrix B, hence renamed B Cache. Configured in
dual port mode, this BRAM can easily implement the
working-line required for the design.

3) Simple Dual-Port RAM: To accommodate the larger
sizes of Si and Sj , the storage area has been increased
in size and logically segmented into Sj/n(PEs) zones
each storing results corresponding to one Sj . Over all,
the storage area accounts for the storage of Si × Sj

elements of the result block. Writing to the appropriate
segments is handled by address generation and control.

Design Merits:
1) Inherits all the merits from design I – as enumerated

earlier.
2) Addresses all the identified drawbacks of design I, viz

drastically reduces the bandwidth requirement, more
flexibility in the choice of Si and Sj and relaxes the
constraint on Si w.r.t the latency – the details of which
are described in the following sections.

Data Flow: Data stream from a row of PB is fed to the
prefetch unit as before, but the sequence of data is such that
the ith consecutive Sj

P elements from a row with Sj elements,
are loaded into the B-Cache storage corresponding to the
ith PE. Thus the following sequence is observed, assuming
b1, b2, b3 . . . are the contents of PB in row major fashion:

b1, bSj
P +1

, b 2Sj
P +1

, . . . b2, bSj
P +2

, . . .

One element from A is used for Sj

P cycles, where it mul-
tiplies all Sj elements of a row. During the first outerproduct
computation, the multiplier result is accumulated with 0 and
stored in the BRAM. Thus, one outerproduct computation
takes Si×Sj

P cycles to complete, after which the elements from
the next column of A are required. As a result of this, the
restriction of Si ≥ La is relaxed to Si×Sj

P ≥ La. But the most
important consequence of the new design is that the bandwidth
requirement is considerably reduced as a result of a trade-off
with local memory usage/data re-use.

Illustrative Example: Consider the product of two square
matrices A and B each with dimensions 800 × 800. With a
design speed of 350 MHz, we consider the following two
cases.

Case I : [Si = Sj = P ; P = 50]
In this case, the bandwidth required is 2 words per
cycle which with 350 MHz means 5.6 GB/s (= 2×
8× 350). One outerproduct computation in this case
takes Si cycles and therefore one Si × Sj subblock
computation of the result takes Si × 800 cycles. For
the entire matrix multiplication of A× B, there are
16× 16 such subblocks. Therefore, the total number
of cycles for A×B computation is Sj +Si × 800×
16× 16 = 10240050.

344

Case II : [Si = Sj = 400; P = 50]
As Sj

P = 8, we see that one word of A is required
every 8 clock cycles. So, a bandwidth which gives us
2 words for every 8 cycles, or 0.25 words per cycle
or 700 MB/s(= .25× 8× 350) will be sufficient. As
for the total computation time, one can see that an
Si × Sj result subblock computation requires Si×Sj

P
and there are 4 such blocks here. Therefore, the total
number of cycles for A × B computation is Sj +
Si×Sj

P × 800× 4 = 10240400.
Thus, design II solves the problem using significantly lower
bandwidth than the first design. The increase in the cycles
required for computations is because of the increased setup
time.

V. DESIGN EVALUATION

Xilinx ISE 10.1sp1 and ModelSim 6.2e was used for
implementation and simulation of the design respectively.

The most significant aspect of the design, from the Table I,
appears to be the negligible variation of the speed despite
scaling up to 40 PEs, an explanation for which is offered in
the comparison section. The drastic reduction in speed, from
373 to 201 MHz, on SX95T is attributed to the expected
poor routing when the resource utilization reached > 95%,
therefore considered a corner case.

As shown in Table II, due to abundance of resources their
liberal use is justified. Appropriate pipeling, not shown in the
figures, has been done in order to break the critical paths. It
can also be seen from the resource usage at 40 PEs that a few
more PEs can be accommodated in the SX240T.

The design was ported to the Virtex 2 Pro XC2VP100 for
the sake of comparison and as shown in Table III, about 20 PEs
can be fit with a frequency of about 134 MHz as opposed to
31 PEs and 200 MHz(synthesis) respectively by [4] (In a later
usage of the same PE by one of the co-authors of [4], the
actual implementation frequency was about 100 MHz [6])

TABLE I
TIMING INFORMATION (POST PAR)

No. PEs SX240T(-2)[MHz] SX95T (-3)[MHz]
1 PE 374 377
4 PEs 373 374
8 PEs 344 373
16 PE - 373
19 PEs - 373
20 PEs 372.8 201
40 PEs 371.7 -

VI. PERFORMANCE ANALYSIS

We present an analysis of the design parameters listed
in Table IV studying their effect on performance and the
constraints they impose. All the analysis is with respect to
design-II.

Each element of A is used Sj

P times, in an outerproduct
and therefore the entire computation of the outerproduct takes
Si×Sj

P cycles. In order to overlap I/O and computation, the

TABLE II
RESOURCE UTILIZATION FOR SX95T AND SX240T DEVICES (POST PAR)

No PEs DSP48E FIFO BRAM Slice Reg Slice LUT
1 PE 16 1 2 2511 1374
4 PE 64 4 8 10377 5451
8 PE 128 8 16 20865 10886
16 PE 256 16 32 41841 21750
20 PE 320 20 40 52329 27176

40 PE(sx240) 640 40 80 69% 36%
RESOURCES PER DEVICE

Device
SX240T 1056 516 516 149760 149760
SX95T 640 244 244 58880 58880

TABLE III
RESOURCE UTILIZATION FOR VIRTEX II PRO XC2VP100 (POST PAR)

Totxc2vp100 U15 PE U20 PE

MULT18x18s 444 240 304
RAMB16s 444 90 114

Slices 44096 30218 (68%) 37023 (83%)
Speed 133.94 MHz 133.79 MHz

TABLE IV
LIST OF PARAMETERS

parameters meaning
β bandwidth in terms of the no. of words per design clock

xa, xb such that xa + xb ≤ β
m total amount of local memory
n num. of columns of a (or rows of b)

algorithm requires that we prefetch Sj elements of B for the
next outerproduct. We have therefore

Si + Sj ≤
Si× Sj

P
× β (1)

We also see that the Si×Sj needs to be maximized here. The
constraint on memory gives us Eq 2 which on approximation
gives Eq 3

2Si × Sj + 2Sj = 2(Si + 1)× Sj ≤ m (2)

2(Si)× Sj ≤ m (3)

To maximize f(Si, Sj) = Si × Sj , under the constraints
Eq 1 and Eq 3 we use the Lagrangian constrained optimization
method
L(Si, Sj , λ, µ) =

Si × Sj + λ
(
β

Si×Sj

P
− (Si + Sj)

)
+ µ (m/2− Si × Sj)

∂L

∂Si
= Sj − λ+ λβ

Sj

p
− µSj = 0 (4)

∂L

∂Sj
= Si − λ+ λβ

Si

p
− µSi = 0 (5)

Equations 4 and 5 suggest Si = Sj . If we substitute Si =
Sj = S, we get

Maximize S (6)

S ≥ 2P

β
(7)

S ≤
√
m

2
(8)

345

The following analysis for the minimum required bandwidth
demonstrates the burst-friendly nature of the design. We know
that Si words of A are required for Sj words of B within
Sj×Si

p cycles. Thus we get the values for min(xa) and max(xb)
for a constant bandwidth of β. Thus we get the values for
min(xa) and max(xb) for a constant bandwidth of β.

min(xa) =
P

Sj
(9)

max(xb) = β − P

Sj
(10)

For the case where Si = Sj equal distribution of bandwidth
is the best approach, for other cases a similar analysis results
in the appropriate distribution. The availability of more than
the minimum amount of bandwidth means that the excess
bandwidth can be used to transfer as much A as required in
one go – further trading bandwidth with local storage. This
caching also creates time during which the bandwidth can be
used for other I/O, allowing for sharing the same bandwidth
across multiple FPGA boards.

VII. COMPARISON

The following compares a few aspects of ours designs with
the recent related work. In particular we compare with Dou
[4] and Prasanna [2], [5], the former of which was identified
superior to other related work by Craven-2007 [7].
• Scaling: As reported previously [2], [5] frequency falls

by about 35% and 15% respectively by scaling to 20
PEs. Our designs show negligible(<1%) degradation in
frequency up to 40 PEs. Further, the low-bandwidth
requirements and burst-friendly behaviour allows design-
II to scale well across multiple FPGAs due to low
bandwidth requirement per FPGA.

• Flexibility: Dou’s design requires matrix subblock di-
mensions to be powers of 2. Prasanna supports square
matrices of limited size in [5] and arbitrary size in
[2]. Our designs support arbitrary matrix sizes as in [4]
without placing extra constraints on Si, Sj .

• PE/MAC: Dou’s custom MAC [4] is highly optimized for
Virtex-2 Pro and may not scale across families of FPGAs.
The MAC doesn’t support zero and denormal numbers.
Our design uses floating-point units from core-generator
making the design more flexible(portable, scalable, cus-
tomizable) along with better IEEE compliance. It is to be
noted that these are optimized for Virtex-5.
We were able to place and route only 20 PEs on Virtex-2
Pro XC2VP100 as opposed to 31 PEs (synthesis-only) by
[4] which was possible because of the custom designed
MAC which use only 9 18x18 multipliers as opposed to
16 by core generator. But such custom MAC may not be
appropriate in the context of, say, Virtex-5 SX240T where
there are about 1200 DSP48s and the coregen floating
point units are highly optimized to use them effectively.

• I/O–Computation Overlap: The designs use a variant of
‘pipelining’ or buffering for the purpose of overlapping
I/O and computations as opposed to memory switching
used in related works. This may be a factor in the
better scaling of our designs as explained below. Memory
switching requires two memory-banks to alternately feed
the processing elements. This places constraints on the
placement of the memory banks with respect to the
processing units. In this implementation, one memory
unit feeds another, except for those connected directly
to the processing units. This takes advantage of their
physical proximity on the device and the better routing
between BRAMs and DSP48 blocks.

VIII. CONCLUSION

In this paper two designs for matrix multiplication are
presented which vividly demonstrate the trade-off between
memory and bandwidth. The simplicity of the designs and
the use off-the-shelf floating point units from Xilinx Coregen
offer easy reproduction of the design, portability across FPGA
families and maintainability along with better IEEE compli-
ance and options such as custom precision. The designs are
able to sustain the peak performance, like a few other related
work, achieved by use of a technique alternative to memory
switching, which also has a favourable impact on routing. Our
designs scale well with <1% degradation in speed and design-
II further enables scaling across multiple FPGAs. For about 40
PEs, with a design frequency of 373 MHz on Virtex-5 SX240T
FPGA, a sustained performance of 29.8 GFLOPS is possible
with a bandwidth requirement of 750 MB/s for design-II and
5.9 GB/s for design-I. The design can be made available upon
request. Future work includes porting it for use with the CRL-
India’s supercomputer.

ACKNOWLEDGMENT

The authors acknowledge Sunil Puranik and others from
CRL-India for their insights on HPC; Rahul Badghare and
Pragya Sharma for their help in the timing analysis.

REFERENCES

[1] K. D. Underwood and K. S. Hemmert, “Closing the gap: Cpu and fpga
trends in sustainable floating-point blas performance,” in FCCM. IEEE
Computer Society, 2004, pp. 219–228.

[2] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on reconfigurable computing sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,
no. 4, pp. 433–448, 2007.

[3] K. Goto and R. van de Geijn, “High performance implementation of the
level-3 BLAS,” accepted: 28 October 2007.

[4] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-
bit floating-point fpga matrix multiplication,” in FPGA ’05: Proceed-
ings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays. New York, NY, USA: ACM, 2005, pp.
86–95.

[5] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on fpgas,” IPDPS, vol. 01, p. 92a,
2004.

[6] G. Kuzmanov and W. van Oijen, “Floating-point matrix multiplication
in a polymorphic processor,” in International Conference on Field Pro-
grammable Technology (ICFPT), December 2007, pp. 249–252.

[7] S. Craven and P. Athanas, “Examining the viability of fpga supercom-
puting,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp. 13–13, 2007.

346

FPGA Implementation of Support Vector Machine based Isolated Digit
Recognition System

J.Manikandan, B.Venkataramani and V.Avanthi

Department of ECE, National Institute of Technology, Trichy (NITT), Trichy-620015, TN, INDIA
{jmanikandan.nitt@gmail.com, bvenki@nitt.edu}

Abstract

In this paper, two schemes for FPGA
implementation of multi-class SVM based isolated digit
recognition system are proposed, one using only logic
elements and another using both soft-core processor
and logic elements(LEs). One of the major
contributions of this paper is the proposal for
implementation of the decision function using only
fixed point arithmetic without compromising the
recognition accuracy. Compared to the scheme which
uses floating point arithmetic, the proposed scheme
reduces the number of LEs required by a factor of
3.29. The second scheme proposed results in about 25
times lower area compared to the first scheme. For the
soft-core processor approach, a custom instruction is
proposed for floating point arithmetic. Speaker
dependent TI46 database of isolated digits is used for
training and testing. Features are extracted using both
Linear Predictive Coefficients (LPC) and Mel
Frequency Cepstral Coefficients(MFCC) and features
are compressed using Self Organized Feature Mapping
(SOFM). This in turn is used by the SVM classifier to
evaluate the recognition accuracy and the hardware
resources utilized. Both the schemes proposed result in
100% recognition accuracy when implemented on
Altera Cyclone II FPGA. The proposed schemes can
also be used for speaker verification and speaker
authentication applications. Since the scheme which
uses soft-core processor requires lower area, it can be
used for systems which require a large vocabulary size.

1. INTRODUCTION
Support Vector Machine (SVM) is one of the

popular techniques for pattern recognition and is
considered to be the state-of-the-art tool for linear and
nonlinear classification [1]. SVM is basically a binary
classifier and it has been employed for several
applications such as beam forming [2], ultra wide band
(UWB) channel equalization [3], channel estimation in
Orthogonal Frequency Division Multiplexing (OFDM)
systems [4], voice activity detection [5], target

recognition [6] and many more. The SVM classifier
was originally developed for two-class or binary
classification and the demanding applications of
pattern recognition led to the design of multi-class
SVM classifiers using the binary SVM classifiers.

FPGAs have come a long way from mere glue-logic
applications of interconnecting discrete components to
high-performance reconfigurable signal processors.
FPGA-based processing outperforms conventional
processors, resulting in improvements in processing
speed, size, weight, power consumption, supply
voltage, and cost. Compared to basic microcontrollers
that have built-in analog-to-digital converters, CAN,
and other features, the FPGA seems to be resource-
efficient. Moreover, embedding soft processors such as
Nios II (for Altera FPGAs), Picoblaze/Microblaze (for
Xilinx FPGAs) offers a radical yet stable way to
effectively eradicate the problem of processor
obsolescence. The reconfigurability feature of the
FPGA is a great advantage. Coding, compilation,
simulation and testing are more straightforward with an
FPGA than with a microcontroller and hence it has
been employed for design of several applications [7].
FPGAs have also been proposed for the
implementation of support vector machines. A two-
class SVM classifier for multispectral brain images is
proposed in [8]. SVM classifier using logarithmic
number system (LNS) is proposed in [9]. Both these
implementations use Xilinx FPGA.

In this paper, a multi-class SVM classifier which
dispenses with signum function is proposed for isolated
digit recognition system. It is implemented on Altera
Cyclone II FPGA using two schemes, one which uses
only LEs and another which uses LEs and the soft-core
processor.

The organization of the paper is as follows: Section
II gives a brief introduction to Support Vector Machine
(SVM) and the architecture of SVM based isolated
digit recognition system. Section III presents the
results on the performance of the proposed system on
MATLAB. Section IV presents the implementation
results on FPGA, followed by conclusion and
references.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.23

347

2. OVERVIEW OF SVM CLASSIFICATION AND
ISOLATED DIGIT RECOGNITION SYSTEM

A. SVM Classification

The aim of SVM Classifier is to devise a
computationally efficient way of learning ‘good’
separating hyperplanes between different classes in a
high dimensional feature space. SVM is used to
identify a set of linearly separable hyperplanes which
are linear functions of the high dimensional feature
space as shown in Figure 1. The hyperplanes are
placed such that the distance between the classes is
maximum. An introduction to SVM algorithm for
linearly non-separable classes is given here. More
details about SVM classifier can be obtained from
[10],[11]. Let {xi,yi} for i=1, 2, … N denote the
training data set where yi is the target output for
training data xi, The aim of SVM is to maximize the
objective function L(α)

∑ ∑∑
= = =

ΦΦ−=
N

i

N

i

N

j
j

T
iiijii xxyyL

1 1 1

)()(
2
1)(αααα (1)

subject to constraints

(i) ∑
=

=
N

i
ii y

1

0α

(ii) Ci ≤≤α0 for all i, where.
where C is the cost parameter, αi is the hyperparameter
and Φ(.) is the feature mapping.

To solve the optimization problem mentioned in (1)
with above-mentioned constraints, a well known
procedure called Quadratic Programming (QP) is used
to minimize [-L(α)] [12] and the following
classification function is obtained

))(.sgn(bzwY +Φ=

)),(sgn(
1
∑

=

+=
q

i
iii bzxKyY α

 (2)

where w = ∑
=

Φ
q

i
iii xy

1

)(α gives the weight for the SVM

classifier, αi is the Lagrange multiplier assigned to each
training data whose value depends on the role of the

Figure 1. Non-linear to linear transformation using
SVM Technique

corresponding training data in the design of the
classifier system. Nonzero values of αi’s correspond to
support vectors that are used to construct the classifier
in (2), ‘q’ denotes the number of support vectors,
K(xi,z)= <Φ(xi).Φ(z)> is the kernel function, ‘b’ is the
bias and ‘Y’ is the classifier output for the test data
‘z’.

The kernel functions map the input into higher
dimensional feature space and the kernel functions
must satisfy the Karush-Kuhn-Tucker (KKT)
Conditions and Mercers Condition [10] to retain the
geometrical interpretation of the feature space, so that
the solution of the objective function gives a
hyperplane in the feature space. The linear kernel for
SVM classifier is given as K(xi,z) = <Φ(xi).Φ(z)> =
< xi.z >.

The weights ‘w’ and bias ‘b’ are stored in memory
for each digit/class. For any test input data ‘z’, K(xi,z)
is computed and all the values are substituted in (2).

A binary or 2-class SVM classifier will have the
recognition result as z Є class 1, if Y = 1 and z Є class
2, if Y = -1. Figure 2 shows the block diagram for two-
class SVM classification. Assume Dc to be the decision
function given for class ‘c’ as

Dc = ∑
=

+
q

i
iii bzxKy

1

),(α (3)

For a multi-class problem, the recognition result for
SVM classifier is given as Y =)(maxarg c

c
D for c Є

{1,2,3,…N} and in general z Є class ‘n’ for Y=n.
SVM models have a cost or penalty parameter C,

which controls the trade-off between the complexity of
the decision function and the number of wrongly
classified testing points. For applications requiring
higher feature dimensions such as speech, it is difficult
to visualize the decision boundary, but the recognition
accuracy can be evaluated for various C values. While
comparing the classification methods using SVM, the
correct value of C for each of the compared methods is
crucial, as only then a reliable estimate of the
performance is obtained for each of the methods. The

 Figure 2. Block diagram of a two-class SVM

Pattern Classifier

348

correct C value cannot be known in advance and a
wrong choice of the SVM penalty parameter C can
lead to a severe loss in performance. Therefore, the
parameter values are usually estimated from the
training data by cross-validation and exponentially
growing sequences of C.

B. Isolated Digit Recognition

Isolated digit recognition is a problem of pattern
classification which has a very vast feature size. Figure
3 shows the block diagram of proposed isolated digit
recognition system using SVM classifier, comprising
of feature extraction, self organized mapping of the
features extracted and SVM classifier architecture
stage. The input speech is divided into frames and
LPC/MFCC coefficients are computed for each frame.
(The Linear Predictive Coefficient (LPC) features are
extracted from the input speech using the pre-
emphasis, frame blocking, windowing, and
autocorrelation blocks. Details about the steps involved
in extracting the LPC features can be had from
[13],[14].) Similarly, Mel Frequency Cepstral
Coefficients (MFCC) is computed using the following
blocks: pre-emphasis, frame blocking, windowing,
FFT, Magnitude Square, Mel filter bank processing,
DCT, computation of energy, computation of delta and
double delta features. Detailed account of the
procedure adopted for computation of MFCC is given
in [15].) Figure 4(a) and 4(b) shows the block diagram
for LPC and MFCC feature extraction of the input
speech respectively. Each frame results in either 11
LPC coefficients or 25 MFCC coefficients (13 MFCC
+ 12 delta MFCC). The total number of LPC/MFCC
coefficients for each digit is not uniform because each
input digit comprises of different number of frames.
SVM based recognition requires equal number of
feature vectors for each input. In order to make the size
of input features uniform for all the digits, Kohonen’s
self-organizing feature map (SOFM)[16] is used.
SOFM reduces the input feature size for classification
too. The SOFM transforms the acoustic vector
sequences of features into trajectories in a square
matrix of fixed dimension, where each node of the
matrix take on binary values[17]. The feature map is
trained by Kohonen’s self-organization learning. For
the purpose of SOFM training, ten utterances of all the
ten digits are used. The self-organization learning has
the property that after training, physically similar input
vectors in Euclidean space, correspond to topologically
close nodes in the feature map. The size of SOFM can
be 12x12, 18x18, 24x24 or any other combination.
Mapped features of SOFM for each digit are obtained
using the SOFM weights. In the SOFM array shown in
Figure 3, black dots, white dots denote the values ‘1’
and ‘0’ respectively.

Figure 3. Block Diagram of proposed SVM-based
Isolated Digit Recognition

Figure 4(a). Block diagram for LPC Feature
Extraction

Figure 4(b). Block diagram for MFCC Feature
Extraction

3. PERFORMANCE RESULTS OF SVM BASED
ISOLATED DIGIT RECOGNITION SYSTEM

In this section, the results of software
implementation of the SVM based isolated digit
recognition system is given. The speaker dependent
TI46 database corpus [18] is used for the evaluation of
proposed SVM based isolation digit recognition
system. Ten utterances of each digit from 1 female
speaker are used for training the system and ten
utterances of test data for each digit from the same
speaker at different sessions are used for testing.
Feature extraction using LPC/MFCC and feature
mapping using SOFM has been implemented using C-
code. The SVM classification algorithm described
above is implemented using MATLAB [19] and the

349

performance of proposed SVM based isolated digit
recognition system for LPC and MFCC feature inputs
with various SOFM sizes and kernels is evaluated. The
recognition accuracy (RA) achieved with number of
support vectors (SVs) required for different SOFM
sizes is given in Table I. It may be observed that
MFCC feature inputs with SOFM of size 12x12 gives
100% recognition accuracy with least number of
support vectors. The performance results of proposed
SVM based isolated digit recognition with MFCC
feature input and SOFM size 12x12 for different
kernels is given in Table II. It may be observed from
Table II that the best recognition accuracy is achieved
by using sigmoid and linear kernel for LPC and MFCC
feature inputs respectively. From Table I and Table II,
it is concluded that the best combination for FPGA
implementation of the SVM classifier is to use MFCC
feature inputs mapped to SOFM of size 12x12 with
linear kernel and hence this combination is employed
for hardware implementation of SVM using FPGA.

Table 1. Recognition Performance for various

SOFM sizes

Feature Extraction→ LPC MFCC
SOFM Size ↓ RA SVs RA SVs

12x12 85% 627 100% 602
18x18 97% 692 100% 691
24x24 94% 739 99% 747

RA : Recognition Accuracy ; SVs : Number of Support Vectors

Table 2. Recognition Performance for Various
Kernels with SOFM Size 12x12

Feature Extraction→ LPC MFCC

SVM Kernel ↓ RA SVs RA SVs
Linear 85% 627 100% 602

Poly(deg=2) 87% 759 100% 747
RBF 90% 677 100% 611

Sigmoid 90% 653 100% 669
Wavelet(a=10) 90% 703 100% 682

4. HARDWARE IMPLEMENTATION OF SVM
BASED ISOLATED DIGIT RECOGNITION

SYSTEM
In this section, the results on the implementation of

SVM based isolated digit recognition on Cyclone II
EP2C35F672C6 FPGA are given. MFCC feature input
is mapped to SOFM of size 12x12 and linear kernel is
used. Two schemes are proposed for implementation,
one which uses only the LEs and another which uses
both LEs and Nios II soft-core processor. Altera
Quartus II software is used for the design and
implementation. Nios II soft-core processor is a

general-purpose RISC processor core and the term
“Nios II processor system” refers to a Nios II processor
core, a set of on-chip peripherals, onchip memory, and
interfaces to off-chip memory, all implemented on a
single Altera device.

Figure 5 shows the SVM classifier architecture
employed for the proposed isolated digit recognition
system and the same has been implemented in FPGA.
The first stage is a binary or two-class SVM classifier
for each digit. For MFCC feature inputs with SOFM
size 12x12, the test input ‘z’ to SVM classifier is of
size [1x144]. The size of weights ‘w’ for each SVM
digit classifier is [1x144] totaling to [10x1x144]
weights for all the ten digits. SVM learning is a one-
time operation to obtain the weights and bias for each
class. The weights and bias for each class are obtained
using MATLAB and they are stored in FPGA memory.
The output from SVM classifier block for each digit is
defined as decision function Dc and for linear kernel,
the decision function given in (3) is written as :

Dc = ∑
=

+
q

i
iii bzxy

1

α = WZT + b (4)

where W and Z are the weight and test input in matrix
form. The results from classifier blocks of each digit
are passed to a decision logic block, where the class
with maximum decision function is adjudged as the
recognized digit.

Figure 5. SVM Classifier Architecture for Isolated

Digit Recognition System

A. Floating point format

In this section, implementation of SVM classifier
using only logic elements (LEs) is considered. The
weights ‘w’ and bias ‘b’ for each class are in floating
point format and hence the proposed SVM classifier
requires floating point arithmetic operations for each
class. In order to optimize the FPGA resources, the
(1,6,5) format (1 sign bit, 6 exponent bits and 5

350

mantissa bits)[7] for floating point number is
evaluated. Value of the floating point number is given
by X = (-1)s * 1.m * 2 e-bias (5)

bias=2E-1-1
where ‘E’ denotes the number of exponent bits, ‘s’
denotes the sign bit, ‘m’ denotes value of mantissa and
‘e’ denotes the value of exponent. For example, 9.2510
= 1001.012 = 1.00101 x 23, where e - bias = 3 => e = 3
+ bias => e = 34 and 9.25 is written in (1,6,5) format as

Sign

s
Exponent

e
Unsigned mantissa

m
0 100010 00101

Floating point addition is more complex than

multiplication because two numbers in floating point
format f1(s1,e1,m1) and f2 (s2,e2,m2) can only be
added if the exponents are same. If exponents are not
same, then a normalization factor, d=e1-e2 has to be
used and then the two aligned mantissas are added if
the two floating point operands have the same sign,
otherwise subtracted. The floating point arithmetic
units are implemented on FPGA using both (1,6,5) and
(1,6,11) format and the accuracy of the results obtained
are given in Table III. It is observed that the (1,6,11)
format gives better accuracy than (1,6,5) format. Hence
(1,6,11) format is used for implementation of the SVM
based isolated digit recognition.

The number of LEs required for the implementation
of proposed isolated digit recognition system using
(1,6,11) format is given in Table IV. Each floating
point addition consumes 368 LEs, whereas Altera
Megawizard Function for 32-bit floating point addition
requires 1143 LEs and 838 LEs for full functionality
and reduced functionality respectively [20].

Recognition results of the system using (1,6,11)
format match with the results obtained from
MATLAB, but it can be employed only with FPGAs
having larger LE count.

Table 3. Results of Floating Point Addition using

(1,6,5) And (1,6,11) Format

Example
(1,6,5) (1,6,11)

Result Error Result Error
9.25+0.6=9.85 9.75 1.01% 9.84765 0.023%

0.2+0.005=0.205 0.1875 8.54% 0.20489 0.053%

B. Fixed point format

It is observed that the FPGA implementation of
SVM based isolated digit recognition system using
(1,6,11) floating point format consumes nearly
1,16,750 LEs. In order to optimize the number of LEs,
fixed point format is employed, where the weight and
bias values are scaled by 106 and the resulting number
is stored after truncating the fractional part. In this

case, floating point arithmetic is replaced with fixed
point arithmetic operations. The number of LEs used
for the hardware implementation of the system is given
in Table IV. The proposed isolated digit recognition
system using fixed point format reduces the number of
LEs by a factor of 3.29 over the (1,6,11) floating point
format based implementation.

C. Nios II Soft Core Processor

The FPGA implementation using fixed point format
reduces the number of LEs by a factor of 3.29 for the
10-class isolated digit recognition system, but the
number of LEs is bound to increase if the vocabulary
size for recognition is increased. In this section,
hardware implementation of the proposed SVM based
isolated digit recognition system using Nios II soft-
core processor is explained. The system-on-
programmable-chip (SOPC) approach has several
advantages over a pure hardware design. SOPC
approach supports programming using high level
languages such as C++ and a complex system can be
easily designed and tested. These soft-core processors
have a differentiating factor over their hard-core
counterparts that they are flexible and are superior
compared to hard core processor, as the silicon area is
not dedicated permanently and the size of RAM, I/O
and peripherals can be configured by the user
depending on the requirement, while the hard-core
processor based approach is inflexible and may result
in under utilization of silicon area. Custom instructions
take the flexibility of soft-core processors a step ahead
with algorithm-specific additions of hardware to the
soft-core microprocessor’s arithmetic logic unit
(ALU). Figure 6. shows the use of custom instruction
to extend the ALU of Nios II soft core processor, and
these new hardware instructions cast the software
algorithm into a hardware block. Nios II soft-core
processor is implemented on Cylcone II EP2C35
FPGA and floating point arithmetic operation is
performed using only software and using floating point
custom instructions [21] on 1000 pairs of random
operands and the acceleration factor obtained is given
in Table V. From this it may be concluded that the
custom instruction accelerates the floating point
arithmetic by a factor of 13 to 41 and hence it is
adapted for SVM implementation. The SVM classifier
is implemented on Cyclone II FPGA and the number of
LEs required for the implementation of proposed
isolated digit recognition system is given in Table IV.
It is noticed that SOPC implementation reduced the
number of LEs by a factor of 25 over the floating point
format based implementation and the fixed point
format based implementation reduced the number of
LEs by a factor of 3.29 over the (1,6,11) floating point
format based implementation.

351

Figure 6. NiosII Processor with Custom Instruction

Logic Block

Table 4. Hardware Resource Utilization for SVM

Classifier
Hardware Implementation Logic Elements

(LEs)
(1,6,11) Floating point format 1,16,750
Fixed point format 35,525
Nios II Soft-Core Processor (with FP CB) 4,736
Nios II Soft-Core Processor (without FP CB) 2,734
FP CB: Floating Point Custom Block

Table 5. Acceleration Factors on using Floating
Point Custom Instruction

Operation
Clock Cycles Time (Sec) Accel.

Factor SW CI SW CI
FP Add 856287 61453 0.01713 0.00123 14x
FP Sub 916255 61735 0.01833 0.00123 15x
FP Mul 2470669 59158 0.04941 0.00118 41x
FP Div 1035598 79401 0.02071 0.00159 13x
SW : Software Only; CI : Custom Instruction

5. CONCLUSION
Two schemes proposed for FPGA implementation

of SVM based isolated digit recognition system are
implemented on Altera Cyclone II FPGA. (1,6,11)
floating point format proposed in this paper achieves
100% recognition accuracy for the above system.
Compared to direct implementation of SVM using the
above floating point representation, two schemes, one
using normalization followed by truncation and
another using soft core processor reduce the area
required by a factor of 3.29 and 25 respectively. The
scheme using the soft-core processor has the potential
for implementation of speech recognition system with
large vocabulary size. The proposed SVM based
isolated digit recognition system can be extended for
applications such as speaker verification and speaker
authentication based applications. The techniques
proposed in this paper are also applicable for
implementation on FPGAs from other vendors such as
Xilinx.

REFERENCES
[1] Christopher J.C. Burges, “A tutorial on Support Vector

Machines for Pattern Recognition,” Data Mining and
Knowledge Discovery 2, 1998, pp. 121-167.

[2] M. Martínez Ramón, Nan Xu, and C. G. Christodoulou,
“Beamforming using Support Vector Machines,” IEEE
Antennas And Wireless Propagation Letters, Vol. 4, 2005, pp.
439-442.

[3] Mohamed S. Musbah and Xu Zhu, “Support Vector Machines
for DS-UWB Channel Equalisation,” Department of Electrical
Engineering & Electronics, University of Liverpool, UK, IEEE
2007, pp. 524-527.

[4] M. Julia Fernández-Getino García, José Luis Rojo-Álvarez,
“Support Vector Machines for Robust Channel Estimation in
OFDM,” IEEE Signal Processing Letters, Vol. 13, No. 7, July
2006, pp. 397-400.

[5] Fengyan Q, Changchun Bao and Yan Liu, “A Novel Two-Step
SVM Classifier for voiced/unvoiced/silence classification of
speech,” ISCSLP 2004, pp. 77-80.

[6] Qun Zhao and Jose C. Principe, “Support Vector Machines for
SAR Automatic Target Recognition,” IEEE Transactions On
Aerospace And Electronic Systems, Vol. 37, No. 2 April
2001,pp.643-654.

[7] U.Meyer-Baese, Digital Signal Processing with Field
Programmable Gate Arrays, Second Edition,Springer-Verlag
Berlin Heidelberg,2004.

[8] Omar Pina-Ramirez, Raquel Valdes-Cristerna and Oscar
Yanez-Suarez , “An FPGA Implementation of Linear Kernel
Support Vector Machines,” IEEE International Conference on
Reconfigurable Computing and FPGA's, ReConFig 2006, Sept
2006,pp.1-6.

[9] F. Khan, M. Arnold, and W. Pottenger. “Hardware-based
support vector machine classification in logarithmic number
systems.” IEEE Euromicro Symp. Digital System Design
(DSD), September 2004, pp. 254–261.

[10] Nello Cristianini and John Shawe-Taylor, An introduction to
Support Vector Machines and other kernel-based learning
methods, Cambridge University Press, 2000.

[11] Corrina Cortes and V Vapnik, “Support Vector Networks,” J.
of Machine Learning, 1995.

[12] Edwin K.P.Chong and Stanislaw H. Zak, An introduction to
Optimization, Wiley Interscience Publications, 2004.

[13] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of
Speech Recognition, Prentice Hall Signal Processing Series,
1993.

[14] Wai C. Chu, Speech Coding Algorithms, Wiley Interscience,
2003.

[15] Daniel Jurafsky and James H. Martin, Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, Prentice-
Hall New Jersey, 2008.

[16] Martin T Hagan, Howard B. Demuth and Mark Beale, Neural
Network Design, PWS Publishing Company, 1996.

[17] Zezhen Huang and Anthony Kuh, “A Combined Self-
Organizing Feature Map and Multilayer Perceptron for Isolated
Word Recognition,” IEEE Transactions on Signal Processing,
Vol.40, No. 11, Nov 1992.

[18] http://www.ldc.upenn.edu/Catalog/readme_files/ti46.readme.ht
ml

[19] MATLAB User’s Guide. The Mathworks, Inc.
http://www.mathworks.com/

[20] altfp_add_sub Megafunction User Guide, UG-041305-3.1,
Altera Corporation, July 2007.

[21] Using NiosII Floating-Point Custom Instructions, TU-
N2FLTNGPNT-1.0, Altera Corporation, May 2006.

352

A “Stitch” in Time: Accurate Timekeeping with On-Chip Compensation

Prashant Bhargava, Mohit Arora
Freescale Semiconductor

prashantb@freescale.com, mohit.arora@freescale.com

Abstract

Applications like Energy Meters that rely on real time
data require accurate time under all environmental
conditions. Typically, these applications rely on Real
Time Clock (RTC) for all real time operations but there
are many factors like crystal aging, incorrect loading
and temperature variations that tend to change the
frequency of the clock used for RTC resulting in
inaccurate time. Hence there is an unavoidable need to
have compensation technique inside the RTC to counter
balance this error in clock frequency of crystal. This
paper describes a digital hardware compensation
technique which compensates by adding or removing
pulses in a particular timing window thus maintaining
accurate clock. Technique described in this paper uses
simple hardware to ensure low power consumption thus
maintaining longer battery life. This enables
applications to use cheaper crystal that may be
inaccurate and compensate for the inaccuracies within
the hardware thus reducing board cost.

1. Factors affecting clock accuracy

Accuracy is a measure of frequency error, which is
the magnitude of the difference between the actual
frequency and the expected frequency. Accuracy is
usually expressed in terms of fractional frequency
offset and is computed as the frequency error divided
by the expected frequency. Some of the factors that
affect the accuracy of a clock are as follows.

a) Crystal characteristics
The accuracy of a crystal used on board may vary
among different manufactures. Vendors often prefer to
choose crystals that are cheaper and these typically
have a bad tolerance over temperature variation. High
precision crystals with an accuracy of better than 10
PPM at room temperature can be expensive.

b) Inaccurate loading of the crystal
Crystals are usually specified by their series or parallel
resonant frequencies, or both. An oscillator will nearly

always operate near its series resonance, the parallel
resonance being more of a convenience of
measurement. The terms “series” and “parallel”
resonant operation are often used but simply refer to
low or high loading impedance across the crystal’s
terminals respectively. The “loading” impedance can
be measured by removing the crystal and “look into”
the circuit at the operating frequency.

So crystal frequency may depend on loading
applied to them. Even a presence of high EMI in a
poorly loaded crystal might make it unstable.

c) Handling of the crystal
Thermal shock during soldering can alter a crystal’s
frequency.

d) Variation in temperature
Several environmental factors like pressure, humidity
and vibration can influence RTC accuracy but it is
mainly the inferior characteristics of a quartz crystal
over temperature which results in deviations if
temperature is changing. This is the most critical
factor affecting clock accuracy. Change in
environment temperature affects the crystal and thus
the clock accuracy.

e) Aging characteristics
Crystal aging applies to the cumulative change in
frequency over time, which results in a permanent
change in the operating frequency of the crystal unit.
Many interrelated factors are involved in aging; some
of the most common being: internal contamination,
excessive drive level, surface change of the crystal,
various thermal effects, wire fatigue and frictional
wear. Proper circuit design incorporating low
operating ambients, minimum drive level and static
pre-aging will greatly reduce most of the aging
problems.

Typically, accuracy may deteriorate by 5 PPM per
year (or approx. 2.6 minutes in a year) for a typical
32 kHz crystal.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.70

353

2. Need for compensation

Many appliances, such as water and electricity
meters, operate over a wide range of temperature. The
real-time clock (RTC) is a key component for these
applications relying on data in real time. An RTC, for
example, is the key to determining how much energy is
consumed per house through an electricity meter
application. Since clock accuracy may vary based on
temperature variation, an inaccurate time may result in
an inaccurate billing.

Many software applications that gather data in real
time rely heavily on the RTC’s accuracy for complex
data analysis. Clearly, the RTC and its accuracy are
vital components for applications relying on real-time
values. So these kinds of applications require precise
real time clocks that can adjust their time based on
variation in temperature or environmental changes.
Generally these data critical application that affect the
billing require accuracy of better than 5 PPM (Parts per
Million).

Vendors often use cheaper crystals on boards that
are cheap but may not have accuracy better than 100
PPM. It is desirable to provide a means of
compensation built into the RTC to compensate for the
inaccuracies due to the factors mentioned in previous
section.

The next few sections describe some of the
techniques that can be applied in an RTC to compensate
for the clock frequency change with temperature.

3. Compensation basics

Figure 1 shows a frequency variation vs. temperature
curve for a typical 32 kHz crystal.

Figure 1: Variation in frequency with temperature

Characteristic of the Curve:-
• Peak drift of more than 110 PPM occurs at the

temperature extremes of –40 °C and +85 °C.
• The crystal frequency peaks close to 25 °C
• Frequency falls in a parabolic manner above and

below 25 °C
• Results may slightly vary from vendor to vendor

Looking into various datasheets of crystals from
same vendor, it is apparent that aging characteristics
are same for low and high precision versions of the
crystal.

With an on-chip temperature sensor that reads the
temperature in real time from the chip, the
temperature drift can be calculated and relative
number of pulses can be added or removed in a
timing window.

Now since the variation in frequency with
temperature is not a linear equation (second order
equation) it is complex to calculate the number of
pulses to be added or removed in hardware.

Solving the parabolic equation would mean to
implement DSP functionality for accurately
calculating number of corresponding pulses for a
temperature drift. This costs both in area of chip as
well as in power thereby reducing the battery life
which is very critical. Often Energy Meters require a
battery life of 15-20 years and to achieve that ultra
low power consumption it is more efficient to do
calibration in Software and corresponding
compensation in Hardware. This would mean CPU
would monitor the temperature sensor (over a period
of time say a second or few seconds) and calculate
the temperature drift. Software will calculate the
numbers of pulses to be removed or added over a
temperature drift with the help of a fixed lookup table
(LUT) maintained in its memory. CPU would write
back the number of pulses to be adjusted in the
RTC’s register. RTC hardware would compensate the
clock based on the register value. The next section
provides details on digital compensation technique.

4. Digital compensation technique

The oscillator clock is divided by RTC to generate
a 1 pps (pulse per second) which clocks the time and
date counters. As mentioned various factors tend to
change the frequency of the oscillator clock and
hence vary the 1 pps (or 1 Hz) clock.

To generate a 1 Hz clock, a counter is used to
count the number of edges of the oscillator clock,
which is equal to the frequency of the oscillator clock.
For example, if we would count 32000 edges for a 32
kHz clock; 32768 edges for a 32.768 kHz clock to

354

generate the 1 Hz clock. At room temperature (i.e.
25 °C), there is no variation in the oscillator clock and
time is accurate.

With the change in temperature the frequency of the
oscillator clock also changes. Since we are counting a
fixed number of oscillator clock edges, the total
duration now does not remain 1 second. Thus, time
cannot remain accurate. For example, if a change in
temperature causes the frequency of 32.768 kHz crystal
to change to 32.766 kHz then counting 32768 clock
edges would give us 0.999984 Hz clock (i.e.
32768/32766 = 1.000061 seconds), which means that
after 100000 seconds (or almost 1 day) the RTC would
be ahead in time by 6 seconds and this may not be
acceptable for any time critical application. Hence in
order to bring the seconds clock (or 1 Hz clock) to
correct value, the oscillator clock divider counter needs
to count less number of oscillator clocks (i.e. till 32766).
This in effect causes clock pulses to be subtracted from
the oscillator clock. In order to do this, we shift the
starting point of the divider counter to 2 (instead of 0)
and count up till 32767. This will have the effect of
dropping 2 oscillator clock cycles (i.e. count 32766
clocks) every second and give the correct 1 Hz clock
output. This final 1 Hz output is called the Balanced or
Compensated 1 Hz clock. There is no change to the
oscillator clock frequency. This is shown in figure
below.

Figure 2: Error in clock and compensation

For all practical cases the change in frequency (Δf)

might never be an integer value or is very small in
value and hence it is important that we accumulate the
delta in frequency over several seconds till it becomes
close to an integer value with enough significant digits.
Thus, this accumulated value is called the Correction or
Compensation Value and the time over which it is

accumulated is called the Compensation Interval.
These two values are determined by the CPU and
programmed into the RTC for it to digitally
compensate the 1 Hz clock. The Correction Value is
expressed as the 2’s complement of the number of
oscillator clock pulses to be added or removed from
the divider counter to get an accurate 1 Hz clock.

Based on the above, the digital compensation
hardware comprises the following main components:
a) 32 kHz Divider Counter – running on the 32 kHz

oscillator clock. Counter timeout generates the 1
Hz clock tick. The load value of this counter can
be shifted to add or remove oscillator clock
cycles for performing compensation. When
compensation is disabled or the load value is
zero, the counter simply rolls over to zero after
timeout.

b) Compensation Interval Counter – running on 1
Hz clock and counts the period for compensation.
This counter keeps track of the compensation
cycle and its timeout indicates the end of a
compensation cycle to the state machine. When
compensation is disabled, this counter does not
run.

c) Compensation Control State Machine – that
supervises the entire compensation operation.
The state machine ensures that:
i) Compensation always starts near the

second’s boundary and not in between a
second so as to prevent erroneous toggling
in RTC counters and correction is
transparent. This is the condition (load
enable for RTC Divider counter and reset
for Compensation Interval counter) when
the counters are loaded with new values.

ii) New compensation cycles start with new
compensation values if changed.

The working of the compensation state machine is
explained in the following flow chart.

Figure 3: Compensation state machine

Steps:-

1) Remain in Idle state till compensation is not
enabled. At this point, no compensation is

355

done and inaccuracies will remain in the 1 Hz
clock. CPU can program the compensation
registers at any point in time.

2) Enabling of compensation is checked at the
second’s boundary.

3) If enabled, compensation is done for the entire
compensation interval.

4) At the end of compensation interval, the state
machine checks for new programmed values and
if compensation is still enabled, next
compensation cycle starts with these newly
programmed compensation values.

5) If compensation is disabled, the state machine
keeps checking for the status of compensation
registers at every second’s boundary.

The block diagram of the above described digital
compensation hardware is shown in Figure 4.

C
om

pe
ns

at
io

n
E

na
bl

e

Figure 4: Digital compensation hardware

Using a single counter to generate compensated 1 Hz
clock eliminates the need for any big dividers to add or
delete pulses from the oscillator clock. This makes the
above technique to consume low power.

5. Compensation accuracy

As mentioned in previous section, two values are
important for Compensation (i.e. Correction Value and
Compensation Interval). These also determine the
accuracy of the compensation done. Accuracy of a
compensation circuit is defined as the amount of error
in clock frequency that can be corrected by it.
Compensation value is the error to be removed that is
accumulated over the Compensation interval. For
example, if a circuit is able to correct 2.6 minutes over
a period of one year then its accuracy is said to be 5
PPM. Thus, the accuracy of the above explained digital
compensation circuit will be defined as the number of

seconds lost or gained in a day or year to increase
number of significant digits.

Mathematically speaking,

61
)_32768(

_
e

IntervalonCompensati

ValueCorrection
PPM ×

×
=

Note:- In the above equation, the correction value
(given in terms of oscillator clocks) has been divided
by 32768 (Oscillator clock frequency at room
temperature) to get the equivalent value in seconds.

Now, the accuracy of the circuit depends on how
many cycles can be added or removed in the least
compensation interval or the least number of cycles
(which is of course 1) that can be added or removed
in the largest compensation interval. These will
determine the range of correction for the circuit. This
in-turn depends on the width of the Correction (or
Compensation) Value & Compensation Interval.

For example, a 5-bit Correction Value and 5-bit
Compensation Interval can correct errors as low as 1
cycle per 32 seconds of compensation interval to as
high as –16 cycles per 1 second of compensation
interval. Thus, as per the above formula, the accuracy
for this configuration is 0.954 PPM to 488.28 PPM.
Thus, with just a 5-bit value we are able to achieve a
big range of compensation. The user has the option of
using a highly accurate crystal or a very low cost
crystal which has more vulnerability towards
frequency variation.

Table 1 shows the accuracy range of the above
compensation circuit as we increase the width of the
Correction Value and Compensation Interval values.
It is assumed that widths of both values are equal and
changed by the same amount.

Table 1: Accuracy of digital compensation circuit

Width Correction
Value

Compensation
Interval PPM

5 -16 to 15 1 to 31 0.954 to
488.28

6 -32 to 30 1 to 63 0.477 to
976.56

7 -64 to 63 1 to 127 0.238 to
1953.13

In the above table, the least correction value of 1

and max value have been used for PPM calculation
and a correction value of 0 indicates the
compensation is disabled.

356

Thus, increasing the width of Correction Value and
Compensation Interval increases the accuracy (and
range of compensation) but the current consumption
will also go up. In applications, where current
consumption is critical for longer battery life, a trade-
off between accuracy and power consumption would
have to be done.

6. Temperature compensated RTC

application

As mentioned earlier, metering applications require
Temperature Compensated RTC’s for accurate time
keeping and hence accurate billing. All calculations in
metering applications are based on time for which the
RTC must in all conditions be very accurate.

The heart of the energy meter comprises of a
microcontroller having an embedded temperature
compensated RTC with on-chip temperature sensor
connected via an ADC to the CPU Core. The internal
RTC runs on the 32 kHz clock supplied by the
oscillator connected to a 32 kHz crystal. All energy
measurement hardware is on chip and the CPU software
computes the energy consumed per hour using the time
from RTC. Figure 5 shows the block diagram of an
energy meter microcontroller with a temperature
compensated RTC inside it.

Figure 5: Temperature compensated RTC in an energy

meter application

The energy meter as a whole system must perform
both clock frequency error detection and correction in
order to keep the real time clock accurate. The
mechanism to achieve this is explained in the steps
below.

DETECTION PHASE:
1) The detection phase of the clock compensation

technique is done by using an on-chip or on-board

temperature sensor connected to an ADC inside
the microcontroller chip.

2) This microcontroller wakes up periodically and
measures the temperate indicated by the
temperature sensor via the ADC.

3) Based on this reading of temperature, the
software running in the CPU Core of the
microcontroller can calculate the necessary
compensation required to keep RTC accurate.
This calculation can be implemented in software
using Lookup Tables (LUTs) stored in the
CPU’s memory. These LUTs are pre-
programmed during the calibration of the energy
meter and are based on the type of crystal being
used and operating temperature.

4) The correction value and compensation intervals
are then programmed into the RTC registers.

CORRECTION PHASE:
1) RTC latches these compensation values and does

not pick new until the current compensation
cycle is complete.

2) RTC starts to compensate with these values
using the technique described above.

3) RTC continues the compensation operation until
programmed with new compensation values or
compensation is disabled.

4) If no value is programmed into the compensation
register, the RTC shall continue to compensate
with the existing values.

7. Conclusion

The compensation technique presented in this
paper provides a solution that not only consumes less
power but also provides a wide range of accuracy,
even with small widths of Compensation Value and
Compensation Interval values. This provides the user
with the option of using cheaper crystals in their
applications thereby lowering their product cost.
Separating out the error detection phase into software
allows the use of a common correction value
irrespective of the type of factor affecting the
frequency of the crystal.

For time critical applications that rely on real time
data and require an accuracy of 5 PPM or better,
Compensation for these applications is a must. These
applications would need to compensate for factors
that alter the 32 kHz clock frequency. There are
several ways in which compensation can be done and
the method presented in this paper targets the
compensation technique that can be reusable across

357

technologies and simultaneously consume as less power
as possible.

8. References

[1] Application Note AN3566 – Maxim Integrated Products

(http://www.maxim-ic.com/an3566)

[2] Application Note AN10652 – NXP Semiconductors

(www.nxp.com)

[3] Application Note AN1342.0 – Intersil Corp.

(www.intersil.com)

[4] Application Note AN3938 – Maxim Integrated Products

(http://www.maxim-ic.com/an3938)

358

Session 6A

Analog and Mixed Signal II

Systematic Methodology for High-Level
Performance Modeling of Analog Systems

Soumya Pandit
Meghnad Saha Institute of Technology

Kolkata, India

Chittaranjan Mandal
Indian Institute of Technology

Kharagpur, India

Amit Patra
Indian Institute of Technology

Kharagpur, India

Abstract—This paper presents a systematic methodology for
construction of high-level performance models using least squares
support vector machine. The transistor sizes of the circuit-
level implementation of a component block along with a set of
geometry constraints applied over them define the sample space.
Optimal values of the model hyper parameters are computed
using genetic algorithm. The novelty of the methodology is that
the models constructed with this methodology are accurate, fast
to evaluate with good generalization ability and low construction
time. The present methodology has been compared with two
other standard methodologies and the novelties are clearly
demonstrated with experimental results.

I. INTRODUCTION
An important step of an analog design automation process

is analog high-level design. This is defined as the trans-
lation of analog system-level specifications into a proper
topology of component blocks, in which the specifications
of all the component blocks are completely determined so
that the overall system meets its desired specifications [1].
There are two broad types of design methodologies available
in literature [2] to address the problem of analog high-
level design: optimization-based methodology and library-
based methodology. An optimization-based analog high-level
design methodology has two primary components: a search
algorithm and a high-level performance estimator. A high-level
performance estimation model is a function that estimates the
performance of an analog component block when some high-
level design parameters of the block are given as inputs [3].
Analog performance models constructed with regression

technique are generally fast to evaluate and the accuracy with
respect to real circuit-level simulation results is also good.
This technique is therefore, often used for construction of
performance models [4], [5], [6]. There are two types of
regression-based technique – parametric regression technique
and non-parametric regression technique. In parametric regres-
sion technique, a parameterised model is first proposed by the
model developer and the values of the parameters are then
fitted by some least-square error optimisation so that the model
response matches closely the response of the real circuit.
In non-parametric regression technique, a training network
(e.g., support vector machine, artificial neural network) is
used that is being trained with SPICE simulation results of
the real circuit until the response of the network matches
closely enough the response of the real circuit. An important
advantage of a non-parametric regression technique over a

parametric technique is that it does not require any model
template. However, a major limitation of the non-parametric
technique is that, the generalization ability of the constructed
models is often not good. In addition, the model construction
time is generally high which increases the design overhead.
In this work, we have developed a methodology for genera-

tion of high-level performance models for analog system using
least squares support vector machine (LS-SVM) technique.
The novelty of the methodology is that the constructed models
are accurate, fast to evaluate with good generalization ability
and low construction time. This methodology can be used
in conjunction with an optimization procedure to develop a
procedure for high-level topology sizing/optimization.
The rest of the paper is arranged as follows. Section II

reviews some related works. Section III presents the necessary
preliminary concepts. The methodology is described in detail
in Section IV. Experimental results are provided in Section V
and finally conclusion is drawn in Section VI.

II. RELATED WORK

A fairly complete survey of related works is given in
[7]. An analog performance estimation (APE) tool for high-
level synthesis of analog integrated circuits is described in
[8]. It takes the design parameters of an analog circuit as
inputs and determines its performance parameters (e.g., power
consumption, thermal noise) along with anticipated sizes of
all the circuit elements. A power estimation model for ADC
using empirical formulae is described in [3]. The estimators
are fast to evaluate. However, the accuracy with respect to real
simulation results under all conditions is off by orders of mag-
nitude. The technique for generation of posynomial equation-
based performance estimation models for analog circuits like
opamps, multistage amplifiers, switch capacitor filters, etc., is
described in [9]. An automatic procedure for generation of
posynomial models using fitting technique is described in [4].
A neural network based tool for automated power and area
estimation is described in [6]. Circuit simulation results are
used to train a neural network model, which is subsequently
used as an estimator. Fairly recently, support vector machine
(SVM) has been used for modeling of performance parameters
for RF and analog circuits [10], [5].

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.26

361

III. PRELIMINARIES
A. High-Level Performance Model
Let us consider an analog system defined by a set of specifi-

cation parameters X̄ (e.g., gain, bandwidth of the system) and
performance parameters ρ̄ (e.g., input referred noise, power
consumption). These two parameters are related as

ρ̄ = P̄(X̄) (1)

where P̄ is referred to as the set of high-level performance
models of the system. Note that, a high-level performance
model is different from circuit-level performance model in
the sense that for high-level model, the input parameters are
specification parameters of the component-blocks, whereas for
circuit-level performance models, the input parameters are
transistor sizes and/or biasing.
The important requirements for a good high-level perfor-

mance model are: (i) The model needs to be low dimensional.
Only those specification parameters are to be considered as
inputs which have dominant contributions on a performance
parameter to be estimated. (ii) The predicted results need to
be accurate. The model accuracy is measured as the deviation
of the model predicted value from the true function value.
The function value in this case is the performance parameter
obtained from transistor level simulation. (iii) The evaluation
time must be short. This is measured by the CPU time required
to evaluate a model. (iv) The time required to construct an
accurate model must be small, so that the design overhead
does not become high. This is relatively harder to quantify.
This process involves both applying design knowledge to setup
testbench circuit and design variable selection and computa-
tional time needed to use an algorithm to train a model. As a
rough estimate, the construction cost is measured as

Tconstruction = Tdata generation + Ttraining (2)

where the terms are self explanatory. There exists a trade-
off between these requirements since a model with lower
prediction error generally takes more time for construction
and evaluation.

B. Least Squares Support Vector Regression
In recent years, the support vector machine (SVM), as a

powerful new tool for data classification and function esti-
mation, has been developed [11]. Suykens and Vandewalle
[12] proposed a modified version of SVM called least squares
SVM. In this subsection, we briefly outline the theory behind
the LS-SVM as function regressor.
Consider a given set of training samples

{xk, yk}k=1,2,...,Ntr where xk is the input value and yk

is the corresponding target value for the k th sample. With a
SVR, the relationship between the input vector and the target
vector is given as

ˆ̄y(x) = wT φ(x) + b (3)

where φ is the mapping of the vector x̄ to some (probably
high-dimensional) feature space, b is the bias and w is the

weight vector of the same dimension as the feature space. The
mapping φ(x̄) is generally non-linear which makes it possible
to approximate non-linear functions. The approximation error
for the kth sample is defined as

ek = yk − ŷk(xk) (4)

The minimization of the error together with the regression is
given as

min J (w, e) =
1
2
wT w + γ

1
2

Ntr∑
k=1

e2
k (5)

with equality constraint

yk = wT φ(xk) + b + ek, k = 1, 2, ..., n (6)

where Ntr denotes the total number of training data sets and
the suffix k denotes the index of the training set, i.e., k th train-
ing data, γ is the regularization parameter. LS-SVM considers
the optimization problem to be a constrained optimization
problem and uses dual Lagrangian-based formulation

L = J (w, e) −
Ntr∑
k=1

αk

(
wT φ(X̄k) + b + ek − ρk

)
(7)

and applying ‘kernel trick’, we arrive at the final model [12]

ˆ̄y(x̄) =
Ntr∑
k=1

αkK(xk, x) + b (8)

where K(xk, x) is the kernel function. The elegance of using
the kernel function lies in the fact that one can deal with
feature spaces of arbitrary dimensionality without having to
compute the map φ(x̄) explicitly. The Gaussian kernel function
defined as

K(xk, x) = exp
(− ||xk − x| |2/σ2

)
(9)

is used in the present work, where σ2 denotes the kernel
bandwidth.

IV. HIGH-LEVEL PERFORMANCE MODEL GENERATION
In this section, we describe the various steps of the con-

struction methodology in detail.

A. Sample Space and Design of Experiments
While choosing the set of inputs, only those specifica-

tion parameters forming a set X̄ ′ ⊆ X̄ which have dom-
inant contributions to specific performance parameters ρ̄ =
{ρ1, ρ2, ..., ρn} are considered as inputs. This choice of in-
puts relies on the designer’s knowledge depending upon the
application system and the topology considered. The dominant
specification parameters are referred to as the high-level design
parameters. For ease of notation, the prime indicating the
reduction is omitted in the rest of this paper. Both the inputs
and the output of the performance model P are taken to be
functions of a set of geometry parameters ᾱ (transistor sizes)
of a component block, expressed as

X̄ = R(ᾱ) (10)
ρ̄ = Q(ᾱ) (11)

362

1

0gC2

0gC
gD

Fig. 1. 2D projection of a four dimensional sample space.

R and Q represents the mapping of the geometry parameters
to electrical parameters. The multidimensional space spanned
by the elements of the set ᾱ is defined as circuit-level design
space Dα.
A set of geometry constraints is applied on the transistor

sizes to enclose a region within Dα, from which samples
are extracted for training data generation. These geometry
constraints include equality constraints as well as inequality
constraints. The equality constraints, expressed as algebraic
equations directly correlate the transistor sizes. For example,
for matching purpose, the sizes of a differential pair transistors
are equal. The equality constraints eliminate elements of the
set ᾱ and therefore reduce the dimension of the circuit-level
design space Dα. The inequality constraints exclude additional
portion of the reduced design space Dα, (correct notation is
Dα′ , which we avoid for ease of notation) without further
reducing its dimension. The inequality constraints are usually
given as box constraints, i.e., in the form of lower bounds and
upper bounds. The lower bounds are determined by the feature
size of a technology. The upper bounds are selected such
that the transistors are not excessively large. With elementary
algebraic transformations, all the geometry constraints are
combined into a single non-linear vector inequality, which is
interpreted element wise as:

C̄g(ᾱ) ≥ 0 ⇔ ∀i∈{1...q}Cgi(ᾱ) ≥ 0 (12)

These constraints as functions of ᾱ define a space, which we
call as a sample space Dg, defined as

Dg = {ᾱ | C̄g(ᾱ) ≥ 0} (13)

Clearly Dg ⊂ Dα. A two dimensional projection of a four
dimensional sample space is illustrated in Fig. 1. Within
the sample space, the circuit performance behavior becomes
weakly non-linear [13]. Therefore, simple sampling strategies
are used to construct models with good generalization ability.
The transistor sizes for generating training data correspond-

ing to X̄ and ρ̄ are restricted to Dg(ᾱ). The data generation
process is generally an expensive process. Strategies from
design of experiments (DOE) provide a mathematical basis
to select a limited but optimal set of sample points from
the sample space for training data generation. In the present
work, these points are generated using a Halton sequence

1

2

2

1

X2

X1

Sample
space

Output
space

Input
space

Q

R

XP

Fig. 2. Non-linear relation between the sample space and the input, output
space.

Design of Experiments

SPICE Simulation

Data Generation

Feasibility Checking

Data Processing

Sample Space Dg (transistor sizes)

Fig. 3. An outline of the procedure for generation of training data.

generator. A Halton sequence generator is a quasi-random
number generator which generates a set of uniformly dis-
tributed random points in the sample space. This ensures a
uniform and unbiased representation of the sample space.

B. Training Data Generation
From (10) and (11), we see that the inputs (X̄) and output

(ρ̄) of a high-level performance model P are functions of
transistor-level parameters ᾱ. The inputs and the outputs
are electrical parameters, whereas ᾱ is a set of geometry
parameters. The functions (R,Q) for mapping the geometry
parameters to the electrical parameters are complex non-linear
functions, considering the deep submicron effects of MOS
transistors. In this work, these are achieved element-wise
through a circuit simulation process, which is accepted to be
the most accurate technique. The relationships are illustrated
in Fig. 2. R and Q are used for generating the training data
and P is the performance model to be constructed.
The training data generation process is outlined in Fig. 3.

363

For each input sample (transistor sizes) extracted from the
sample space Dg, the chosen circuit topology of a component
block is simulated using SPICE through Cadence Spectre tool.
The BSIM3v3 model is used for simulation, ensuring that
the important deep submicron effects are considered while
generating the training set. Depending upon the selected input-
output parameters of an estimation function, it is necessary to
construct a set of test benches that would provide sufficient
data to facilitate automatic extraction of these parameters via
postprocessing of SPICE output files. The commonly used
SPICE analysis are ac analysis, transient analysis, dc sweep
etc. The voltages and currents at the various nodes of the
circuit are also measured. A set of constraints, referred to as
feasibility constraints is then considered to ensure that only
feasible data are taken for training.
The generated input-output data are considered to be feasi-

ble, if either they themselves satisfy a set of constraints or the
mapping procedures (R,Q) through which they are generated
satisfy a set of constraints. The constraints are as follows [13]:
1) Functionality constraints Cf : These constraints are
applied on the measured node voltages and currents.
They ensure correct functionality of the circuit and are
expressed as

Cf = {fk(v, i) ≥ 0 k = 1, 2, ..., nf} (14)

For example, the transistors of a differential pair must
work in saturation.

2) Performance constraints Cp : These are applied directly
on the input-output parameters, depending upon an ap-
plication system. These are expressed as

Cp = {fk(ρ̄) ≥ 0 fk(X̄) ≥ 0 k = 1, 2, ..., np} (15)

For example, the phase margin of an opamp must be
greater than 450.

The total set of constraints for feasibility checking is thus
C = {Cf ∪ Cp}.
Data scaling is an essential step to improve the learn-

ing/training process of SVMs. The present methodology em-
ploys both linear scaling as well as logarithmic scaling de-
pending upon the parameters chosen.

C. LS-SVM Hyperparameter determination
To obtain good performances, some parameters in the SVM

models have to be chosen carefully. These parameters include:
(i) the regularization parameter γ, which determines the trade-
off between minimizing the training error and minimizing
the model complexity and (ii) parameter (σ 2) of the kernel
function that implicitly defines the non-linear mapping from
the input space to some high-dimensional feature space. These
higher level parameters are usually referred to as hyper param-
eters. In general, in any SVM problem, if the hyper parameters
of the model are not well selected, the predicted results will
not be good enough and the generalization ability will also
be poor. Tuning of these hyper parameters is usually done
by minimizing the estimated generalization error. The gener-
alization error is a function that measures the generalization

Initialization of
parameters

(chromosomes)

No

Yes

Stop ?

Calculate fitness of
each candidate

solution

Train LS-SVM

Obtain optimal parameters

Create offspring
(crossover, mutation)

Selection

Fig. 4. Outline of GA-based hyperparameter selection procedure

ability of the constructed models, i.e., the ability to predict cor-
rectly the performance of an unknown sample. In the present
methodology, hold-out technique is used for estimating the
generalization error. This is a simple technique for estimating
the generalization error. The data set is separated into two
sets, called the training set and the testing set. The SVM is
constructed using the training set only. Then it is tested using
the test data set. The test data are completely unknown to
the estimator. The errors it makes are accumulated to give the
mean test set error, which is used to evaluate the model.
The present methodology uses genetic algorithm (GA)-

based technique for determining optimal values of the model
hyperparameters. The task of selection of the hyper parameters
is same as an optima searching task, and each point in the
search space represents one feasible solution (specific hyper
parameters). An outline of the GA-based process is shown
in Fig. 4. The chromosomes consist of two parts, log2 γ and
log2 σ2. During the evolutionary process of GA, a model is
trained with the current hyper parameter values. The fitness of
the chromosomes depends on the average relative error (ARE)
calculated over the test samples. The fitness function is defined
as

fitness =
1

ARE(γ, σ2)
(16)

Thus, maximizing the fitness value corresponds to minimizing
the predicted error. The ARE function is defined as

ARE =
1

Nteρ′

Nte∑
1

(ρ′ − ρ) (17)

Here Nte, ρ and ρ′ are the number of test data, the SVM es-
timator output and the corresponding SPICE simulated value,

364

CLVin- Vin +

M8M9

M10

M11
M1 M2

M6
M3 M4

M7

M5

Fig. 5. PMOS OTA circuit

TABLE I
TRANSISTOR SIZES AND FEASIBILITY CONSTRAINTS FOR OTA

Parameters Ranges
W1 = W2 [280nm, 400μm]

Transistor Sizes W3 = W4 = W6 = W7 [1μm, 20μm]
Geometry W8 = W9 [280nm, 10μm]
Constraints W5 [1μm, 50μm]

CL [1pF, 10pF]

Parameters Range
Functional Vgs − Vth ≥ 0.1V
Constraints Vop ≈ 0.9V

Voff ≤ 2mV

Slew rate [0.1V/μs, 20V/μs]
Performance Bandwidth ≥ 2MHz
Constraints DC Gain ≥ 70 dB

Phase margin
[
450, 600

]

respectively. The fitness of each chromosome is taken to be
the average of five repetitions. This reduces the stochastic
variability of the model training process in GA-based LS-
SVM.

D. Quality Measures
Statistical functions are generally used to assess the quality

of the generated estimator. The ARE function defined in (17)
is one such measure. Another commonly used measure is the
correlation coefficient. This is defined as follows:

R =
Nte

∑
ρρ′ −∑

ρ
∑

ρ′√[
Nte

∑
ρ2 − (

∑
ρ)2

] [
Nte

∑
ρ′2 − (

∑
ρ′)2

] (18)

The correlation coefficient is a measure of how closely the LS-
SVM outputs fit with the target values. It is a number between
0 and 1. The higher the correlation coefficient, the better it is.

V. EXPERIMENTAL RESULTS
In this section, we provide experimental results demonstrat-

ing the methodology described above. The entire methodology
has been implemented in Matlab environment and the training
of the LS-SVM has been done using Matlab toolbox [14].

A. Experiment 1
A two stage CMOS operational transconductance amplifier

(OTA) is shown in Fig. 5. The technology is 0.18μm CMOS
process, with a supply voltage of 1.8V . The transistor level
parameters along with the various feasibility constraints are

TABLE II
HYPER PARAMETER VALUES AND QUALITY MEASURES

Model σ2 γ ARE(%) R Ttr

Training Test Training Test (min)
ρ1 2.38 250.13 1.82 2.48 0.999 0.998 12.06
ρ2 5.62 480.19 2.12 3.82 0.994 0.961 10.83
ρ3 5.19 140.15 1.98 2.90 0.999 0.998 11.56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Original Value
P

re
di

ct
ed

 V
al

ue

Test data
Correlation Coeff = 0.998

Fig. 6. Scatter plot of estimated and original values for the noise model with
normalized test data.

listed in Table I. We consider the problem of modeling input
referred thermal noise (ρ1), power consumption (ρ2) and out-
put impedance (ρ3) as functions of DC gain (X1), bandwidth
(X2) and slew rate (X3). From the sample space defined by
the transistor sizes, a set of 5000 samples is generated using
a Halton sequence generator. These are simulated through ac
analysis, operating point analysis, noise analysis and transient
analysis using SPICE program. Out of all samples, only 1027
samples are found to satisfy the functional and performance
constraints listed in Table I.
The estimation functions are generated using LS-SVM

technique. The generalization errors are estimated through the
hold-out method. The hyper parameters are computed through
the GA-based technique. The population size is taken to be
ten times the number of optimization variables. The crossover
probability and the mutation probability are taken as 0.8 and
0.05 respectively. These are determined through a trial and
error process. The hyper parameter values and the quality
measures of the constructed models are reported in Table II.
We find that the constructed models are quite accurate with
average relative generalization ability error less than 4%.
The scatter plot of SPICE-simulated and LS-SVM estimated

values for normalized test data of the noise model is shown in
Fig. 6. The scatter plot illustrates the correlation between the
SPICE simulated and the LS-SVM estimated test data. The
correlation coefficient is very close to unity. Perfect accuracy
would result in the data points forming a straight line along
the diagonal axis.

365

TABLE III
COMPARISON BETWEEN OUR METHOD AND [5]

Model Method ARE(%) R
Training Test Training Test

ρ1 Our 1.82 2.48 0.999 0.998
[5] 2.86 6.48 0.999 0.875

ρ2 Our 2.12 3.82 0.994 0.961
[5] 3.32 7.18 0.980 0.800

ρ3 Our 1.98 2.90 0.999 0.998
[5] 2.02 5.14 0.999 0.937

B. Experiment 2
In this experiment, we provide a comparison between our

methodology of developing a performance model and that
presented in [5]. The model hyper parameters are determined
in [5] through heuristic technique. The same performance
models are used for comparison purpose. The comparison
results with respect to average relative generalization error
(ARE), correlation coefficient (R) are reported in Table III.
We observe from the comparison results that the generalization
ability of the model constructed with our methodology is better
than that constructed through [5] technique. This is because
of the optimal choice of LS-SVM hyper parameters in our
methodology through an optimization process.

C. Experiment 3
Here we present a comparison between our methodology

and the EsteMate technique [6]. The power consumption
model is reconstructed using the EsteMate technique. A set
of 5000 samples is considered. For each selected sample, an
optimal sizing is performed with a simulated annealing-based
optimization procedure and standard analytical equations. The
performances of each configuration is measured within the
optimization process and are checked for feasibility. Out of
all samples, only 3205 samples are accepted and the rest are
rejected. The determination of the training set took 10 hours
of CPU time. The training is done through an artificial neural
network structure with two hidden layers. The comparative
results are shown in Table IV. The generalization ability of our
methodology is better than that of [6]. This is becuase of the
use of SVM in our methodology. The generalization ability
of SVM is found to be better than that of neural network
[12]. In EsteMate, for each sample, a complete circuit sizing
task using a global optimization algorithm is required for
generation of the training data. This is usually prohibitively
time consuming. On the other hand in our method, simple
circuit simulations using the sampled transistor sizes are
required for data generation. Feasibility checking are done
afterwards Therefore, the cost of training data generation in
our method is much less compared to that in the EsteMate
methodology. This is evident from the experimental results
also.

VI. CONCLUSION

This paper presents a systematic methodology for genera-
tion of analog high-level performance model using LS-SVM.

TABLE IV
COMPARISON BETWEEN OUR METHODOLOGY AND ESTEMATE [6]

Method # Samples ARE(%) Generation
time

Training
time

Training Test Training Test
Our 821 206 2.12 3.82 14 min 10.83 min
[6] 2564 641 2.88 6.53 10 hour 21 min

The transistor sizes along with a set of feasibility constraints
applied over them define the sample space. The SVM hyper
parameters are determined through GA-based optimization
technique. The quality of the constructed models is estimated
by comparing the predicted performances with actual circuit-
level simulation results. The novelty of present methodology
is that the models constructed with this methodology are
accurate, fast to evaluate with good generalization ability and
low construction time. The methodology has been compared
with other standard methodologies and the advantages of
our methodology have been demonstrated with experimental
results. The current methodology can be used in conjunction
with an optimization procedure to develop a procedure for
high-level topology sizing/optimization.

REFERENCES
[1] Georges.G.E. Gielen. Modeling and Analysis Techniques for System-

Level Architectural Design of Telecom Front-Ends. IEEE Trans. MTT,
Vol.50:pp.360–368, January 2002.

[2] S.Donnay et.al. High-level synthesis of analog sensor interface front-
end. In Proc. of ED&TC, pages 56–60, 1997.

[3] E. Lauwers and Georges Gielen. Power Estimation Methods for Analog
Circuits for Architectural Exploration of Integrated Systems. IEEE
Trans. VLSI Systems, Vol.10:pp.155–162, April 2002.

[4] W. Daems, G. Gielen, and W. Sansen. Simulation-Based Generation of
Posynomial Performance Models for the Sizing of Analog Integrated
Circuits. IEEE Trans. CADICS, Vol.22:pp.517–534, May 2003.

[5] T. Kiely and G. Gielen. Performance Modeling of Analog Integrated
Circuits using Least-Squares Support Vector Machines. In Proc. of
DATE, pages 448–453, Feb 2004.

[6] G.V. Plas, J. Vandenbussche, G. Gielen, and W. Sansen. EsteMate: A
Tool for Automated Power and Area Estimation in Analog Top-down
Design and Synthesis. In Proc. of CICC, pages 139–142, May 1997.

[7] Rob.A. Rutenbar, Georges.G.E. Gielen, and J.Roychowdhury. Hierar-
chical Modeling, Optimization, and Synthesis for System-Level Analog
and RF Designs. Proceedings of the IEEE, Vol.95:pp.640–669, March
2007.

[8] A. Doboli, N. Dhanwada, A. Nunez-Aldana, and R. Vemuri. A Two-
Layer Library-Based Approach to Synthesis of Analog Systems from
VHDL-AMS Specifications. ACM Trans. DAOES, Vol.9:pp.238–271,
April 2004.

[9] P. Mandal and V. Visvanathan. CMOS Op-amp Sizing Using a Geomet-
ric Programming Formulation. IEEE Trans. CADICS, Vol.20:pp.22–38,
January 2001.

[10] X. Ren and T. Kazmierski. Performance Modeling and Optimization
of RF Circuits using Support Vector Machines. In Proc. of MIXDES,
pages 317–321, 2007.

[11] V Vapnik. Statistical Learning Theory. Springer, New York, 1998.
[12] J.A.K Suykens, T.V Gestel, J.D Brabanter, B.D Moor, and V. Joos Van-

dewalle. Least Squares Support Vector Machines. World Scientific,
2002.

[13] H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich. The Sizing Rules
Method for Analog Integrated Circuit Design. In IEEE/ACM ICCAD,
pages 343–349, 2001.

[14] LS-SVM Toolbox. http://www.esat.kuleuven.ac.be/sista/lssvmlab,
February 2003.

366

A Comparison of Approaches to Carrier Generation

for Zigbee Transceivers
Leburu Manojkumar, Arun Mohan, & Nagendra Krishnapura

Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai 600 036, India

Abstract—Two methods for generating in phase and
quadrature local oscillator signals at 2.4GHz for Zigbee
transceivers are investigated. In one method, the output of a
4.8GHz LC VCO is divided by two to obtain I and Q phases at
2.4GHz. In another method, outputs of a four stage differential
ring VCO at 1.2GHz are appropriately multiplied to obtain I and
Q phases at 2.4GHz. These circuits are designed and laid out in
a 0.18µm CMOS process and they operate from a 1.8V power
supply. The former architecture occupies 0.052mm2, consumes
7.56mW, and has a phase noise of -117 dBc/Hz at 3.5MHz. The
latter occupies 0.021mm2, consumes 9mW, and has a phase noise
of -97 dBc/Hz at 3.5MHz. Temperature variations of the ring
oscillator are minimized using a combination of constant current
and constant gm biasing.

I. INTRODUCTION

PA

LNA

Baseband
TX

Baseband

RX bits

bits

fref Frequency

Synthesizer

in

out

I

Q 2.405 to 2.48GHz

Fig. 1. Zigbee transceiver block diagram

Zigbee (IEEE 802.15.4) standard[1] is intended for low

data rate sensor network applications. It specifies 16 channels

in the 2.4GHz band. Fig. 1 shows the block diagram of a

possible Zigbee transceiver architecture. The receiver consists

of a low noise amplifier followed by downconversion mixers

and the baseband circuitry (channel selection filtering and dig-

itization). The transmitter consists of baseband circuitry that

does pulse shaping and digital to analog conversion followed

by upconversion and power amplification. Both the receiver

and the transmitter require a local carrier for frequency con-

version. The local carrier will be at the signal frequency in

a direct conversion architecture or offset by the intermediate

frequency (IF) in a heterodyne architecture. In either case,

a frequency synthesizer with in-phase (I) and quadrature (Q)
outputs is required. Conventionally, LC oscillators are used in

on chip radios due to constraints on phase noise and power

dissipation. In this paper, we will investigate the possibility

of using a ring oscillator based carrier generator for Zigbee

transceivers.

The paper is organized as follows. In section II, we

outline the requirements of the local oscillator in a Zigbee

transceiver. In section III, we discuss two possible architec-

tures for quadrature carrier generation. Sections IV and V

show the design details of these architectures. The design of a

frequency synthesizer around these I/Q generators is shown
in section VI. In section VII, we compare the two architectures

in terms of their performance and chip area.

II. LOCAL OSCILLATOR REQUIREMENTS

IEEE 802.15.4 standard specifies 16 channels in the

2.405-2.48GHz band with a spacing of 5MHz. The frequency

synthesizer (Fig. 1) is required to generate these frequencies

offset by the IF . In our case, we have assumed a direct

conversion architecture[2] and the frequency synthesizer is

designed to generate the channel center frequencies.

To meet the standards, the frequency synthesizer has

to have the following requirements: ≤ −92 dBc/Hz phase

noise at 3.5MHz offset and ≤ 200 µs settling time to 40 ppm
accuracy. Additionally, it should be able to drive the mixers

in the transmitter or the receiver (only one would be operating

at any given time). At 3.5MHz offset, the phase noise of the

synthesizer is solely due to the phase noise of the voltage

controlled oscillator (VCO). Therefore the VCO must meet this

specification. The settling time requirement imposes a lower

limit on the bandwidth of the phase locked loop (PLL) used

for the frequency synthesizer. The oscillator must drive the

mixers and the programmable divider used in the feedback

path of the phase locked loop frequency synthesizer.

One of the concerns with a direct conversion archi-

tecture is that the transmitted signal can be coupled to the

receiver input, and be fed back to the frequency synthesizer

through the LNA and mixers, due to finite isolation between

different ports of each block (even if the receiver is off). If

the oscillator in the frequency synthesizer is at the carrier

frequency (2.4GHz in this case), it will be very sensitive

to the modulated transmit signal leaking back into it at the

same frequency. This can deteriorate the phase noise of the

oscillator significantly. Therefore we have considered only

those architectures in which the oscillator is not operating in

the transmitted signal band.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.50

367

III. ARCHITECTURES FOR I/Q CARRIER GENERATION

Oscillator

at 2f0

D Q

CK

D Q

CK

Master slave flip-flop

divide by two counter

Iout

Qout

q
u

a
d

ra
tu

re
c
a

rr
ie

rs
 a

t
f 0

Fig. 2. IQ generation by dividing a double frequency waveform

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

0o

-45o

-90o

-135o

Iout

Qout
ring oscillator at f0/2

q
u

a
d
ra

tu
re

c
a
rr

ie
rs

 a
t
f 0

Fig. 3. IQ generation by doubling half frequency waveforms

One of the methods for generating quadrature wave-

forms is shown in Fig. 2. In this case, an oscillator at twice

the desired frequency is used to drive a divide by two counter

using a master-slave flip flop. The outputs of the master and the

slave latches are separated by half the input period (assuming

an input duty cycle of 50%), or equivalently, a quarter of the

output period. These can be used as quadrature carriers in the

transceiver.

An alternative method for generating quadrature wave-

forms is shown in Fig. 3. This is based on a four stage

differential ring oscillator at half the desired frequency. The

waveforms in such an oscillator are 45◦ apart. Multiplying

alternate stage outputs which are separated by 90◦ results

in frequency doubling. From the four waveforms, two such

double frequency waveforms can be obtained and they will be

90◦ apart at the doubled frequency.

When the two schemes are compared, we can observe

the following:

• The oscillator in Fig. 2 is at four times the frequency of

the oscillator in Fig. 3. This leads to a four times higher

power dissipation in the former if ring oscillators are used

for both.

• Only one output is required from the oscillator in Fig. 2

whereas Fig. 3 requires a four stage oscillator. Using

inductors in each stage of the latter results in a very large

chip area.

From the above it appears that an LC oscillator is the

only realistic option in Fig. 2 if its power dissipation has to

be comparable to that of Fig. 3. Also, a ring oscillator is

the only realistic option for the latter if its area of has to be

comparable to that of the former. Consequently we can expect

to achieve lower phase noise or lower power dissipation with

Fig. 2, and a lower area with Fig. 3. However, a definitive

comparison can be made only after designing both for a given

set of specifications. Since the phase noise specifications for

the Zigbee standards are not very stringent1, the poorer noise

performance of Fig. 3 may not be important.

In the rest of the paper, we present the design of

quadrature carrier generators using the above schemes and

compare the two. The power consumption is minimized while

ensuring that the IEEE 802.15.4 requirements are met and

that the circuits are capable of driving the load formed by the

programmable divider in the feedback path of the frequency

synthesizer and the transmit or receive mixers. From the layout

of these blocks, the total load on the quadrature outputs was

estimated to be 180 fF each.

IV. IQ GENERATION BASED ON DIVIDING A DOUBLE

FREQUENCY WAVEFORM

vdd

vtune

4nH

100 uA

140µm square spiral

6 turns

5 section distributed

RLC model for

6µm trace width

2.06µm thickness

2µm spacing

simulations

Fig. 4. LC VCO schematic

Fig. 4 shows the schematic of the LC oscillator used

in Fig. 2[3]. The negative resistance of the cross coupled

nMOS pair cancels the tank circuit’s loss to result in sustained

oscillations across the LC circuit. The tank circuit is made of

a 4 nH differential square spiral inductor, MOS accumulation

varactors and some fixed capacitance across the tank. The bias

current is adjusted to have a differential swing of 600mVpp

across process and temperature variations. To minimize power

consumption, the tank impedance, and hence the inductance

must be maximized. But, beyond a certain value of inductance,

the required tank capacitance becomes so small that it is

dominated by parasitics, and adequate tuning range cannot

be obtained. To minimize phase noise with a given tank

circuit, the magnitude of the negative conductance must be

minimized while ensuring reliable start up. In our design,

we have sized the transistors such that, across process and

temperature variations, the smallest magnitude of the negative

conductance is 1.5 times the equivalent parallel conductance

of the tank circuit. The MOS accumulation varactors are laid

out in a differential configuration to maximize their quality

factor[4].

Fig. 5 shows the schematic of the latch used in the

divide by two counter (Fig. 2). The latch uses fully differential

current mode logic (CML) with active inductor loads. The

active inductors are formed by nMOS load transistors with

resistances in series with their gates[5]. The high voltage bias

1Compared to cellular phone or wireless LAN standards

368

Dp

clkp

Ibias

Vdd

Dn

QpQn

2.4V

clkn

Fig. 5. CML latch used in the divide by two counter

is generated using a charge pump. The resistors are adjusted

to obtain sufficiently fast rise times across all process corners.

The bias currents are chosen such that the latch can drive

the following buffer. Fig. 6 shows the buffer used to drive

Vdd

in+ in-

2.4 V

M1 M2

M3 M4

Mb1 Mb2

out+out-

Iref

Fig. 6. Buffer to drive the programmable divider and the mixers

the programmable divider and the mixers. It comprises a

differential pair with an active inductor load. The bias current

is chosen to be sufficient to drive a 180 fF load.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 10

9 VCO tuning curve

control voltage / Volts

d
iv

id
e
r

o
u
tp

u
t
fr

e
q
u
e
n
c
y
 /
 H

z

Fig. 7. Frequency (at the divider output) vs. control voltage

Fig. 7 shows the simulated frequency versus control

voltage characteristics of the combination of the LC oscil-

lator and the divider. The maximum VCO gain (Kvco) is

200MHz/V. The waveforms at the output of the VCO and

9.1 9.15 9.2 9.25 9.3 9.35 9.4

x 10
−8

0

0.2

0.4

0.6

0.8

1
VCO output waveform

9.1 9.15 9.2 9.25 9.3 9.35 9.4

x 10
−8

1.2

1.4

1.6

1.8

2 Divide by two output waveform

V
o
lt
s

V
o
lt
s

time / seconds

Fig. 8. VCO and divider output waveforms

10
2

10
4

10
6

10
8

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40
VCO phase noise plot

−117 dBc/Hz at 3.5 MHz (relative)

frequency / Hz

p
h

a
s
e

 n
o

is
e

 [
d

B
c
/H

z
]

Fig. 9. Phase noise at the divider output

the frequency divider are shown in Fig. 8. Fig. 9 shows the

phase noise of the VCO as measured at the divider output2.

The phase noise is -117 dBc/Hz at 3.5MHz.

V. IQ GENERATION BASED ON DOUBLING HALF

FREQUENCY WAVEFORMS

Fig. 10 shows the delay cell used in the architecture

in Fig. 3. It consists of a differential pair (M3−4) loaded

by pMOS transistors in triode region (M1−2). The oscillation

frequency is varied by varying the transconductance of the

differential pair through the tail current. The gate bias of

the pMOS transistors is adjusted using a replica bias cir-

cuit (M7−10) which maintains the drain voltage at 1.3V. This

ensures a constant swing as the VCO is tuned, and also

across process and temperature variations. The replica circuit

is common to the four stages of the oscillator. The tail current

is derived such that the variations of the VCO characteristics

across temperature are minimized. This is explained in more

detail later. For sustained oscillations in a four stage oscillator,

the delay cell needs to have a dc gain of at least
√

2. The

2Relative phase noise above 0 dB at very low frequencies is a an artifact
of simulation in SpectreRF.

369

Pbias

in+ in-

Vdd

+

-

vtune

itune
itune/2

vref

fix_cur fix_curfix_gm fix_gm

vtune

Replica bias Delay cell

M1 M2

M3 M4

M5M6M7M8

M9

M10

Itail/2 = 180uA Itail = 360uA

1.3 V

n1 n2

Fig. 10. Schematic of the delay cell with replica bias. “fix cur” and “fix gm”
are derived from a constant current bias and a constant gm bias respectively.

transistor sizes are chosen such that the lowest dc gain across

process and temperature corners is greater than this limit.

Xn

Xp Xp

Yn

Ibias

Vdd

out+out-

Gilbert

RL RL

X

Y cell

GilbertX

Y cell

A

B

(a) (b)

out

Yp

Vbias Vbias

Fig. 11. (a) Gilbert multiplier cell (b) Multiplier with symmetric inputs

The multipliers in Fig. 3 are realized using the well

known Gilbert cell (Fig. 11(a)). The disadvantage of this circuit

is that the two inputs present different input impedances. If

used as is in Fig. 3, the symmetry of the ring oscillator will

be destroyed by unequal loading at its nodes. To overcome this

problem, two Gilbert cells are used in parallel with each input

driving the upper input of one cell and lower input of the other

as shown in Fig. 11(b). This results in identical impedances

at the two input ports A and B. The lower inputs (Y) are ac

coupled and biased at the appropriate common mode level.

The multipliers are followed by buffers (Fig. 6) to drive the

mixers and the programmable divider.

Fig. 12 shows the frequency variation with temperature

of the carrier generator (Fig. 3) using the delay cell in Fig. 10

and the doubler in Fig. 11(b) when the tail current is con-

stant with temperature. A negative temperature coefficient of

frequency is observed. Fig. 12 shows the frequency variation

with temperature when the tail current is derived from a

fixed gm bias circuit[6]. In this case, as the temperature

increases, the bias current is increased to maintain a constant

gm. A positive temperature coefficient is observed. Therefore,

a constant current and a current from a fixed gm bias circuit

are added (usingM5 andM6 in Fig. 10) in the right proportion

to cancel the temperature coefficient. The resulting frequency

variation with temperature is shown in Fig. 12 and is seen

0 10 20 30 40 50 60 70 80
2.1

2.2

2.3

2.4

2.5

2.6

2.7
x 10

9

Temperature (celsius)

F
re

q
u

e
n

c
y

 (
 H

z
)

Process and Temperature variations of the Oscillator

Process = TT

Process = SS

Process = FF

2.674 GHz

2.119 GHz

Fig. 12. Process and Temperature variations with fixed current biasing

0 10 20 30 40 50 60 70 80
2.3

2.35

2.4

2.45

2.5

2.55

2.6
x 10

9

Temperature (celsius)

F
re

q
u

e
n

c
y

 (
 H

z
)

Process and Temperature variations of the Oscillator

Process = TT

Process = FF

Process = SS

2.562 GHz

2.331 GHz

Fig. 13. Process and Temperature variations with fixed gm biasing

0 10 20 30 40 50 60 70 80
2.34

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52
x 10

9

Temperature (celsius)

F
re

q
u

e
n

c
y

 (
 H

z
)

Process and Temperature variations of the Oscillator

Process = TT

Process = FF

Process = SS

2.515 GHz

2.3511 GHz

Fig. 14. Process and Temperature variations with mixed biasing

to be significantly smaller than with either constant current or

constant gm biasing. The current consumption of the oscillator

increases with “slow” process and high temperatures due to

this biasing scheme.

370

Vdd

vtune

vcm

vctrl

vtune

10uA

I1

I2

I2

itune

I1+I2

vb vb1
vb2

M1 M2
M3 M4

Mb1 Mb2 Mb3 Mb4

Mb5Mb6
M5

M6

M7

M8

M9

M10

M11
M12

7.5uA 10uA32.5uA

32.5uA

Fig. 15. Voltage to current converter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.81.50.3
0

1

2

3

4

5

6

7

8
x 10

−5

Tuning voltage (V)

C
u

rr
e

n
t

Transfer Charecteristics of Voltage to current converter

Slow case: process = SS, Temp = 80

Typical case: process = TT, Temp = 27

Fast case: process = FF, Temp = 80

Fig. 16. Transfer characteristics of voltage to current converter

In the ring oscillator above, the frequency is varied

using the tail current. In a frequency synthesizer using a charge

pump and a passive loop filter, the output is a voltage. To

control the ring oscillator using this voltage, a voltage to

current converter is used (Fig. 15). To obtain a large range for

the control voltage Vtune, it is applied to an pMOS differential

pair M1,2 and a nMOS differential pair M3,4 with different

reference levels (“vb1” and “vb2”). The currents from the two

differential pairs are added to obtain the control current for

the ring oscillator. For small values of Vtune only M1 and M2

are active and for large values of Vtune, only M3 and M4 are

active. The characteristics of the V-I converter are shown in

Fig. 16. The usable range of Vtune is from 0.3V to 1.5V.

Fig. 17 shows the frequency vs. voltage characteristics

of the VCO with the doubler. The maximum gain is about

220MHz/V. Fig. 18 shows the phase noise at the doubler

output. Fig. 19 shows the output waveforms.

VI. FREQUENCY SYNTHESIZER DESIGN

Fig. 20 shows the frequency synthesizer designed

around the quadrature carrier generators described above. It

is a standard type II phase locked loop[7] with Icp = 10µA,
R1 = 80 kΩ, C1 = 220 pF, and C2 = 7 pF.

The frequency divider in feedback can be programmed

to obtain division ratios from 481 to 495. The architecture

of the programmable divider is shown in Fig. 21[8]. CML

latches are used throughout. The signal frequency reduces as

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.81.50.3

2.3

2.4

2.5

2.6

2.7

2.48

X: 0.3402
Y: 2.4e+09

X: 0.7319
Y: 2.48e+09

X: 0.6615
Y: 2.4e+09

X: 1.027
Y: 2.48e+09

X: 0.9553
Y: 2.4e+09

X: 1.482
Y: 2.48e+09

Tuning Voltage (V)

F
re

q
u

e
n

c
y
 (

G
H

z
)

Tuning of the VCO over Temperature and process

Fast case [process = FF Temp =80]

Slow case[process=SS Temp =80]

Typical case [process = TT temp = 27]

Fig. 17. Frequency vs. voltage at the doubler output

10
3

10
4

10
5

10
6

10
7

−120

−100

−80

−60

−40

−20

0

20

Relative frequency (Hz)

P
h

a
s
e
 N

o
is

e
(d

B
c
 /
 H

z
)

Phase noise for different corners

Worst case [FF ,80] Phase noise = −96.45 dBc/Hz

Typical case [TT,27] Phase noise = −97.2bBc/Hz

Best case [SS,0] Phase noise = −97.97dBc/Hz

−97.2 dBc/Hz at 3.5 MHz

Fig. 18. Phase noise at the doubler output

9.2 9.25 9.3 9.35 9.4 9.45 9.5

x 10
−8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (sec)

A
m

p
li
tu

d
e
 (

V
)

VCO output

I−signal

Q−signal310 mV

Fig. 19. Quadrature outputs of ring oscillator and doubler combination

one goes down the divider chain and the bias currents are

reduced accordingly. The differential output is converted to

single ended output before being fed to the phase frequency

detector.

371

quadrature
Phase

Divider

C1

R1 C2

fref

Programmable

generator

I

Q

vctl VCO/

Dummy
load

frequency
detector

Icp

Icp Kvco: 200 MHz/V

loop bandwidth: 53 kHz

zero: 9 kHz

high freq. pole: 293 kHz

Fig. 20. Frequency synthesizer block diagram

Div by
2/3

Div by
2/3

Div by
2/3

Div by
2/3

m1 m2 m7
m8=1

Fin

p0 p1

FoutDiv by
2/3

m6

p5=1 p6=1 p7=1

Div by
2/3

m5

p4

m4

Fig. 21. Programmable frequency divider

VII. SIMULATION RESULTS

Both circuits are designed and laid out in a 0.18µm
CMOS process. Table I shows their salient features. The

current consumption of the ring oscillator increases at high

temperatures and “slow” processes due to the biasing scheme

described earlier. The current consumption of the LC oscillator

is independent of process and temperature variations.

The ring oscillator consumes up to 43% higher power

than the LC oscillator. The LC oscillator occupies a 2.25×
larger area. The phase noise requirements for a Zigbee

transceiver can be met with a ring oscillator based architecture.

As expected the LC oscillator achieves a much better phase

noise.

Table II shows the simulated results of the frequency

synthesizer built around the carrier generators described ear-

lier. Since Kvco is the same in the two cases, the performance

is the same with either architecture.

VIII. COMPARISON AND CONCLUSIONS

We have presented two approaches to IQ carrier gen-

eration for IEEE 802.15.4 Zigbee transceivers. We have de-

signed circuits following both approaches in a 0.18µm CMOS
process and compared them. The comparison is made based

on optimizing each design for low power while meeting the

requirements of the standard and the load conditions expected

in a transceiver. We conclude that it is possible to build a ring

oscillator based frequency synthesizer for this standard with a

small power penalty and a large area advantage over the LC

based approach. Although the phase noise of the LC oscillator

is much lower than necessary, the quality factor of the spiral

inductor cannot be lowered (while retaining the inductance

value) in an attempt to reduce its area, because, doing so

reduces the equivalent parallel resistance of the tank circuit

and reduces the amplitude of oscillation making it difficult to

drive the following stages.

The power consumption of the LC oscillator is con-

strained by the highest inductance that can be realized while

not being overwhelmed by parasitic capacitances. The power

consumption of the ring oscillator is limited by the phase noise

TABLE I

PERFORMANCE SUMMARY OF QUADRATURE GENERATORS

LC osc. + divider Ring osc. + doubler
(Fig. 2) (Fig. 3)

VCO 1mA 1.44mA
Bias circuit — 0.355mA
V-I converter — 0.1mA
Divider 1.8mA —
Multipliers — 0.45mA each
Buffers 0.7mA each 0.83mA each

Total current 4.2mA 4.455mA (nom.)

6mA (max.)
Phase noise -117 dBc/Hz -97 dBc/Hz
Area 360µm x 140µm 160µm x 140µm
Kvco 200MHz/V 220MHz/V

TABLE II

PERFORMANCE SUMMARY OF THE FREQUENCY SYNTHESIZER

Programmable divider 1.09mA
Differential to single ended converter 22µA

Phase frequency detector 23µA
Charge pump 20µA

Bias generation circuits 350µA

Total current 1.5mA
Settling time 110µs

Area 400µm x 310µm
Reference feedthrough -39 dBc (5MHz)

-50 dBc (10MHz)

requirements. Technology scaling does not offer either oscilla-

tor significant advantages in terms of power consumption (for

the same phase noise specifications). A small reduction in

power consumption can be seen due to reduction of para-

sitic capacitances. The power consumption of the remaining

blocks—frequency divider or the multipliers, and the buffers—

will be reduced owing to reduction of parasitic capacitances

and on chip load capacitances with technology scaling. This

reduction will be proportional to the reduction in capacitance

and will be the same for either architecture. Therefore we

believe that the comparison presented in this paper will remain

valid for other CMOS processes.

REFERENCES

[1] “Wireless medium access control (MAC) and physical
layer (PHY) specifications for low rate wireless personal area
networks (LR-WPANs)”, IEEE 802.15.4, available for download at
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

[2] Behzad Razavi, RF Microelectronics, Prentice Hall, 1997.
[3] M. Tiebout, Low power VCO design in CMOS, Springer, 2006.
[4] A. S. Porret et al., “Design of High-Q Varactors for Low-Power Wireless
Applications Using a Standard CMOS Process”, IEEE Journal of Solid-
state Circuits, pp. 337-345, vol. 35, no. 3, March 2000.

[5] E. Sackinger and W. C. Fischer, “A 3-GHz 32-dB CMOS limiting
amplifier for SONET OC-48 receivers”, IEEE Journal of Solid-State
Circuits, pp. 1884-1888, vol. 35, no. 12, Dec. 2000.

[6] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-
Hill, August 2000.

[7] J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800
frequency synthesizer”, IEEE Journal of Solid State Circuits, vol. 33,
no. 12, pp. 2054-2065, 1998.

[8] C. Vaucher et al., “A family of low-power truly modular programmable
dividers in standard 0.35 um CMOS technology,” IEEE Journal of Solid-
state Circuits, vol. 35, no. 7, pp. 1039-1045, 2000.

372

A 2.4Gbps-4.8Gbps XDR-DRAM I/O (XIO) Link

Vijay Khawshe, Kapil Vyas, Renu Rangnekar, Prateek Goyal, Vijay Krishna, Kashinath Prabhu,
Pravin Kumar Venkatesan, Leneesh Raghavan, Rajkumar Palwai, Thrivikraman M, Kunal Desai,

Abhijit Abhyankar
Rambus Inc. (India Design Center)

vkhawshe@rambus.com, kvyas@rambus.com

Abstract

This paper focuses on the design of a 2.4Gbps to

4.8Gbps link developed in TSMC65nmG+ technology,
for the high speed and high throughput interface
between XDR™ (Extreme data rate) DRAM and ASIC.
Applications such as HDTV and high end graphics
require high bandwidth interface between controllers
and memory. This XDR I/O (XIO) link which is
integrated in the controller, interfaces with the XDR™
DRAM and provides the very high per pin bandwidth.
To maintain a constant transmit swing the link
supports automatic calibration for the on-die
termination (ODT) and driver circuit bias. The channel
timing between, ASIC pin to XDR-DRAM pin, is
calibrated for all the individual pins to de-skew any
channel electrical timing differences to align the data
transfer during Memory Read and Writes. This
calibration is done periodically to maintain constant
timing margin throughout the operation. The self
biased [1] regulated PLL dual loop architecture based
on [2] is used which minimizes the clock jitter and
enables high speed operation. A novel programmable
Voltage Control Oscillator is used here to work at
wide range of frequencies. The cell with 8bit wide data
bus and 16bit wide command bus, consumes 520mW at
4.0Gbps.

Index Terms—XIO, DQ, RQ, Regulated PLL, TSMC65nm g+

1. Introduction

With increasing demand for bandwidth and latency
in Processor to DRAM communication in the graphic
and compute space, there is a strong need to enhance
the capability of these interface I/Os, for higher
bandwidth/throughput. Rambus XDR™ IO Cell (XIO)
is a high-performance, low latency controller interface
to XDR-based DRAM memory systems. The general-

™ XDR™ and FlexPhase™ are trademark of Rambus Inc.

purpose cell is independent of the logical memory
controller design, enabling support for a wide variety
of memory applications needing high bandwidth and
low latency. The implemented cell, in current
reference, has 8-bit wide DQ (data) channel and 16-bit
wide RQ (request) channel.

The DQ block takes 8 bytes of parallel data from
the ASIC interface and serializes it in the single system
clock cycle for 8-bit wide interface pins. This is
possible by generating an internal clock which is 4x of
the system clock and sampling the data at both edges
of the clock to eventually transmitting the data at 8x of
the system clock. Similarly the RQ commands are sent
at 2x of the system clock after sampling at both the
edges of clock.

Timing calibration is done with the help of
programmable phase mixers and calibration logic
called FlexPhaseTM. Using these FlexPhase circuits
inside the ASIC’s XIO cell, individual bit timing is de-
skewed, from the ASIC to the XDR DRAM, to present
a synchronized parallel data word at the DRAM. For
the data transfer from DRAM to ASIC, FlexPhase
circuits in XIO are used and no added circuits are
needed on DRAM devices.

Fig-1 Top level XIO with all components

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.65

373

Fig-2 XIO-XDR interface with Flex phase circuit

Operation sequences called “initial calibration” are

performed after the XIO is first powered up. These
sequences set channel de-skewing timing, bias current,
and termination values to their optimized values.
Operations sequences called “periodic calibration” are
performed at intervals, between sequences of normal
memory read and write operations. These sequences
adjust channel de-skewing timing, bias current, and
termination values regularly to compensate for
changing system conditions due to temperature etc.
This way the system margins are maintained without
causing bit errors.

2. Phase Locked Loop

2.1. Architecture

A self bias PLL based on dual loop architecture as
mentioned in [2] is used here. The basic building
blocks are shown in the Fig-3. Replica compensated
regulator for the VCO [6] rejects high frequency noise
without compromising on bandwidth of VCO regulator
and unity-gain opamp loop for resistor of the RC filter
in PLL loop ensures loop bandwidth will closely
follow operating frequency [3]. The duty cycle
corrector circuit based on common mode feedback
tracks duty cycle error upto ±5%. As its bandwidth is
almost 3 times larger than PLL loop bandwidth it can
correct high frequency clock duty cycle to ±1%.

Fig-3 Phase Locked Loop diagram

However to ensure that loop parameter do not change
with change in operating frequency it is required to
keep control voltage variation range constant over
VCO oscillation range. The output Tx/Rx clocks are
function of reference clock called CTM.

Tclk/Rclk Frequency = 4 * (Frequency of CTM)
For 2.4Gbps/3.2Gbps/4.0Gbps/4.8Gbps outputs, the
CTM frequencies are changed to 300/400/500/600MHz
respectively. The PLL parameters are adjusted for the
different frequency ranges and the VCO is switched for
the different ranges as explained in next section.

2.2. VCO Circuit

To achieve multiple tuning ranges with single VCO
ring oscillator, previously implemented methods were
using switch capacitors. However it does not provide
precise control of the device capacitors used, across
different process corners with large variation in control
voltages. Here a new technique (Fig-4) is proposed in
which, instead of adding capacitors, tristate buffers are
added in the feed forward path. Multiple different sized
tristate buffers are added based on the frequency
ranges required. These tristate inverters are connected
as data anticipator, to boost oscillations.

Fig-4 Programmable Voltage Controlled Oscillator

One of these buffers is kept ON, for a particular
frequency. The buffer in ON condition reduces delay
by feed forward mechanism and thus increase
frequency of operation while in OFF state, act as
capacitive load. Based on frequency of operation (i.e.
2.4Gbps/3.2Gbps/4.0Gbps/4.8Gbps) the buffer can be
selected. This methodology will make VCO very less
dependent on process variation and non-uniform
parasitic.

Fig-5 VCO Delay Cell

Above, Fig-5 shows the simplified circuit for the delay
cell based on data anticipator circuit [4]. For the
system shown in Fig-5, the transfer functions:

374

)sin()cos1(

11

ϕωϕ

ϕ

GmRRCjGmR
gmR

eXG
Xg

S
S

j
Lm

Lm

n

n

−++
−=

+
−= −

−

where ϕ is phase difference between Sn and Sx
 XL is load impedance at node Sn

For sustaining oscillation, Barkhausen criterion states
that loop must have unity gain and phase as multiple of
2π.

Phase,
ϕ

ϕωθ
cos1

sin
tan

RG
RGRC

m

m

+
−

=

)sintan(costan ϕθϕθω ++=
C

Gm
RC

 = Conventional freq. + Increment in freq. [4]

where θ is phase difference between Sn and Sn-1

Gm and C decide the gain in frequency, with optimal
design of feed-forward inverters, higher Gm can be
achieved. With multiple tapping we can increase Gm at
the expense of loading capacitance.

3. DQ Data Block

3.1. Introduction

The XIO data block (DQ) provides a wide, on chip,
CMOS-level signaling interface to memory controller
logic (ASIC-side) and a narrow, high speed
Differential Rambus Signaling Level (DRSL) interface
to the external XDR memory system. The DQ block
performs the serialization and de-serialization
operations associated with memory write and read
operations respectively. The serialization ratio of 8:1 is
used. Using this octal data rate signaling, 8 serial bits
are transmitted for every parallel interface clock cycle.
Each DQ has 8-bit wide interface, and each bit is called
DQ-slice.

Fig-6 DQ Byte Block Diagram

Each signaling differential bit pair is calibrated in time
to compensate for bit-to-bit timing differences between
signals. The DQ byte and DQ slices architecture are
shown in Fig-6 and Fig-7 respectively. Each DQ slice

can transmit and receive 1byte of parallel data from
DRAM during write and read operation respectively.
Fig-7 shows serialization and de-serialization
operations in DQ slice data path along with associated
clock domains.

Fig 7 – DQ Slice Data Path

3.2. Clocking Architecture

The system reference clock, called CTM (Clock To
Master) is derived directly from the on-board oscillator
or buffered with the on-chip XDR clock generator
(XCG) and the master PLL uses CTM to generate all
internal fast clocks. This same CTM signal is routed
back as CFM (Clock From Master) to XDR DRAM.
So XIO–XDR DRAM interface works on CTM clock
domain. Parallel ASIC side interface of XIO works on
PCLK. For the clock domain crossing to work
properly, PCLK should come from the same clock
source as CTM and phase difference between CTM
and PCLK should remain constant. The generation of
various DQ clocks is illustrated in the fig-8 below.

Fig-8 DQ clocks overview

XIO drives pclk4x signal to ASIC, which is generated
by PLL using CTM and is four times the CTM
frequency. This pclk4x is used by the ASIC to derive
the PCLK after a divide-by-four circuit. To keep the
phase difference between PCLK and CTM constant, a
PCLK-CTM clock loop is used which locks the PCLK
phase to CTM by dynamically adjusting pclk4x phase.
Since the PCLK coming to different DQs and RQ from
ASIC are not edge aligned to CTM and can have some
skew among them due to ASIC clock tree mismatch, a

375

local pclk (lpclk) is derived from this ASIC pclk using
another delay locked loop as shown in fig-9.

Fig-9 pclk4x and lpclk DLL circuit

Each clock within the XIO has an associated phase

code indicating the phase of its edges in relation to the
reference, CTM clock. The exact phase relationship
between any two clocks is determined using their
respective phase codes and is used to ensure reliable
domain crossing between them. Due to numerous non-
idealities and the high frequencies of the clocks
involved, great attention has been paid for clock tree
balancing and delay matching of different clock paths.

3.3. Transmitter and Receiver Front End

3.3.1. Transmit Driver and Pre-Driver. The parallel
data from the ASIC core is serialized into even and odd
bit streams. Both the bit streams are then multiplexed
on both rising and falling edges of the transmit clock
generated by the PLL. The signal levels are then
translated from CMOS rail to rail swing to low swing
CML levels using pre-driver circuit which is fed to the
driver. Both the pre-driver and driver are implemented
as current mode logic (CML) drivers as shown in Fig-
10. The pre-driver works on core VddC supply (1.0V),
whereas driver is on VddIO supply (1.2V). Differential
current mode signaling is employed. The driver swing
is maintained constant across PVT using calibrated on-
die-termination(ODT).

Fig-10 Transmitter front end

The driver current is continuously calibrated based on
on-broad high precision resistance and voltage
reference. The swing can be further adjusted by
adjusting a 7-bit current control DAC.
3.3.2. Receive Sampler. The data from DRAM is
received using sampler circuit. Due to noise and

attenuation, the input data differential swing can be as
low as 100mV with high timing jitter and it requires a
comparator with high input impedance and very low
offset. A voltage mode sense amplifier is used as
comparator for input data. Due to its positive feedback,
it achieves fast decision and full swing output is
produced in a short time. Main challenges in designing
sampler is meeting low offset and small dead zone of
regenerative latch over process/voltage/temperature
variations. As explained in [5] gm of input pair is
increased by pumping more current in ON state as well
as reducing transistor threshold voltage by increasing
channel lengths.

Fig-11 Receiver front end sampler

Same sampler is also used in very low frequency

mode during low speed testing. During this mode, it
was observed that when input is logic ‘0’, and clock is
high (sampling mode), node ‘ab’ [Fig-11] will be
floating. This leads to charge build up on the node
from neighboring leaky devices which eventually
inverts logic level. To avoid this problem a cross
coupled bypass devices are added in the circuit. For
this case, as shown in Fig-12, output voltage doesn’t
change when clk is logic high and input voltage goes
low.

Fig-12 Sampler Timing Diagram

4. RQ Request Block

The address and command transfer to the XDR
DRAM memory system is performed using RQ block.
The CTL (Control) block performs register access,
initialization, maintenance, and testability functions.

RQ serializes 24-bit parallel QDATA bits
containing request command and 6-bit serial outputs

Clk

376

(handshake signals) from memory controller, to 15 bits
outputs on channel. It has additional handshake signal
from DRAM to total 16 bits on channel for controlling
single/multiple DRAM devices. The RQ circuitry
operates on the CTM frequency and performs 2:1
serialization to produce channel data rate of 2x speed
and being transmitted using Rambus signaling level
(RSL, 900mV). Address and command information
travels synchronously from RQ to DRAMs and hence
CFM has to be routed in parallel and length matched to
the RQ bus to minimize skew and hence data clocking
errors.

RQ block generates the operating clocks by
dividing PLL clocks by four. In order to get the
balanced setup-hold timing margins while sampling
data on DRAM side at both clock edges, the RQ data is
transmitted at quadrature (90 degrees) with respect to
the CTM. To facilitate this, RQ generates a quadrature
clock called QCLK which is used as sampling clock
for transmission. The RQ-PCLK coming from ASIC is
buffered and a local version called RQ-LPCLK is
generated. Two DLLs are incorporated in RQ, one
ensures the safe domain crossing from LPCLK to
QCLK and other locks the transmit data phase at
output pin, at quadrature to the CTM clock. The phase
detector generates up/down signal which is used by
mixer control logic to generate mixer phase codes such
that the clocks at the input of phase detector align. This
phase code information is used for reliable clock
domain crossing using appropriate skip decision. All
the clock forward and feedback paths of LPCLK,
QCLK and RCLK are appropriately matched to ensure
good timing margins in pipeline and at DRAM
interface.

Fig-13 RQ clocking Diagram

The transmit data path comprises of the input

register to capture QDATA on local PCLK, domain
transfer circuit called skip logic to reliably capture data
on transmit clock, the output multiplexer for 2:1
serialization of data and the output driver for sending
single ended data to DRAM. The receive data path has
receive sampler on both edges of receive clocks, re-
timing circuit for even/odd data, domain transfer logic

that skips data from RCLK to LPCLK. The RQ data-
path components are shown in the Fig-14.

Fig-14 RQ Data path Diagram

5. Test and Scan Features

5.1. Scan

XIO is scan based design with stuck-at test
coverage of 93% and at-speed-test coverage of 53%.
At speed scan test feature is implemented for high-
speed, timing critical nodes at actual data rates.

Fig-15 At-speed Scan: Shift and Capture

5.2. ASIC Side Parallel Loopback

In ASIC loop-back, the tester drives data pattern
into one DQ slice and receives the pattern back on
another DQ slice. The data pattern goes through the
XIO internal pipelines and is driven on RDATA at the
parallel interface either within XIO or inside ASIC.
The tester does the comparison and determines the pass
or fail of the test. This cell allows the loop back within
the XIO to reduce dependency on the ASIC for test
function.

5.3. Serial Loopback

Similar to parallel loop back the cell allows the
serial side loop back, where ASIC sends the parallel
data, loop back from the Tx of first bit to the Rx of
fourth bit, and so on, and compare it at ASIC.

Fig-16 Parallel Loop back mode

Phase
Detector

Phase
Detector

Phase
Detector

Phase
Detector

377

5.4. Probing Internal Clocks
The XIO cell multiplexes the functional clocks with

the data at the DQ and RQ output pins. These
multiplexers are controlled by a test mode signal.
When activated in test mode, various internal clocks
can be probed simultaneously through different DQ
and RQ pins and their mutual phase relationship can be
verified.

Fig-17 Internal Clock Probing Scheme

6. Silicon Characterization Results and
Conclusion

The XIO cell was designed in TSMC65nmG+
process. The Memory controller was developed inside
a test chip called Praveg, with basic functionality of
driving the required data traffic and data comparison
logic. It is connected externally on the system board
with serial-interface bus. The XIO cell chip
micrograph is shown Fig-18.

Fig-18 Chip Micrograph

The Silicon is characterized up to 4.8Gbps speeds and
it meets all the required specifications. The 4.0Gbps
speed operation results are summarized in Table-1.
Fig-19 shows the DQ output transmit eye diagram
sampled for the 4.0Gbps PRBS data pattern.

Design Information
Technology TSMC 65nm G+

Nominal Supply
Voltage

Digital Core= 1.0V
TX-RX I/O = 1.2V
Analog Core(PLL etc.) = 1.0V

Temperature Range 0-1300C
Area ~4.4mm2
Output data-rate 4Gbps(nom)/2.4Gbps/3.2Gbps/4.8Gbps

Silicon Results
DQ Tx Output Jitter 63.6ps for UI time of 250ps
DQ TX integral non 11.3ps

linearity in phase mixer
DQ TX o/p Swing 200mV
UI Timing Margin Write 74%

Read 69%
RQ Tx Output Jitter 156ps for UI time of 500ps
RQ TX o/p Swing 860mV
Mean Active Power 520mW
IDDQ Power 70mW

Table-1 Performance Summary

Fig-19 DQ Transmit Eye Diagram (PRBS Data)

7. References

[1] J. Maneatis, “Low-Jitter Process-Independent DLL and PLL
Based on Self-Biased Techniques”, IEEE Journal of Solid State
Circuits, vol. 31, no. 11, Nov. 1996

[2] Kun-Yung Ken Chang et al. “A 0.4-4-Gb/s CMOS quad
transceiver cell using on-chip regulated dual-loop PLLs” IEEE
Journal of Solid-State Circuits, vol. 38, no. 5, May2003

[3] S. Sidiropoulos et al., “Adaptive bandwidth DLLs and PLLs
using regulated CMOS buffers,” in Symp. VLSI Circuits Dig. Tech.
Papers, Jun. 2000, pp. 124–127.

[4] Lizhong Sun and Tadeusz A. Kwasniewski, ”A 1.25-GHz 0.35-
um Monolithic CMOS PLL Based on a Multiphase Ring Oscillator”,
IEEE Journal Of Solid-State Circuits, Vol. 36, no. 6, June 2001

[5] Wicht B., Nirschl T., Schmitt-Landsiedel D., "A yield-optimized
latch-type SRAM sense amplifier" ISSCC, 2003. ESSCIRC apos, 03.
Proc of 29th European Vol, Issue, 16-18 Sept. 2003 Page(s): 409-412

[6] Vijay Khawshe et.al. “A 2.5Gbps Quad CMOS Transceiver Cell
Using Regulated Supply Low Jitter PLL” IEEE 20th conference on
VLSI design, Bangalore, Jan 2007.

[7] Rambus XIO datasheet DL-0153 Version 0.92

378

Session 6B

Routing, Power Optimization

Design and Implementation of Fine-grain
Power Gating with Ground Bounce Suppression

Kimiyoshi Usami1, Toshiaki Shirai1, Tasunori Hashida1, Hiroki Masuda1, Seidai Takeda3, Mitsutaka Nakata1,
Naomi Seki2, Hideharu Amano2, Mitaro Namiki4, Masashi Imai3, Masaaki Kondo5 and Hiroshi Nakamura3

1Shibaura Institute of Technology, 2Keio University, 3The University of Tokyo,
4Tokyo University of Agriculture and Technology, 5The University of Electro-Communications

Abstract- This paper describes a design and implementation
methodology for fine-grain power gating. Since sleep-in and
wakeup are controlled in a fine granularity in run time,
shortening the transition time between the sleep and active states
is strongly required. In particular, shortening the wakeup time is
essential because it affects the execution time and hence does the
performance. However, this requirement makes suppression of
the ground-bounce more difficult. We propose a novel technique
to skew the wakeup timings of fine-grain local power domains to
suppress the ground bounce. Delay of buffers driving power
switches is skewed in the buffer tree by selectively downsizing
them. We designed a MIPS R3000 based CPU core in a 90nm
CMOS technology and applied our technique to internal function
units. Simulation results showed that our technique reduces the
rush current to 47% over the case to turn-on the power switches
simultaneously. This resulted in suppressing the ground bounce
to 53mV with 3.3ns wakeup time. Simulation results from
running benchmark programs showed that the total power
dissipation for the function units was reduced by up to 15% at
25°C and by 62% at 100°C. Effectiveness in power savings is
discussed from the viewpoint of the temperature-dependent
break-even points and the consecutive idle time in the program.

I. INTRODUCTION

As MOS transistors get scaled, leakage power dissipation
has been increasing exponentially [1]. Reducing leakage
becomes indispensable because leakage power becomes a
major component in the total power dissipation even in the
active mode. Power gating (PG) is one of the run-time
techniques to switch a circuit into a low-leakage state when
the circuit idleness is detected. So far, power gating control at
run time has been implemented only at the IP-core level. IP
cores such as CPU or DSP cores in an SoC are power gated
and put into sleep depending on applications [2-4]. For
example, in an SoC for cell phone applications, IP cores only
used at video telephony are powered off when the operation is
switched to the voice call. In contrast, more aggressive
techniques to power gate internal circuits in much finer
granularity have been studied and proposed in [5,6]. In [5], the
authors presented a technique to power gate execution units
such as a fix-point unit and a floating-point unit in a CPU. In
[6], an approach has been proposed to power gate a group of
combinational logic gates by employing an enable signal in a
gated-clock design. These fine-grain PG techniques have more
opportunities to reduce leakage at run time than coarse-grain
PG techniques.

However, there are a couple of design issues in fine-grain
PG that are more critical than in coarse-grain PG. One is the
ground bounce induced by rush current at the wakeup. A
power gating circuit using a footer power switch is depicted in
Fig. 1. While the power switch (PS) is off in the sleep state,
output nodes of logic gates and the virtual-ground (VGND)
node are charged up to near the VDD voltage due to leakage
from the supply. When PS is turned on at the wakeup, stored
charge flows through PS to the ground as rush current [7]. The
ground bounce induced by the rush current is proportional to
L∆i/∆t where L is the inductance of bonding wires and
package pins. To reduce the ground bounce, reducing ∆i/∆t is
required. This could be done by slowly turning on PS.
However, in fine-grain PG the wakeup has to be done in a
very short time because the wakeup penalty degrades the
performance. This constraint makes the design for the ground
bounce difficult in fine-grain PG. Several approaches to
suppress the rush current in coarse-grain PG have been
proposed so far. In [2], the authors proposed a technique to
employ daisy-chained weak and strong PS transistors. At the
wakeup, the weak (i.e. smaller size) PS transistors are turned
on first to restore power, and then the strong (i.e. bigger size)
PS transistors are turned on to deliver current for the normal
operation. In [4], the authors address a technique to provide a
gate-voltage sensor circuit for PS to achieve low slew-rate
driving. Basically, these approaches are the technique to
wakeup the entire huge IP-core where the wakeup delay in
micro-sec order is permitted. In contrast, in fine-grain PG,
rush current suppression by controlling independent power-
switches for 10-100 local power domains is required while
achieving the wakeup delay at nano-sec order. Ground-bounce
analysis in fine-grain PG and a suppression technique have not
been presented so far.

VGND lineSleep

VDD
Logic gates (low-Vt)

Power
Switch

(high-Vt)
Fig. 1. Power-gating structure with footer power-switch.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.63

381

Another critical issue in fine-grain PG is energy overhead
due to sleep-in and wakeup operations. In contrast to coarse-
grain PG, the sleep period at a sleep event tends to be short in
fine-grain PG. When the sleep period is too short, energy
savings become less than the overhead, leading to increase of
energy. In [5], the authors proposed an analytical model for
the break-even point (i.e. the minimum sleep period) to get
gain in energy savings and reported evaluations at the
architecture level. However, evaluation for the break-even
point through an actual implementation was not reported. In
addition, the break-even point will change depending on
environmental parameters such as temperature because sub-
threshold leakage drastically varies with temperature.
Evaluations based on these considerations have not been
addressed.

In this paper, we present a design and implementation
methodology for fine-grain PG. The primary contributions of
this work are three-fold:

- Proposal for a rush-current suppression technique by
delay skewing of power-switch driver trees

- Proposal for a design flow to implement fine-grain PG
employing above-mentioned rush-current suppression

- Evaluation on power savings and ground-bounce
suppression by applying the proposed design flow to a
MIPS R3000 based CPU core.

Section II describes a proposed approach to suppress rush
current and Section III presents a proposed design flow.
Section IV presents the results based on the implementation.

II. PROPOSED APPROACH TO SUPPRESS RUSH CURRENT

In fine-grain PG, a power domain for a circuit is partitioned
into many local power domains. First, domain partitioning is
done “logically” based on enable signals. Power-gated circuits
controlled by different enable signals are put into different
logical domains. The logical domain is further partitioned
“physically” into smaller power domains, leading to “local
power domains”. The physical partitioning is done with
power-switch sizing such that the voltage of VGND at each
local power domain may not exceed the user-specified
constraint in the active state. This procedure is executed
considering not only discharge current and discharge timing of
each logic gate but also the conductance of PS. Power
switches are driven by power-switch-driver (PSD) trees.

Power distribution network can be modeled using L, R, C of
power/ground rails on the chip and those of the package
interface. Considering our target clock frequency (200MHz),
we use a simplified model where only R, C on the chip and L,
R, C of the package interface are taken into account.

Turning on all power switches simultaneously may induce
huge rush current. To suppress rush current, we propose a
technique to skew the delay of PSD in the tree to avoid the
simultaneous turn-on of power switches. There are two
possible approaches to accomplish this: one is to unbalance
the number of stages in the tree by inserting additional drivers.
This approach, however, increases area and power. More
critical drawback is an impact on the layout design because

inserting a new driver changes the connectivity. This will
affect design convergence if P&R is already finished.

The other approach is to skew the delay by sizing the PSD.
In particular, delay skewing by downsizing the drivers
minimizes the impact on the layout because this does not
increase area or does not change connectivity. Meanwhile, the
wakeup delay may be increased by downsizing the PSDs.
Hence, the problem to be solved can be stated as follows: For
a given fine-grain power-gating circuit, we minimize the
ground bounce by downsizing PSDs to skew the delay such
that the wakeup delay is within the specified value. To
effectively avoid the simultaneous turning-on of power-
switches, we focus on downsizing the leaf drivers in the tree.

III. DESIGN FLOW

In this section, we describe a design flow to implement the
proposed approach to suppress the ground bounce in fine-
grain PG. First, a layout style for the fine-grain PG is
presented. We use a Locally-Shared Virtual-ground (LSV)
scheme presented in [6]. The structure for LSV scheme is
depicted in Fig. 2. This structure enables us to build different
local power domains in a row. In addition, cells in a local
power domain can be placed using two or more rows.
Furthermore, power gated cells can share a row with non-
power-gated cells such as PSDs, flip-flops, clock buffers, and
isolation cells. This flexibility becomes a strong point when
we implement fine-grain PG.

F/F
Power-
Switch
Driver

Isolation
cell

Isolation
cell

Power-
Switch
Driver

Local VGND Lines

VDD

GND

GND

VDD

Power SwitchPG-cells Non-power-gated cells PG-cells

Local Power Domain Local Power Domain

Fig. 2. Locally-Shared Virtual ground (LSV) structure.

In the LSV scheme, a modified cell called a power-gating
cell (PG-cell) is used. The PG-cell is a low-Vt logic cell with
the same functionality as the original standard cell but has a
VGND pin. The source of an nMOS transistor in the PG-cell
is connected to a VGND pin instead of the real ground rail. In
addition, a power switch is defined as a cell with a VGND pin
and an enable pin. A VGND line is wired in each local power
domain at the routing such that VGND pins of PG-cells and
those of power-switch cells are connected.

Next, we describe the proposed design flow. From RTL, we
synthesize a netlist using low-Vt standard cell library. Then
we partition the design into logical domains based on enable
signals. By swapping the logic cell in the synthesized netlist
with the same-sized PG-cell, we generate a netlist with logical
domains. After the initial placement, we perform physical
partitioning into “local power domains” and insertion of
properly sized power-switches as described in the previous
section. Inserting isolation cells to avoid signal floating is also

382

done at this step. Next we build PSD trees and optimize the
drivers to suppress the ground bounce. PSD trees are
constructed such that the output slew rate of each driver be
identical to each other. By using this structure, we downsize
PSDs to skew the delay in the PSD tree. The result of this step
is sent to a router and the final layout is completed.

IV. EVALUATION AND RESULTS

A. Setup for Experiment
In order to evaluate effectiveness of the proposed approach,

we designed a MIPS R3000 based CPU core, referred to as
Geyser, by using the proposed design flow. Fine-grain PG was
applied to internal function units such as ALU, shifter,
multiplier and divider, and also to a coprocessor unit CP0 for
interrupt processing. Only the unit executed in the current
instruction is powered on and the rest is powered off. Wakeup
operation does not occur at two or more units at the same time.
Sleep and wakeup control is done by a sleep controller unit. In
this CPU, a pre-wakeup technique was employed to reduce
performance penalty due to the wakeup delay. The sleep
controller detects a function unit to be woken up by pre-
decoding an instruction [9] and fully wakes up the unit before
the execution.

B. Results of Implementation

Table 1 summarizes the results from applying the proposed
implementation scheme to the function units and the
coprocessor unit. The number of local power domains varies
from 29 to 170. ALU, shifter, divider and the coprocessor unit
are controlled by their own unique enable signal, resulting in
one logical domain. In contrast, the multiplier has two logical
domains to dynamically control the power gating for the upper
and lower halves of the array of carry-save adders.

Table 1. Implementation results of fine-grain power gating for function units

 ALU Shifter Multiplier Divider CP0
Area

W[µm]xH[µm] 90x85 80x85 241x246 241x226 151x
146

Logic Cells 1218 643 6405 6995 1633
Local Power

Domains 63 29 170 112 80

The layout result is shown in Fig. 3. The size of the CPU

core is 540µm×570µm. The total area of the function units and
the coprocessor unit (CP0) to which we applied the fine-grain
PG occupies 49% in the entire core, while the area of the sleep
controller shares 5%.

C. Rush Current and Ground Bounce

We evaluated effectiveness of the proposed approach
through analyses on rush current and the ground bounce at the
power-gated unit. Results are presented only for the unit with
the largest cell count, the divider, due to the limit of space.
The divider unit consists of 6995 logic cells and the total
transistor width (Wp+Wn) of the cells is 29497µm.

CP0

Shifter

ALU

Divider Multiplier

Main control
and

register file

Sleep
controller

Fig. 3. Layout of CPU core Geyser in which four function-units and
coprocessor unit are power-gated in fine-grained manner.

Power-switch sizing was done with physical partitioning

into local power domains such that the VGND voltage may
not exceed 100mV in the active mode. This process was done
by using a commercial tool [10]. As a result, the divider unit
was partitioned into 112 local power domains and the total
transistor width of power switches is 845µm. For those
optimized power switches, a PSD tree was constructed such
that the output slew rate of each PSD be 300ps. We refer to
this PSD tree as a “typical buffer tree”. PSD directly driving
the power switch is referred to as a leaf driver. A leaf driver
may drive one power switch or may drive two or more power
switches.

Under keeping the connectivity in the typical buffer tree, we
experimented with three options for delay-skewing (Opt.1-3).
In Opt.1, 8 of 39 leaf-drivers were downsized from X4 to X1
size. In contrast, in Opt.2 and Opt.3, 13 and 15 leaf-drivers
were downsized, respectively. By these downsizings the
maximum output slew rate at leaf drivers was changed to
500ps. As a comparison, we also experimented with an option
to turn on all power switches exactly at the same time. In this
option we assumed that the gate of power switches is directly
driven by a signal with the slew rate of 500ps. This slew rate
is identical to the maximum value of the output slew rate of
PS in Opt.1-3.

To look at the effect of our delay-skewing, we investigated
the voltage waveforms for the gate-input signals of power
switches. By using the parasitic from the layout, we conducted
SPICE simulations at VDD=1V. Results are shown in Fig. 4.
To quantify the spread of the distribution, we focus on the
time at which the gate-input signal of a power switch rises.
We defined this as the arrival time (AT) of the enable signal to
the power switch. Hence, AT is defined as the delay from the
time at which the root enable signal rises to the time at which
the gate-input signal of a power switch rises. We measured
this at the time at which the voltage waveform crosses VDD/2.
In the typical buffer tree, the difference between the earliest
AT and the latest AT is around 685ps. In contrast, this
difference is increased to 791ps, 1.19ns and 1.05ns in Opt.1-3,
respectively, because of delay-skewing for the PSD tree.

383

Time (ns)

1.0

0.5

0
1.0

0.5

0
1.0

0.5

0
1.0

0.5

0

1.0

0.5

0

1.5 2.0 2.5 3.0 3.5 4.00

(V)

Simultaneous turn-on

Typical buffer tree

Opt.1

Opt.2

Opt.3

Fig. 4. Simulated voltage waveforms for the gate-input signals of power

switches.

Next we demonstrate how the delay-skewing affects rush

current and the ground bounce. Fig. 5 shows simulated
waveforms for (a) rush current without L, R, C of the package
interface, (b) the ground bounce and (c) rush current with
above-described L, R, C. For electrical parameters of the
package interface, we used L=2nH, R=70mΩ and C=0.2pF for
the TQFP package [8]. Additionally, taking into account the
actual assembly of the chip, we assumed that four bonding
wires are connected to the ground pad of the chip in parallel. R
and C of the on-chip power/ground rails were extracted from
the layout by using a commercial tool [11].

Time (ns)
1.5 2.0 2.5 3.0 3.5 4.00

100

50

0

200
100

0

-100
-200

100

50

0C
ur

re
nt

 (m
A)

C
ur

re
nt

 (m
A)

V
ol

ta
ge

 (m
V

)

Simultaneous
Typical buf tree

Opt.1
Opt.2
Opt.3

Simultaneous
Typical buf tree

Opt.1
Opt.2
Opt.3

Simultaneous
Typical buf tree

Opt.1
Opt.2
Opt.3

Fig. 5. Simulated waveforms for (a) rush current without L, R, C of the

package interface (top), (b) the ground bounce (middle) and (c) rush current
with L, R, C of the package interface (bottom).

Rush current induces the ground bounce and the ground
bounce affects back the rush current, resulting in the rush-
current waveform shown in Fig.5(c). To understand the
original cause of the ground bounce, it is meaningful to
observe rush current without L, R, C of the package interface.
As shown in Fig.5(a), rush current waveforms for the
“simultaneous turn-on of power switches” and the “typical
buffer tree” show higher and sharper peaks than those for
Opt.1-3. In particular, in Opt.2 and Opt.3, the height of the
peak (i.e. the maximum rush current) is reduced to 48% and
47% over the simultaneous turn-on, respectively. As a result,
the maximum voltage of the ground bounce is reduced, as
demonstrated in Fig.5(b). The simultaneous turn-on induces
the ground bounce of as much as 187mV, whereas Opt.1-3
reduces the peak voltage down to 53-61mV.

To investigate how the distribution of turn-on timings of
power switches influences the ground bounce, we analyzed the
standard deviation σ of the arrival times described above and
plotted against the maximum values of rush current and the
ground bounce. Results are shown in Fig. 6. As σ increases,
the maximum values of rush current and the ground bounce
get reduced until a certain point. It is interesting to observe
that increasing σ beyond that point increases the rush current
and ground bounce instead.

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400

Max Rush C urrent (mA) Max Ground Bounce (mV)

Standard Deviation σ

C
ur

re
nt

 (m
A

),
V

ol
ta

ge
 (m

V)

Simultaneous
turn-on

Typical
buffer tree

Opt.1 Opt.3 Opt.2

Fig. 6. Maximum values of rush current and ground bounce as a function of

standard deviation σ of arrival times.

To understand these phenomena, let us compare the
waveforms shown in Fig. 5 (a) and (b) for Opt.2 and 3.
Compared to the rush-current waveform for Opt.3, the
waveform for Opt.2 is broader but it consists of two peaks.
This means that between the two peaks the occurrence of
turning on the power switches got less. In contrast, in Opt.3
we downsized two more PSDs such that their arrival times
come into the interval between the two peaks. Thus, the
scheme aiming at increasing σ of arrival times is basically a
good strategy but requires a fine-tuning as well to adjust them
such that the arrival times are distributed as equally as
possible.

Wakeup time is plotted in Fig. 7. The wakeup time is
defined as the delay from the time at which the root enable
signal rises to the time at which the VGND voltage reduces to
0.02V.

384

0

1

2

3

4

5

0 100 200 300 400

Standard Deviation σ

W
ak

eu
p

tim
e

(n
s)

Simultaneous
turn-on

Typical
buffer tree

Opt.1 Opt.3 Opt.2

Fig. 7. Wakeup time as a function of standard deviation σ of arrival times.

As σ increases, the wakeup time increases up to a certain

point but decreases beyond that point. In particular, in Opt.2
and 3 the wakeup times are 3.8ns and 3.3ns, respectively,
which are smaller than that of Opt.1. This is because
discharging current through the power switch at the wakeup is
affected by the ground bounce and the influence in Opt.2 and
3 gets less due to the reduced ground bounce.

D. Power Dissipation

Based on extracted parasitic from the layout of the Geyser
CPU core, we conducted power analysis. PowerCompiler and
Hsim were exploited to analyze dynamic and leakage powers.
We used two benchmark programs: (i) a quick sort program
(QSORT) in MiBench [12] and (ii) a JPEG encode program
(JPEG_E). To precisely reflect the influence of cache-miss,
we created an RTL model for 8KB 2-way set-associative
instruction/data caches. This model was combined with the
RTL model of the CPU core and used at the simulation.

We implemented non-power-gated counterpart to the
Geyser CPU core and compared power dissipations. Fig.8(a)
and Fig.8(b) show the results from power analysis for QSORT
and JPEG_E programs, respectively.

For QSORT, the total power dissipation for the five
power-gated units was reduced by 9% at 25°C and by 62% at
100°C, respectively. Power overhead due to introducing the
sleep controller is counted in these numbers. Instruction pre-
decoding and detection of a function unit to be used are
performed at the sleep controller. Power dissipation of power-
switch drivers is included in that of power-gated units. For
JPEG_E, power was reduced by 15% at 25°C and by 60% at
100°C, respectively. It should be noted that power dissipations
for the multiplier and divider are reduced to 1/10-1/20 at
100°C. In contrast, power dissipations for ALU and shifter are
not reduced remarkably. We investigated this reason through
analyses for the break-even point and consecutive sleep cycles.

The break-even point for the sleep cycles to get gain in
energy savings was investigated using transistor-level
simulations. We analyzed energy dissipation EPG for each
power-gated unit while changing the sleep cycles. For non-
power-gated counterparts, we evaluated energy dissipation
ENPG as well.

The ratio EPG/ENPG is plotted against the sleep cycles in
Fig.9(a) and Fig.9(b) assuming the cycle time of 5ns. The
sleep cycles at which the ratio EPG/ENPG crosses 1.0 is the
Break-Even Cycles (BEC).

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0

0.3

0.6

0.9

1.2

1.5

1.81.8

1.5

1.2

0.9

0.6

0.3

0

P
ow

er
 D

is
si

pa
tio

n
[m

W
]

Non-
Power
Gated

Non-
Power
Gated

Power
Gated

Power
Gated

CP0
Divider
Multiplier
Shifter
ALU

Sleep
controller

Fig. 8 (a). Power reduction by power gating for QSORT program

at 25°C (Left) and at 100°C (Right).

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0

0.3

0.6

0.9

1.2

1.5

1.81.8

1.5

1.2

0.9

0.6

0.3

0
Non-
Power
Gated

Non-
Power
Gated

Power
Gated

Power
Gated

P
ow

er
 D

is
si

pa
tio

n
[m

W
] CP0

Divider
Multiplier
Shifter
ALU

Sleep
controller

Fig. 8 (b). Power reduction by power gating for JPEG_E program

at 25°C (Left) and at 100°C (Right).

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0 0 100 200 300 400 500
1.2
1.0
0.8
0.6
0.4
0.2

0

25°C
65°C
100°C

0 100 200 300 400 500

ALU

Shifter

Sleep Cycles

E
PG

/ E
N

PG
E

PG
/ E

N
P

G

25°C
65°C
100°C

Fig. 9 (a). Energy ratio as functions of sleep cycles for ALU (Upper)
and Shifter (Lower). Cycle time of 5ns is assumed.

385

D IV

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

1 .6

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300 350 400 450 5000 100 200 300 400 500

1.2
1.0
0.8
0.6
0.4
0.2

0

Multiplier 25°C
65°C
100°C

0 100 200 300 400 500
Sleep Cycles

Divider 25°C
65°C
100°C

1.2
1.0
0.8
0.6
0.4
0.2

0

1.4

E
PG

/ E
N

P
G

E
PG

/ E
N

PG

Fig. 9 (b). Energy ratio as functions of sleep cycles for Multiplier (Upper)
and Divider (Lower). Cycle time of 5ns is assumed.

Fig.10 shows BEC as functions of temperature. It should be

noted that BEC reduces with increasing the temperature. This
is because sub-threshold leakage increases with the
temperature, thereby enabling power-off at the short sleep to
gain. At 100°C, BEC for ALU and shifter are 38 cycles and 22
cycles, respectively.

Temperature [°C]

B
EC

0
40
80

120
160
200
240
280

0 20 40 60 80 100 120 140

ALU Shifter Multiplier
Divider CP0

100

Fig. 10. Break-even cycles (BEC) as functions of temperature.
Cycle time of 5ns is assumed.

Investigation showed that sleep events whose consecutive
sleep times are over BEC for these units share only 2% of the
total execution time. Powering off these units at shorter sleep
cycles than BEC increases energy rather than saving it. In
contrast, for the multiplier, BEC at 100°C is 44 cycles. Sleep
events whose consecutive sleep time is over BEC share 74%
of the total execution time. Moreover, for the divider, this
number increases to 99%. Thus, for the multiplier and divider,
majority of the sleep events is the sleep whose sleep cycles is
over BEC. This results in reducing power effectively at these
units.

IV. CONCLUSION

 We presented a design and implementation methodology
for fine-grain power gating. In the fine-grain power gating, the
issue of the ground bounce induced at the wakeup is critical
because a short wakeup time is required. We proposed a novel
technique to employ delay-skewing in the power-switch driver
tree to suppress rush current. Through a design of a CPU core,
we evaluated rush current, the ground bounce and power
dissipation. Simulation results demonstrated effectiveness of
the proposed methodology. As the future work, we extend our
delay-skewing approach to combine with a technique to
unbalance the number of stages in the tree.

ACKNOWLEDGMENTS

 The authors thank VLSI Design and Education Center
(VDEC), Synopsys, Cadence, Mentor, Sequence Design,
STARC, and Japan Science and Technology Agency (JST)
CREST for their support.

REFERENCES

[1] D. Lackey, P. Zuchowski, J. Koehl, “Designing mega-ASICs in nanogate
technologies,” in Proc. DAC’03, 2003.

[2] P. Royannez, et. al., “90nm low leakage SoC design techniques for
wireless applications”, ISSCC, 2005.

[3] T. Lueftner, et. al., “A 90nm CMOS low-power GSM/EDGE multimedia-
enhanced baseband processor with 380-MHz ARM926 core and mixed-
signal extensions”, ISSCC, 2006.

[4] T. Hattori, et. al., “Hierarchical power distribution and power management
scheme for a single chip mobile processor”, Proc. of ACM/IEEE Design
Automation Conference, pp.292-295, 2006.

[5] Z. Hu, et al, “Microarchitectural techniques for power gating of execution
units,” Proc. ISLPED’04, pp.32-37, 2004.

[6] K. Usami and N. Ohkubo, "A design approach for fine-grained run-time
power gating using locally extracted sleep signals,” Proc. ICCD'06,
pp.155-161, Oct. 2006.

[7] S. Kim, et al, “Understanding and minimizing ground bounce during mode
transition of power gating structure”, Proc. ISLPED’03, pp.22-25, 2003.

[8] P. Heydari and M. Pedram, “Ground bounce in digital VLSI circuits”,
IEEE Trans. VLSI Systems, vol.11, no.2, pp.180-193, April 2003.

[9] N. Seki, et al, “A Fine-grain Dynamic Sleep Control Scheme in MIPS
R3000”, Proc. ICCD’08, Oct. 2008.

[10] CoolPower by Sequence Design, Inc., www.sequencedesign.com.
[11] Calibre by Mentor Graphics, http://www.mentor.com/
[12] M. Guthaus, et al, “MiBench: A free, commercially representative

embedded benchmark suite,” Proc. IEEE 4th Annual Workshop on
Workload Characterization, pp. 3-14, 2001.

386

A method for the Multi-net Multi-pin Routing Problem
with Layer Assignment

Tuhina Samanta
Bengal Engg. & Sc. University, India

t samanta@it.becs.ac.in

Prasun Ghosal
Bengal Engg. & Sc. University, India

p ghosal@it.becs.ac.in

Hafizur Rahaman
Bengal Engg. & Sc. University, India

rahaman h@it.becs.ac.in

Parthasarathi Dasgupta
Indian Institute of Management Calcutta, India

partha@iimcal.ac.in

Abstract

Interconnects are vital in deep sub-micron VLSI design,
as they impose constraints, such as delay, congestion, cross-
talk, power dissipation and others, and consume resources.
These parameters affect the efforts for obtaining a feasible
solution for the global routing of multiple nets. In addition,
efforts are on for exploration and use of non-Manhattan
routing architectures. In this work, we focus on the specific
problem of multi-net multi-pin global Y -routing for custom-
built design styles with several available routing layers. The
problem is formulated as a minimum crossing Y -Steiner
Minimal tree problem with multi-layer assignment. Experi-
mental results are quite encouraging.

1 Introduction

The VLSI layout problem is usually solved in a hierar-
chical framework. Each stage of the hierarchy is optimized,
while the problem becomes manageable for the subsequent
stages. Global routing is a critical phase of this hierarchical
design flow, particularly, the physical design flow. It assigns
wires and vias to signal nets so as to obtain approximate in-
terconnections of the pins of every net. Objectives in this
phase include chip size and wire-length minimization, even
congestion distribution, ensuring signal integrity, cost and
ease of fabrication, time to market, and so on. Global rout-
ing is known to be a very difficult problem. In fact, finding
a feasible routing of a two-pin net in the presence of con-
gestion has been shown to be NP-Complete [1].

Traditional global routing architectures are Manhattan.
With increasing dominance of interconnects, their is in-

1This work is supported by grants from the Department of IT, Govt. of
India, New Delhi, Projects: SMDP-II and R & D in Microelectronics

creasing research on and use of X- and Y -architectures.
X-routing is now well appreciated in chip manufacturing
circle; however, the research community has been recently
investigating the Y -architecture [2, 3]. This refers to wiring
with 0◦, 60◦, and 120◦ oriented wires for on-chip inter-
connects. Several benefits of Y -architectures vis-a-vis X-
architectures have been elucidated in [3]. Routing of Y -
interconnects for multi-net multi-pin nets is thus an inter-
esting problem to be explored.

In this paper, we focus on the multi-net global routing
over a number of wiring layers, for Y -interconnects such
that the total length of all the routing trees is minimum.
Since each crossing of two edges will yield the insertion of
a via, yielding obstacles to routing, and increasing delays,
we attempt to minimize the number of crossings of the trees
as well.

The rest of the paper is organized as follows. Section 2
introduces some significant related works and the motiva-
tion of our work. Section 3 describes the formulation of the
problem. Section 4 describes the proposed method of con-
struction of Y -routing trees with minimum edge-crossings
in a given number of layers. Section 5 describes the empir-
ical observations , and Section 6 concludes the paper and
discusses its possible extensions.

2 Literature survey

Global routing is a well-researched problem. [8], [7]
and others present updated coverage of progress in global
routing. [5] and [6] focus on global routing issues for a
single net. The survey on multi-net global routing [4] dis-
cusses the recent global routing methods with emphasis on
performance-driven multi-net routing. A recent report on
academic global routing [14] provides a brief review of
some of the best high-performance routing techniques of
recent times.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.30

387

The existing global routing algorithms can be broadly
classified into the following categories: maze routing,
Steiner tree construction, and 0-1 ILP [8]. The maze rout-
ing algorithm finds a shortest path connecting two pins in
the presence of wiring blockages. A variant of the maze
routing techniques is the group of line probe-based algo-
rithms. It is important to note that Maze routing inherently
can consider one net at a time. Thus, an extension to multi-
net domain requires nets to be considered one at a time, in
a particular order.

Maze routing and line probe algorithms are, however, ap-
plicable to only two-pin nets. In practice, routing problems
consider nets with more than two pins. The wire length of a
routing tree, in such cases, is usually reduced by construct-
ing a Steiner Minimal tree [7]. Traditional VLSI routing
problems use only rectilinear Steiner trees. However, re-
cently, the use of wire geometries with other orientations
are quite predominant. Many of the Steiner tree construc-
tion algorithms in literature focus on the optimization of a
single net, and do not consider wire congestion issues ex-
plicitly. Nevertheless, these algorithms can be applied to se-
rially route the nets, with the most critical nets being routed
before non-critical nets. When the edge cost is defined ac-
cording to congestion, the Steiner minimum tree algorithms
may be applied directly to even out congestion while simul-
taneously restraining the wire length [9].

Global routing may be formulated as a special type of
optimization problem, called a zero-one integer linear pro-
gramming (0-1 ILP) problem. For a set of candidate rout-
ing trees Ti = Ti,1, Ti,2, . . . for net Ni, we use variable xi,j

to indicate if tree Ti,j is selected for net Ni.
Very recently, there has been a growing interest in the

construction of obstacle avoiding Steiner trees [16, 15].
The work reported in [19], which has fair relevance to our
work, proposes an algorithm for simultaneous escape rout-
ing within a set of components on a printed-circuit boards
(PCB) that ensures minimum crossings of the nets in the
subsequent area routing phase.

The use of diagonal wires was exploited on PCB and in-
tegrated circuits for more than a decade [12]. Y -routing
and Y -architecture for integrated circuits were introduced
through series of works of two different groups in [2]
and [3]. The work in [3] gives an in-depth analysis of
Y -architecture, and highlights the potential advantages of
the use of Y -architectures vis-a-vis the X-architectures.
Algorithms for construction of Y -routing trees appear in
[11, 10].

2.1 Motivation of the work

To the best of our knowledge, not much work has been
reported in the area of multi-net multi-pin routing, espe-
cially with the use of non-Manhattan interconnects. As

such, there are several unexplored issues and unanswered
questions in this area. In this work, we attempt to provide
an answer the following question:

Given a set of pins of several different nets, and a set of wiring
layers, can we obtain a global Y -routing of all these nets using
these layers, such that the number of crossings of the routing trees
of the different nets is as small as possible?

The following Section formulates the problem, and in-
troduces the basic framework for the proposed method.

3 Problem formulation

In global routing, a signal net consisting of a set of
fixed terminals Ni = {ni,0, ni,1, . . ., ni,ki

} is connected
by a routing tree T (Ni). The cost of the tree T (Ni) is the
sum of costs of its constituent edges. Thus, the total cost
χ(T (Ni)) of a tree T (Ni) of ki nodes is given by χ(T (Ni))
= Σp

j=1t(ej), where t(ej) is the cost of edge ej in routing
tree T (Ni). In the multi-net multi-pin global routing prob-
lem, we consider a number κ, say, of signal nets, each net
containing a number of pins = 2 to ki.

In this case, we consider a fixed set of wiring layers Λ,
say, for the placement of the routing trees, such that each
layer can have at least one Steiner Minimum Tree (SMT)
assigned to it. In order to ensure minimum routing resource
consumption, the total length of the routing trees is to be
minimum. The SMT s considered are Y -routing trees.

The Minimum length minimum edge-crossing Multi-net
Multi-pin global routing (MNMP) problem can be formu-
lated as follows:

Given a number κ, say, of multi-pin nets Πj , j = 1 to κ,
a set of wiring layers Λ, and an upper-bound on the layout
area, construct a Y -routed Steiner Minimum Tree for every
net Πj , and assign the trees appropriately to the given layers
such that (i) the total length of the trees is minimum, and
(ii) total number of edge crossings of the Steiner trees is as
small as possible.

4 Proposed method

In this paper, our approach broadly comprises the fol-
lowing steps:

• For every net, construct the Convex Hull of its con-
stituent terminals.

• Construct a matrix, each element of which contains the
amount of overlapping regions of a pair of nets. Sort
the nets in decreasing order of their total amount of
overlaps with other nets.

• Assign the minimum overlapping nets to the given set
of wiring layers in an increasing order of the amount
of overlap.

388

• If the number of wiring layers required is more than
the available number of layers, redistribute the excess
nets appropriately among the available wiring layers.

• Construct the Y -routed SMT s and modify them us-
ing a set of operators to minimize the number of edge
crossings between all pairs of trees in every layer.

Let Ti, Tj respectively represent the Steiner Minimal
Trees of the ith and jth nets, and CHi, CHj be the cor-
responding convex hulls. Then, the following observations
are clear.

Observation 1 Overlapping of CHi and CHj does not
necessarily imply crossing of an edge of Ti with an edge
of Tj .

Observation 2 If CHi and CHj do not overlap, then there
cannot be any crossing of edges of Ti and Tj .

From the set of pins for all the κ nets, find the coordinates
of the leftmost-bottommost pin position, and the rightmost-
topmost pin position. Let (xmin, ymin) and (xmax, ymax)
respectively denote these coordinates. Then, the available
routing area is bounded by a rectangular box within these
set of coordinates.

We discuss the above steps below. However, the com-
plete details could not be provided due to paucity of space.

4.1 Convex Hull creation

Consider a given net to be a set of points in a plane,
where each point corresponds to a terminal of the net. A
convex hull CHj , j = 1 to κ is generated for each net Πj

(i.e., its associated points) using Graham’s scan algorithm
[17]. If Qj is the number of points lying over the boundary
of CHj , then 1 ≤ Qj ≤ pj , where pj is total number of
pins for the net Πj .

Definition 1 Two convex hulls CHi and CHj are said to
overlap with each other if and only if a vertex on the bound-
ary of one convex hull is bounded by the other convex hull.

4.2 Layer assignment of nets

Once the convex hulls have been constructed, the amount
of overlap of

(
κ
2

)
possible pairs is obtained. Since a convex

hull is a convex polygon, the following observation is clear.

Observation 3 Intersection of a pair of convex hulls form
a convex polygon.

Thus, the amount of overlapping regions of a pair of convex
hulls is obtained from the area of the polygon formed by
their intersection. Figure 1 illustrates a pair of intersecting

convex hulls with a convex polygon (a, b, c, d) created by
their intersection. The circular nodes are the terminals, and
the rectangular nodes are intersections of the boundaries of
the convex hulls.

a

b

c
d

Figure 1. Overlapping Convex Hulls

Next, the convex hulls are arranged on the number of
vertices along their boundaries, and are assigned to the lay-
ers in that order. Consider the layer numbers to be 1 to | Λ |
from bottom to top. The largest (in terms of the number
of vertices along boundary) convex hull is the first to be as-
signed to layer 1. Next, the set of convex hulls, if any, which
do not intersect this initially assigned convex hull, and are
mutually non-intersecting with each other, are assigned to
layer 1. Once the assignment to layer 1 is complete, layer
2 is the next to be considered. The same procedure is ap-
plied to layer 2 as well. The iterative assignment completes
when either (i) all the nets have been considered, or (ii) all
the layers have been considered, and some nets are yet to
be assigned. In the second case, when some nets are yet to
be assigned, for each of the leftover net, its most potential
layer assignment is determined by finding the total overlap-
ping area of this net with the already assigned nets for every
layer.

Definition 2 A wiring-layer Λj is considered to be most poten-
tial for assignment of a net Πi if the total amount of overlap of
the convex hull of net Πi with the convex hulls of the nets already
assigned to Λj is minimum among all the layers.

For a net Πi, once its most potential layer is determined, Πi

is assigned to this layer.

4.3 Construction of Y -Routing Steiner
Minimum Tree

The Y -Routing Steiner Minimum Tree is constructed us-
ing a heuristic method. The proposed method depends on
the computation of shortest paths between pairs of nodes in
an underlying Hanan grid graph. Initially, a pair of termi-
nals in the given problem that are farthest apart in Euclidean
space, is obtained. It attempts to find the shortest path be-
tween these terminals in the underlying routing graph. An
iterative sequence of steps is executed thereafter. At each
iteration, the following steps are executed in sequence:

1. A partial SMT denoted by Gpartial, is constructed.

389

2. For each of the remaining terminals, find the Euclidean
distance of the terminal from its nearest Steiner node
in Gpartial.

3. Find the maximum of all the Euclidean distances ob-
tained in the previous Step. Let p be the corresponding
terminal, and q be the corresponding Steiner node in
Gpartial.

4. Find the shortest path between p and q in the underly-
ing routing graph; augment Gpartial with this shortest
path.

The iteration stops when all the terminals have been consid-
ered, and Gpartial is reported as the Y -routing Steiner tree.
Figure 2 illustrates a partially grown Y -routing tree in an
underlying Hanan grid for a net.

a
e

c

d

b

a

c

d

b

f g h

Figure 2. Example of Y-Routing SMT

We refer the readers to [10] for the details of the algo-
rithm.

4.4 Transforming Steiner trees

Once the Steiner trees are constructed in the different
layers, the pairs of Steiner trees with intersecting edges are
identified. A set of operators [18] are applied on these
Steiner trees for possible transformation to a different set
of Steiner trees, such that the number of intersections is re-
duced. We apply the following set of operators:

• Operator M1: Flipping an edge of the Steiner tree (see
Figure 3).

• Operator M2 : Inserting detours (see Figure 4).

• Operator M3 Sliding an edge of the Steiner tree com-
prising two Steiner vertices.

• Operator M4: Moving a single Steiner node along an
edge (see Figure 5).

M1

Figure 3. Application of operator M1

M2

Figure 4. Application of operator M2

Net1

Net2

M4

Net1

Net2

Figure 5. Application of operator M4

In Figures 3, 4 and 5, the figures on left and right re-
spectively illustrate Steiner Minimal Trees before and after
application of the operators. Consider Figures 3 and 4. The
dashed lines illustrate the respective edges that are removed
after application of the operators ”edge flip”, and ”detour”.
Detailed explanation of all the operators could not be given
due to paucity of space.

4.5 The algorithm

The overall algorithm for solving the MNMP problem
for a fixed number of layers is as described in Figure 6.

4.6 Time complexity

As mentioned above, let κ be the total number of nets,
and Ni be the number of pins in ith net, where i = 1 to
κ. The number of layers is denoted by | Λ |. Let N =
total number of pins for all the nets. Then worst-case time
complexity of the proposed algorithm (Figure 6) is given by
Lemma 1.

Lemma 1 The time complexity of MNMP is O(| Λ |
×κ2) + O(κ × N3 log N), where N is the total number
of pins (terminals) of all the nets.

Proof. The proposed algorithm (Figure 6) is divided into
a number of phases. Time complexity of constructing the
convex hull of the ith net using Graham’s scan is O(| Ni |
log | Ni |), where Ni is the set of pins/terminals of the
ith net. Time complexity of finding the amount of overlap
of convex hulls for a pair of nets, say, ith and jth nets, is
O((| Ni | + | Nj |) log(| Ni | + | Nj |) + k log(| Ni |

390

Algorithm for the MNMP problem
Input: a set of terminals P for a number of nets;A set Λ of wiring layers
Output: Minimum-intersecting Y − routed Steiner Minimal Trees for
the nets assigned to Λ.

1. layout area = compute layout area()
(* compute the layout area from the pin coordinates *)
2. (* Convex hull construction for nets *)
3. for i = 1 to κ Ci = Generate Convex Hull(Πi)
4. for i = 1 to κ - 1
5. for j = i + 1 to κ
6. Find CH Intersect(Ci, Cj)

(* Generate a matrix of overlaps for all pairs of nets *)
7. Sort the Convex Hulls (Ci, i = 1 to κ) in

descending order of their number of vertices
8. (* assigning convex hulls to the layers *)
9. l = 1 (* layer index *)
10. c = 1 (* index of convex hull / net *)
11. while (not all nets assigned) and (not all layers considered) do
12. assign convex hull CHc to layer l
13. Areal = area of CHc; (* initialize consumed area *)
14. while (∃ net p not intersecting any of the nets assigned

to layer l) and (p is not already assigned)
15. if temparea l (= Areal + area of CHp) ≤ layout area
16. assign net p to layer l; Areal = Areal + area of CHp

17. l = l + 1
18. if (all nets assigned) and (not all layers considered)
19. Total number of layers = l; return
20. if (not all nets assigned) and (all layers considered)
21. (* distribute the remaining nets over the layers *)
22. for each remaining convex hull CHc
23. find the most potential layer lmin (* min overlap *)
24. assign CHc to lmin
25. Generate MST();(* construct the Y -routing trees *)
26. for l = 1 to total number of layers
27. transform MSTs in layer l to minimize their mutual intersections

Figure 6. Algorithm for the MNMP problem

+ | Nj |)), where k = number of vertices of the polygon of
intersection [17]. Then, the total time complexity for all the(
κ
2

)
pairs of convex hulls is Σκ−1

i=1 Σκ
j=i+1(| Ni | + | Nj |

) log(| Ni | + | Nj |)+k log(| Ni | + | Nj |) ≤ N2 log N ,
hence O(N2 log N). Time complexity of sorting the nets
in decreasing order of the number of constituent vertices is
O(κ log κ).

Assigning non-overlapping nets to | Λ | layers re-
quires checking one net per layer against all the other nets.
Since we store the information on overlapping nets in a 2-
dimensional symmetric matrix, then the time complexity for
this part is O(| Λ | ×κ2). In the worst-case, this should also
be the time complexity of finding the most potential layer
for a net.

Time complexity of constructing a Y -routed Steiner
Minimal Tree for the ith net is O(N3

i log Ni) [10]. Total
time complexity for constructing Steiner trees for all the
nets is then O(κ × N3 log N). Finally, the worst-case time
complexity of applying transformation operators on all the
Steiner trees is O(N3).

Thus, the overall worst-case time complexity of the
proposed algorithm for the MNMP problem is roughly
O(N2 log N) + O(| Λ | ×κ2) + O(κ × N3 log N) + O(N3)

+ O(κ log κ) � O(| Λ | ×κ2) + O(κ×N3 log N), for large N .

5 Experimental Results

The proposed algorithm is implemented in C on a P-IV
machine at 2.5 GHz running on Linux. A set of benchmark
instances available at [20] are used as inputs for the pro-
posed algorithm. For construction of the grids, and com-
putation of the layout area on each layer, we consider the
technology node parameters for 65nm from [21]. The grid
granularity is varied from bottom to top layers as per con-
vention. The outcomes of the experiments are summarized
in Table 1. Area shown in the table is in grid units for 65nm.
The results indicate that our method can handle larger num-
ber of nets compared to [19] in much less CPU time. Figure
7, for a particular number of layers, confirms our expression
of time complexity as a function of the number of nets. Fig-
ure 8 illustrates bar charts for different problem instances
showing the overlap counts of nets before and after layer
assignment.

CPU execution time

0
500

1000
1500
2000
2500
3000
3500

500 1000 1500 2000 2500 3000 3500

no. of nets

exe
cut

in
tim

e (s
ec)

Figure 7. CPU time vs. Number of nets

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6

Problem Instance

O
ve

rl
ap

 c
o

u
n

t

Total overlapped nets

Overlap - L1

Overlap - L2

Overlap - L3

Figure 8. Overlap reductions of nets

6 Conclusion and Future Scope

In this work, we consider the problem layer assignment
of multi-pin multi-nets with minimum edge crossings.

The proposed algorithm and the observations are very
useful for the following reasons: (i) the MNMP problem
is of immense importance in VLSI physical design flow,
(ii) the proposed algorithm is comprehensive, handles some
critical issues related to multi-net routing, and handles a
large number of nets in reasonable CPU time, (iii) to the
best of our knowledge, not much has been reported in liter-
ature so far on this problem, and (iv) the MNMP problem

391

Problem # of Layout # of layers CPU time Layer details
instance nets area used (secs.) layer # # nets placed Area used
bench1 1557 120395000.0 3 730.01 1 1360 120394997.5

2 184 120394218.5
3 13 16723865.0

bench2 1676 121682961.0 4 824.39 1 811 121682960.5
2 241 121682958.5
3 605 121649628.5
4 19 107261782.5

bench3 2691 121110000.0 2 2782 1 1579 121109999.0
2 1112 77015672.5

bench4 3271 121010998.0 2 2954 1 3014 121010991.0
2 257 55570606.0

bench5 2086 119289984.0 5 1349.14 1 1244 119289977.0
2 148 119289980.5
3 584 119289980.5
4 72 119125470.5
5 38 173328775.0

bench6 2973 120758121.0 2 2509.16 1 2814 120758111.5
2 159 13179302.0

Table 1. Summary of results for some ISPD-2007 benchmark instances (adaptec1.capo70.2d.35.50.90)

for Y -interconnects does not seem to have been tackled in
the existing literature.

The present work has wide scope of extension: (i) further
minimization of crossings of the Steiner trees, (ii) certainly,
the consideration of vias between layers with via minimiza-
tion. Studying the variation of the extent of SMT edge-
crossing minimization with order of the net assignments
would be another interesting extension.

References

[1] M R Kramer and J van Leeuwen, ”The complexity of wire routing
and finding minimum area layouts for arbitrary VLSI circuits”. In
F P Preparata (Ed.), Advances in Computing Research, volume 2:
VLSI theory, pp. 129-146, JAI, Reading, MA, 1984.

[2] M. D. Rostoker et al., Hexagonal architecture. U.S. Patent, No.
US6407434B1, June 2002.

[3] A. B. Kahng, I. Mandoiu, Q. Wang, H. Chen, Chung-Kuan Cheng
and Bo Yao, ”The Y -architecture for on-chip interconnect: Analysis
and methodology”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2005.

[4] J. Hu and Sachin S. Sapatnekar, ”A Survey on Multi-net Global
Routing for Integrated Circuits”, Integration, the VLSI Journal, Vol.
31, pp. 1 - 49, November 2001.

[5] A. B. Kahng and G. Robins. On optimal interconnections for VLSI.
Kluwer Academic Pub., Boston, MA, 1995.

[6] J. Cong, L. He, C.-K. Koh, and P. H. Madden, Performance opti-
mization of VLSI interconnect layout, Integration: the VLSI Jour-
nal, Vol. 21, pp. 1-94, 1996.

[7] M. Sarrafzadeh and C. K. Wong, ”An introduction to VLSI physical
design”, McGraw-Hill, New York, NY, 1996.

[8] N. A. Sherwani, ”Algorithms for VLSI physical design automa-
tion”. Kluwer Academic Pub., Norwell, MA, 3rd edition, 1999.

[9] C. Chiang, C. K. Wong, and M. Sarrafzadeh, A weighted Steiner
tree-based global router with simultaneous length and density min-
imization, IEEE Transactions on Computer-Aided Design, Vol 13,
No. 12, pp. 1461-1469, December 1994.

[10] T. Samanta, P. Ghosal, H. Rahaman and P. Dasgupta, A heuristic
method for constructing hexagonal Steiner minimal trees for rout-
ing in VLSI, Proc. of IEEE International Symposium on Circuits &
Systems, 2006.

[11] A. Thurber and G. Xue, Computing Hexagonal Steiner Trees us-
ing PCS, IEEE International Conference on Electronics, Circuits &
Systems, pp. 381-384, 1999.

[12] E Lodi, ”Routing multiterminal nets in a diagonal model”, Proceed-
ings of the Conference on Information Sciences and Systems, pp.
899 902. Dept of EE, Princeton University, 1988.

[13] J. F. Weng M. Brazil, D. A. Thomas and M. Zachariasen, ”Canon-
ical forms and algorithms for steiner trees in uniform orientation
metrics”, Algorithmica, Technical Report, pp. 2 22, 2002.

[14] M. D. Moffitt, J. A. Roy and Igor L. Markov, ”The Coming of Age
of (Academic) Global Routing”, Proceedings of the International
Symposium on Physical Design (ISPD), pp. 148-155, April 2008.

[15] Chung-Wei Lin, Shih-Lun Huang, Kai-Chi Hsu, Meng-Xiang Li,
and Yao-Wen Chang, ”Efficient Multi-Layer Obstacle-Avoiding
Rectilinear Steiner Tree Construction”, Proceedings of the Interna-
tional Symposium on Physical Design (ISPD), April 2008.

[16] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, An O(nlogn)
algorithm for obstacle-avoiding routing tree construction in the
lambda-geometry plane, Proceedings of the International Sympo-
sium on Physical Design (ISPD), pp. 48-55, April 2006.

[17] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, ”Computer
Geometry: Algorithms and Applications”. Springer-Verlag, 2008.

[18] E. Bozorgzadeh, R. Kastner and M. Sarrafzadeh, ”Creating and ex-
ploiting flexibility in Steiner trees”, Proc. of Design Automation
Conference, pp. 195-198, 2001.

[19] M M Ozdal and M D F Wong, ”Simultaneous escape routing and
layer assignment for dense PCBs”, Proc. of the International Con-
ference on Computer-aided Design (ICCAD), pp. 822-829, 2004.

[20] http://www.sigda.org/ispd2007/contest/

[21] http://www.eas.asu.edu/p̃tm/

392

A New Hardware Routing Accelerator for Multi-terminal Nets

Mrs. Kaleem Fatima
Muffakham Jah College of Engg. and Tech.

Osmania University-Hyd

Dr. Rameshwar Rao
 University College of Engineering (A)

Osmania University-Hyd

Abstract

This paper presents a new parallel processing wire

routing machine, which finds a quasi-minimum Steiner
tree for multi-point connections in a VLSI chip. A
hardware implementation with concurrent time-
multiplexed wavefront propagation from all terminals
of a net is described. The new design requires fewer
clock cycles to find the shortest path than the existing
parallel routing algorithms. The time-multiplexed
mode optimizes the number of interconnections. An
RTL implementation has been developed in VHDL and
the algorithm has been successfully tested for a
prototype 4 × 4 and 8 × 8 single layer grid on an
FPGA. The feasibility of the algorithm for larger size
grid and nets with higher degree is demonstrated.

1. Introduction

Increasing system complexity is driving the solution
time of design automation (DA) problems particularly,
the routing phase to unacceptable levels. Since
advances in CAD provide the capability for larger
circuits and better design techniques, some
combination of better algorithms and/or better
machines is required, if design times are to remain
reasonable. Considerable improvements have been
made on many DA algorithms for conventional
sequential machines; however, some problems like
maze routing, have resisted significant run-time
improvements. For some of these problems, the
development of new hardware is a potential solution.

 Several hardware accelerators that speed up the
routing process have been proposed [3-8]. Nestor [7]
re-demonstrated the feasibility of building hardware
routers using ASIC, custom and FPGA technology.
The full grid machines of [3,7] achieve linear run time
(O(n)) for finding a path between two points. But no
consideration is given to multi-point nets. These
machines solve the routing of a multi-point net
problem, by decomposing it into two-point sub

problems. These sub-problems are solved sequentially,
as the path found previously is used as the starting
point. Depending on the order in which points are
routed, this procedure sometimes results in redundantly
lengthy paths as shown in Fig 1a (stared line). The
Parallel Adaptable Routing algorithm (PAR-2) [5] is a
popular hardware algorithm, which finds a quasi-
minimum Steiner tree for multi-point nets. PAR-2 was
implemented on a parallel SIMD processor, AAP-1.

 Many software solutions exist for finding
OARSMT (Obstacle avoiding RSMT). These have
non-linear time complexity (i.e. O(n2) for n x n grid).
The best known software solutions, for example [10]
have tried to achieve a time complexity of O(n log n).
The design of a hardware maze router with concurrent
source/target wave propagation is described in [8].
Separate data lines are used for source and target wave
propagations. This increases the number of
interconnections by 33% for two terminal nets. And if
this concept were extended to more than two terminals,
the interconnection space would increase beyond
practical limits. Hence for multi-point nets, the
algorithm of [8] is again similar to a conventional
hardware maze router and does not guarantee an
optimal solution.

 (a) (b)

Figure 1. (a) Solution for a multi-point net routing -

PMR path (solid line), PAR-2 (dashed line) and
conventional router (stared line). Figure 1b. The

architecture of the processing element.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.44

393

This paper presents a new parallel processing
algorithm called PMR (Parallel Multi-point net
Routing algorithm). The algorithm finds a quasi-
minimum Steiner tree for multi-point connections. A
hardware implementation with concurrent time-
multiplexed wavefront propagation from all terminals
of a net is described. The new design requires fewer
clock cycles to find the shortest path between the
terminals than the existing parallel routing algorithms
(e.g. PAR-2). The time-multiplexed mode allows
communication between adjacent processing elements
to be carried on a single line, thus optimizing the
number of interconnections as compared to [8]. The
path so found is essentially independent of the order of
connecting terminals and is optimal. To our
knowledge, this enhancement has not been adopted by
any of the hardware maze routers proposed in the
literature. The performance of our algorithm is
compared with PAR-2 [5] as these machines have O(n)
time complexity. We show that our algorithm is faster
by 18.75% compared to PAR-2 for three terminal nets
and the quality of path obtained is same for both
algorithms. Fig. 1a shows the results for the three type
of routers: PMR (solid line), PAR-2 (dashed line), and
conventional router (stared line). The length of the
path for conventional router is 19 (non-optimal) and
PMR and PAR-2 are 15(optimal). And number of
corners for PMR is 4, conventional router is 5 and
PAR-2 is 6. Performance results for PMR and PAR-2
are given in section 4.

A VHDL code is written and implemented to
demonstrate the feasibility of the algorithm on a
prototype 4×4 and 8×8 single layer grids. The
algorithm has been successfully tested on a XC2VP30
Virtex-II Pro XUP development board. The algorithm
can be easily extended to multi-layer grids.

 This paper is organized as follows: Section 2
describes the operation of the PMR algorithm. A
hardware description of the PMR accelerator and its
operation is given in section 3. Section 3 also describes
the architecture and operation of the PE. Section 4
gives results and Section 5 gives the summary and
conclusion.

2. The PMR Algorithm

The PMR algorithm is based on the basic Lee’s
algorithm. The Lee algorithm [1] finds the shortest
path between two points in a grid even in the presence
of obstacles. It does so in three phases: wavefront
expansion, backtracking and clean up. The software
solution to the above problem has O(n2) time
complexity for a n x n grid. But by parallel processing
on a two-dimensional array processor, the wavefront

expansion and backtracking are performed in linear
time and clean-up is usually a one step operation. Thus
in a hardware accelerator, the time complexity can be
reduced from a square to a linear. As the maze router is
known to be iterative in nature, the ordering of nets,
and the selection of candidate path for rip-up is to be
handled by the host PC. The hardware router helps in
very fast rip-up and re-routing of nets.

2.1 Validity of the new algorithm

To prove the validity of the PMR algorithm, a
modified Lee table called PMR-Lee table is shown in
the Figure 2 for a three point net. The actual algorithm
is described in section 2.2. Each cell in the PMR-Lee
table has as many fields, as the number of points in the
net. Thus for a three terminal net each cell has three
fields, say F1, F2 and F3. In the first phase a “Center
Point” (CP) corresponding to the minimum distance
from all the three terminals is found. For this, let each
terminal start wavefront expansion concurrently.
Terminal T1 labels its adjacent cells in the field F1
only, terminal T2 in F2 and terminal T3 in F3 fields
respectively. Let T1 stop its expansion phase once it
hits the other two terminals -- T2 and T3. Terminal T2
stops expanding when it hits T1 and T3 and so does
terminal T3. Now the resultant figure with cells being
labeled with all the three terminals only need be
considered to locate the CP, as shown in the Fig. 2.
The field ‘4’ at the right hand top corner of each cell
indicates the sum of all the three labels (or fields). The
cell in the 3rd row and 6th column (circled cell) has a
minimum sum, of 10. This cell is the “Minimum
Center Point” (MCP) or simply CP (Center Point),
and the values in its fields indicate that the cell is at a
distance of 5 grid points from T1, 1 grid point from T2
and 4 grid points from T3. The minimum path for the
three terminal-net is determined through this point as
shown in the Figure 2.

Figure 2. The modified Lee table (PMR-Lee Table)
showing parallel labeling, The circled cell is the
minmum Steiner point or the Center Point (P).

394

2.2 The new Parallel Multi-point net Routing
algorithm (PMR algorithm)

A special-purpose application-specific SIMD processor
is designed and developed that implements this
algorithm in hardware (section 3). The architecture is
an n x n array of identical cells called Processing
Elements (PE). Each PE is a finite state machine and is
directly mapped to a grid point during routing. This
architecture is similar to [3, 7]. An entirely new PE
and the Control Unit were designed to accommodate
the algorithm. The details of implementation are given
in section 3. This algorithm may also be implemented
on other architectures as in [4, 6] to reduce the number
of PEs, and extended to multi-layers. The PMR is
implemented in two phases as described below.
2.2.1 Center Point search phase: For the sake of
illustration we assume a 4 x 4 grid and a three terminal
net. In the first phase the algorithm finds the CP.
(Refer Figure 3. Initially, there is no target and all the
terminals (T1, T2 and T3) will be the source terminals.
The terminals T1, T2 and T3 start wavefront expansion
concurrently. As each cell communicates with its
orthogonal neighbors on a single line, the wavefront
expansions are multiplexed in time in a round robin
fashion as shown in the Fig. 3. First T1 expands (Fig.
3b). Its adjacent cells are labeled in the field F1. These
labeled cells do not expand instantly. They do so in the
next round for T1. T2 expands after T1 and its adjacent
cells are labeled in the field F2 as in Fig. 3c, and then

 (a) (b)

 © (d)

 (e) (f)

 (g) (h)

Figure 3. (a -- h) shows phase I- multiplexed
expansion mode for the three terminal net.

T3 expands (Fig. 3d). In the next round of expansion,
cells labeled as a result of T1, expand into the next
wavefront as in Fig. 3e. This process is repeated for the
other terminals and is indicated in the Fig. 3(f) through
Fig. 3(h). Now, during the expansion phase each cell
may have been labeled once (due to T1, T2 or T3 in
any one of the three fields), or may have been labeled
twice (due to any two terminals in any two fields). The
wave expansion phase stops as soon as a cell is labeled
in all the three fields. This cell is the CP for the 3-point
net (Fig. 3h, - circled cell). This point becomes the
Source ‘S’ for the second phase, which is the path
determination phase. In this phase path shown in Fig.
3h is found.
2.2.2 Second Phase--Route through the CP: Fig. 4,
shows the operation of phase-II of the PMR. As the
backtrace is a linear operation, a path is iteratively
determined from CP to all the terminals in question. In
this phase all the terminals will be set as target
terminals, T, and the CP will be the Source terminal S
as in Fig. 4a. From this stage, the router operates as any
conventional hardware maze router. Firstly, a path is
determined between the CP and the nearest terminal, as
in Fig. 4(b) and Fig 4(c). Then, all the points on this
path are set as sources and the unused cells are cleared
as in Fig. 4d. A second labeling starts from all the cells
in the path as in Fig. 4e. The second target, which is the
next nearer one, is hit by the expanding wavefront, Fig.
4e. During traceback, the source point in the earlier
path, nearest to the target in question is hit, (in the
above example it is CP), as seen in Fig. 4f. This point
could be the Steiner minimal point (RSMP) itself, or
any other point for optimal route. This procedure is
repeated till all the terminals are routed, Fig. 4(g)
through Fig. 4(j). In case phase I results in two (or
more) CPs, which result in two (or more) different

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j)

Figure 4. (a – j) Shows a few important stages of
phase 2--the path determination phase.

395

shortest paths, then during traceback phase depending
on the choice of heuristic only one CP will be chosen as
a part of the path and the rest will be cleared.

3. Hardware implementation of the PMR
algorithm:

The basic architecture of the PMR router and its
operation is described briefly in this section. The
hardware router (Fig. 5) is composed of a processor, an
I/O unit and a control Unit. The processor unit consists
of n × n array of identical cells, called Processing
Elements (PE) (Fig. 1b). The I/O unit consists of
encoders and decoders. Each PE is directly mapped to
a grid point in a grid array.

The Control Unit (CU) can address any PE (for
local operations) through the row and column decoders
and identifies a cell using addr_out lines of the row and
column encoders. In our implementation the CU sends
14 commands to the processor (RST, IDLE, BLOCK,
SET_T1, SET_T2, SET_T3, LABEL_1, LABEL_2,
LABEL_3, LABEL, TRACE_BACK, CLEAR, INT,
RIP), some of which are local and others are global
command. The processor sends its status to the CU via
the status lines ‘St’. The CU also communicates with
the host PC using commands like RESET, BEGIN,
E_BL (enter block cells), E_S_T (enter source
terminals), PATH_FAIL, RIP_UP, PATH_FOUND,
and END.

3.1 The Processing Element

The (i,j)th cell in the processor array and its four
adjacent neighbors are shown in Fig. 1b. Each PE is a
FSM and has 8 states, Bl (block), B (Blank), T1, T2
and T3 (terminal states), L (Label state), S (Source or
CP) and the T(Target) state. Each PE (Fig. 1b) has
four control inputs, Cmd = C (0:3) common to all cells
which receive the command from the CU, and are
internally decoded to decide its next course of action
(next state). Each cell sends its status to the CU via the
Status lines (St0 and St1 which are wire-OR’ed to a
common bus going to all cells). The ClK and RST
input runs common to all cells. Each PE has two
address input lines ‘rsel’ and ‘csel’. The CU selects
any PE via these lines to set it to Block (BL), Source
(S), Target (T) or Terminal (T1, T2, and T3) states as
the case may be. Each PE can communicate with its
neighboring PE in SIMD mode whenever the CU sends
any LABEL or TRACE_BACK commands using the
four unidirectional Input (Ni + Wi + Ei + Si) and Output
(No, Wo, Eo, So) lines. Each PE has three flip-flops, F1,
F2 and F3, which store the information of the three

Figure 5. The architecture of PMR accelerator.

fields of our PMR-Lee table (Fig.2).

3.2 Hardware operation

The control unit governs the operation of the entire
system. On reset, all the cells are set to BLANK state in
SIMD mode. Next, all the Block cells are read
sequentially followed by the Source terminals (T1, T2,
T2) into the processor (Fig 3a). This is followed by
Phase I, which is the CP search phase. The control unit
sends three label commands Label_1 (for T1
expansion), Label_2 (for T2 expansion) and Label_3
(for T3 expansion), in three subsequent clock cycles.
This is repeated in a round robin fashion. At each clock
period, a blank cell adjacent to a labeled cell will be
labeled if X =’1’, depending on the Label command as
described in section 2. A cell entering the expansion
state is indicated to the control unit by asserting the
status signal ‘St0’ (see Table 1) connected to the global
wired-OR status bus.

Labeling stops when the CU receives a HIGH on
the Status signal St1 from the processor unit. The signal
St1 is asserted as soon as a cell is labeled in all the
three fields F1, F2 and F3. This indicates to the CU
that the CP cell is found and Phase I is completed
successfully. Table I shows the state table for PE in
phase- I. There is no traceback in phase I. Table 1
describes the cell state sequencing for the PE in phase
I. In Table1, PS is the present_state of PE, NS is the
next_state. Columns 3 and 4 of table 1 gives the values
of nx_state, St0St1 (status), F1F2F3 (field values
indicating whether a cell is labeled as a result of
expansion due to T1, T2 or T3) and ‘-‘ indicates a
don’t-care value. The signals X and Y in the Table I
have the following Boolean relation: X = Ni + Wi + Ei
+ Si and Y=No=Wo=Eo=So. If X=’1’, it means the cell
has received a signal from its neighbor on any one or
more inputs. If Y=’1’, the cell is sending an expand

396

signal to its neighbor. In path determination phase, all
the three terminals will assume the target state T,
although Fig 4 retains the earlier names (i. e. T1, T2
and T3) for clarity only. Upon the next command from
the CU, the source S (or CP) starts labeling its
orthogonal neighbors in parallel SIMD mode using
Akers method [2] till it reaches the nearest target. In
this phase traceback direction is recorded. A shortest
path between the S and the nearest terminal is
determined. The remaining steps are as explained in
Section 2.2.2. and illustrated in Fig. 4.

In phase II, the PE assumes the following state: S
(source or CP), T (Target), L (Label), B (Blank) and Bl
(Block). Labeling process is similar to [3] and is not
described here. Table 2 describes the cell state
sequencing in phase II during the traceback process.
From Table 2, if signal ‘Pc = 0’, the cells in the
traceback path will re-enter the ‘S’ state to start the
labeling again as in Fig. 4e. Only if Pc=1 the cells
in the traceback path gets blocked as in Fig. 4 (i) and
Figure (j). St0 is the status signal. Signals Gin and Gout
are ‘1’ if a cell is selected to be a part of the path. The
phase II expansion takes (F1 + F2 + F3) clock cycles.
Same number of clock cycles is required by the
traceback phase. All unused cells are cleared in one
clock cycle in parallel SIMD mode. The cell clearing
has to be done three times for a three terminal net in
phase II. The data loading initially is O(NBl + NT),
where NBl is the number of block cells and NT is the

Table 1. State table for PE during phase I. (For

columns 3 and 4, values denote: nx_state, S0 S1,
F1 F2 F3, for X=’0’ And X=’1’)

Command

(Cmd)
PS, F1 F2 F3 X=’0’ X=’1’

Label_1 B, 000 B, 00, 000* L, 10, 100*

 T1, 000 T1, 10, 100 -

 L, 0 - - L, 00, 0 - - L, 10, 1 - -

 Bl, 000 Bl, 000 Bl, 00, 000

Label_2 B, 000 B, 00, 000 L, 10, 010

 T2, 000 T2, 10, 010 -

 L, - 0 - L, 00, - 0 - L, 10, -1-

 Bl, 000 Bl, 000 Bl, 000

Label_3 B, 000 B, 00, 000 L, 10, 001

 T3, 000 T3, 10, 001 -

 L, - - 0 L, 00, - - 0 L, 10, - -1

 Bl, 000 Bl, 000 Bl, 000

Any Label L, 111 CP, 01, 111 CP, 01, 111

Sint Outputs: No = Wo = Eo = So = ‘0’

Table 2. State table for ‘PE’ during traceback in
phase -II

Present

State

Gin=0 Gin=1

Pc=0 Pc=1 Pc=0 Pc=1

B B, 00 B, 00 -- -- -- --

L L, 00 L, 00 S, 10 Bl, 10

Bl Bl, 00 Bl,00 Bl, 00 Bl, 00

T S, 10 Bl, 10 S, 10 Bl, 10

S S, 00 S, 00 S, 11 S, 11
 * Nextstate, Gout St0

number of terminals. In the worst case this will be
close to O(n2) for n x n grid. But in practice it is much
less.
For a large net with say 200 terminals and 1,10,000
length, assuming 25MHz clock or 40ns time period, an
estimated time of 0.37sec would be required by PMR.
The storage elements will also increase, as 200
memory elements will be required in each PE.
Assuming 4000 x 4000 grid an estimated 3.2GB of
memory would be required. The size and complexity of
the controller would appropriately swell, as it has to
multiplex between 200 terminals.
Hence a more feasible solution would be to divide the
problem of size 200 terminals into clusters 5 or 10
closely spaced terminals and iteratively route each
cluster by the above method. A proper grouping of
terminals is necessary. This would improve the speed
and reduce the hardware. While the reduction in
hardware is understandable, the speed also increases
because the wavefronts for a 10 terminal net are much
smaller than a 200 terminal net. Also the multiplexing
will be within 10 terminals. After determining the route
for all the clusters, they can be joined by again going
for a CP in between the clusters and then joining them.

4. Results
The design of the multi-point PMR accelerator has

been coded in VHDL and synthesized using the Xilinx
ISE 8.2i targeting a Xilinx XC2VP30 Virtex-II Pro
FPGA, on a XUPV2P Virtex-II Pro development
board. The code has been simulated using Active
VHDL 6.2. Both simulation and synthesis were
performed with a 40ns timing constraint. Table 3
shows the device utilization summary for 4×4 and 8×8
grid sizes. The array unit includes the I/O unit.

Run Time Performance: From our simulation
results, for PMR, Center point is found in (n*d) clock
cycles where ‘n’ is the number of terminals and ‘d’ is
the numerical value of CP. Maximum number of clock
cycles to determine the path after the CP is found is
2(F1+F2+F3) for expansion and traceback together,
where F1, F2, F3 are the distances of the terminals T1,
T2, and T3 from the CP. Time for CP determination is,

397

Tp1 = n d * 40ns and for path determination phase is
Tp2 = 2(F1+F2+F3) * 40ns. Therefore total time Tp
(PMR) = Tp1 +Tp2 = nd + 2(F1+F2+F3) * 40ns. If
F1+F2+F3 is the Net-length (worst case), L, then Tp =
nd + 2L. For the case indicated in the Fig. (3) and Fig.
(4), for 25MHz clock the time taken is
((3*5)+2(5+1+4)) *40ns=35 * 40ns=1.4μsec.

We have theoretically evaluated the performance of
PMR and PAR-2 on 60 test cases of three pin net
circuits having average net length of 17 (net lengths
ranging from 9 to 41) on a grid size of 10 x10. The
obstacles (block cells) were uniformly distributed. The
algorithms were evaluated with 0%, 10%, upto 50%
block cells. The experiments were repeated for 15 x 15
and 20 x 20 grid sizes (nets of larger length) and a few
cases of more than three terminal nets. We found that
the mean of L/d =2.47 for three pin nets, for PMR.
Thus for three pin nets, Tp = 3 * L/2.47 + 2L = 3.21 *
L. The mean of L/d by our statistics is nearly
independent of the length of the net for three pin nets.
For terminal more than three, the value L/d was found
to increase in PMR. Performance of PAR-2 was
simultaneously evaluated for the above cases.

By our evaluation, PAR2 takes 2(F1+F2+F3) clock
cycles, both for phase I and phase II. Assuming same
clock of 40ns, PAR-2 takes 4*(F1+F2+F3) clock
cycles. Thus Tp (PAR-2) = 4L * 40ns. By our
statistical observations, PMR algorithm is faster than
PAR-2 by 18.75%, as is indicated in the figure 6. The
PMR is also observed to be faster than PAR2 for
terminals of degree less than 5. For more than 5
terminals we do not have performance measurement at
this point of time. But PMR can be very efficient if
routing of clusters of pins, as discussed in the previous
section can be adopted. The quality of routes obtained
is same for both algorithms for three terminal nets.
From our statistics, in 75% cases both algorithms
yielded same result, in 10% cases, the paths were
different, but had same length and corners (vias). In
10% cases, the PMR length was greater by 5%, and in
5% cases PAR-2 resulted in greater length by 8%.

Table 3. Device utilization summary of the total unit

 (clk 40ns)

Array
size

Control
Unit

LUTs/FFs/

latches

Array

LUTs/FFs/

latches

Total

LUTs/FFs/
latches

4X4 95/21/112 1906/96/457 2001/117/569

8X8 95/21/112 7392/384/1792 7487/405/1904

(a) (b)

Figure 6. shows the performance of PMR and

PAR-2 algorithms for three pin nets.

Thus, for PMR an overall increase in length is much
less than 1%. Where as 11.7% nets resulted in more
corners for PAR-2 against 8.3% nets of PMR. And
from our knowledge PAR-2 becomes order dependent
for more than three terminals and may not give an
optimal solution, and PMR is not order dependent.

 5. Summary and Conclusion

A new parallel processing wire routing algorithm for
multi-point nets, is described. The PMR algorithm can
find a path for multi-terminal nets having a quasi-
minimum Steiner tree. The new design requires fewer
clock cycles to find the shortest path between the
terminals than the existing parallel routing algorithms.

7. References

[1] C. Y. Lee, "An Algorithm for Path Connections and its

Applications," IRE Transactions on Electronic Computers vol.
EC-10, no. 2, 1961, pp. 346-365.

[2] S. Akers, "A Modification of Lee's Path Connection
Algorithm," IEEE Trans. Electronic Computers vol. EC-16, no.
2, pp. 97-98, 1967.

[3] M. Breuer and K. Shamsa, "A Hardware Router," Journal of
Digital Systems, vol. IV, no. 4, pp. 393-408, 1981.

[4] T. Ryan, and E. Rogers, “An ISMA Lee Router Accelerator”,
IEEE Design of Test Computers, pp 38-45, October 1987.

[5] T. Watanabe, H. Kitazava, and Y. Sugiyama, "A Parallel
Adaptable Routing Algorithm and its Implementation on a
Two-Dimensional Array Processor", IEEE Trans. CAD, vol.
CAD-6, no. 2, 1987.

[6] K. Suzuki, et. al., "A Hardware Maze Router with Application
to Interactive Rip-Up and Reroute," IEEE Trans. CAD, vol.
CAD-5, no. 4, pp. 466-476, 1986.

[7] J. A. Nestor, “A New Look at Hardware Maze Routing”,
Proceedings Great Lakes Symposium on VLSI, March 2002.

[8] W. Choi, and G. Sobelman, “Hardware Rip-up Router with
Concurrent Waveform Propagation”, Electronic Letters, Vol.
25 No. 6, pp373-374, 1989.

[9] M. Sarrafzadeh, and C. K. Wong, “An Introduction to VLSI
Physical Design”, McGraw-Hill, 1996.

[10] Chu, C., Yiu-Chung Wong, “FLUTE: Fast Lookup Table
Based Rectilinear Steiner Minimal Tree Algorithm for VLSI
Design”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 27, Issue 1, pp.70 – 83,
Jan. 2008.

398

Simultaneous Routing and Feedthrough Algorithm to Decongest Top Channel

Shashank Prasad
Cadence Design Systems

shasha@cadence.com

Anuj Kumar
University of Wisconsin Madison

kanujc@gmail.com

Abstract - In macrocell based SoC design, a routing plan to
decongest top channel is an important step during floor
planning. While previous approaches attempt at reducing
congestion of chip as a whole, there is no attempt to specifically
decongest top channel. We present an algorithmic approach to
decongest top channel by using very few feedthroughs. Results
show that compared to conventional methods, we can decongest
top channel by using 20% lesser feedthrough buffers, and
better top channel routing resource utilization.

1. Introduction

Due to enormous complexity of multi-million gate SoC
designs, a top down hierarchical approach is useful for
physical design. In this approach, a circuit is partitioned into
a set of functional blocks (also called macrocells). The
physical design flow of circuit (also called chip) is divided
into following phases: floor planning/placement, pin
assignment, partitioning, routing, assembly. In the floor
planning/placement step, the dimensions and locations of the
macrocells are determined. In the pin assignment step, the
locations of pins (or crossing points) on the macrocell
boundaries are determined. Partitioning divides the chip
resources to macrocells. Routing is done individually in
macrocells. It assigns routing regions for connecting the pins
of the same net, and generates the actual geometric layout
for the nets. Assembly merges macrocells back into a single
chip. Usually, there is some routing channel available
between macrocells for routing nets connecting two or more
macrocells, or for routing nets connecting top glue logic
with macrocells. In Figure 1A, macrocells are represented by
M1-M5; top channel is represented by rectangular mesh
outside macrocells. Nets b, c, d, e are connected to top glue
logic, while net a connects logic in two macrocells M1 and
M4.

As technology nodes are shrinking, SoC designs have
larger number of transistors, while there is competitive
pressure to reduce chip area. The routing resource in top
channel is thus shrinking. It is important to ensure that there
is no routing congestion in top channel. Otherwise, when
placed and routed macro-cells are finally assembled together,
there may not be enough routing resources to route all the
nets between macrocells.

In order to reduce top channel congestion, it is imperative
to push routes from top channel to channels inside nearby
macrocells. In Figure 1, 1A shows a Steiner [8] chip routing
plan. Figure 1B shows a no-feedthrough-scheme applied to
1A. In 1B, net a, which connects M1 and M4, is forced to go

through congested top channel. On the other hand, if net a is
subjected to feedthrough as in 1C, it can avoid top channel
congestion by taking the path inside macrocell M3. Note that
such feedthroughs also alter the hierarchical nature of the
design, in that two new pins are created for net a in M3.
Also most physical design tools require a feedthrough buffer
to be added in M3 for net a, to avoid verilog assign
statement, as they don’t have a good strategy to deal with
behavioral statements.

While feedthrough routes can effectively address top
channel congestion, but it also leads to following issues:
• Macrocell M3 is no longer the original functional block,

because now it has to route and optimize net a within
itself. This undermines the functional nature of M3 and
hierarchical nature of design.

• Too many feedthrough buffers could lead to over
utilization of macrocell real estate. (Figure 1C: E in
M3)

• Excess feedthrough buffers on very short nets could
lead to over buffering of the timing path, leading to
timing slack violation. (Figure 1C: net e near M4).

• Too many feedthrough routes could lead to under
utilization of top channel. (For example, top channel in
Figure 1C)

We have come up with an algorithm for chip route and

feedthrough planning, which leads to no congestion in top
channel while minimizing feedthrough routes and thus,
feedthrough buffers.

Much research has been done on simultaneous global
route planning and buffering. [1], [2] allow routes to go over
macrocells but uses restricted buffer blocks for feedthroughs.
A channel graph was used in [7] to perform the routing and
allowed macrocell re-shaping. [4] develops a multi-level
physical hierarchy generation algorithm integrated with fast
incremental global routing for directly updating and
optimizing congestion. A channel connection graph was used
as the global routing graph in [6], and feedthrough paths
inside macrocells are allowed in the algorithm. But, none of
these methods deal with routing congestion in hierarchical
physical design.

To handle multi layer layout pin assignment problem, [3]
developed an algorithm based on an effective multi layer
global router. It takes care of congestion hot spots while
planning global routes. However, it does not pay any special
attention or methodology to decongest top channel.

[5] describes a fast routing algorithm to generate a

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.83

399

hierarchically pure route topology (explained in Section
III-A). Based on this, we have developed a two pass
algorithm to decongest top channel. Using [5], we generate a
hierarchically pure route topology. In this route topology,
there is no over-the-macrocell route. However, as a result of
this route topology, top channel is deeply congested. In the
first pass, we sample over congested top channel grid cells,
and collect data on nets which are passing through them. In
the second pass, nets are then selectively ripped and
re-routed through adjoining macro cells to decongest top
channel. In doing so, very few feedthrough routes are used.
The algorithm also pays due attention to address issues
related to undue long routes, and timing violations on short
routes due to excessive buffering.

The rest of the paper is organized as follows. Section II

briefly reviews some feedthrough schemes on Steiner route
topology. Section III describes our route topology and
feedthrough algorithm. Section IV shows experimental
results on some industrial circuits. Section V concludes the
paper.

2. Steiner Routing and Feedthrough

Our goal is come up with an appropriate route topology
and feedthrough scheme which work together to predict and
decongest top channel. Figure 1A shows a Steiner route
topology. Figure 1B, 1C, 1D show various feedthrough
schemes applied on 1A.

Figure 1: 1A, 1B, 1C, 1D show various feedthrough schemes on a Steiner routed chip design

 Figure 1B shows the result of a no feedthrough scheme,
wherein all pure top nets (like b, c, d, e) as well as nets
interconnecting macrocells (like net a) are forced to avoid
over-the-macrocell routing. This leads to congestion in top
channel, denoted by C oval, and some long routes, denoted
by L oval. Figure 1C shows excessive feedthrough scheme
where all over-the-macrocell routes of 1A are subjected to

feedthrough. This leads to excessive feedthrough buffers in
M3, denoted by E oval, and feedthrough on short nets in
M4, denoted by S oval. Figure 1D shows a balanced
feedthrough scheme; where in only some
over-the-macrocell-routing of 1A is subjected to
feedthrough. For example:
• Net e is not subjected to feedthrough as that would

create buffer on short net, potentially leading to timing

400

violation.
• Net a is subjected to feedthrough, otherwise it would

lead to unduly long route (as shown in Figure 1B).
• Congestion shown in 1B is also avoided, as net c is

subjected to feedthrough.

3. Our Route topology and Feedthrough
algorithm

A. Hierarchically Pure Route Topology

[5] describes a PA (partition aware) routing model
which basically emulates the route topology which would
occur upon final assembly of routed macro cells (as
explained in the next paragraph). [5] describes a routing
algorithm to obtain this route topology upfront in the floor
planning stage itself. Here, we call it hierarchically pure
route topology. [5] shows that the run time to generate
hierarchically pure routing is comparable to that of a
prototype Steiner router used during in floor planning. It
ensures hierarchically pure routing for at least 95% of pure
top and inter macrocell nets. For rest of the nets, it follows
Steiner route topology.

Figure 2: 2A, 2B show various route topologies on chip

Steiner routing is shown in 2A. Hierarchically pure
routing is shown in 2B for the same design. In 2B, nets b,
c, d, e which connect to only top connection points (not
inside any macrocell), are routed in top channel only.
Similarly nets f, g, h, which only connect to connection
points completely inside a single macrocell, are routed
within their respective macrocell routing resources. Net a,
which interconnects two macro cells M1 and M4, is routed
in M1, M4 and top channel only. Compared to 2A, 2B is
useful in upfront prediction of top channel congestion and
even chip congestion. [5] describes in detail the algorithm
to come up with hierarchically pure route topology in a
fast and fairly accurate manner. Note that 2B also creates
unduly long routes, like net a (L oval), and excessive
congestion, like C oval. However, there is no
over-the-macrocell routing.

B. Hierarchically Pure Route Topology and

Feedthrough

Our algorithm starts with hierarchically pure route
topology as the starting point. It then, one-by-one, alters
this route topology to create over-the-macrocell routes,
with the aim to decongest top channel in the process. No
short net feedthrough routes are created, neither is there

any unnecessary under utilization of top channel.
Routing track is the smallest unit of routing resource.

Grid cell is an abstract data structure used to represent a
very small rectangular area. The chip routing resource
could thus be represented by an array of grid cells (shown
by the fine rectangular mesh in Figure 2A and 2B). Grid
cell can be thought as to contain tracks which are within
the boundaries of the grid cell across all routing layers. As
part of routing the design, most routers also maintain
congestion scores for every grid cell of the design. Also,
given a route topology, routers can easily update
congestion scores of grid cells. CongestionScore(g) tells
how many extra routes are passing through grid cell g than
what all its tracks can accommodate. Given a net’s routing,
it is very easy to extract as to which grid cells it is passing
through.

Based on above terminology, the algorithm is as
follows:
ROUTING _ALTERATION_AND_FEEDTHROUGH () {

1. Build hierarchically pure route topology.
2. Remove unduly long nets from top channel: If

routing length of a net is greater than its Steiner
routing length (by a tunable factor, default value is
1.2), then delete its routes. This step is done only
for pure top net or nets inter connecting macro cells.

401

(i.e., Nets b, c, d, e, a in Figure 2B).
3. Update congestion scores of top channel grid cells

to reflect congestion as per current route topology.
If a grid cell is under utilized (i.e., not congested),
then set its CongestionScore to 0.

4. Create a sorted list of congested top channel grid
cells: say, GCL.

5. NET_PROPENSITY_TO_CONGEST(): Create a
list of nets (say, NL) passing through any grid cell
in GCL, and annotate congestion propensity scores
on these nets, denoted by CongestionPropensity (n).

6. Sort NL in order of decreasing
CongestionPropensity (n).

7. OPTIMAL_NETS_TO_FEEDTHROUGH(): Find
an optimal subset of nets (say, ONL) such that when
their routes are deleted, it reduces the
CongestionScore(g) score of every grid cell in GCL
to <= 0, i.e., it decongests top channel.

8. Delete routes of ONL.
9. Reroute these nets in ONL in a Steiner route

topology, creating over-the-macrocell routes.
10. Feedthrough these over-the-macrocell routes into

macrocells.
}

Step 2 and 3 can easily be done in linear time with

respect to number of nets and grid cells respectively. Step
4 and 6 require sorting. Steps 5 and 7 are described below.

Algorithm NET_PROPENSITY_TO_CONGEST() {

1. For each net n of the design {
2. CongestionPropensity(n) = 0
3. }
4. For each grid cell g in GCL {
5. For each n crossing over g {
6. increment CongestionPropensity(n) by 1
7. }
8. }
}

Algorithm OPTIMAL_NETS_TO_FEEDTHROUGH () {
1. For each net n of the design {
2. Remove any bookmark on n
3. }
4. For each grid cell g in GCL {
5. o Find set of nets from NL passing through g.
6. Call this set as gN.
7. o Suppose there are dN nets from gN
8. which are already bookmarked to be deleted.
9. o Decrement CongestionScore(g) by dN.
10. o If CongestionScore(g) > 0, then {
11. o Sort gN in decreasing order.
12. o Bookmark first CongestionScore(g) nets
13. from gN to be deleted.
14. }
15. }
16. For each net n of the design {
17. If (n is bookmarked) add it to ONL

18. }
}

Algorithm OPTIMAL_NETS_TO_FEEDTHROUGH

iterates over congested grid cells, and deletes just enough
nets from each grid cell, so that its CongestionScore
becomes <= 0. Care is taken to ensure that an already
deleted net is accounted for while updating
CongestionScore of grid cells. This makes it a one pass
iteration on each grid cell of GCL. Also, nets with
maximum propensity to congest the design, as reflected by
CongestionPropensity(n), are deleted in priority over
others.
ROUTING_ALTERATION_AND_FEEDTHROUGH thus
deletes just enough nets to balance top channel routing
congestion. By virtue of hierarchically pure route topology,
no within-macrocell nets (like f, g and h) are routed in top
channels. So, they are never picked for deletion and
feedthrough. In Figure 2B, short nets, like e will normally
have less CongestionPropensity than long nets like a. So, it
is unlikely that e will be subjected to feedthrough unless
they are really congesting the design. This ensures that the
algorithm does not create any unnecessary short net
feedthrough.

4. Results

We aim to demonstrate two things via experimental
results. First, that utilizing feed through routes during
chip global routing leads to significantly decreased top
channel congestion. Second, that our feedthrough
scheme indeed balances top channel congestion with
significantly less number of feedthroughs. Actually, this
latter point is the main thesis of this paper. To
accomplish these objectives, we tested our program on
industrial circuits shown in Table I. The net lists for
these circuits already had a floor planning, placement
and chip Steiner routing done. On the basis of this
routing, we did pin assignment for macro cells, and then
converted macro cells into hard blocks, and again routed
the chip. Since the macro cells are now opaque hard
blocks, this re-routing is done in top channels only. We
call this Scheme 1 and measure top channel congestion
at this point (and some more routing parameters as
shown in Row1 of Table II). We repeat the above
exercise once again, but this time before we convert
macro cells into hard blocks, we insert feed through
routes in macro cells, against those routes which go
over the macro cells. Pin assignment and routing is then
performed, after which top channel congestion is again
measured (Scheme 2). Finally, once again, we repeat
the above exercise, but this time, we use hierarchically
pure route topology and
ROUTING_ALTERATION_AND_FEEDTHROUGH
to balance top channel congestion with feed through
routes (Our Algorithm).

402

 Table 1: Circuit Information

Circuit
name

Macrocells Standard cells
(in millions)

Nets
(in millions)

Pure Top and Inter
Macrocell nets

Die area
(sq mm)

Top Channel area
 (sq mm)

Ckt1 2 0.1 0.125 ~700 9 0.9
Ckt2 6 1.25 1.35 ~4000 64 6.1
Ckt3 8 6.1 7.5 25000 196 17.1

Table 2: Comparison of Top Channel Congestion, # of Feedthrough, Short Feedthrough, and Channel Utilization

Schemes Top channel congestion
(Ckt1, Ckt2, Ckt3)

of Feed through
buffers

of Feed through on
short nets

Top channel
utilization

CPU run time
(in minutes)

Scheme 1 (7%, 23%, 28%) Not Applicable Not Applicable Over congested (4, 22, 127)
Scheme 2 (0%, 0%, 0%) (817, 4221, 5719) (131, 719, 821) (13%, 18%, 20%) (6, 35, 191)

Our Algorithm (0%, 0%, 0%) (503, 3339, 4519) (54, 158, 203) (78%, 85%, 81%) (8, 41, 217)

The top channel congestion for the three schemes is
shown in Table II. Column 2 shows % of top channel grid
cells which are congested. It clearly shows that there is no
congestion in top channel when feedthroughs are used. It
also shows that our scheme could achieve this with around
23% less feedthroughs compared to Scheme 2. Also, the
channel routing resource utilization is better (80% vs.
20%) in our algorithm.

Table II also compares number of nets subjected to

feedthrough, whose routing length is less than 400 microns.
Doing feedthroughs on such short nets could result in
timing slack violation due to over buffering of its timing
path. Our algorithm does significantly better, over Scheme
2, by picking very few such nets for feed through (4% vs.
16%)

Table II compares CPU run time. Our algorithm takes
around 10% more run time than Scheme2. Considering
absolute run times involved, this is very much acceptable
in floor planning stage.

5. Summary and Conclusions

We presented an algorithm to balance top channel
congestion while minimizing the number of feedthrough
routes. In the first pass, we analyze congestion hot spots
and congested grid cells in top channel. Nets are given
priority as per their propensity to pass through congested
areas. In the second pass, a rip and re-route strategy is
performed on high priority nets till top channel congestion
is balanced. Previous approaches have not dealt with top
channel congestion, and never made any attempt to do
feedthrough for congestion balancing. This scheme
ensures that minimum number of feedthrough routes is
inserted. It also ensures that no undue feedthroughs are

inserted on very short nets, which could otherwise lead to
slack timing violation. The memory and run time of our
scheme is comparable to that of prototype global router. It
makes this scheme suited for industry designs with up to
40 macrocells and 5 million nets. While balancing top
channel congestion, it can also be used as seed input for
other floor planning steps like final pin assignment and
timing budgeting.

6. References

[1] Hai Zhou, Wong D. F., Liu I-Min, and Aziz Adnan,
"Simultaneous Routing and Buffer Insertion with Restrictions on
Buffer Locations", in IEEE Transaction On Computer Aided
Design of Integrated Circuits And Systems, Vol. 19, No. 7, July
2000, pp. 819-824
[2] ----, "Simultaneous routing and buffer insertion for high
performance interconnect", in Proc. 6th Great Lakes Symp. VLSI,
1996, pp. 148-153.
[3] Liu L. E. and Sechen C., "A Multi-layer Chip-level Global
Router," Fifth ACM/SIGDA Physical Design Workshop, 1996
[4] Chang C.-C., Cong J., Pan Z. D., Yuan X., "Physical
Hierarchy Generation with Routing Congestion Control", in Proc.
International Symposium on Physical Design, 2002
[5] Prasad Shashank, "Fast Congestion Aware Routing for Pin
Assignment", IEEE VLSI Design 2008, pp. 343-347
[6] Wang L. Y., Lai Y. T., and Liu B. D., "Simultaneous pin
assignment and global wiring for custom VLSI design", in Proc.
IEEE Int. Symp. Circuits Systems, vol. 4, pp. 2128-2131, 1991.
[7] Koide T., Wakabayashi S., Yoshida N., "An integrated
approach to pin assignment and global routing for VLSI
building-block layout", in Proc. European Conf. Design
Automation with the European Event in ASIC Design, Feb. 1993,
pp. 24-28.
[8] http://en.wikipedia.org/wiki/Routing_(EDA)

403

Session 6C

Low Power Design

Metric Based Multi-Timescale Control For
Reducing Power In Embedded Systems

Nitin Kataria, Forrest Brewer, João Hespanha, and Timothy Sherwood
Engineering I, University of California, Santa Barbara, CA 93106, USA

nitin@engr.ucsb.edu, forrest@ece.ucsb.edu, hespanha@ece.ucsb.edu, sherwood@cs.ucsb.edu

Abstract—Digital control for embedded systems often re-
quires low-power, hard real-time computation to satisfy high
control-loop bandwidth, low latency, and low-power require-
ments. In particular, the emerging applications of Micro Electro-
Mechanical Systems (MEMS) sensors, and their increasing
integration, presents a challenging requirement to embed ultra-
low power digital control architectures for these lithographically
formed micro-structures. Controlling electromechanical struc-
tures of such a small scale, using naive digital controllers, can
be prohibitively expensive (both in power and cost for portable
or battery operated applications.) In this paper, we describe the
potential for control systems to be transformed into a set of co-
operating parallel linear systems and demonstrate, for the first
time, that this parallelization can reduce the total number of
instructions executed, thereby reducing power, at the expense
of controlled loss in control fidelity. Since the error tolerance
of linear feedback control systems is mathematically well-
posed, this technique opens up a new, independent dimension
for system optimization. We present a novel Computer-Aided
Design (CAD) method to evaluate control fidelity, with varying
timescales on the controller, and analyze the trade-off between
performance and power dissipation. A CAD Metric for control
fidelity is proposed and we demonstrate the potential for
power savings using this decomposition on two different control
problems.

I. INTRODUCTION

Digital feedback controllers make up a substantial part of
modern embedded systems like ink-jet printers and anti-lock
brake systems in cars. Their discrete-time realization, largely
designed using classical unit-time sampling techniques, tends
to dominate the design performance criteria because of real-
time sampling and actuation constraints. These controllers are
often implemented on micro-controllers for low bandwidth
and digital signal processors or Field-Programmable Gate
Arrays (FPGA) for higher bandwidth requirements. Their
implementation exploits the linear systems approach for
control realization by performing matrix-multiplication based
updates of a set of state variables, or direct digital realization
as an Infinite Impulse Response (IIR) digital filter.

In practice, however, such a strategy can lead to very
inefficient, impractical, and expensive designs. For example,
the performance of Atomic Force Microscopy (AFM) de-
pends on the performance of the feedback control of the

scanning cantilever, which is based on distributed FPGA
implementations of the control algorithm to maintain the
required loop latency. Another example is the design of
portable MEMS sensors, whose diminutive physical size
makes very high demands on loop-bandwidth requirements
from the controller [1], [2]. Typically, a linear size scaling of
a MEMS device linearly increases the required control-loop
bandwidth, and with added requirements of noise shaping and
filtering, makes the control algorithms computation intensive,
running at sample rates of the order of a few MHz. These
strict design requirements seriously hamper the development
of small, portable MEMS based systems. Indeed, all current
closed-loop MEMS designs are based on analog controller
designs.

A promising alternative is to use a custom low-power hard-
ware multi-threaded architecture [3]. Such an architecture
enables processes that can be interrupted and interleaved at
the granularity of single instruction cycles to meet timing
(jitter) obligations. Further, we can substantially reduce la-
tency and power by partitioning the control system based on
bandwidth requirements and by performing only the most
critical computations on the fastest thread, letting the slower
parts run on slower threads. This nontrivial and difficult to
analyze technique lowers the total number of instructions
executed per second, which translates directly to significant
power savings.

It is also possible to attempt algebraic manipulation [4] of
the control algorithm to reduce latency and power without
loosing significant control fidelity. However, this technique
has several problems: First, even if the transformation is
algebraically correct, round-off error and numerical stability
issues often lead to unstable results [5]. Second, the space
of possible control algorithms, which might be suitable for
control decomposition, is very large – only a minuscule
fraction of which are algebraically equivalent to yield the
desired control law. Instead, we posit that it should be
possible to use well defined controller performance metrics
to evaluate the fidelity and power dissipation of a given
embedded control design. This approach effectively increases
the level of abstraction in the design since a candidate
controller need not be equivalent in any sense other than

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.16

407

the evaluation of the performance metric.
In this paper, we take the first steps toward this approach

by using a well defined metric for control stability and
closed-loop performance. We use an exhaustive search based
computer-aided design (CAD) method for exploring the
design space by running a partitioned controller at different
rates of computation. The metric allows us to explore trade-
offs between performance and computation power and clearly
shows that we can raise the level of abstraction for control
design and optimization, beyond traditional methods. Rest of
the paper is organized as follow: Section II present related
work; Section III introduces the H-infinity framework, a basic
control design methodology and performance metric with two
case studies; Section IV presents our analysis of computation
cost relative to performance within a bounding envelope of
deviation from an ideal continuous controller. Finally, to
conclude, we also demonstrate the use of Voltage Frequency
Scaling (VFS) to reduce computation power significantly.

II. RELATED WORK

Ad hoc techniques for low power multi-rate control have
been used to implement a hard disk drive (HDD) controller in
[6]. Ad hoc techniques for multi-rate control with interlacing
of computations have been simulated and analyzed in [7],
where the results show that the control performance deteri-
orates marginally with significant reduction in computation
energy. Multi-rate digital control for motion control applica-
tions has been demonstrated, through various examples, in
[8].

Software based power estimation for optimizing power
in embedded systems is discussed in [9], [10]. An op-
timizing compiler, that minimizes execution time to save
power has been proposed in [11]. A multiple clock and
voltage domain, power-aware, tile-based embedded multi-
processor architecture has been proposed and analyzed in
[12]. Architectural trade-offs for MEMS closed-loop control
have been presented in [13], and a case study of hardware
multi-threaded architectures for control has been discussed
in [3].

III. MULTI RATE DIGITAL CONTROLLER

IMPLEMENTATION

A. Control Design

The H-infinity framework has been used as the basic
control design methodology and the control performance
metric [14]. In this type of design, one starts by determining
the points at which disturbances and noise are most likely
to enter the system dynamics and then designs a feedback
controller that minimizes the effect of these disturbances on
specific signals that one wants to regulate, typically tracking
errors (i.e., the difference between a signal and its desired
value) and control signals. Specifically, denoting by w the
vector of exogenous noise/disturbance signals that affect the
dynamics of the process, sensors, and actuators and by z the

vector of signals that one wants to regulate, an H-infinity
controller minimizes the worst-case root-mean-square gain

J = max
w

(∫ ∞
0 ‖z(t)‖2dt

) 1
2

(
∫ ∞

0 ‖w(t)‖2dt)
1
2

, (1)

where the maximum is taken over all possible disturbance
signals w. One can capture band-limited disturbances by
introducing weighting pre-filters in w and one can also
introduce weighting post-filters in z to capture the fact that
one may only want to regulate this signal tightly over specifc
bands of frequency. The value in equation (1) obtained by a
specific controller is called the H-infinity norm of the closed-
loop system.

For linear time-invariant continuous-time processes, the
controller that minimizes the H-infinity norm is also linear
time-invariant and operates in continuous time, thus requiring
an infinite amount of computation. In practice, this cannot
be implemented and thus one needs to approximate this
continuous-time controller by a discrete-time controller that
can be implemented digitally. Since this is not an optimal
continuous-time controller, the discrete-time digital controller
will not be able to achieve the minimum value for the H-
infinity norm in equation (1), but hopefully does not increase
it by too much. A side effect of this analysis is the generation
of a lower bound for fidelity allowing derivation of sensible
trade-offs.

Traditionally, a digital controller is obtained by discretizing
a continuous-time controller using the zero-order-hold (ZOH)
method with a fixed sampling interval T . For sufficiently
large sampling rate, the resulting closed-loop exhibits an
H-infinity norm very close to that of the continuous-time
controller. However, if one has computational constraints
that limit the sampling rate, then the performance may
degrade significantly and may result in an unstable closed-
loop system.

B. Multi-rate Digital Implementation

Here, we propose an alternative approach that is motivated
by the observation that generally the optimal continuous-time
controller exhibits a few high-frequency modes that need
to be implemented at a high-sampling rate, while its low-
frequency modes can be implemented at a lower sampling
rate. In particular, suppose that the transfer function of
the continuous-time controller is denoted by K(s) and that
we perform a partial fraction expansion to decompose this
transfer function as a sum of two transfer functions as:

K(s) = K1(s)+ K2(s)

where K1(s) is a first-order transfer function whose single
pole is the fastest pole of K(s) and K2(s) = K(s)−K1(s).
When the fastest pole of K(s) has a non-zero imaginary part,
then K1(s) is a second-order transfer function with the two
fastest (complex conjugate) poles of K(s). For digital imple-
mentation, we now have two degrees of freedom in selecting

408

the sampling rate, as we can discretize and implement K1(s)
and K2(s) with two different sampling intervals T1 and T2,
respectively.

C. Case Studies

We use two case studies to demonstrate the benefits that
can be drawn from this approach: the position control of
Quanser’s DC servo motor [15] and the control of a MEMS
tunneling accelerometer [16].

a) DC servo: Quanser’s DC servo motor can be mod-
eled by the following second-order transfer function from the
input voltage to the shaft angle as:

G(s) =
500

s(s+ 53.5)
.

For the purposes of H-infinity design, we considered the
effect of an additive input disturbance with energy concen-
trated below 100 rad/s (which is roughly twice the system’s
bandwidth) and flat-spectrum measurement noise with an
amplitude 100 times smaller than that of the disturbance.
The signals to be regulated by the H-infinity controller are
the shaft angle and the applied voltage. Through the use of a
weighting post-filter we mostly penalized the control signal
at frequencies above 1000 rad/sec to prevent high frequency
noise to flow through the feedback loop. These design choices
led to the following H-infinity controller:

K(s) =
−7.51(s+ 1001)(s+ 92.01)(s+73.99)

(s+ 124.3)(s2 + 317.9s+ 4.62e04)

which achieved an optimal H-infinity norm of Jopt = .1505.
For the multi-rate implementation, this controller was decom-
posed as:

K(s) = K1(s)+ K2(s)

K1(s) = −7.51(s+945.8)(s+32.72)
s2+317.9s+4.62e04

, K2(s) = −482.33
s+124.3

It is interesting to note that although the poles of K1(S)
(with absolute value 215rad/sec) are not much faster than
those of K2(s), this decomposition can still lead to significant
computational savings, as we shall see below.

b) MEMS tunneling accelerometer: The MEMS tunnel-
ing accelerometer described in [16] is analyzed similarly. In
this type of accelerometer, the feedback controller should use
the applied voltage to cancel acceleration and one effectively
gets the readout equation:

Wacc(s) ≈−187.6V app(s).

where Vapp(s) is the control voltage.
For the purpose of H-infinity design, the goal is to reject

from the measured voltage the effect of acceleration, as well
as noise. In constructing the vector w of exogenous inputs,
noise terms were scaled to have unit standard deviation [16].
Additionally, a fictitious low-frequency noise term is added
to the measured voltage, to make the controller insensitive
to low frequency measurement biases such as 1/f amplifier

noise. These design choices led to the following H-infinity
controller:

K(s) = −1.21e04(s+6.29e04)(s+5.78e04)(s2+5239s+6.95e08)
s(s2+1.14e05s+4.41e09)(s2+2.23e05s+2.01e10)

which achieves an optimal H-infinity norm of Jopt = 4.6298.
For the multi-rate implementation, this controller is
decomposed as:

K1(s) = −1.41e04(s+2.91e04)
s2+2.23e05s+2.01e10

K2(s) = 2.01e03(s+4.09e04)(s−1.85e04)
s(s2+1.14e05s+4.42e09)

In this case as well, the poles of K1(s) (141881 rad/sec)
are not much faster than those of K2(s) (66478 rad/sec) and
yet significant computational savings can be achieved with
this decomposition.

IV. MODEL FOR COMPUTATION COST

The model for computation power cost focuses on the ex-
ecution of the control algorithm and conservatively assumes
that the cost of data acquisition and actuation is constant.
Both examples are Single Input Single output (SISO) control
systems, where the decomposed controllers share the same
input, and their outputs are added together to generate the
control output. The two controllers run as two separate
threads of execution on two similar processors with no
communication except the summation of the outputs, which
is done in the faster thread. For the purpose of implementing
digital control, the above two example controllers are dis-
cretized using zero-order-hold (ZOH) and implemented as
shown in Figure 1.

A. Instruction Count

As a first order approximation of the computation cost,
we determine the total number of processor instructions per
second executed to implement a given control algorithm.
For the purpose of our model it is convenient to implement
the controller as cascaded, direct form II, structured second
order sections (SOS), also known as Biquads (Figure 2) on
a processor.

To evaluate instruction count, we used a Texas Instruments
TMS320C2801 (Digital Signal Controller), which is a 32-
bit, 8-level deep pipelined architecture, offering up to 100

Controller Output

1

Zero -Order
Hold 4

Zero -Order
Hold 3

Zero -Order
Hold 2

Zero -Order
Hold 1

Discrete
Transfer Fcn (Slow)

z +a1.z+a22

z +b1.z+b22

Discrete
Transfer Fcn (Fast)

z +a1.z+a22

z +b1.z+b22

Controller Input

1

Figure 1. Parallel form decomposed controller.

409

Yk+1 (n)

Z-1

Z-1

Yk(n) 1

B1k

B2k

A1k

A2k

Figure 2. Structured second order biquad.

MIPS of performance and an ARM7TDMI, a 32/16-bit,
RISC architecture offering up to 130 MIPS of performance.
The total number of instructions required to implement a
biquad section on each processor is determined through their
individual library assembly routines [17], [18]. In Table I we
list the total number of biquad sections needed to implement
our control examples and the total number of instructions
executed per sample time on the two processors. For a single-
rate controller running at a frequency Fs and its decomposed
version running at frequencies Fs1 (fast) and Fs2 (slow),
the total number of instructions per second is determined as
follows:

• Single-rate: Fs * instructions per biquad * number of
biquad sections

• Multi-rate: Fs1 * instructions per biquad * number of
biquad sections (fast) + Fs2 * instructions per biquad *
number of biquad sections (slow)

Searching the sampling parameter space (sample time pairs
for the fast and slow controllers) of the H-infinity framework,
we generate a family of curves for the power/performance
trade-off. It is then easy to determine Pareto optimal
points suitable for controller realization. Figure 3 shows
the computation-cost/performance trade-off for the DC servo
motor control, where, the H-infinity norm is plotted against
the total number of instructions/second (TMS320C2801) for
a single-rate controller, and a multi-rate controller running at
different rates of computation. The plot highlights the family
of curves and the Pareto optimal points for single-rate and
multi-rate implementation of control.

B. Power Estimation Model

The power estimation model measures power consumption
of each thread, assumed to be running on individual pro-

Table I
TOTAL NUMBER OF BIQUAD SECTIONS AND INSTRUCTION COUNT PER

BIQUAD

Example Controller Biquad Instr. count Instr. count
order sections C2801 ARM7TDMI

DC servo 3 2 56 54
MEMS Accel. 5 3 79 81

cessors in an architecture similar to Synchroscalar [12]. Al-
though different strategies for realizing digital control would
result in a different mix of instructions, and hence different
power consumption, choosing the well studied biquad ensures
that realistically optimized estimates can be determined.
It is important to note that by decomposing the control,
we benefit from reduced computation order in addition to
enabling multi-rate computation. Therefore, once we know
the total number of instructions/second and the instruction
distribution for a control realization, we can use the results
from a cycle accurate energy consumption measurement
of a processor instruction set [19] to estimate the power
dissipation. Figure 4 illustrates the Pareto optimal points for
the case study of MEMS accelerometer control where H-
infinity norm is plotted against the total power dissipation
for an ARM7TDMI processor.

In Table II we show the computation cost for DC motor
control, and, compare the results for the single-rate uniformly
sampled controller against a few configurations of the multi-
rate implementation, for near similar values of H-infinity
norm. It is interesting to note that performance is non-
monotone with sample rates and that careful selection of
rates can lead to higher overall fidelity than is achievable
by single-rate sampling. In Table III we show the power
consumption and the H-infinity norm for the MEMS single-
rate controller versus a few configurations of multi-rate
controller, implemented on an ARM7TDMI.

C. Voltage Frequency Scaling

In this section we postulate that an architecture similar to
Synchroscalar [12] can be used to implement decomposed
control algorithms to further reduce power. Each thread
of computation is mapped onto a different processor core
running at its optimized voltage and frequency requirements.
The voltage/frequency pairs are statically scheduled after
determining the real-time requirement of control loops. This

Table II
COMPARISON OF ESTIMATED TOTAL NUMBER OF

INSTRUCTIONS/SECOND EXECUTED BY SINGLE-RATE AND MULTI-RATE

CONTROLLERS USING TMS320C2801

Single-rate Multi-rate

Ts H-inf. Instr. / Ts1(ms) Ts2(ms) H-inf. Instr. /
(ms) sec. (fast) (slow) sec.

1 0.24 53000 1 4 0.25 41250
1 6 0.26 38478
1 14 0.31 35343

2 0.34 28000 2 4 0.33 24750
2 8 0.35 20625
2 11 0.37 18843

3 0.45 18648 3 5 0.41 17589
3 16 0.47 10593
3 18 0.48 10065

4 0.56 14000 4 8 0.51 12375
4 14 0.55 10593
4 18 0.61 10065

5 0.69 11200 5 8 0.64 10725

410

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

Number of Instructions/Second TMS320C2801

H
−

in
fin

ity
 n

or
m

Control Performance Evaluation for DC Motor

10

 7

 5

 4

 3

 2 1

 1, 2

 1,14 1,18

 1,24

 2, 1 2, 3 2, 4 2, 5

 2, 6

 3, 1 3, 2 3, 4 3, 5

 3, 8

 3,24 4, 1 4, 2 4, 5

 5, 1 5, 2 5, 3 5, 6

 5,40
 6, 1 6, 2 6, 3 6, 4

 6, 8

 8, 1 8, 2 8, 3
 8, 4

 8, 5
 8, 6

11, 1
11, 211, 3

14, 1

14, 2

14, 4

14, 6

18, 1

18, 2

18, 3

18, 4
24, 1

24, 2

11,11

 8,40

 8,24

 6,24

 6,18

 6,14 5, 8 4,24
 4,18

 4,14
 4, 8

 3,18

 3,11
 2,18

 2,14

 2,11

 2, 8

 1,11
 1, 8

 1, 6 1, 5

 1, 4 1, 3

continuous−time controller
discrete time controller (1 [ms])
single rate pareto optimal curve (T [ms])
multi rate pareto optimal curve (T1,T2 [ms])
multi rate (T1,T2 [ms])

Figure 3. DC Motor performance versus instruction count trade-off. Increasing values of H-infinity norm indicate decreasing control performance.

Table III
COMPARISON OF ESTIMATED POWER CONSUMED BY COMPUTATIONS IN

SINGLE-RATE AND MULTI-RATE CONTROLLERS USING ARM7TDMI

Single-rate Multi-rate

Ts H-inf. Power Ts1 (μs) Ts2 (μs) H-inf. Power
(μs) (μW) (fast) (slow) (μW)

5 6.08 10782 5 10 7.46 7188
5 15 10.59 6090

10 11.46 5391 10 20 11.83 3594
10 25 16.55 3292
10 30 20.05 3234

15 30.65 3494 15 20 23.92 2994
15 25 18.71 2635
15 30 17.79 2395

75 43.37 718 75 100 44.85 638

approach is different from Dynamic Voltage Frequency Scal-
ing (DVFS) [20].

Advantages of statically scheduled voltage frequency pairs
are more prominent if we consider, for example, a compu-
tation architecture that needs to control a 3-Dimensional (3-
D) MEMS accelerometer. From our MEMS control example,
we needed a fifth-order controller for 1-Dimensional (1-
D) control, therefore, for a 3-D MEMS accelerometer, we
would need to execute at least three times the total number
of instructions executed for the 1-D controller, within the
same execution deadline. Such a controller would require
a very fast processor, consuming a lot of power. Instead,
we can partition each fifth-order controller, like before, into
two separate threads, and run them individually as three fast
and three slow threads on Synchroscalar. Table IV shows the

power consumption of a 3-D MEMS controller implemented
as a single thread of execution versus six separate threads of
execution, running at different rates on Synchroscalar.

V. CONCLUSIONS

In this work, we have shown that it is possible to raise
the level of abstraction in the design power analysis for
linear feedback controllers in a way that directly relies on
well-known metrics for the design of such controllers. This
is in contrast to algebraic methods which can reach only a
small fraction of the same design space. The new techniques
exploit simple multi-thread or multi-core architecture tricks
to allow practical implementation where dependence of the
partitioned controllers is minimal. Using these techniques,
very substantial power savings are obtained in a way that is
independent from conventional algebraic tricks such as sub-
expression decomposition and related high-level synthesis
techniques. Although the current approach is exhaustive,
for practical scale designs it can be performed in a very
reasonable amount of time. Further work in this area will
likely target more efficient exploration techniques as well

Table IV
ESTIMATED POWER CONSUMED BY A 3-D MEMS CONTROLLER

Controller Thread Total Cycle Volt. Freq. Power
type count cycles time (V) (MHz) (mW)

Single-rate
Ts (5μs) 1 531 9(ηs) 0.8 120 23.17
Multi-rate
Ts1 (5μs) 3 (fast) 117 85(ηs) 0.7 10 14.14

Ts2 (10μs) 3 (slow) 354 85(ηs)

411

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

Power Consumption (mW) ARM7TDMI

H
−i

nf
in

ity
 n

or
m

Control Performance Evaluation for MEMS Accelerometer

100

 95

 90

 80
 75

 15

 10

 5

 5, 20

 5, 25

 5, 30

 5, 35

 5, 40

 5, 45

 10, 5

 10, 15

 10, 30

 10, 35

 10, 40

 15, 20

 15, 25

 15, 35

 15, 40

 20, 25

 20, 45

 25, 35

 25, 45

 25, 50

 30, 40

 30, 50

 35, 45

 40, 50

 40, 60

 45, 60

 60, 80
100,100

 95, 95

 90, 90 75,100

 85, 85

 80, 80 75, 75

 30, 45

 25, 40

 20, 40

 20, 35 20, 30

 15, 30
 10, 25

 10, 20

 10, 10
 5, 15

 5, 10
 5, 5

continuous−time controller
discrete time controller (5 [us])
single rate pareto optimal curve (T [us])
multi rate pareto optimal curve (T1,T2 [us])
multi rate (T1,T2 [us])

Figure 4. MEMS accelerometer performance versus power consumption trade-off. Increasing values of H-infinity norm indicate decreasing control
performance.

as alternative design metrics suitable for sensors and other
related designs.

REFERENCES

[1] M. K. L. O.-R. K. Turner, “Robust feedback control design of an ultra-
sensitive, high bandwidth tunneling accelerometer,” American Control
Conference, 2005. Proceedings of the 2005, vol. 6, pp. 4176– 4180,
June 2005.

[2] J. Bryzek and E. Abbott, “Control issues for mems,” in Proc. of the
42nd IEEE Conference on Decision and Control, 2003, pp. 3039–3047.

[3] G. Hoover, T. Sherwood, and F. Brewer, “A case study of multi-
threading in the embedded space,” in CASES ’06: Proceedings of
the 2006 international conference on Compilers, architecture, and
synthesis for embedded systems, 2006, pp. 357–367.

[4] A. Hosangadi, F. Fallah, and R. Kastner, “Common subexpression
elimination involving multiple variables linear dsp synthesis,” in ASAP
’04: Proceedings of the Application-Specific Systems, Architectures and
Processors, 15th IEEE International Conference. Washington, DC,
USA: IEEE Computer Society, Sept. 2004, pp. 202–212.

[5] N. Sureshbabu, B. Powell, and M. Dunn, “An integrated procedure
for fixed-point control implementation,” American Control Conference,
1998. Proceedings of the 1998, vol. 5, pp. 3096–3100 vol.5, 21-26 Jun
1998.

[6] J. Ding, F. Marcassa, S.-C. Wu, and M. Tomizuka, “Multirate control
for computation saving,” Control Systems Technology, IEEE Transac-
tions on, vol. 14, no. 1, pp. 165–169, Jan. 2006.

[7] S.-C. Wu and M. Tomizuka, “Multi-rate digital control with interlacing
and its application to hard disk drive servo,” American Control Con-
ference, 2003. Proceedings of the 2003, vol. 5, pp. 4347–4352 vol.5,
4-6 June 2003.

[8] M. Tomizuka, “Multi-rate control for motion control applications,”
Advanced Motion Control, 2004. AMC ’04. The 8th IEEE International
Workshop on, pp. 21–29, 25-28 March 2004.

[9] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4,
pp. 437–445, Dec 1994.

[10] M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis
and minimization techniques for embedded dsp software,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 5, no. 1,
pp. 123–135, Mar 1997.

[11] J. Russell and M. Jacome, “Software power estimation and optimiza-
tion for high performance, 32-bit embedded processors,” Computer
Design: VLSI in Computers and Processors, 1998. ICCD ’98. Pro-
ceedings., International Conference on, pp. 328–333, 5-7 Oct 1998.

[12] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, I. Jones,
L.W., D. Franklin, V. Akella, and F. Chong, “Synchroscalar: a mul-
tiple clock domain, power-aware, tile-based embedded processor,”
Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pp. 150–161, 19-23 June 2004.

[13] G. Hoover, T. Sherwood, and F. Brewer, “Towards understanding ar-
chitectural tradeoffs in mems closed-loop feedback control,” in CASES
’07: Proceedings of the 2007 international conference on Compilers,
architecture, and synthesis for embedded systems, 2007.

[14] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
New Jersey: Prentice Hall, 1996.

[15] “Rotary servo plant with encoder, srv02.” [Online]. Available:
http://www.quanser.com/

[16] C. B. K. Å. F. B. L.A. Oropeza-Ramos, N. Kataria and K. Turner,
“Noise analysis of a tunneling accelerometer based on state space
stochastic theory,” in Solid-State Sensor, Actuator, and Microsystems
Workshop, Hilton Head, SC June 2008.

[17] C. W. Andrew N. Sloss, Dominic Symes, “Arm system
developer’s guide designing and optimizing system software,”
http://www.arm.com, Advanced RISC Machines Ltd., Tech. Rep.

[18] “Filter library, module user’s guide, c28x foundation software,”
http://www.ti.com, Texas Istruments, Tech. Rep., 2002.

[19] N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy consump-
tion measurement and analysis: Case study of arm7tdmi,” Low Power
Electronics and Design, 2000. ISLPED ’00. Proceedings of the 2000
International Symposium on, pp. 185–190, 2000.

[20] G. Magklis, G. Semeraro, D. Albonesi, S. Dropsho, S. Dwarkadas,
and M. Scott, “Dynamic frequency and voltage scaling for a multiple-
clock-domain microprocessor,” Micro, IEEE, vol. 23, no. 6, pp. 62–68,
Nov.-Dec. 2003.

412

Code Transformations for TLB Power Reduction∗

Reiley Jeyapaul, Sandeep Marathe and Aviral Shrivastava

Compiler and Microarchitecture Laboratory, Arizona State University, Tempe, AZ 85281 USA
Email : {reiley, sandeep.marathe, aviral.shrivastava}@asu.edu

Abstract

The Translation Look-aside Buffer (TLB) is a very important
part in the hardware support for virtual memory management
implementation of high performance embedded systems. The
TLB though small is very frequently accessed, and therefore not
only consumes significant energy, but also is one of the impor-
tant thermal hot-spots in the processor. Recently, several circuit
and microarchitectural implementations of TLBs have been pro-
posed to reduce TLB power. One simple, yet effective TLB de-
sign for power reduction is the Use-Last TLB architecture pro-
posed in [9]. The Use-Last TLB architecture reduces the power
consumption when the last page is accessed again. While very
effective for instruction TLB, this technique is not as effective
for the data TLB. In this paper, we propose compiler techniques
(specifically, instruction and operand reordering, array inter-
leaving, and loop unrolling) to reduce the page switchings in
data accesses. Our comprehensive page-switch reduction algo-
rithm results in an average of 39% reduction in the data-TLB
page switching, and therefore power with negligible variation in
performance on benchmarks from MiBench, Multimedia, DSP-
Stone and BDTI suites.

1. Introduction
Power, energy and thermal issues in current and near future dig-
ital systems form the crux of the biggest challenge that the semi-
conductor industry faces today. In high-end computing, power
consumption limits the amount of achievable performance be-
cause of exorbitant increase in the cost of heat removal mech-
anisms. In battery operated portable systems, the battery is the
single largest factor in device cost, weight, recharging time, fre-
quency and ultimately the usability of the system. Translation
Look-aside Buffer or TLB is an important component of high-
end multi-tasking embedded processors, like the Intel XScale.
The TLB performs virtual to physical address translation and de-
termines page access permissions. Most modern processors, in-
cluding the Intel XScale implement virtually-addressed caches,
in which the cache lookup is directly performed on the virtual
address provided by the processor, and therefore the TLB lookup
comes in the critical path. Elkman et al. [11] note that the TLBs
can consume 20-25% of the total L1 cache energy. Kadayif et
al. [14] observed high power densities of the data-TLB, as com-
pared to the data-L1 cache. Thus reducing the power consump-
tion of TLBs is an important research problem.

Several TLB designs have been proposed to trade-off the TLB

∗This work was partially funded by grants from Raytheon and Startdust
Foundation.

lookup delay, area and power consumption [12, 15]. One sim-
ple, yet effective technique for TLB power reduction proposed
in [10, 9], is the Use-Last TLB architecture. Observing that
there is a high probability that instruction access will refer to the
same page as the last one, they store the previous page transla-
tion information into a latch, and thereby reduce the TLB lookup
power. The Use-Last TLB architecture is able to reduce the in-
struction TLB power by 75%. However, since data accesses do
not exhibit as high locality as instructions, this microarchitec-
tural technique was not effective for data TLBs.

We develop compiler techniques to reduce the power consump-
tion of the Use-Last TLB architecture by improving the local-
ity of data accesses. We propose a novel instruction scheduling
and operand reordering technique, heuristic for deciding when
to perform array interleaving, and loop unrolling to minimize the
page switchings between consecutive TLB accesses while min-
imizing performance loss. Our combined technique can reduce
the TLB switches by 39%, with minimal performance impact on
benchmarks from MiBench, Multimedia, DSPStone and BDTI
suites. Note that this improvement is above and beyond what the
Use-Last hardware technique alone could achieve.

2. Related Work
Several researchers have proposed efficient circuit-level, mi-
croarchitectural and software techniques to reduce the power
consumption of the TLB and the Memory Management Unit.

2.1. Compiler based Approaches

A compiler-directed array interleaving technique [17] was pro-
posed to save energy in multi-bank memory architectures with
power control features. In this, the arrays used in separate banks
are interleaved such that only one of the banks is active and the
other can be powered down, thus saving energy. The energy
reduction achieved by this technique does not account for the
leakage power of the SRAM cells during standby mode. Parikh
et al in [18] schedule instructions within a block based on the
minimum obtainable value for a weighted cost function:circuit-
state cost. One recent work is [19], where energy reduction is
achieved through effective utilization of resources by switching
between two processor modes based on the cache misses.

2.2. Closest Approach

The work closest to our approach, is by Kandemir et al. [13].
Their compiler technique is to increase the effectiveness of a
previously proposed architectural technique that uses Transla-
tion Registers or TRs. The addition of TRs requires changing
the ISA, which may not be desirable in many cases. In contrast,

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.39

413

our approach is to improve the effectiveness of Use-Last TLB
architecture, which exists in the Intel XScale processor. They
have to profile the code to find out which page will be accessed
frequently in the near future, and then generate code to load the
translations to that page into TRs. In comparison, our approach
is a static technique. We do not need/use profile information.
Not only that profile-based compilation is limited in applica-
tion and scope, it has huge overhead in terms of compilation
time. Our technique does not have any such overheads. Finally,
in their technique, the code is modeled as nodes which repre-
sent loop nests that access data from a particular page region.
Code transformations to enhance the use of TRs are directed at
scheduling these loop nests (nodes that access data from a par-
ticular page region) together. In contrast, our approach is to
schedule and transform instructions so that the accesses to the
same page are grouped together. Our technique operates at a
finer granularity than theirs, and could therefore co-exist, and
enhance the effectiveness of each other.

3. Use-Last TLB Architecture
Our compilation approach enhances the effectiveness of an al-
ready effective and popular TLB architecture, the Use-Last TLB
architecture. Proposed in [9], the Use-Last TLB architecture
utilizes a modified TLB-CAM structure. The virtual address in-
put is matched with the TLB tag through the CAM cells (which
has reduced power consumption). The TLB tag is then used
to retrieve the mapped physical address from the register files.
The lookup on the register files is a power consuming process
because of the bit-line and word-line drivers and other associ-
ated circuitry involved in its operation. The key factor in this
architecture design is the latch used to store the tag address of
the previously accessed address. If the two TLB tag addresses
match, the page address and access information at the output is
the same for both. In this case, the word line (WL) of the reg-
ister files are not activated and the switching energy of the RF
cells and associated circuitry is eliminated. The effectiveness
of this technique was demonstrated on instruction TLB, and it
was shown to reduce the power consumption by 75%. However,
this technique was deemed un-useful for data caches, as data ac-
cesses in general do not exhibit high data locality as compared to
instruction TLB. Our work aims to enhance the effectiveness of
this architectural technique on data caches through code trans-
formations and achieve power savings through reduction in the
number of page-switches during successive data accesses.

4. Experimental Setup
We explore and develop compiler techniques for the Intel XS-
cale processor [8] on which the Use-Last architecture was im-
plemented(Section 3). Intel XScale is an out-of-order, 7-stage
superpipelined high-end embedded processor, which runs at up
to 1 GHz. The Intel XScale uses TLBs to implement virtual
memory support. The Intel XScale is intended to be used in
wireless and handheld applications and therefore we execute
benchmarks from MiBench [3], MultiMedia [6], DSPstone [4],
Spec2000 [5], and the BDTI [7] benchmark suites. The sim-
outorder cycle-accurate simulator of the SimpleScalar toolset
[16] was modified to model the Intel XScale memory config-
uration and to determine the total number of page switches in

the data TLB in a program.

The remainder of the paper is organized as follows: Section 5
describes our instruction scheduling and operand reordering
technique. Section 6 describes our array interleaving implemen-
tation. Section 7 describes the conditions for our implementa-
tion of loop unrolling. Section 8 forms a comprehensive algo-
rithm for TLB page switch reduction.

5. Page Switch-Aware Instruction Scheduling
Instruction scheduling can aggregate instructions that access the
same pages consecutively, thereby reducing page switches in the
data TLB. In addition, for commutative operations, it is also
possible to reorder the operands, and effect the memory ac-
cess pattern. We develop a combined instruction scheduling and
operand reordering technique to reduce TLB page switching.

Figure 1. Impact of code generation on TLB page
switching

5.1. Motivation

We motivate the applicability and effectiveness of fine-grain in-
struction and operand reordering on TLB page switches using
a kernel from the compress benchmark, shown in Figure 1(a).
The kernel accesses elements from a two-dimensional array. If
the array size is much larger than the page size(which is typ-
ically small in embedded systems), elements from the higher
dimensions may reside in different pages. In this example, there
are high chances that a[i], and a[j] may be in different pages,
if i 6= j. Assuming this, the two code sequences generated by
the compiler, illustrated in Figure 1(b) and (c), may result in the
same performance, they may differ significantly in the number
of TLB switches they cause. When executed, the code in Figure
1(b) will result in accesses in the sequence: a[i][j], a[i−1][j−1],
a[i][j − 1], a[i − 1][j], and a[i][j], which will result in 4 page
switches per iteration, while the code in Figure 1(c) will result
in only 1 page switch per iteration. Note that depending on the
cache size and page size, the page switches can vary, but if there
is no performance impact, it will be better to generate the code
as in Figure 1(c). In the rest of this section, we first formu-
late the problem of minimizing the page switches by instruction
scheduling and operand reordering. Finding the problem to be
NP-complete, we propose a heuristic for the same.

5.2. Problem Formulation

Input: Data Flow Graph (DFG) is a directed acyclic graph
(DAG) D = (V,E) of a code sequence. The nodes v ∈ V
represent instructions i ∈ I . An instruction i is represented
by a ordered (k + 2)-tuple i =< op, d, s1, s2, ...sk >, where
op is the opcode, d is the destination, and there are k source

414

Figure 2. DFG and page mapping of compress
kernel

operands, s1, ...sk, d, s1, s2, ...sk ∈ O, where O is the set of
program variables, or operands. There is a directed edge e =
(v1, v2) ∈ E,3 v1, v2 ∈ V , from v1 to v2 if the destination of
the instruction represented by node v2, is the same as any of the
source operands of the instruction represented by node v1. i.e.,
(v1.i.d = v2.i.s1)∨(v1.i.d = v2.i.s2)∨ ...∨(v1.i.d = v2.i.sk).
The data flow graph will also have nodes at the beginning of the
graph, representing loading of operands, and nodes at the end
of the graph, representing storing of operands, or intermediate
values that will be carried over to the next loop. The DFG of the
compress kernel is illustrated in Figure 2.
Output: Instruction Sequence represented by the function
Time : I → N such that all data dependencies are main-
tained. i.e., if there is an edge from instruction ia to ib, then
Time(ia) < Time(ib).

Objective: Minimize Page Switches in the instruction se-
quence. To estimate page switching at the compiler level, we
define a function Page : O → P , which maps operands o ∈ O
to pages p ∈ P , where P is the set of all the pages accessed by
the application. A source operand may be a scalar, or an array,
and can be defined in a local scope or a global scope. We define
Page(s) thus:

• Page(s) = undefined if the operand s is a local scalar
variable. This is because most probably all the local scalar
variables will be allocated to registers and therefore will
not involve in memory access.

• Page(s) = p0 if s is a global scalar variable. We assume
that all the global scalars are allocated to a single page.

• For the global or local arrays, we assume that each array,
irrespective of it’s size is mapped to exactly one unique
page.

Page Switch Model In addition, we also need a page switch
model, i.e., given a sequence of instructions, how many
page switches will occur. We assume that when an in-
struction i executes, its operands are accessed in the order
{i.s1, i.s2, ..., i.sk, i.d}. Assuming that the page accessed just
before the execution of an instruction i is p, then, we define the
page switching function, PSI(p, i1, ...in) to be the number of
page switches when a sequence of instructions i1, ...in is exe-
cuted.

PSI(p, i1, ...in) = PSO(p, i1.s1, i1.s2, ..., i1.sk, i1.d,

= i2.s1, i2.s2, ..., i2.sk, i2.d,

= ...,

= in.s1, in.s2, ..., in.sk, in.d)

The total page switch count between operands can be recursively
computed,

PSO(p, o1, ..., om) = PSO(p, o1)
+ PSO(LPO(p, o1), o2, ..., om)

where PSO(p, o) = 1, when both p and Page(o) are defined,
and p 6= Page(o). LPO(p, o) is the last page accessed when
operand o1 is accessed after accessing page p. The last page
function LP (p, o) = Page(o), if Page(o) is defined, otherwise,
it is p.

5.3. Solution for Page Switch Minimization

To minimize page switches by instruction scheduling and
operand reordering, we define a Page Switching Graph
PSG full = (I, S), which is a directed graph, whose vertices
are instructions i ∈ I , and there is an edge from instruction i
to instruction j if instruction j can be scheduled immediately
after instruction i. We attach a weight attribute to each edge
w(i, j), which is the minimum increase in the page switches
when instruction j is scheduled immediately after instruction i.
Thus,

w(i, j) =

min

{
PSO(p, j.s1, j.s2, j.d)
PSO(p, j.s2, j.s1, j.d)

if j.op is comm

PSO(p, j.s1, j.s2, j.d) otherwise
where p is the last page that has been accessed after instruction
i is executed. We add a dummy source node, and a sink node so
that there is an edge from the source node to all the instructions
that do not have any predecessors in DDG, and there are edges
all nodes that do not have successors in DDG to the sink node.
Dummy nodes access only undefined pages.

The problem of finding the instruction sequence and operand
ordering that minimizes the number of page switches is exactly
equal to the problem of finding the shortest hamiltonian path
from source node to sink node. This implies that if we can
solve the problem of page switch minimization in polynomial
time, we can also solve the hamiltonian problem, which is a well
known NP-Complete problem in polynomial time. This is quite
unlikely, therefore the problem of scheduling for page switch
minimization is NP complete. Therefore we focus our efforts on
developing scheduling heuristics for page switch minimization.

5.4. Heuristic for Page Switch Minimization

For heuristics, we first construct a Page-Not-Switching Graph
PNSG = (I, D, S), where the nodes (I) are instructions, and
there are two kinds of edges, first is the set of data dependence
edges D, and the second S is the set of inter-instruction page
not-switching edges. Thus there is a an edge s = (i, j) ∈ S be-
tween two instructions: i, j ∈ I , if there is NO inter-instruction
page switch when instruction j is scheduled immediately after
instruction i. In other words, (i, j) ∈ S, ∀i, j ∈ I, iff Qps ≥ 1,
where

415

Qps =

min

{
PSO(p, undefined, i.d, j.s1)
PSO(p, undefined, i.d, j.s2)

,if j.op is comm

PSO(undefined, i.d, j.s1) otherwise

An example of a PNSG is shown in Figure 3. The nodes 1
through 7 are instructions, and the solid edges represent data
dependencies. The dashed edges represent the inter-instruction
page not-switching edges. We now perform our scheduling on
this graph representation. We first developed a greedy algo-

1 2

6

3

54

7

Data Dependence Edge

Page Not−Switching Edge

Figure 3. Problem in greedy solution

rithm. In the greedy algorithm, in every iteration, the last sched-
uled instruction, l is maintained, and list of instructions that are
now ready to be scheduled, R is created. If there is a page-not-
switching edge between l and any instruction r ∈ R, then r gets
priority, as it minimizes the page switches. Thus suppose in-
structions 1, 2 and 3 are scheduled, with l = 3. Then R can be
computed as R = {4, 5}. Out of these, the greedy heuristic will
pick up instruction 4.

Figure 3 illustrates one problem with this simple approach. In
the first iteration, the greedy solution can pick up either instruc-
tion 1, or instruction 3. Picking up instruction 3 is a bad choice,
because it is not possible to schedule instruction 4 as the sec-
ond instruction. Instruction 3 should only be scheduled only
if instruction 4 can be scheduled next. We fix this problem by
adding that - when picking an instruction which is the source of
a page-not-switching edge, we pick up a pair of instructions to
schedule; plus, we give priority to pick up instructions that are
not connected through page-not-switching edges. This gives us
more opportunities to pick up instruction pairs with page-not-
switching edges.

5.5. Experiments

We have implemented this page-aware instruction rescheduling
algorithm as a compiler post-pass [1]. We compile our bench-
marks with GCC -O3 optimization, to ensure that the bench-
marks are compiled and scheduled for the maximum perfor-
mance. We disassemble the generated object file, discover the
basic blocks, and re-create the control flow graph (CFG), and
the data flow graph. We perform this modified list scheduling
heuristic on basic blocks. This fine grain instruction scheduling
approach is applicable to any program. The effectiveness of this
approach could be increased by performing our scheduling on
hyperblocks, and/or superblocks. We observed that our schedul-
ing gains from performing local reordering of load instructions.
There is not much increased opportunity to move load instruc-
tions across basic blocks, because of tight data dependencies.

We modified the sim-outorder [16] simulator to count the page

switches for an application execution. Figure 4 plots the page
switch count, after implementing our page-aware instruction
scheduling and operand re-ordering transformations normalized
to the baseline page switch count. On an average, our technique
achieves 23% reduction in the page switch count as indicated by
the right-most bar in Figure 4. As a matter of fact, we observed
an average performance improvement of 4%. This reduction in
page switches directly translate into 23% power savings in the
Use-Last TLB. Note that this is over and above what Use-Last
TLB architecture achieves on its own.

Figure 4. Impact of Instruction Scheduling on
Page Switch Count

6. Page-Switch Aware Array Interleaving

Figure 5. Array Interleaving through example:
(a)Example loop (b)Array allocation and access
pattern (c)Loop block with interleaved arrays
(d)Array allocation and access pattern of inter-
leaved array

6.1. Motivation

Figure 5 shows how array interleaving can reduce the TLB page
switching over data accesses in the program. The code in Fig-
ure 5(a) shows a loop which accesses elements from two dif-
ferent arrays A and B, which are mapped to different pages.
Figure 5 (b), shows that when this loop executes, there is a page
switch between consecutive memory accesses in the program.
Figure 5(c) shows the transformed code after interleaving. Ar-
ray interleaving places the elements of the two arrays as alter-
nate elements of the array AB. Figure 5(d) shows that there is
no page-switching between consecutive access to AB.

6.2. Which Arrays to Interleave

The problem of reducing TLB page switching is localized to
consecutive memory accesses, therefore interleaving of arrays

416

need only be directed to decrease the page switching in the in-
nermost loop. Consider a nested loop of 3 levels, whose itera-
tors are i, j, and k, in which are there are references to arrays A
and B. Suppose in the innermost loop, the reference functions
are affine functions of the iterators, i.e., the access function can
be represented as a linear combination of the iterators, fA =
a0 + a1i+ a2j + a3k, and similarly fB = b0 + b1i+ b2j + b3k.

We consider two arrays A and B as interleaving candidates
only if i)the access functions of the arrays are the same. Thus,
a0 = b0, a1 = b1, a2 = b2, a3 = b3 ensuring minimized page
switches after interleaving. ii)the arrays of the same size. For
example, we will interleave an array of integers with another
same size array of integers. It is important to note that while it
is possible to interleave arrays with slightly different access pat-
terns also, it results in an overhead in terms of extra addressing
instructions. However, the innermost loop may contain several
references to the same array. Two arrays will be interleaving
candidates if the conditions are satisfied for any pair of refer-
ences to the arrays. We perform this analysis on all the important
loops of the application, and find pair of arrays, which are inter-
leaving candidates, we take the union of interleaving candidates.
Thus if arrays A and B are found to be interleaving candidates
from one loop, while B and C are interleaving candidates from
some other, then all the three arrays will be interleaved.

6.3. Interleaving
The process of interleaving r arrays of the same data type
A1, A2, ...Ar is a three step transformation. The first is to re-
place the individual array declarations with a single array A
of r times the size of each array, and second is to fix the ac-
cess functions of all the array references. The access function
fm = Am[ami+ bmj + cmk +dm] of the mth array is replaced
by fm = A[r×(ami+bmj+cmk+dm)+(m−1)] in three-level
nested loop. At the end of the day, it is important to schedule the
instructions that access the interleaved array in the same pattern
consecutively. This is done by moving the result of the first in-
struction in a new temporary variable, and replacing all its uses
by the temporary variable. Interleaving of r arrays of different
data types is done by declaring a new structure, say s, which
contains an element from each of the arrays. We then declare
an array A of the same size as all the previous arrays consisting
of elements of data type s. Then we replace the access func-
tion of the mth array fm = Am[ami + bmj + cmk + dm] by
fm = A[ami + bmj + cmk + dm].m.

6.4. Experiments
We translate the source code into the FORAY format [2], which
essentially consists of just the loop structure and the array ac-
cess functions as affine functions of the loop iterators. We ana-
lyze the code in this format, and, perform our page-aware array
interleaving transformations in this format, and then convert it
back to the source code. The application is compiled again, and
our instruction scheduling for page switch minimization is ap-
plied to enhance the impact of array interleaving. Figure 6 plots
the page switch count after performing array interleaving and in-
struction scheduling on all the benchmarks. The plot thus shows
that our page-aware array interleaving is a very effective trans-
formation, and reduces the data-TLB page-swith count by an

Figure 6. Impact of Array Interleaving and In-
struction Scheduling on Page Switch Count

average of 35% (indicated by the right-most bar) with an over-
all average of 11% increase in performance. This performance
improvement is inherent to array interleaving, as it inherently
increases the spatial locality of data, leading to improved cache
behavior. In swim, two global arrays and 5 local arrays were
accessed together in the loop bodies. Interleaving was possible
on all the arrays, thereby forming two interleaved arrays (one
global, and other local). This transformation enhanced the op-
portunities for instruction scheduling and therefore 70% page
switch reduction was observed. Since the TLB power is directly
proportional to the number of accesses, we can expect a con-
comitant 35% reduction in TLB power due to the combined im-
pact of array interleaving and page switch-aware scheduling.

7. Impact of Loop Unrolling
Loop unrolling is a loop transformation in which the loop body
is replicated a finite number of times, thereby reducing the loop
overhead instructions. It is important to observe that loop un-
rolling by itself does not reduce TLB page switching, but, it
may increase the effectiveness of instruction scheduling, by pro-
viding more opportunities to schedule instructions and thereby
reduce inter-instruction page switching.

Unrolling a loop may reduce page switches if there is atleast
one instruction, such that if we schedule two copies of the in-
struction belonging to different iterations when scheduled con-
secutively, will not result in inter-instruction page switching. In
other words, loop unrolling can be performed if ∃i ∈ I such
that,min

{
PSO(undefined, i.d, i.s1)
PSO(undefined, i.d, i.s2)

if i.op is comm

PSO(undefined, i.d, i.s1) otherwise

= 0

We have implemented our page-switch aware loop unrolling
transformation also as source code transformation. Figure 7
plots the effect of loop unrolling on the page switch count of
various benchmark applications. The normalized page-switch
count for the case when page-switch aware instruction schedul-
ing and array interleaving are performed is plotted as the dark
bar (to the left for each benchmark), and the lighter graphs in-
dicate the page-switch count for unrolling factors of 2, 4 and 8
times respectively. The right-most set of bars in Figure 7 in-
dicate the average values for the cases plotted. On an average,

417

Figure 7. Impact of Loop Unrolling on Page
Switch Count

for an unrolling factor of 8, we obtain a reduction of 37% in
the page switch count for the applications on which page-aware
loop unrolling was possible with 9% performance improvement.

8. Comprehensive Page Switch Reduction
Finally we study the impact of all the three transformations to-
gether. The ordering of the transformations is an interesting is-
sue. Instruction scheduling and array interleaving are the fun-
damental transformations that reduce data TLB page switches.
Loop unrolling will be most effective when all the opportunities
for page switch reduction achievable after re-scheduling, are ex-
ploited. Our page switch-aware instruction scheduling is done
at a more fine-grained level, and therefore has to be performed
only after array interleaving and unrolling to maximize the ef-
fect. We first perform Page-Switch Aware Array Interleaving
to group the memory allocation of varied arrays together into
one overlapped page, and then Loop Unrolling on the instruc-
tions such that all the instructions capable of being implemented
without page-switch are executed together. Our fine-grain in-
struction scheduling is then performed as a post-pass.

The dark bars on the left in Figure 8 plot the percentage reduc-
tion in the data TLB page switch count for each application. The
reduction is calculated as compared to the data TLB page switch
count when the application is compiled using GCC−O3 alone.
The rightmost dark bar shows that there is an average 39% data
TLB page switch count reduction over all the benchmarks. The
light bars on the right in Figure 8 plot the reduction in runtime
for all the applications. The rightmost light bar shows that there
is an average 6.4% reduction in runtime. In conclusion, the
effect of page switch reduction techniques is additive, and the
effect is realized after each step of the Page Switch Reduction
algorithm.

9 Summary
The Use-Last TLB architecture proposed in [9] reduces the TLB
power consumption, if the same page is accessed successively.
This approach was ineffective for data TLB, because data ac-
cesses do not exhibit high locality as compared to instructions.
In this paper, we have introduced a novel, page-aware instruc-
tion scheduling algorithm, and proposed heuristics to decide
when to perform array interleaving, and loop unrolling to reduce
the TLB page switching. Our experiments on benchmarks from
MiBench, Multimedia, DSPStone and BDTI suites show a 39%

Figure 8. Page Switch Count and Runtime reduc-
tion by our Page-Switch Reduction Algorithm

reduction in the TLB page switches with a negligible increase in
performance, over what is possible by the GCC compiler. Since
the dynamic power of the TLB is directly proportional to the
number of page switches in the Use-Last TLB architecture, we
can expect a concomitant 39% reduction in the TLB power. Our
future work is to investigate the impact of other transformations,
e.g., instruction selection on TLB power reduction.

References

[1] A. Shrivastava et al., ”Operation tables for scheduling in the presence of
incomplete bypassing,” In CODES+ISSS, pages 194199, 2004.

[2] I. Issenin et al., ”FORAY-GEN: Automatic Generation of Affine Functions
for Memory Optimizations,” In DATE 05, pages 808813, 2005.

[3] M. R. Guthaus et al., ”MiBench: A free, commercially representative em-
bedded benchmark suite,” In WWC 01, pages 314, 2001.

[4] V. Zivojnovic et al., ”DSPstone: A DSP-oriented benchmarking method-
ology,” In Proceedings of Signal Processing Applications and Technology,
Dallas, 1994.

[5] J. L. Henning, ”SPEC CPU2000: Measuring CPU Performance in the New
Millennium,” Computer, 33(7):2835, 2000.

[6] H. Balakrishnan et al., ” Multimedia Benchmarks: A Performance
Comparison of Multimedia Programs on Different Architectures” cite-
seer.ist.psu.edu/233784.html

[7] BDTI Suite: Berkeley Design Technology Inc. ”The BDTI Benchmark
suites”, bdti.com/products/benchmark overview.html

[8] Intel Corporation, ”Intel XScalerTechnology Overview”, in-
tel.com/design/intelxscale

[9] J.R.Haigh et al., ”A Low-Power 2.5 GHz 90 nm Level 1 Cache and Mem-
ory Management Unit,” In IEEE Journal of Solid State Circuits, pages
11901199. IEEE Press, 2004.

[10] L. T. Clark et al., ”Reducing translation lookaside buffer active power,” In
ISLPED 03, pages 1013, 2003.

[11] M. Ekman et al., ”TLB and snoop energy reduction using virtual caches in
low-power chip-multiprocessors,” In ISLPED 02, pages 243246,2002.

[12] X. Zhou et al., ”Low-power cache organization through selective tag trans-
lation for embedded processors with virtual memory support,” In GLSVLSI
06, pages 398403, 2004.

[13] M. Kandemir et al., ”Compiler-Directed Code Restructuring for Reducing
Data TLB Energy,” In CODES+ISSS 04, pages 98103, 2004.

[14] I. Kadayif et al., ”Optimizing instruction TLB energy using software
and hardware techniques,” ACM Trans. Des. Autom. Electron. Syst.
10(2):229257, 2005.

[15] P. Petrov et al., ”Energy-effcient physically tagged caches for embedded
processors with virtual memory,” In DAC 05, pages 1722, 2005.

[16] T. Austin. ”SimpleScalar LLC”. simplescalar.com
[17] V. Delaluz et al., ”Compiler-directed array interleaving for reducing en-

ergy in multi-bank memories,” In ASP-DAC 02, page 288, 2002.
[18] A. Parikh et al, ”Instruction scheduling for low power,” The Journal of

VLSI Signal Processing, 37(1):129149, 2004.
[19] A. Chiyonobu et al., ”Energy-efficient instruction scheduling utilizing

cache miss information,” SIGARCH Comput. Archit. News, 34(1):6570,
2006.

418

Simultaneous Peak Temperature and Average Power Minimization during
Behavioral Synthesis

Vyas Krishnan and Srinivas Katkoori
Department of Computer Science & Engineering, University of South Florida, Tampa, USA

{krishnan, katkoori}@cse.usf.edu

Abstract

With continuous CMOS scaling, and increasing

operating frequencies, power and thermal concerns
have become critical design issues in current and
future high-performance integrated circuits. Elevated
chip temperatures adversely impact circuit
performance and reliability. On-chip thermal gradients
can lead to unpredictable clock skew variations and
timing failures. Chip temperatures are influenced by
design decisions at the behavioral and physical-
synthesis levels. Existing low-power design techniques
cannot adequately address thermal issues since their
optimization objectives fail to capture the spatial
nature of on-chip thermal gradients. We present an
algorithm for thermally-aware low-power behavioral
synthesis that concurrently minimizes average power
and peak chip temperature. Our algorithm uses
accurate floorplan-based temperature estimates to
guide behavioral synthesis. Compared to traditional
low-power synthesis, our method reduces peak
temperatures by as much as 23%, with less than 10%
overhead in chip area.

1. Introduction and Motivation

Steady scaling of CMOS process technologies over
the past three decades have enabled feature sizes to
shrink continuously, allowing the integration of
millions of transistors in modern VLSI chips.
However, with decreasing feature sizes and increasing
transistor counts, power density in VLSI circuits has
increased dramatically. Since the heat generated by a
VLSI circuit is proportional to its power density, the
corresponding rise in on-chip temperatures adversely
impacts reliability, circuit performance, and cooling
costs. According to ITRS [1], thermal management is
projected as one of the most challenging issues in the
design of future high-performance integrated circuits.
Power-aware design alone fails to adequately address

thermal issues, thus creating a need for temperature-
aware low-power synthesis.

Different functional units in a circuit can have
different switching activity rates, leading to uneven
power dissipation among the various logic blocks on
the chip. Due to low thermal conductivity of silicon,
the rate of lateral heat propagation in a chip is slow,
causing localized heating to occur much faster than
chip-wide heating. This can cause uneven temperature
distribution on the chip, creating on-chip thermal
gradients, and “thermal hot spots” due localized areas
of high power densities.

Traditional low-power behavioral synthesis
techniques do not take on-chip thermal distributions
into account during synthesis. With power densities
and thermal gradients projected to increase rapidly in
future technologies [1][2], there is a need for
temperature-aware low-power design techniques that
directly target the spatial nature of on-chip temperature
distributions. This makes temperature-awareness an
essential part of low-power behavioral synthesis.

Elevated temperatures have several adverse effects
on a circuit. Higher temperatures adversely impact
performance due to decreased transistor switching
speeds and increased wire resistance, which can lead to
timing violations [2]-[4]. Leakage power in CMOS
circuits increases exponentially with temperature[5].
This coupling between static power and temperature
can lead to thermal runways if not adequately managed
[2]. Higher temperatures also cause reliability
problems due to electro-migration in wires, and
thermal-stress related gate-oxide breakdown in
transistors [4]. In addition, chip packaging costs
increase with higher thermal budgets.

Temperature-aware high-level synthesis is
challenging because of the multi-objective nature of he
problem, with several conflicting objectives –
throughput rate, power, peak temperature, and chip
area. Figure 1 illustrates the different factors that affect
power dissipation and temperature of an integrated
circuit. Task scheduling and resource binding in high-

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.78

419

Figure 1. Factors affecting total power and on-
chip temperature during behavioral synthesis

level synthesis significantly impacts the static and
dynamic power of datapath functional units, and hence
their temperature. An increase in temperature increases
sub-threshold leakage, leading to further increases in
temperature.

Floorplanning also significantly affects on-chip
thermal distribution. The temperature of a functional
unit is determined not only by its power density but
also by the temperature of other functional units in its
vicinity. Changing functional unit positions on a
floorplan to balance power density and thereby reduce
chip temperatures may increase chip area. Conversely,
placing highly connected functional units bound to
timing critical tasks, close to each other to minimize
wire delay and power, could lead to localized areas of
high chip temperatures, especially if the modules also
have high switching activity.

An effective temperature-aware design technique
must tightly couple floorplanning and high-level
synthesis, with some form of feedback from thermal
analysis. In this paper, we propose an integrated
approach to temperature-aware high-level synthesis
that simultaneously performs temperature-aware
scheduling, binding, and floorplanning, using feedback
from an accurate and fast thermal simulation, to guide
synthesis decisions.

To perform a multi-objective optimization of delay,
chip area, power dissipation, and peak temperature, we
use a two-stage simulated annealing algorithm, that
uses different optimization objectives in each stage. In
particular, the first stage of the algorithm uses a fast
annealing strategy to optimize for power, throughput,
and chip area, and provide a good starting point for the

second stage that improves on this solution to optimize
average power dissipation while minimizing peak chip
temperature. To estimate the on-chip thermal
distributions, a thermal analysis of the floorplan is
performed. Using a multi-stage annealing approach
significantly reduces synthesis run-times by avoiding
expensive thermal analysis during early stages of
search, when solutions are far from optimal. We use
ISAC [7], an accurate architectural-level thermal
modeling tool to estimate on-chip thermal distributions
and module temperatures. ISAC uses the power traces
of functional units and their floorplan locations, to
compute module temperatures. The use of thermal
modeling during design space exploration allows
weeding out potential designs that have a high
probability of encountering thermal problems.

The remainder of the paper is organized as follows.
Section 2 gives an overview of related work. In Section
3, we discuss our proposed temperature-aware low-
power high-level synthesis approach. Section 4
presents our experimental results, and Section 5
concludes the paper.

2. Related Work

Several researchers have addressed the problem of
thermal modeling and temperature-aware design.
Micro-architecture level thermal models were proposed
in [8]. The authors of [8, 9] consider thermal effects
during processor-based micro-architectural design
space exploration. Thermal issues have also been
considered during physical synthesis [10]-[12].

A number of behavioral synthesis works have
appeared in the literature addressing average power
during datapath synthesis. However, there are few
research works addressing thermal issues during high-
level synthesis. In high-level synthesis, researchers
have considered thermal effects during resource
binding [13]-[15] and scheduling [16]. Gu et al., [17]
use floorplanning and voltage islands to alleviate
thermal-hotspot formation during high-level synthesis.

Our work differs from these in several respects. Our
approach tightly integrates high-level and physical-
level synthesis steps at all stages of synthesis, to
provide accurate estimates of thermal distribution. The
works in [13] and [14] do not use floorplan-level
information in their temperature-minimization
algorithm, and therefore does not account for lateral
heat flow between modules. The authors of [15]
separate the floorplanning and binding steps during
thermal optimization. The authors of [16] use a series
of scheduling and binding moves in an attempt to
minimize temperature, without changing the floorplan.

420

Figure 2. Temperature-aware behavioral
synthesis algorithm

3. Temperature-Aware Low-Power High-
Level Synthesis

In this section, we give an overview of the proposed
technique, a resource-constrained high-level synthesis
(HLS) algorithm that considers the impact of task
scheduling, resource binding, and floorplanning, on
average power and on-chip temperature distribution.
Our low-power synthesis method uses a two-stage
simulated annealing algorithm (SA) to concurrently
perform the tasks of scheduling, resource binding,
floorplanning, and thermal analysis, yielding solutions
that have lower peak module temperatures than
traditional temperature-unaware low-power high-level
synthesis techniques.

Figure 2 illustrates the main steps used in our
approach. First, the input dataflow graph (DFG), is
simulated with typical input traces to create input
switching power tables for each resource type in the
target datapath circuit. Task schedules, resource
bindings, power models, an RTL design library,
floorplanner, and a thermal model of the IC package are
then used to evaluate the IC temperature profile, power,
area, and performance of designs synthesized by our
algorithm.

The main algorithm comprises of an HLS synthesis
system tightly integrated with an incremental
floorplanner and a thermal analysis tool. The inputs to
the synthesis algorithm are (1) a behavioral description
of the design in the form of a dataflow graph, (2) an
RTL module library, and (3) profile-based input
switching tables for the RTL modules modeling their

switching power for different task and variable
bindings. A simulated annealing based search algorithm
is then used to concurrently perform task scheduling,
resource binding, floorplanning, and module power
minimization. Module temperature profiles are then
determined through a thermal analysis of the solutions.
We use ISAC [7], a fast and accurate temperature
analysis tool to perform a static thermal analysis of
solutions examined by our algorithm. ISAC takes a
floorplan and module power traces as inputs, and
computes the module temperatures. Our synthesis
algorithm concurrently minimizes delay, power, area,
and peak module temperatures.

3.1. Two-stage Simulated Annealing

To address the multi-objective nature of the
temperature-aware low-power synthesis problem, we
use a two-stage simulated annealing algorithm, where
different optimization objectives, moves, and cooling
rates are used in different stages of annealing. The
objectives optimized in each annealing stage are:

• Stage-I (high-temperature annealing): A Layout-

aware low-power high-level synthesis, where the
optimization objectives are power, schedule-length,
and chip area.

• Stage-II (low-temperature annealing): A
Temperature-aware layout-driven low-power
synthesis, where the optimization objectives are
peak module temperature, power, and chip area.

In first stage of annealing, we perform a floorplan-
driven low-power high-level synthesis, given the
resource constraints for the datapath. The second stage
is a low-temperature annealing stage, that takes the best
low-power solution returned by the first stage, and uses
a set of thermally-aware SA moves to minimize peak
module temperature and create an even thermal
distribution across the chip.

There are two main reasons for adopting a two-stage
annealing strategy in our algorithm. First, our
experiments indicate that for the problem addressed in
this paper, using a single weighted-sum of all objectives
during the search process often yields solutions far from
the Pareto-optimal front. However, a two-stage
annealing algorithm is able to sample the multi-
objective solution space more efficiently, consistently
yielding nearly optimal solutions. Secondly, use of a
two-stage annealing approach significantly reduces run-
times by avoiding expensive thermal analysis of
solutions in earlier stages of search, when they are far
from optimal.

421

3.2. Solution Encoding

The solution encoding used by our two-stage SA
consists of two parts – (1) a set of DFG node-lists (or
variable-lists) specifying the tasks (or variables) bound
to each datapath resource (datapath unit or register), and
(2) a sequence pair [18] (S1, S2) representing the
relative location of datapath resources on a chip
floorplan. SA neighborhood search moves that explore
the HLS search space of task schedules and resource
bindings perturb the node-list and variable-list portions
of a solution encoding. A node-list associated with an
RTL module represents node priorities for DFG tasks
bound to the module. Node priorities are used by a
modified list scheduling algorithm to schedule tasks in
the DFG. The search space of chip floorplans is
explored via SA moves defined on the sequence pair.
Solution cost functions are evaluated by using
algorithms described in Section 3.4.

3.3. Neighborhood Moves

Simulated Annealing moves are defined in both, the
HLS search space (task schedules, module and register
bindings), and the layout search space (chip floorplans).

3.3.1. Floorplan Moves. Five SA moves, similar to the
ones defined in [6], are defined on the sequence pair
representing a solution's floorplan:

• Rotate datapath module,
• Shift datapath module in S1 string,
• Shift datapath module in S2 string,
• Swap two datapath modules in S1 string,
• Swap two datapath modules in S1 string.

These moves are used in both stages of annealing used
in our approach.

3.3.2. HLS Moves Used in Stage-I of the SA. Four SA
moves are defined to operate on the node-lists
associated respectively with computational units in the
solution datapath. These moves are designed to explore
different task schedules and bindings encoded by the
node-lists. These moves are termed as schedule-length
variant moves, because they could result in task
schedules with differing schedule lengths. The main
objective of these moves is to find a solution that
minimizes the total switching power among datapath
functional units and interconnects, while at the same
time meeting the user-specified delay constraint on the
schedule. The SA moves used are:

• Change a DFG task priority in a module node-list,
• Swap two DFG tasks in a module's node-list,
• Change a DFG tasks module binding,

• Swap the module bindings of two DFG tasks.

The first two move operations change a task's
priority in the node-list used by the list scheduler,
resulting in different schedules of possibly different
schedule-lengths. The remaining two moves randomly
change a DFG node's or variable's resource binding,
with goal of minimizing interconnect and multiplexer
costs.

3.3.3. HLS Moves Used in Stage-II of the SA. The
schedule length of the best solution found by the two-
stage SA is used as a constraint in Stage-II of annealing.
The HLS moves defined in Stage-II are designed to
explore different schedules and bindings, without
changing the length of these schedules (schedule length
invariant moves). Five neighborhood search moves are
defined:

• Shift a task within its mobility range,
• Migrate a task to another compatible module,
• Swap module bindings of two compatible tasks,
• Migrate a variable to another compatible register,
• Swap register bindings of two compatible

variables.
All these three moves are designed to preserve the

schedule-length, while exploring a variety of schedules
and bindings. The first of these moves changes the
time-step when a task is executed, without changing its
resource binding. The next two moves change the
resource bindings of tasks, and also possibly the time-
step when they are executed. The remaining two moves
change the bindings of variables to registers. The main
objective of Stage-II is to simultaneously minimize
peak module temperature and average power.

3.3.4. Thermally aware Floorplan Moves. To
improve on-chip temperature distributions, our
algorithm also incorporates floorplan-level thermal
optimization moves. In solutions where functional units
with high power densities are physically close to each
other, thermal hotspots can occur. To mitigate this
situation, a thermal-aware swap operation is defined on
the sequence pair of a floorplan. Under this operation,
the functional units are sorted in order of increasing
temperature, and the positions of a randomly chosen
high-temperature functional unit in either the S1 or S2
sequence pair is exchanged with that of a low-
temperature functional unit. This SA move allows more
even thermal distribution over the chip, and prevents
high-temperature modules from clustering in one area,
leading to thermal hotspots. These moves are used
during Stage-II of annealing.

422

3.4. Cost Function Evaluation

Figure 3 illustrates the main steps used to decode a
solution encoding and evaluate the cost function. The

Figure 3. Solution cost function evaluation

node-list associated with each functional unit is used
by a list scheduler to schedule tasks in the DFG. Once
a feasible schedule is determined, we use the classical
left-edge algorithm to allocate and bind registers in the
datapath. The sequence-pair maintained by each
solution encoding is used to pack the datapath units
into a floorplan. The DFG schedule and the profiled
switching probability data are used to compute module
switching power. The power traces for functional unit,
together with the chip floorplan, is then used by ISAC
to perform a static thermal analysis to determine
module temperatures and chip thermal profiles.

The cost functions used in Stages I and II differ in
their objective functions. In Stage-I, we use the
following cost function:

 α * D + β * P + γ * A
where, D is the normalized value of latency (schedule-
length), P is the normalized value of average power,
and A is the normalized chip area. The terms are
normalized with respect to the best schedule-length,
power, and chip-area values seen during search, which
are dynamically updated during search. In our
experiments, we set α = 250, β = 125, and γ = 125. In
Stage-II, where module temperatures of a low-power
datapath are minimized, we use the following objective
function:

θ * T + λ * P + φ * A
Here, T refers to normalized peak module temperature
in the datapath, while P and A have the same meaning
as in Stage-I. In our experiments, we set θ = 250, λ =
125, and φ = 125.

4. Experimental Results

The proposed algorithm was tested on a Linux-
based workstation using a 1.86GHz Intel CoreDuo
processor with 2GB memory. The overall flow used in
our experiments is shown in Figure 2. Our experiments
were performed on a set of several real-
life large-sized benchmarks drawn from MediaBench
suite [19]. Each of these benchmarks was specified as a
DFG capturing the behavioral description of the
architecture to be synthesized. The DFGs used in
experiments range in size from 51 nodes to 333 nodes,
and were obtained from [17]. The RTL resource set
used in our experiments comprised of multipliers,
ALUs, registers, and multiplexers synthesized using a
TSMC 180nm technology library.

For our thermal analysis, we assume that each chip
is attached to a copper heat sink using forced air
cooling. Heat dissipates from the silicon die, through
the cooling package to the ambient environment, and
through the package to the printed circuit board. We
assume an ambient temperature of 45oC and a silicon
thickness of 200μm.

In our experiments, the objective was to minimize
the peak temperature among the functional units in a
datapath during low-power behavioral synthesis. Our
temperature-aware low-power synthesis method was
compared with two other temperature-unaware low-
power behavioral synthesis methods:
• Method-A: A low-power floorplan-aware synthesis
methodology that minimizes average power,
• Method-B: A low-power floorplan-aware synthesis
methodology that minimizes peak module power.

Method-A is an SA-based layout-driven low-power
high-level synthesis algorithm that tightly integrates a
floorplanner within the HLS synthesis loop. The
optimization function used in Method-A minimizes the
average power and throughput, together with the
traditional floorplanning objectives of chip area and
total wire length. Method-B is similar to Method-A
except that it minimizes the peak power consumption
of the datapath units, instead of average power.
Comparing our algorithm with these low-power
synthesis techniques allows us to highlight the
advantages of a temperature-driven synthesis technique
over a low-power design methodology. A thermal
analysis is performed on the solutions found by these
methods, and the peak module temperatures are
compared with the solutions found by our technique.
The intuition behind using Method-A is that lowering
the total power dissipation in a circuit would hopefully
lower overall on-chip power density and hence the on-
chip temperatures. The intuition behind Method-B is

423

that by constraining peak module power dissipation,
one could mitigate the formation of on-chip thermal-
hotspots.

Table 1 compares the peak chip temperatures and
average power using our temperature-aware technique
and the low-power methods A and B. The peak
temperature and average power values are averaged
over ten independent SA runs using different random
number seeds. For all the benchmarks, our technique
found solutions with lower peak temperatures when

Table 1. Comparison of Peak Chip
Temperature and Average Power

Benchmark Proposed Method-A Method-B

ID Name Max
T

(C)

Power
(W)

Max
T

(C)

Power
(W)

Max
T

(C)

Power
(W)

1 h2v2-smooth_downsample 69.4 0.367 79.9 0.364 79.3 0.386

2 feedback_points 76.1 0.928 89.5 0.921 91.4 1.002

3 collapse_pyr 76.6 0.852 86.4 0.847 97.1 0.919

4 write_bmp_header 75.6 0.539 78.9 0.541 82.6 0.585

5 interpolate_aux 78.4 2.142 86.7 2.135 93.2 2.469

6 matrix_mult 80.7 2.270 89.8 2.263 94.7 2.355

7 idct_col 74.3 1.654 87.2 1.655 89.3 1.732

8 jpeg_idct_fast 72.4 1.370 91.3 1.371 92.6 1.459

9 jpeg_fdct_islow 79.8 1.415 95.8 1.418 97.1 1.544

10 smooth_color_z_triangle 71.2 1.022 88.6 1.019 91.9 1.114

11 invert_matrix 88.4 3.638 102 3.671 103.7 3.715

 Average 76.6 1.473 88.7 1.382 92.1 1.571

compared to a temperature-unaware low-power
synthesis technique, highlighting the advantages of a
temperature-aware technique over temperature-
unaware low-power methods. The average peak chip
temperature for the MediaBench benchmarks using our
method was 76.6

C. Using Method-A, the average peak

temperature was 88.7

C, while using Method-B
resulted in an average peak temperature of 92.1

C.

Our temperature-aware synthesis methodology is
able to achieve significant reductions in peak
temperature over power minimizing methods A and B.
Peak temperature improvements over Method-A
averaged 13.5%, with a maximum improvement of up
to of 20.7%. The average peak temperature
improvement over Method-B was 16.7%, with a
maximum improvement of 22.5%. Unless a synthesis
methodology accounts for lateral thermal diffusion
between modules on a floorplan, only minimizing peak
module power or average power alone is inadequate in
minimizing peak chip temperature.

The improvements in peak temperatures using our
method are achieved with only a modest area overhead
that averages to less than 10% for the tested
benchmarks, with a peak area overhead of 12.6% for

the largest benchmark. In addition, the difference
between the average power of solutions found by our
method and a traditional low-power synthesis method
is less than 1% on average, for all the benchmarks
tested.

5. Conclusions

Traditional low-power behavioral synthesis
methods cannot sufficiently address non-uniform
temperature distributions in an integrated circuit.
Unless a synthesis methodology accounts for lateral
thermal diffusion between modules on a floorplan,
only minimizing peak module power or average power
alone is inadequate in minimizing peak chip
temperature. In this paper, we present an integrated
temperature-aware high-level synthesis technique that
tightly couples the HLS tasks of scheduling and
binding, with physical-level estimates from an
incremental floorplanner, to concurrently optimize
power and peak chip temperature. Our experimental
results indicate that compared to conventional power-
minimization approaches to HLS, our synthesis
technique reduces peak module temperatures by an
average of 15%, with less than 1% difference in
average power. These improvements in peak
temperatures are achieved with less than 7% average
increase in chip area over power-optimized designs.

6. References

[1] International Technology Roadmap for Semiconductors, http://public.itrs.net
[2] K. Banerjee, S.-C. Lin, and N. Srivastava, “Electrothermal engineering in the

nanometer era: from devices and interconnects to circuits and systems”, ASP-DAC
2006, pp. 223-230.

[3] A.H. Ajami et. al., “Analysis of non-uniform temperature-dependent interconnect
performance in high-performance ICs,” DAC 2001, pp. 567-572.

[4] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and management in VLSI
circuits: Principles and Methods,” Proc. IEEE, August 2006, pp.1487-1501.

[5] K. Roy, S. Mukhopadhyay, and H. Meimand, “Leakage current mechanisms and
leakage reduction techniques in deep-submicron CMOS circuits,” Proc. IEEE, 2003,
vol. 91, pp.305-327.

[6] H. Murata et a., “VLSI module placement based on rectangular packing by sequence
pair,” IEEE Trans. CAD, Dec. 1996.

[7] Y. Yang, Z. Gu, C. Zhu, R.P. Dick, and Li Shang, “ISAC: Integrated space and time
adaptive chip-package thermal analysis,” IEEE Trans. CAD, vol 26, no.1, 2007.

[8] L. Skandron, K. Sankaranarayanan, S. Veluswamy, and D. Tarjan, “Temperature-
aware microarchitecture modeling and implementation,” ACM TACO 2004.

[9] M. Healy et al., “Microarchitectural floorplanning under performance and thermal
tradeoff,” DATE 2007.

[10] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard cells in 3D
ICs using a force-directed approach,” ICCAD 2003.

[11] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm for 3D
ICs,” ICCAD 2004.

[12] A. Gupta et. al., “Thermal aware global routing for VLSI chips for enhanced
reliability,” ISQED 2008.

[13] R. Mukherjee, S.O.Memik, and G. Memik, “Temperature-aware resource allocation
and binding in high-level synthesis,” DAC 2005.

[14] R. Mukherjee, S.O.Memik, and G. Memik, “Peak temperature control and leakage
reduction during binding in high-level synthesis,” ISLPED 2005.

[15] P. Lim and T. Kim, “Thermal aware high-level synthesis based on network flow
method,” CODES + ISSS 2006.

[16] R. Mukherjee and S.O. Memik, “An integrated approach to thermal management in
high-level synthesis,” IEEE Trans. VLSI, November 2006.

[17] http://express.ece.ucsb.edu/benchmark/

424

Session 7A

Analog and Mixed Signal III

Low-Power Low-Voltage Analog Circuit Design using Hierarchical Particle
Swarm Optimization

R. A. Thakker, M. Shojaei Baghini, M. B. Patil

Department of Electrical Engineering, Indian Institute of Technology, Bombay.
E-mail: rajesht@ee.iitb.ac.in, mshojaei@ee.iitb.ac.in, mbpatil@ee.iitb.ac.in

Abstract

This paper presents application and effectiveness of
Hierarchical particle swarm optimization (HPSO)
algorithm for automatic sizing of low-power analog
circuits. For the purpose of comparison, circuits are
also designed using PSO and Genetic Algorithm (GA).
CMOS technologies from 0.35 μm down to 0.13 μm are
used. PVT (process, voltage, temperature) variations
are considered during the design of circuits. We show
that HPSO algorithm converges to a better solution,
compared to PSO and GA. For CMOS Miller OTA,
even performance of the circuit designed by HPSO
algorithm is better than the performance of recently
reported manually designed circuit. For the first time,
design of this OTA, in 0.4 V supply voltage, is also
presented. For this new design, HPSO algorithm has
taken 23.5 minutes of CPU time on a Sun system with
1.2 GHz processor and 8 GB RAM.

1. Introduction

The problem of analog circuit design and, in
particular, MOS transistor circuit design has become
very complex with the down-scaling of technology and
with the increasing complexity of physical models.
Various optimization techniques have been reported in
the past and the recent times for automatic design of
analog circuits. The gradient-based optimization
methods [1] need to calculate derivatives and also
require good initial guess for the design variables. In
the absence of initial guess close to the globally
optimum solution, these algorithms would generally
stick at a locally optimum solution. Convex
optimization techniques [2], which guarantee globally
optimum solution, require a very good knowledge of
circuit design and also of physical models to prepare
constraints, which would be very difficult looking at
the current state-of-the-art MOSFET models.

The evolutionary algorithms, which can be used to
solve multimodal optimization problems to explore the
solution space more efficiently, do not suffer from

difficulties associated with the gradient-based and
convex optimization methods. The Genetic Algorithm
(GA), developed by Holland [3] with an inspiration
from biological evolution, has been reported several
times for automatic analog circuit design. Few recent
citations are also found in [4]. Particle swarm
optimization (PSO), proposed by Kennedy and
Eberhart [5], has been observed to give better accuracy
compared to GA in most of the applications. PSO
algorithm was used for circuit design applications in
[6]. This paper shows the effectiveness of hierarchical
PSO (HPSO) [7], an extended version of PSO
algorithm, for analog circuit design problem.

2. Analog Circuit Sizing Problem

In analog circuit design, after choosing a proper
circuit configuration, values of circuit elements, called
design variables, need to be determined to achieve the
desired specifications. In case of MOS transistor
circuits, generally these variables include the width
(W) and length (L) of transistors, values of resistors,
capacitors and inductors. Integrated analog circuit
designers prefer to use technologies with longer
minimum channel lengths as compared to digital
circuits. However, technology scaling, high
performance demands, and system-on-chip
applications force analog modules to be implemented
in the same or at most few technology nodes behind as
that of digital circuits. The increased complexity of
physical models and process variations with down-
scaling of technology has made the manual design of
analog circuits to be a challenging and time-consuming
task. Therefore, efficient automatic design techniques
are required.

The block diagram of the automatic analog circuit
design, implemented in this work, is shown in Fig. 1.
The optimizer module minimizes the error between
desired specifications and simulator-returned
performance measures using a suitable optimization
algorithm (in this study, algorithm is: GA, PSO, or
HPSO). The error function is defined as,

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.14

427

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2

Desired

SimDesired
Spec

SpecSpec
Fε , (1)

where DesiredSpec represents desired specifications, and

SimSpec denotes the specifications returned by a circuit
simulator for a particular solution provided by the
optimizer. In each circuit design evolution, the
specifications which satisfy the required criteria, will
not contribute to the error function in Eq. (1).

Fig. 1 The block diagram representation of
automatic circuit optimizer.

3. Particle Swarm Optimization

In PSO algorithm [5], for a problem with n
variables, nxxx ,,2,1 … , a population of N particles is
initially generated by randomly assigning positions and
velocities to each particle for each variable. In the case
of analog circuit sizing, variables are the circuit design
variables, e.g., sizes of transistors. If the position and
velocity of the ith particle are denoted by vectors ix
and iv respectively, then

 () ,,...,, 21 n
iiii xxx≡x and ()n

iiii vvv ,...,, 21≡v (2)

 Particles are moved towards the fittest particle and

in this process; algorithm finds a better solution and is
expected to reach the desired solution over time. Each
particle keeps in memory the best position (denoted
by ix) it has attained during its trajectory. The velocity
of a particle is updated on the basis of weighted
addition of three vectors (Eq. 3), shown in Fig. 2(a): (i)
particle’s own velocity (A), (ii) the displacement of the
particle from its past best position (B), (iii) the
displacement of the particle from the globally best
particle (C). The velocity update is given by,

,)()()()()(2211 igiiii rprpttwtt xxxxvv −+−+=Δ+ (3)

() () () ,tttttt iii ΔΔ++=Δ+ vxx (4)
()

ffi w
t

tt
wwtw +

−
−=

max

max)()(, (5)

where i is the particle index, t is the current iteration
number, tΔ is equal to 1. r1 and r2 are random

numbers uniformly distributed in the range [0, 1]. The
parameter w is “inertia”, and p1 and p2 are the
acceleration coefficients. The gx represents the best
position attained by globally best particle. The
velocities computed with Eq. (3) are used to move the
particles as specified by Eq. (4). The commonly
reported linear approach to update w parameter is used
in this work and given in Eq. (5). wi and wf represent
the initial and final values of w, respectively, and tmax is
the maximum number of iterations.

Fig. 2 (a) Two-dimensional representation of the
components involved in velocity update of particles.
(b) Arrangement of particles in HPSO algorithm.

In HPSO [7], population of N particles is first

arranged in ascending order according to their fitness,
with the globally best particle (the “global leader”) at
position N, as shown in Fig. 2(b). The next M best
particles are designated as the “local leaders.” The
remaining (N-M-1) particles (the “generic particles”)
are divided into M groups. The M local leaders are
assigned to the M groups. The generic particles follow
their local leader and the local leaders follow the global
leader. This feature enables enhanced exploration of
the search space and shows better consistency in
finding the optimum solution.
Algorithm parameters used in this work- For PSO and
GA, N = 20. The crossover and mutation probabilities
in GA are taken 0.8 and 0.2, respectively. For PSO, wi
= 0.9 and wf = 0.4. For HPSO, wi = 0.73 and wf = 0.4
[7], and N = 21, M = 5. For both, PSO and HPSO, p1 =
p2 = 1.49 [7].

4. Analog Circuit Examples and Results

In this section, we demonstrate the application of
HPSO algorithm for automatic design of four analog
circuits. The Cadence Spectre circuit simulator with
BSIM3v3 MOSFET models is used to simulate
circuits. To improve efficiency of the automatic design
process, the simulator is asked to evaluate the fitness of
a particular particle (chromosome), only if it has
changed on at least one of the design variables by more
than 1%. This restriction prevents unnecessary circuit

428

simulations. GA, PSO, and HPSO algorithms are
compared with respect to two criteria.
• Quality of the solutions (measured by the error

function Fε given in Eq. (1)).
• Consistency of the algorithm in finding the best

solution is measured by εF (average value of Fε)
over independent trials for each design problem.
In addition to the calculation of Fε, the CPU time

taken by each algorithm is recorded, and averaged
(denoted by CPUT) over multiple design trials. The
specifications during circuit evolutions are also
recorded and normalized with the desired specification
values for illustration purpose. All simulations are
performed on a Sun system with 1.2 GHz dual core
processor with 8 GB RAM.

Fig. 3 CMOS buffer chain and plots of rise (τpd, r)
and fall (τpd, f) propagation delay, and power
dissipation versus circuit evolutions. One design
solution obtained with HPSO is: W1 = 0.13 μm, W2
= 0.5 μm, W3 = 1.7 μm, W4 = 6.5 μm, and K = 2.0.

4.1 CMOS Buffer Chain

CMOS buffer chain (Fig. 3), commonly used for
driving large capacitive loads, is designed using
standard 0.13 μm CMOS process at VDD = 1.2 V and
for L = 0.13 μm. Input stage M1 is chosen with
minimum size. The width of remaining three NMOS
transistors, and the ratio between the width of NMOS
and PMOS transistors are considered as design
variables. The buffer chain is designed using GA, PSO,
and HPSO algorithms to minimize the rise (τpd, r) and
fall (τpd, f) propagation delays, and power dissipation of
the circuit. To examine the consistency of algorithms,
five independent designs are carried out using each
algorithm. Performance measures, evolved during the
design cycles and averaged over five design trails, are
plotted in Fig. 3. HPSO and GA algorithms are close in
performance with HPSO algorithm slightly better than

GA. PSO algorithm is not able to minimize the power
dissipation as compared to HPSO and GA.

To evaluate the buffer chain designed by HPSO
algorithm, the circuit is also sized manually using the
logical effort theory (LET) with equal stage efforts
assigned to each stage. It was observed that the results
of HPSO algorithm not only match those of LET
design, but also slightly better.

4.2 Two-stage CMOS Operational Amplifier

The two-stage CMOS op-amp, shown in Fig. 4 (a),
is designed using 0.13 μm CMOS process at VDD = 1.2
V, T = 27 ˚C, and for specifications given in Table 1.
Op-amp specifications are of different orders in terms
of values, which require different weights to be
assigned to each of them during automatic design
process. We have used constant weight approach and
to ensure stability of the designed circuit,
chromosomes in GA (or particles in PSO) are
considered to be elite (or leaders in PSO), only if they
have phase margin greater than 55˚.

Fig. 4 (a) Two-stage CMOS operational amplifier
and (b) Plot of average error ()εF .

The design variables in this circuit are: W and L of

transistors, the compensation capacitor, and the biasing
current I0. The range for each design variable is shown
in Table 1. Systematic offset is taken into consideration
during design cycle. Ten independent design trials are
carried out. Five process corners taken into account
during the design are: TT, FF, SS, FS, and SF, where
‘T’ stands for typical, ‘S’ for slow, and ‘F’ for fast.
The plot of εF versus number of circuit evolutions is
shown in Fig. 4(b). PSO and HPSO algorithms are
close in performance; whereas the performance of GA
is poor. Two (out of ten) design solutions obtained

429

with HPSO are given in Table 1. All of them are
showing similar performance though sizes of
transistors are different in some cases.

Table 1. Design solutions and specifications at TT
process corner for two-stage op-amp designed by

HPSO.

Design
variables

Variable
range

Solution
1

Solution
2

W1/L1

W: 0.5 to 10
(μm)

L: 0.13 to 1
(μm)

Transistor

dimensions are
in μm.

2.5/0.75 3.0/0.75
W2/L2 1.5/0.5 1.5/0.5
W3/L2 3.8/0.5 3.8/0.5
W4/L3 7.0/0.75 7.0/0.75
W5/L4 1.5/0.25 3.5/0.25
W6/L3 3.0/0.75 2.0/0.75
W7/L5 4.0/0.75 3.5/0.75
W8/L5 4.0/0.75 5.0/0.75
W9/L3 5.5/0.75 5.5/0.75
I0 (μA) 0.01 to 10 (μA) 4.5 4.8
CF (pF) 0.1 fF to 10 pF 0.09 0.1

Desired specifications Specifications obtained
Gain ≥ 86 dB 86.16 86.13

Phase margin ≥ 65˚ 61.79 60.9
UGF ≥ 100 MHz 101 97

Power dissi. ≤ 20 μW 21 21.2
Rise slew rate ≥ 40 V/μs 50.33 48
Fall slew rate ≥ 40 V/μs 37.79 38

4.3 Ultra-low-voltage CMOS Miller OTA

The third example is an ultra-low-voltage, bulk-
driven, rail-to-rail CMOS Miller OTA; recently
reported in [8] and shown in Fig. 5(a). We show
automatic design of this circuit in 0.35 μm TSMC
mixed-mode process and at VDD = 0.6 V, which are the
same process and VDD level used in [8]. The circuit is
designed for specifications given in Table 2, which are
equivalent or better than that reported in [8].

To carry out the comparison with the results
reported in [8], the process, supply, and temperature
(PVT) variations are not taken into account during the
design. The ranges of design variables are given in
Table 2. The circuit is designed for ten independent
design trials. The plot of εF is shown in Fig. 5(b). It
can be seen that the HPSO algorithm is better in
performance in comparison to PSO and GA.

The specifications and sizing of transistors reported
in [8], and that obtained using HPSO algorithm (one
out of ten solutions), are given in Table 2. The
following observations can be made from the table for
the circuit designed using HPSO algorithm in
comparison to that reported in [8].

(a) The open loop gain is greater by 9 dB, which
means it is superior by 2.8 times.

(b) The unity gain frequency is close to four times
better.

(c) It has given better phase margin and slew rate.
(d) The performance in terms power dissipation and

third component of THD is equivalent.
(e) The total transistor area is less by 80 %.

Fig. 5 (a) Ultra-low-voltage, ultra-low-power
CMOS Miller OTA. (b) Plot of error ()εF .

Fig. 6 Plot of specifications versus circuit evolutions
for CMOS Miller OTA (Fig. 5(a)) designed by
HPSO algorithm in 0.18 μm and VDD = 0.4 V.

 For future ultra-low-voltage applications, this

circuit is also designed for standard 0.18 μm mixed-
mode process at VDD = 0.4 V using HPSO algorithm.
The NMOS and PMOS threshold voltages are 403 and
440 mV, respectively. The desired specifications are
set to the same values as used for 0.35 μm technology,
and the circuit is designed for five independent design
trials. The progress of performance measures
(normalized) versus circuit evolutions averaged over

430

five independent design trails is shown in Fig. 6. Two
design solutions with obtained specifications are
shown in Table 3. The following major observations
can be made about the circuit reuse in VDD = 0.4 V
(Table 3) compared to the circuit in VDD = 0.6 V
(Table 2):

(a) The open loop gain is reduced.
(b) The unity gain frequency is increased.
(c) The total transistor area is larger.

Table 2. Design solution and specifications reported
in [8], and those obtained by HPSO algorithm for

CMOS Miller OTA in 0.35 μm technology.

Design
variables

Ref [8] HPSO Algorithm
Variable Range Solution

(W/L) MP 200/9 W: 1 to 200 (μm)

L for transistors is
equal to the values
reported in [8].

Transistor dimensions
are in μm.

34.5/9
(W/L) M5 200/9 87/9
(W/L) M1, 250/1 130/1
(W/L) M8, 100/9 18/9
(W/L) M3b, 400/1 86.5/1
(W/L) M3a, 100/1 19.5/1
(W/L) M7 800/9 104/9
(W/L) M6 400/1 33/1
Rc (kΩ) 73.1 1 to 100 kΩ 81
Cc (pF) 5 1 to 10 pF 1.9
Iref (nA) 130 100 nA to 10 μA 109

Desired specifications Specifications obtained
Ref [8] HPSO

Open loop gain ≥ 75 dB 73.5 82.67
Phase margin ≥ 65˚ 54.1˚ 58.01˚

UGF ≥ 50 kHz 13.02 48.61
Power dissipation ≤ 500 nW 550 545.49
THD3 ≤ 1% at 520 mVp-p, 1

KHz
0.13 % 0.15 %

Rise slew rate ≥ 15 V/ms 14.7 21.77
Fall slew rate ≥ 15 V/ms 14.7 23.11
Total Trans. Area (μm2) 14500 2858.5

Total Area (μm2) 20772 5586.92

4.4 High-gain low-power three-stage Op-Amp
The circuit schematic of high-gain low-power

three-stage CMOS op-amp, commonly used in
transimpedance amplifiers and recently reported in a
highly precise 1-V CMOS current reference generator
[9], is shown in Fig. 7(a). A small modification was
applied to the circuit to provide a proper topology for
low-voltage design. For Vbias, we used VDD/2. We also
used drain of M22 to bias gate of M25 and M26. This
circuit is designed for 0.18 μm UMC technology. The
process variations (TT, FF, SS, FS, SF), supply
variations (± 10 % at 1.0 V), and temperature range 27-
70 ˚C are taken into account. The desired specifications
and the range of design variables are given in Table 4.
To reduce the design time, the following steps are used
in designing the circuit.

(a) Initially, the circuit is designed for TT process
corner with supply variations considered and at
T = 70 ˚C.

(b) The solution obtained in step (a) is refined to
consider process and supply variations.

(c) The design solution obtained in step (b) is refined
to consider PVT variations.

Table 3. Design solution and performance measures

for CMOS Miller OTA in 0.18 μm technology.

Design variables Solution 1 Solution 2
(W/L) MP

Transistor
dimensions
are in μm.

110.5/9 105/9
(W/L) M5 122.5/9 100/9
(W/L) M1, M2 17/1 11.5/1
(W/L) M8, M9 15/9 11.5/9
(W/L) M3b, M4b 138/1 90/1
(W/L) M3a, M4a 38.5/1 65/1
(W/L) M7 194/9 143.5/9
(W/L) M6 98/1 151/1
Rc (kΩ) 99 98
Cc (pF) 2.7 1.9
Iref (nA) 350 420

Desired specifications Specifications obtained
Open loop gain ≥ 75 dB 75 76.84

Phase margin ≥ 65˚ 59.7˚ 56.5˚
UGF ≥ 50 kHz 58 58.83

Power dissipation ≤ 500 nW 571 581
THD ≤ 1% at 400 mVp-p, 1 KHz 1 % 1 %

Rise slew rate ≥ 15 V/ms 30.87 30.58
Fall slew rate ≥ 15 V/ms 16.4 21

Total Transistor Area (μm2) 4598 3827.5
Total Area (μm2) 7520.24 6046.19

For better clarity, the comparison between

algorithms is carried out after completion of step (a)
and is shown in Fig. 7(b). It can be seen that GA is
quicker in reducing the error Fε. But, HPSO is able to
catch GA in terms of performance and is observed
to keep on reducing Fε. The plots of specifications
averaged over five independent designs for HPSO
algorithm after step (a) are shown in Fig. 8 and can be
seen that they attained the specified values. One of the
design solutions obtained with HPSO algorithm at the
end of step (c), is shown in Table 4 along with the
performance measures for the extreme supply voltages
and temperatures at TT process corner.

The average CPU time)T(CPU taken by algorithms
for the design of circuit examples considered in this
work is given in Table 5. GA has taken slightly more
CPU time, compared to PSO and HPSO.

431

Fig. 7 (a) High-gain low-power three-stage op-amp
(Vbias = VDD/2). (b) Plot of error ()εF .

Table 4. Design solution and performance measures

at TT process corner for three-stage CMOS op-
amp.

.
Design variables Variable range Solution

(W/L) M17, M18

W: 1 to 50 (μm)
L: 1 to 10 (μm)

Transistor

dimensions are in
μm.

3.0/8.25
(W/L) M19, M20 12.0/7.5
(W/L) M21, M22 3.0/2.75
(W/L) M23, M24 3.0/2.25
(W/L) M25, M26 9.5/2.0
(W/L) M27, M28 15.5/5.5
(W/L) M29 50.5/1.0
C1 (pF) 0.001 to 10 pF 4.3
R4 (kΩ) 1 to 75 kΩ 59
Desired specifications Specifications obtained

Temp 27˚ C 70˚ C
VDD 1.1 V 0.9 V 1.1 V 0.9 V

Gain ≥ 100 dB 119 114 118 114
Phase margin ≥ 65˚ 64 71 65 72

UGF ≥ 300 kHz 687 509 658 507
Power dissi. ≤ 10 μW 14 7 14 7.3

Systematic input offset
voltage ≤ 50 μV

19 4.3 28.7 11.22

Table 5. The average CPU time)T(CPU taken for

the design of circuits by algorithms.

Design Example GA PSO HPSO
h: hours, m: minutes, s: seconds

B u f f e r C h a i n 4 m 21 s 3 m 54 s 3 m 48 s
Two-stage opamp 1 h 43 m 1 h 38 m 1 h 37 m
CMOS Miller OTA 26 m 28 s 22 m 27 s 23 m 4 s
Three-stage opamp 2 h 56 m 2 h 41 m 2 h 48 m

Fig. 8 Plots of specifications of three-stage op-amp
designed by HPSO at TT process corner, T = 70 ˚C.

5. Conclusions

In conclusion, application of HPSO algorithm is

demonstrated for automatic design of low-power low-
voltage analog circuits. It is observed that in general,
HPSO algorithm finds solutions with better
repeatability, compared to GA and PSO. For ultra-low-
voltage CMOS Miller OTA designed in 0.35 μm
standard technology, the specifications of HPSO-
designed circuit are significantly better than that of
recently reported manual design. The OTA is also
designed for the first time in 0.18 μm technology at
VDD = 0.4 V. For this new design, HPSO algorithm
takes 23.5 minutes of CPU time.

6. References

[1] A. Savio, et al., “Automatic scaling procedures for analog
design reuse,” IEEE Cir .and Sys.-I, 2539-2547, Dec. 2006.
[2] M. Hershenson, et al., “Optimal design of a CMOS op-
amp via geometric programming,” IEEE Trans. Comp. Aided
Des. of Int. Cir. and Sys., vol. 20, pp. 1-21, Jan. 2001.
[3] D. Goldberg, “Genetic Algorithm in Search,
Optimization, and Machine Learning,” 1989.
[4] A. Somani, et al.., “An evolutionary algorithm-based
approach to automated design of analog and RF circuits
using adaptive normalized cost functions,” IEEE Trans. Evol.
Comp., Vol. 11, 336-353, June 2007.
[5] J. Kennedy, et al., “Particle swarm optimization,” Proc.
IEEE Int. Conf. on Neural Networks, pp. 1942-1948, 1995.
[6] J. Park, et al.., “Parasitic-aware RF circuit design and
optimization,” IEEE Cir. and Sys.-I, 1953-1966, Octo. 2004.
[7] S. Janson and M. Middendorf, “A hierarchical particle
swarm optimizer and its adaptive variant,” IEEE Trans. Sys.,
Man, and Cyber. – Part B: vol. 35, 1272–1282, Dec. 2005.
[8] L. Ferreira, et al.., “An ultra-low-voltage ultra-low-power
CMOS Miller OTA with rail-to-rail input/output swing,”
IEEE Cir. and Sys.-II: Exp. Briefs., 843-847, Octo. 2007.
[9] A. Bendali, et al., “1-V CMOS current reference with
temperature and process compensation,” IEEE. Cir. and Sys.-
I., 1424-1429, July 2007.

432

Variation-Aware Macromodeling and Synthesis of Analog Circuits using Spline

Center and Range Method and Dynamically Reduced Design Space

Shubhankar Basu , Balaji Kommineni and Ranga Vemuri

Electrical and Computer Engineering, University of Cincinnati

Cincinnati, OH 45221, USA

basusr,komminb,ranga@ece.uc.edu

Abstract

Manufacturing and process irregularities in nanometer tech-

nologies can degrade yield and severely slow down the design cy-

cle time. Process variation aware methodologies can help in yield

improvement and meeting time-to-market requirements for system-

on-chip designs. Analog circuits are extremely sensitive to device

mismatches and exhibit non-linear variations in their performance

under the influence of manufacturing irregularities. Performance

variation in blocks can lead to degraded system performance. In

this work, we present a variation-aware performance macromod-

eling technique for analog building blocks that is fast and accurate

and gurantees convergence during synthesis. The improvements

in accuracy and time complexity of the macromodel generation

process is achieved by constructing a target design region graph

and dynamic reduction of the design space. The target design re-

gion also helps in reducing time during re-synthesis and achieving

faster convergence. Experimental results demonstrate the accu-

racy of the macromodels and the reduction in synthesis time com-

pared to spice based simulation-in-the-loop evaluations and static

and adaptive sampling based techniques.

1. Introduction

Increase in the number of analog blocks in system-on-chip de-

sign, together with the faster time-to-market requirements has mo-

tivated the adoption of automated analog synthesis in the design

flow. However, state-of-the-art commercial solutions still require

computationally expensive numerical simulations-in-the-loop. Un-

der the influence of random variations occuring due to manufactur-

ing irregularities, conventional simulators require expensive Monte

Carlo iterations to measure the effect of device mismatch. This

makes the sythesis process prohibitively expensive.

Accurate performance macromodels allow designers to explore

several design alternatives at negligible computation cost during

the synthesis process. The effectiveness of performance macro-

models is determined by the measure of their accuracy when com-

pared to numerical simulators. Accuracy of macromodels in turn

is driven by the choice of samples, dimensionality of the modeling

problem and the choice of the modeling technique. While choice

of sampling technique is an active area of research, it can be con-

textually improved through a combination of modeling technique,

sample space selection and nature of dependent variables.

Analog systems are built using several lower level blocks like

the operational amplifiers, filters etc. The variation in block per-

formance under the influence of random process conditions can

percolate up the hierarchy, thereby affecting the performance of

systems like PLL, ADC etc. The use of hierarchical design ap-

proach starting with the development of variation-tolerant analog

component blocks can reduce the overhead of mismatch in the sys-

tem level design.

In this work, we propose a variation-aware performance macro-

modeling technique for analog component blocks like operational

amplifiers. Our method employs a fast spline center and range

interpolation technique for the performance functions, while pre-

serving the accuracy of measuring process variation effect using

limited number of numerical simulations in the inner loop of the

data generation process. We propose a dynamic design space re-

duction scheme and a target design region graph construction dur-

ing the macromodel generation steps. The target design region

graph and dynamic design space reduction scheme progressively

improves the accuracy of the macromodels while detecting the

sub-space which can be used for repeated synthesis.

The remainder of the paper is organized as follows. Section 2

presents the background of the problem and discusses some of the

related work in the domain. In section 3, we define the key con-

cepts used in this work. We present our variation-aware macro-

modeling and synthesis methodology in section 4. Section 5 dis-

cusses the result on three well known benchmark circuits belong-

ing to the operational amplifier class and finally Section 6 presents

the conclusion and future work.

2. Background and Related Work

As semiconductor industry continues to adopt Moore’s Law,

it is challenged by the random and systematic defects introduced

during the manufacturing process. In Fig. 1, we demonstrate the

effect of such random process variation on a synthesized single-

ended operational amplifier (SEO) circuit. The circuit is initially

synthesized in 65nm technology, with the nominal values of pro-

cess parameters. We subject the sized circuit to a random varia-

tion in four process parameters Vth0
, Tox, Leff , Weff for 200

Monte Carlo iterations, following the 3σ normal distributions as

obtained from [4]. The open-loop gain of the SEO is measured

for the different values in the parameters mentioned above. It is

observed from the histogram plot that around 59% of the perfor-

mance points are below the nominally synthesized specifications

(38dB) when subjected to random variations in device process pa-

rameters. The results demonstrated in Fig. 1 highlight the need for

variation-aware modeling and variation-tolerant synthesis.

In recent times, several researchers have presented methods to

model and optimize analog circuits in the presence of process vari-

ation. In [8, 7], the authors employ a low-rank projection scheme

to approximate the process sample space. Implicit power iteration

is used to compute the dominant Eigen vector for the low-rank for-

mulation. However the trade-off obtained in time complexity and

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.51

433

28 30 32 34 36 38 40 42 44 46
0

5

10

15

20

25

Gain (dB)

N
u

m
b

e
r

o
f

C
a

s
e

s

Less than Nominal (59%)

Met Nominal (41%)

Figure 1. Gain for SingleEnded Opamp

accuracy with the use of rank-one projection may not be achiev-

able with subsequent technology generations. Moreover, power

iteration algorithm, though useful in applying to any large sparse

matrix, is limited by its ability to find only one dominant Eigen

vector and slow convergence if
λi

λj
≈ 1 [12].

In this work, we present an alternate technique to model the

3σ bounds in performance variation as a function of the design

parameters. Design parameters are controllable by the user dur-

ing repeated synthesis process for design centering. Our method

captures the process variation effect on performance through lim-

ited number of Monte Carlo simulations in an internal sampling

loop. The macromodels are used to perform variation tolerant cir-

cuit synthesis. In the next section, we present the definitions of the

key concepts used in our work.

3. Definitions

3.1 Sizing Rules

It is argued that while a circuit may meet all high level per-

formance constraints (gain, bandwidth, etc.), it may possess un-

wanted behavioral attributes and may be overly sensitive to device

size variations [3]. Sizing rules impose matching constraints on

sub-circuits such as differential pairs and current mirrors to avoid

unwanted search of design parameters leading to electrically in-

correct circuits. The sizing rules also help in reducing the number

of free design variables, which help reducing the dimensionality

of our modeling problem. In this work, we apply the sizing rules

during the spice simulations to generate the raw sample data space.

3.2 Nominal Circuit

We define nominal circuit as the circuit synthesized with the

nominal values of process parameters. Nominal values of the pro-

cess parameters are the expected values of device components such

as Vth0
, Tox, Leff , Weff for the target technology. Performance

of nominal circuits is expressed as Perf(nominal) in this work .

3.3 Variation Tolerance

As illustrated in Fig. 1, performance of analog circuits devi-

ates significantly from Perf(nominal) under the influence of

random process variations. The performance under process varia-

tion can vary between [Perfl, P erfu] where l and u signify the

statistically significant (3σ) lower and upper bounds of the per-

formance swing. The range of the variation (Perfr) is defined

as the difference between Perfu and Perfl (Perfl − Perfu).

Variation tolerance is characterized by two measures: a) Perfl ≥
Perf(nominal) and b) Perfr ≤ Perf(spec)r where Perf(spec)r

is the allowed variation in performance based on yield targets.

3.4 Variation Tolerant Circuit Synthesis

Given an unsized circuit topology and a set of performance

specifications, variation tolerant circuit synthesis is the process of

determining the unknown set of sizes of all devices in the topol-

ogy such that the variation tolerance measures are satisfied. The

synthesis algorithm is guided by a multi-objective cost function

which is a weighted sum of the performance costs obtained from

the evaluation of the corresponding macromodels. The goodness

of candidate design points are judged by the cost estimates they

generate. To accept the design solution, we attempt to minimize

the cost, subject to the exit criterion for the synthesis process.

3.5 Variation Aware Macromodels

Macromodels are a black-box approximation of an unknown

function and may be defined as follows [9]:

y = f(x1, x2, x3, ...xn) (1)

ŷ = f̂(x1, x2, x3, ..., xn) (2)

In the above equations, xi for (0 ≤ i ≤ n) represent the inde-

pendent input variables and y is the corresponding response based

on those inputs. When, the input parameters are subjected to the

process variation effects, the performance functions no longer re-

main a single value. If the noisy performances are equally prob-

able to occur, and are continuous in the range, they can be rep-

resented by intervals. Therefore, for the real-valued input design

parameters, under the influence of process variation, the variation

aware macromodels can be defined as follows:

yl, yu = f(x1, x2, x3, ...xn) (3)

ŷl, ŷu = f̂(x1, x2, x3, ..., xn) (4)

Here f is the original function with an unknown form and f̂ is

the approximation of f . In other words, f̂ is the macromodel of f .

The closer the value of f̂ is to f , the more ready they are for use

in the synthesis loop.

3.6 Duchon PseudoCubic Splines

Analog performance is non-linear in the presence of process

variation. This makes the use of low-order polynomial regression

techniques an inadequate choice to model the performance. It has

been argued [2] that the use of spline interpolation with an ap-

propriate sampled space would be free of resonance effects due to

Runge’s Phenomenon which is often observed in high order poly-

nomial regressions.

Duchon pseudo-cubic spline [5] works reliably on multi-variate

scattered data. It uses a Radial Basis Function (RBF) which is the

cube of the Euclidean norm and a polynomial kernel of order=1.

Duchon pseudo-cubic spline has the following form:

Zi =

k
X

j=1

Wjφ(xi − xj) + P m(xi) (5)

φ = ‖x‖32 (6)

The height (zi) of the N-dimensional point to interpolate (xi)
is a weighted (Wj) summation of basis functions (φ) applied to

the difference between the unknown point and all ’k’ number of

sampled nearest neighbor points (xj) currently defining the spline,

plus a polynomial of degree m = 1. The RBF is evaluated be-

tween the points xi and xj . The coefficients together with the

434

location of the sampled data points completely define the spline

interpolate.

Mathematically, the Duchon Spline Center and Range models

required for our work are expressed by Equation. (7) and Equa-

tion. (8).

zc
i =

k
X

j=1

W c
j φ(xc

i − xc
j) + P m(xc

i) (7)

zr
i =

k
X

j=1

W r
j φ(xr

i − xr
j) + P m(xr

i) (8)

3.7 Target Design Region

Target Design Region (TDR) is a sub-space of the input n-

dimenstional feasible Euclidean design space R
n within which

designs satisfy the typical performances for correct functional and

electrical operation. In a variation aware framework, we define the

TDR as the region that contains designs with electrically correct

operation and satisfying variation tolerant performance specifica-

tions for lower (Perfl) and upper (Perfu) bounds. Identifying

the TDR for a circuit, given the feasible design space, can help

in developing more accurate macromodels that are meaningfully

used to synthesize the circuits in the presence of process varia-

tions.

4. Performance Modeling and Synthesis

4.1 Problem Formulation

In this work, we address two problems: a) Accurate variation-

aware macromodeling of an analog circuit performance, and b)

Fast synthesis in target design region using variation-aware macro-

models that produce truly converging solutions. Both the problems

are inter-related. Therefore, our method tries to tackle them at the

same time. Formally, we define our problem as follows:

Let R
n be an n-dimensional design space and X denote the

design variable set constrained by the lower and upper bounds

[Xl, Xu]. Let Perf(X)l and Perf(X)u be the measure of the

lower and upper bounds of the circuit’s performance in the design

space as obtained from spice simulation. Our objective is to build a

macromodel for the circuit performance such that the macromodel

estimates of the performance lower and upper bounds [ˆPerf(X)l,
ˆPerf(X)u] would be ≈ [Perf(X)l, Perf(X)u]. Given a set of

performance specification, denoted by the lower and upper bounds

[Perf(spec)l, P erf(spec)u], the objective of variation-tolerant

synthesis is to find the minimum values of all the free design vari-

ables (X), such that the target specifications for the circuit is met.

In the following section, we present our methodology addresing

the problems mentioned above.

4.2 Modeling and Synthesis

The accuracy driven performance macromodeling and synthe-

sis methodology proposed in this work can be broadly divided

into:

• Spline Center and Range Macromodeling

• Constrained Optimization

• Dynamic Reduction of Design Space (DRDS)

4.2.1 Spline Center and Range Macromodeling

The two major steps employed in this work for building the

performance macromodels are: (a) Raw data generation and (b)

Spline interpolation.

To perform raw data generation, we propose a two loop pro-

cess.

• outer loop: Samples the design variables (e.g. W,L of tran-

sistors), which are input by a designer. A quasi-random

sampling scheme using Halton Sequence Generator [6] is

chosen to uniformly sample the design space.

• inner loop: Samples the device parameters like Tox, Vth, Weff , Leff .

Corresponding to each design sample point, the randomly

varying process parameters are sampled through a spice Monte

Carlo simulation using pseudo-random sample generator. This

is performed using a Simplified Performance Analyzer (SPA)

that calls the HSpice simulator in the loop.

Having obtained the raw data samples, the data is grouped into

intervals based on each outer sample. The interval-valued perfor-

mance data provides the benefit of having much less number of

samples to capture the effect of process variation on performance.

We reduce the dimensionality of the modeling problem using the

reduced set of design variables obtained after imposing dc sizing

rules as described in Section. 3.1

Center and range transformation can faithfully represent the

characteristics of an interval data type, and eliminates unneces-

sary width expansion in classic intervals. Given the interval-valued

performance data as an input, the transformation into ’center’ and

’range’ is done as a secondary step to prepare data for spline inter-

polation. The transformation is obtained as follows:

Input : X = [Xl, Xu] (9)

Y = [Yl, Yu] (10)

Output : Xc = (Xl + Xu)/2 (11)

Xr = (Xu −Xl) (12)

Yc = (Yl + Yu)/2 (13)

Yr = (Yu − Yl) (14)

Model interpolation is used to obtain the coefficients of the se-

lected functional form. In this work, we use the Duchon pseudo-

cubic splines modeling given by Equations 7 as the functional

form for modeling. Algorithm. 1 presents the pseudo-code used in

this work to develop the macromodels for the performance func-

tions in each design space in the TDR graph.

4.2.2 Constrained Optimization

Simulated Annealing (SA) is used in this work to perform a

constrained optimization of the circuit in the presence of process

variations. In spite of their relatively longer time requirement, SA

is capable of finding global minima in presence of several local

minima. In our work, the time for optimization is controlled by a

relatively smaller search space in the subsequent TDR nodes.

The constrained optimization problem can be expressed as:

Minimize
P

i
xi

such that
P

j
αj ∗ f̂j(X) ≤

P

j
αj ∗ fj(X) + ε

αj is the weight assigned to each performance function based

on user specifications. ε is the allowed error tolerance during syn-

thesis. Since the objective of the synthesis is to generate variation

435

Algorithm 1: Macromodeling

procedure getModel (Spice file, Config, [W] (TDR node),

Ns, Ni)

Input: Spice file, Config,[W] , Ns, Ni

Output: Performance Macromodel of the TDR node

/* Raw Data Generation */

for i ≤ Ns do
Yi = SPA(wi, Ni, Spice file, Config)

endfor

/* SPA: Simplified Performance Analysis */

pr metrics = SPA(sim data, fp)

sim data = HSPICE (spice netlist, paramsj, monte(j ← 0 to

Ni))

paramsj = uniform(wij , vthj
, toxj

, leffj
)

Xi = Xi−1 ∪ wij

Yi = Zi−1∪ pr metrics

X = Xi, Y = Yi

/* Performance macromodel generation */

[Y] = Interval transform (Y)

[Yc, Yr] = CR transform ([Y])
/* SCRR: Spline based Center and Range Regression */

βc = SCRR(X,Yc)

βr = SCRR(X,Yr)

TDR.Macromodel = {βc, βr }
[a] = (al, au)

tolerant circuits, we define the cost functions using both the lower

and upper bounds of each performance. A typical performance

cost in our context is defined as follows:

cost =abs(
(perfu − perf(specs)u)

perf(spec)u

),

for perfl ≥ perf(spec)l,

=(
(perf(spec)l − perfl)

perf(spec)l

)

+ abs(
(perfu − perf(specs)u)

perf(spec)u

),

for perfl ≤ perf(spec)l.

4.2.3 Dynamic Reduction of Design Space

The time required to solve for the co-efficients during spline

interpolation grows in a cubic relation with the number of equa-

tions. Therefore spline modeling for more than a few thousand

points can be computationally expensive. This limits its usage in

practical situations. In Fig. 2, we illustrate the relation between

Duchon Spline Center and Range (SCR) modeling time and the

number of samples for the open-loop gain of the single-ended op-

erational amplifier. It can be noted from the figure that the mod-

eling time increases significantly beyond 900 samples. We over-

come this problem by splitting the design space into narrow sub-

sets and performing the interpolation on fewer numbers of samples

required for desired accuracy over the smaller regions.

The accuracy of performance macromodels are improved dy-

namically based on the error in estimation of performance for the

synthesized solution using our macromodels and spice Monte Carlo

simulation. (DRDS) is maintained as a directed graph (Target De-

sign Region Graph) whose nodes represent the subsequent target

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

Number of Samples

M
a

c
ro

m
o

d
e

l
G

e
n

e
ra

ti
o

n
 T

im
e

 (
S

e
c

o
n

d
s

)

Figure 2. SCR Modeling Time Comparison
design regions (TDR) and the directed edges connect from a par-

ent region to a child sub-region. Therefore, a TDR graph may

have just one node (initial design space) or several nodes which

are grown as child nodes to a parent node. Fig. 3 shows the typ-

ical flow in which DRDS and synthesis occurs in our proposed

methodology. The various steps in the DRDS algorithm are ex-

plained below.

1. Given an input search space, Initialize Macromodel builds

a Duchon spline based center and range macromodel of the

circuit performance. Icur is used to store the current TDR

node number. Therefore for the first time building of a macro-

model and synthesis, the Icur is initially set to ’1’. The ini-

tial macromodel is stored in the TDR graph data structure as

TDR(Icur).macromodel.

2. Given the search space, topology and lower and upper bound

performance specifications, the constrained optimizer finds

a design D that satisfies the given specifications. In this step,

the optimization engine uses the macromodels developed for

performance evaluation.

3. Having obtained a design D, the macromodel accuracy is

validated against numerical simulation under the influence

of process varying device parameters to avoid a possible

false convergence. The error during validation is computed

as follows:

Error =
|cost(D)− ̂cost(D)|

cost(D)
∗ 100 (15)

4. Based on the error in macromodel evaluation, three condi-

tions are checked.

(a) Error ≤ ε? If yes, the optimization and DRDS ter-

minates giving the optimized design point D. If no, the

next condition is checked.

(b) Number of samples (Ns) < Maximum samples ?

If yes, enhance the number of samples in the space

and generate a new macromodel using getModel. If

no, then the next condition is checked.

(c) Current space(Icur) < maximum number of nodes

for the TDR? If yes, then split the search space. If no,

then reset the search space to initial design space and

re-initialize the macromodel.

5. Split the search space and generate new macromodel using

getModel. Algorithm. 2 presents the pseudo-code adopted

to split the parent search space into the next target design

region. The essence of the algorithm is a simple condition

check using the current design point and the design space for

the TDR node ([W]) as follows: Di ≥ ⌊(wil
+ wiu)/2⌋.

436

Figure 3. DRDS: Flow Chart

Algorithm 2: DRDS: Splitting Design Space

procedure DRDS (Spice file, Config, TDR(Icur), Icur,

[Wi(Icur)])
Input: TDR(Icur) Design Space ([Wi]), Best Design Sizes

Obtained([Di])

Output: TDR(Icur).child

/* N = Total number of design variables */

for i = 1 to N do
wimid

= ⌊(wil
+ wiu)/2⌋

if Di ≥ wimid
then

winew = [wimid
, wiu]

else
winew = [wil

, wimid
]

endif

endfor

TDR(Icur).child = [Winew]

4.3 Repeated Synthesis Using TDR Graph

The time complexity of the variation-aware macromodeling and

repeated synthesis process is considerably reduced by the use of

an existing TDR graph. An existing Best Cost search in the subse-

quent child nodes of the TDR graph allows the optimization engine

to explore the existing solutions in the TDR. This procedure has a

three fold advantage: (a) The presence of a better solution in the

existing child nodes can guide the synthesis process to the target

design region faster. (b) The potential for simulated annealing to

converge with a sub-optimal solution can be minimized by choice

of an existing better solution. (c) The time due to model genera-

tion is overcome through the traversal of the existing TDR graph

and using the pre-constructed macromodels of the corresponding

nodes.

5. Results

We present the result of the proposed methodology on three cir-

cuits in the operational amplifier class: (a) Single Ended Opamp

(SEO), (b) Two Stage Opamp (TSO) and (c) Differential Opamp

(DOA). In our experiments, we consider the width of the transis-

tors as the independent design variables that constitute the search

space and hence the TDR nodes. The length of the transistors is

kept at their minimum dimensions for simplicity reasons with no

loss of generality. Sizing rules constraints, as decribed in Sec-

tion. 3.1, have been applied to all the three circuits as a part of the

spice netlist setup. We consider four process varying parameters

(Tox, Vth, Weff , Leff) for each transistors which are varied ran-

domly following a Gaussian distribution. The circuits are imple-

mented in 65nm predictive technology models [1]. The variations

in process parameters are adopted from [4] for 70nm technology.

All experiments are run using Matlab, C++ and Hspice for Win-

dows operating system with Intelr CORETM2 Quad processor

with 8GB RAM.

Table 1. Comparison of different macromod
eling techniques

Parameter

Static (5hr) Adaptive (32hr) DRDS (6hr)

Accuracy Accuracy Accuracy

rl
2 ru

2 rl
2 ru

2 rl
2 ru

2

BW 0.83 0.87 0.97 0.99 0.96 0.99

GAIN 0.95 0.94 0.95 0.93 0.99 0.99

PM 0.85 0.77 0.94 0.91 0.95 0.98

UGF 0.90 0.86 0.95 0.90 0.99 0.99

5.1 Error Minimization Using DRDS

Fig. 4 plots the error map for the modeling of open-loop gain

for the single ended operational amplifier in the five TDR nodes

using DRDS. It can be noted that the modeling error is reduced

from 30% in the initial design space to 0.82% in node 5 which

meets our desired error tolerance. The proposed method is there-

fore accurate within the final target design region.

1 2 3 4 5
0

5

10

15

20

25

30

35

Target Design Region Node

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Accepted Macromodel: Error = 0.82%

Figure 4. Error Reduction across TDR Nodes

5.2 Accuracy and Time Complexity

To illustrate the accuracy and time complexity advantage, we

compare our technique (DRDS Macromodels) with the spline cen-

ter and range macromodels generated using (a) static samples [11],

and (b) adaptive samples on the complete design space [10]. We

present the result of this comparison for the single ended opera-

tional amplifier circuit for four different AC performance param-

eters, viz. (a) 3-dB bandwidth (BW), (b) open-loop gain (Gain),

(c) phase margin (PM) and (d) unity gain frequency (UGF). For

the purpose of accuracy comparison, we generate a random vali-

dation set comprising of 100 test cases in the target design region,

for which we accept the macromodels.

437

The accuracy of the macromodels are compared using the sta-

tistical correlation coefficient measure (r2) for the lower and up-

per bounds of the performance measures. For a better accuracy,

the value of r2 should be close to 100% or 1. Table. 1 summarizes

the result of this comparison. It can be observed from the table

that DRDS macromodel is the most accurate amongst the three

different techniques. It can also be observed that the model gener-

ation time for the DRDS macromodel is marginally higher than the

static macromodel and is more that 5X efficient than the adaptive

macromodel with comparable accuracy. Therefore, DRDS macro-

modeling has a better practical applicability over static and adap-

tive sampling based macromodeling techniques.

5.3 Repeated Synthesis

To further illustrate the advantage of the TDR graph during

repeated synthesis, we synthesize the three circuits with varying

specifications and compare the accuracy of result obtained with

corresponding evaluation using HSpice circuit simulator. For con-

venience of understanding, we group the similar or closer specifi-

cations into a single specification category. It can be observed that

during repeated synthesis (subsequent rows), the time complexity

is reduced by several order of magnitude in most cases, while pre-

serving the same accuracy level. The error in model estimation

against HSpice based Monte Carlo simulation is computed using

equation. 15. Table. 2 summarizes the measure of macromodeling

time and model estimation percentage error for the synthesized de-

sign points. It can be observed that the error in all the cases is less

than 1% which proves the accuracy of the DRDS macromodels

used during synthesis.

Table 2. DRDS Modeling and Synthesis
SEO TSO DOA

Time (secs) Error Time (secs) Error Time (secs) Error

2

3088 0.81 11837 0.31 38456 0.35

1206 0.66 2725 0.71 15598 0.94

39 0.64 2147 0.34 3648 0.93

3

5367 0.00 14449 0.05 37297 0.94

14757 0.88 8746 0.15 20877 0.90

5868 0.92 2692 0.67 265 0.08

2

3128 0.88 5883 0.04 8734 0.68

22224 0.00 2315 0.23 1929 0.13

14357 0.00 50 0.13 268 0.79

5.4 Variation Tolerant Synthesis

We perform a Monte Carlo analysis using Hspice simulator

with the synthesized sizes of the circuit to illustrate the variation-

tolerance on performance. The performance variation data is com-

pared with the corresponding nominal circuit performance. Ta-

ble 3 summarizes the result obtained for two circuits, SEO and

DOA. It is observed from the table that the synthesized circuits

meet the bounds of the performance reliably.

6. Conclusion

In this work, we presented a variation-aware macromodeling

methodology using target design region graph data structure and

dynamic reduction of design region to build fast and accurate per-

formance models for analog blocks. The macromodels are used

Table 3. Synthesized Circuit Performance
Perf DOA SEO

Nominal Variation Nominal Variation

BW (MHz) 0.1 [0.1,0.4] 0.24 [0.2,0.3]

GAIN (dB) 40 [39.4, 42] 38.6 [38.2,46.3]

PM (Deg) 86 [86.3,89.3] 58 [58,73.9]

UGF (MHz) 1010 [998,1500] 17 [20,28.8]

effectively in the synthesis framework with no false convergence.

The key point in the methodology is to find the target design re-

gions in the design space and perform fast synthesis using the ac-

curate macromodels in this space. The target design region graph

is grown using dynamic reduction of design space guided by the

error in the macromodel evaluation for the synthesized design point.

The synthesized circuits achieve a very high performance yield

with marginal area penalty. A library of variation tolerant analog

blocks can be generated using this method. The next step is to

use the block level robust library to build variation tolerant analog

systems.

7. References

[1] Predictive technology model. Technical report,

http://www.eas.asu.edu/ ptm.

[2] B. Fornberg and J. Zuev. The runge phenomenon and

spatially variable shape parameters in rbf interpolation.

Comput. Math. Appl., 54(3):379–398, 2007.

[3] H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich. The

sizing rules method for analog integrated circuit design. In

Computer Aided Design, 2001. IEEE/ACM International

Conference on, pages 343–349, 2001.

[4] ITRS. Semiconductor roadmap 2006. Technical report,

International Technology Roadmap for Semiconductors.

[5] J. Duchon. Constructive Theory of Functions of Several

Variables, Lecture Notes in Mathematics. Springer-Verlag,

1977.

[6] J.H.Halton. On the efficiency of certain quasi-random

sequences of points in evaluating multi-dimensional

integrals. Nuremische Mathematik, 2:84–90, 1960.

[7] X. Li, P. Gopalakrishnan, Y. Xu, and L. T. Pileggi. Robust

analog/rf circuit design with projection-based posynomial

modeling. In ICCAD, pages 855–862, 2004.

[8] X. Li, J. Le, L. T. Pileggi, and A. J. Strojwas.

Projection-based performance modeling for inter/intra-die

variations. In ICCAD, pages 721–727, 2005.

[9] R. Harjani et al. Oasys: A framework for analog circuit

synthesis. IEEE Transaction on Computer Aided Design,

8(12):1247–1266, December 1989.

[10] Shubhankar Basu, Balaji Kommineni and Ranga Vemuri.

Mismatch Aware Analog Performance Macromodeling

Using Spline Center and Range Regression on Adaptive

Samples. In VLSID 2008, pages 287–293, 2008.

[11] Shubhankar Basu, Balaji Kommineni and Ranga Vemuri.

Variation Aware Spline Center and Range Modeling for

Analog Circuit Performance. In ISQED 2008, pages

162–167, 2008.

[12] Zhaojun Bai et al. Templates for the Solutions of Algebraic

Eigen Value Problems: A Practical Guide. SIAM,

Philadelphia, 2000.

438

A Low Power Architecture to Extend the Tuning Range of a
Quadrature Clock

R. Dutta and T. K Bhattacharyya
Electronics and Electrical Communication Engineering Department

IIT Kharagpur
Kharagpur, India

ramen_dutta@yahoo.co.in, tkb@ece.iitkgp.ernet.in

Abstract

A low power architecture to extend the frequency
range of quadrature clock is proposed. This
architecture is based on a series of dividers. It can
enhance the lower frequency limit of a Quadrature
Voltage Controlled Oscillator (QVCO) clock to any
arbitrarily small frequency. Based on the architecture
a design is shown which enhances the low frequency
range up to -90% of the center frequency, assuming the
QVCO tuning range is +20%. The dividers are made
of Dynamic Transmission Gate Logic (DTGL) to
reduce power consumption. Simulation result shows
that the power consumption of the extender circuit,
excluding the QVCO, is 2.1mW from 1.2V supply
voltage at 3GHz input frequency in 90nm CMOS
technology. The output jitter contribution by this
circuit is 2ps and 0.15ps for mismatch and thermal
noise respectively. Maximum output frequency
achieved is 4.8GHz for differential clock and 2.4GHz
for quadrature clock.

Index Terms—Tuning range, DTGL, quadrature

clock

1. Introduction

The target of a cognitive radio or Software Defined
Radio (SDR) is to access a wide range of frequencies
dynamically. Accessing wide frequency range is
possible only when synthesizer in the transceiver can
generate clock for all those frequencies. Therefore, the
Voltage Controlled Oscillator (VCO) used in the
frequency synthesizer of the transceiver chip has to
cover a large frequency range along with a very good
phase noise performance. In modern transceivers, VCO
with a LC tank is used because of excellent phase noise
though they provide narrow tuning range. To cover a

wide tuning range multiple VCO architectures are
proposed in [1], need large area and power. In this
application, a frequency range of 200MHz to 2.4GHz
is required which need three VCOs. The area and
power increases hugely with number of VCO. Thus
covering wide frequency range by means of extra VCO
is not very efficient solution. To the VCO tuning
range can be increased using pseudo-exponential
capacitor bank [2]. That can achieve maximum +/-
30% tuning range which is not sufficient for this
application. Tuning range extension by a series of
divider and multiplexer has also been reported in
[1]. This needs two VCO as well to remove the
frequency discontinuity between the VCO output
and the divider-by-2 output.

An approach to extend tuning range by a single
VCO is reported in [3]. Here, a mixer is used to
achieve a 3/2 and ¾ multiplication of the VCO
output frequency. This method reduces the area
and power requirement but gives rise to strong side
bands at half of the VCO frequency. Also a
quadrature mixer consumes much more power than
a divider designed which can take very low power if
designed in digital logic such as True Single Phase
Clocking (TSPC) or Dynamic transmission Gate
Logic (DTGL). Another scheme was proposed in [4]
to extend the tuning range up to 50%, based on phase
switching programmable divider architecture [5].
However this method also requires a mixer to produce
a 2/3 multiplication of the input frequency with 50%
output duty cycle.

In this paper we describe a technique to extend the
VCO tuning range which consumes very low extra
power, contributes minimum jitter to the output clock
and also takes a very minimal extra area. The
architecture is fully based on a series of dividers and a
multiplexer. It maintains a 50% duty cycle at the
output so that the quadrature clock can be generated
just by another divider.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.88

439

After the introduction in Section I, Section II
discussed about the proposed architectural and its
optimization. Section III briefly describes about the
design of different building blocks of this tuning range
extension circuit. Simulation results are presented in
Section IV and conclusions are drawn in Section V.

2. Architecture

Fig.1 shows the basic architecture of the proposed

extender circuit. The output frequency of a VCO is fed
to a set of frequency dividers (DIV1 to DIV4). The
dividers output is selected by a multiplexer (MUX).
Therefore depending on the multiplexer control, any
divider output can be passed to the final output. A set
of digital bits can be used to control the output
frequency by controlling the multiplexer.

As only one divider output is used at a time, other
dividers do not need to switch its output. Therefore the
digital bits can also be used to switch off all other
dividers which are not used at some particular time.
This will reduce the power consumption but at the cost
of more delay in the signal path due to extra gating.
The number of dividers required is dependent on the
input clock (VCO output) tuning range and targeted
tuning range at the output.

Figure 1: Basic architecture of extending
frequency range by dividers

When the QVCO have a tuning range of +/-20%, 6

dividers are required to increase the tuning range up to
-90%, as tabulated in Table 1. One of them is a
fractional divisor with a division ratio of 3/2 or 1.5.
This fractional division can be avoided if the QVCO
have tuning range of +/- 33% which is extremely high
[4]. On other hand if and the VCO tuning range is less
than +/-20% more number of fractional divider will be

required and that will make the design complex and
prone to more jitter and phase error. An optimal
choice is +/-20% which is a reasonable one for a
practical VCO. The corresponding architecture is
shown in Fig. 2. By this architecture any arbitrarily
low frequency range can be obtained just by adding
more number of divided by 2 circuits at the output

Table 1: Dividers require to extend the tuning

range with Input Tuning Range of +/-20%

2.1. Optimization of the architecture

In the architecture shown in Fig. 2 some of the

blocks can be reused and thus the architecture can be
modified as shown in Fig. 3. A level shifter is placed
so that dividers can be designed by digital logic
families. After that a 1.5 or 2 frequency divider is used.
All other division ratios can be made by adding divide
by 2 block after the 1.5/2 divider block as shown. One
dedicated divide by 2 is used to generate quadrature
phases at the output. Quadrature phase is required in
several applications such as in transceivers it is
required to cancel the image frequency component. If
quadrature clock is generated, the output frequency
range obtained will be changed from 1.2fin-0.1fin to
0.6fin-0.05fin (Fig. 3). In other words, to meet the same
output frequency, double input frequency is required if
quadrature output is needed.

3. Design of the frequency range extender

The divider circuit is designed in Dynamic

Transmission Gate Logic (DTGL) which can achieve
higher frequency than other digital logic families such
as TSPC and consumes low power than Current Mode
Logic (CML) dividers. Divide by 2 circuit by DTGL
logic is shown in Fig. 4 and fig. 5 for 2 phase and 4
phase output respectively. In these dividers in clock to
output delay is just transmission gate delay. Therefore
DTGL dividers not only can operate at higher
frequencies but also contributes very less jitter. This is

DIV ratio Freq. Low Freq. high
1 0.80 1.20

3/2 0.53 0.80
2 0.40 0.60
3 0.27 0.40
4 0.200 0.3
6 0.133 0.2
8 0.100 0.15

440

because the output jitter is proportional to the square of
the delay [7]. It consumes less area and the simplicity
in the circuit reduces the design time considerably.
However, due to its dynamic operation the dividers can
produce a minimum output frequency of 2MHz.

Figure 2: Architecture for extending VCO

frequency from +/- 20% to 90%

Figure 3: Modified architecture for frequency

extension

The MUX shown in the Fig. 3 is made of
transmission gate. Transmission gate multiplexer don’t
need any extra power though they can achieve good
speed.

A level shifter is required just after the QVCO
because the VCO gives low voltage swing output. Fig.
6 shows the level shifter used in this design. The
feedback resistance in the first inverter biases the
inverter at its trip point which ensures level shifting to
rail-to-rail output from any dc level. The capacitor
value is chosen such that the cut off frequency of the
filter is around 10MHz which is 10 times less than the

lowest frequency of operation to assure proper
operation.

The other block is the 1.5/2 divider which is
described in the next sub-section in detail. The SET or
RESET flip-flop used in the control logic is made of
static CMOS logic because it has to have the capability
to operate in arbitrary low frequency.

Figure 4: Frequency divider with DTGL

Figure 5: Divide by 2 by DTGL with four phase

output

Figure 6: Level shifter

3.1. Divider-1.5 with 50% duty cycle

General 1.5 division circuits give non- 50% duty

cycle. Phase selection method shown in [5] can be used
to divide a four phase clock by 1.5 times [4]. It gives
duty cycle of 33.3% or 66.7%. To achieve 50% duty
cycle the clock feedback in the phase selection (clock
interpolation) method is modified in this design. Here,

441

the MUX output itself clocks a state machine which
selects one of the 4 input phases. The concept of the
1.5 division is shown in Fig. 7. The control is designed
such that the phases are selected as follows 0°-270°-
180°-90°. The waveform in Fig. 8 shows the input
clocks, the multiplexer output (MUX_OP) and the final
divider output (DIV2_OP). The control logic is
triggered at the negative edge of the MUX_OP signal.

Figure 7: Concept of the 1.5 division

Figure 8: Four phase input and 1.5 division by

phase interpolation

When the control bits select CLK_0, MUX_OUT
will follow the CLK_0 signal. As soon as CLK_0
negative edge comes, the control is triggered and it
selects the CLK_270 input. Therefore, the MUX_OUT
will follow CLK_270 and rises after 90° from the
previous fall. Again after the next falling edge,
CLK_180 is selected. This will make MUX_OUT to
rise 90° after its previous falling edge. Like this way
the MUX_OUT gets a full cycle after 270° of the input

clock, which makes MUX_OUT signal frequency 4/3
of the input frequency. The duty cycle of this signal is
66.67%. After a divider a perfect 50% duty cycle is
obtained and the frequency is changed to 2/3 of the
input frequency which is nothing but a 1.5 division.

Figure 9: Schematic diagram of 1.5/2 divider

with 50% duty cycle output

3.2. Divider 1.5 or 2 by external control

The usage of the 1.5/2 divider block has been

shown in Fig. 3. It can be done by minimum
modification over the 1.5 divider. The 1.5/2 divider
circuit is shown in Fig. 9. Here the multiplexer is
designed by transmission gates. Static CMOS flipflop
is used in the controller.

If DIV2 input of the Fig. 9 is HIGH, it’s SET or
RESETS the flip-flops and only one phase
permanently selected by the phase interpolating
multiplexer. Therefore the input clock will be passed
through a divide-by-2 circuit and gets 2 division.

The DTGL dividers in 1.5/2 block required both
clock and complementary clock. The complementary
clock can be generated either by inverter or by
repeating the same circuit with the input clock
inverted. The first method is power optimized but adds
jitter and skew between clock and complementary
clock. Second method can improve the frequency of
operation at the cost of power. In this design the
second method is adopted to meet the frequency of

442

operation. This part is not shown in the figure to reduce
complexity.

3.3. Integration and overall circuit diagram

Fig. 10 shows the circuit diagram of the full tuning

range extender circuit. The divider 1.5/2 is followed
by a set of dividers and their output is selected by a
multiplexer. The multiplexer output goes to a divider
with 4 phase output. The complementary clock
required for the final divider can also be realized by an
inverter or a separate multiplexer having the
complementary output of the first three dividers (not
shown in the figure). Adding an inverter will add jitter
and phase mismatch in the final output. Therefore the
second option is chosen in this design which will
improve the jitter performance at the cost of power
consumption.

Figure 10: Full schematic of the tuning range

extension circuit

4. Simulation result

Simulation on the full frequency extension circuit

(as in Fig. 10) is done with 90nm CMOS technology.
The highest input frequency at which the circuit is
functional is 4GHz. Thus the output frequency range
achieved is from 400MHz to 4.8GHz for differential
clock with 50% duty cycle and from 200MHz to
2.4GHz for quadrature output. Maximum input
frequency is limited by the first 1.5 divider circuit.
Maximum power consumption is obtained when the

full extender works as a divider-by-6 circuit. In that
mode, power consumption of the extension circuit is
2.1mW from 1.2 power supply voltage with a 4GHz
input. For the above case jitter value is found out by
simulation. The mismatch jitter contribution is 2ps.
The output jitter due to noise sources such as thermal
noise, flicker noise etc is 0.15ps.

Figure 10: Waveform of 4-phase input clock,
1.5-division, 3-division and 6-division
(quadrature) outputs [I and Q of the

Quadrature clocks are shown separately]

For other division modes, both the power

consumption and the output jitter gets reduced which is
verified by simulation. As the no of divider decreases
in the path the jitter contribution will be less. If
quadrature clock is not required, the power
consumption can be further reduced by 0.2mW to
0.6mW depending on the output frequency.

5. Summary and conclusion

In summary, an architecture which can extend the

MPCG frequency tuning range is explored. By using a
divider chain, wide tuning range is achieved with 4
phase input clock. This block can be incorporated after

443

a QVCO with +/- 20 % tuning range. With a 4GHz
QVCO the extender circuit can produce 400MHz to
4.8GHz with differential 50% duty cycle output and
200MHz to 2.4GHz with Quadrature output consuming
power as low as 2.1mW from 1.2V power supply in
90nm technology. This architecture is highly suitable
to extend the VCO tuning range for wide frequency
range applications.

6. References

[1] Kim, Jae Y., Chih-Wei Yao, Willson, Alan N, “A
programmable 25 MHz to 6 GHz rational-K/L
frequency synthesizer with digital Kvco compensation,”
IEEE Int. Symp. on Circuit & Systems, pp. 2629-2632,
May. 2008.

[2] Jongsik Kim, Jaewook Shin, Seungsoo Kim, and
Hyunchol Shin, “A wide-band CMOS LC VCO with
linearized coarse tuning characteristics”, IEEE
transaction on circuit and systems—II: express brief,
vol. 55, pp. 399-403, May 2008.

[3] Adil Koukab, Yu Lei and Michel J. Declercq, “A GSM-
GPRS/UMTS FDD-TDD/WLAN 802.11a-b-g multi-
standard carrier generation system,” IEEE J. Solid-State
Circuits, vol. 41, pp. 1513-1521, Jul. 2006.

[4] Davide Guermandi, Paola Tortori, Eleonora Franchi,

Antonio Gnudi, “A 0.75 to 2.2GHz continuously-
tunable quadrature VCO,” Int. Solid-State Circuit
Conference, pp. 536-537, Feb. 2005.

[5] J. Craninckx and M. Steyaert “A 1.8-GHz low-phase-
noise voltage controlled oscillator with prescaler,” IEEE
J. Solid-State Circuits, vol. 30, pp. 1474, Dec. 1995.

[6] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje

Nikolic, Digital Integrated Circuits: A Design
Perspective, 2nd Edition, Prentice Hall, ISBN: 0-13-
090996-3, 2003.

[7] X. Gao, E. Klumperink and B. Nauta, “Advantages of

shift registers over DLLs for flexible low jitter
multiphase clock generation”, IEEE Trans. Circuits
Syst. II, vol. 55, pp. 244 -248, Mar. 2008.

444

Fuzzy Logic Based Guidance to Graph Grammar Framework
for Automated Analog Circuit Design

Angan Das and Ranga Vemuri
Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030, USA.

Email: {dasan, ranga}@ececs.uc.edu

Abstract— This paper introduces a fuzzy logic based guidance archi-
tecture to a graph grammar framework for automated design of analog
circuits. The grammar generates circuit topologies through a derivation
tree. To boost this tree based synthesis mechanism, smaller building
blocks in the form of subtrees have been used for the purpose. These
blocks have been automatically generated and their appropriateness for
the design is updated runtime through the fuzzy system. Fuzzy logic
helps to provide a smooth gradation for the relative merit of each block
with respect to the design synthesized. The tool has been used to design
an operational amplifier and a voltage controlled oscillator.

I. INTRODUCTION

Modern day SoCs house analog, digital and RF sections on a
single chip. But unlike tools in the digital domain that have achieved
noteworthy success, the development curve of automated analog
synthesis tools has always been slow and inadequate, both in the
industry as well as in academia [1]. Analog synthesis comprises
of two steps — Topology formation and subsequent Sizing of the
topology. Topology formation can again be achieved through two
different ways — Topology selection and Topology generation.

Owing to heavy designer dependency and huge set-up effort,
heuristic-based selection approaches [2], [3] gradually evaded with
the advent of generation techniques. Circuits were actually generated
with the aid of evolutionary algorithms like Genetic Algorithms
(GA) [4] and Genetic Programming (GP) [5]. But they involved
heavy computational burden. This shortcoming was alleviated in [6],
where design-specific building blocks were used to construct a circuit.
Unfortunately, this approach requires a designer certified block library
for each design class. To meet this deficiency, adaptively built blocks
were introduced in our earlier work [7]. But there the blocks were
judged using numerical approaches based on a single weighted cost
function. [8] is one of our prior works on passive circuit synthesis.

In a pursuit to overcome all of the above drawbacks, we introduce a
graph grammar based framework for the generation of analog circuit
topologies. A grammar can be defined as a set of rules that can
generate a construct from a list of terminals [9]. In case of graphs,
these rules are used to construct a complete graph from a variety of
nodes and allowable interconnections. In this work, we construct an
analog topology graph using components like PMOS and NMOS.

In the process, to boost the synthesis run, we also construct a
certain number of circuits in each set from meaningful building blocks
that have been dynamically obtained. The merit or appropriateness of
these blocks is quantified through a guidance architecture based on
fuzzy logic. Fuzzy rules help to represent, manipulate, and implement
a human’s heuristic knowledge on how to control a system. Hence
fuzzy logic systems act as artificial decision makers and thereby have
numerous engineering applications [10], [11]. In the analog topology
synthesis domain, FASY [12] is an example where fuzzy rules are
used for topology selection among a fixed set of alternatives.

Finally, it is to be noted that most analog design problems are
multi-objective optimization problems that often involve conflicting

This work was supported by National Science Foundation under award
numbers CCF-0429717 and CNS-0421092.

Yes

No

No. of gen. + 1

Building block

library

Fuzzy logic guided

block library update

Reproduction –

Selection, Crossover

& Mutation

Topology generation based

on a Graph grammar

framework (VN, VT, P, S)

[Circuit production trees]

NSGA-II based circuit sizing for each topology

(HSPICE based performance evaluation)

NSGA-II based sorting of sized circuit topologies

and formation of new optimization front

Max # gen. reached

?

End

(Pareto-optimal

solutions)

X%(100 – X)%

Fig. 1. Synthesis flow

objectives. In this regard, we adopt the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [13]. Using the above techniques, we
have evolved an operational amplifier design and a voltage controlled
oscillator (vco) design.

The rest of the paper is organized as follows. Section II describes
the synthesis methodology. Section III introduces the graph grammar
based topology generation technique. In Section IV, we describe the
solution reproduction mechanisms. Section V deals with the fuzzy
logic guidance architecture to quantify the merit of building blocks.
Section VI discusses the circuit sizer. In Section VII, we synthesize
an opamp and a vco design. Section VIII concludes the work.

II. SYNTHESIS METHODOLOGY

Fig. 1 outlines our approach. Similar to any evolutionary algorithm,
we maintain a collection of solutions or chromosomes in the form of a
generation. Parent generations breed to produce offspring generations.
The procedure continues for the allowable number of generations and
finally a Pareto-optimal set containing the best solutions is obtained.

Circuit topologies are synthesized using library components
through the graph grammar technique. These circuits are eventually
sized whereby device dimensions and voltage and current values
are assigned. Here, the multi-objective sizer is based on NSGA-II.
NSGA-II produces a set of Pareto-optimal solutions, where no two
solutions, belonging to the same optimal front, are inferior compared
to each other [13]. Subsequently, a wide range of sized topologies is
obtained. This whole set of sized circuits is then sorted with NSGA-II
again. A new solution front is produced and the process continues.

The blocks used for circuit formation are housed in a library.
Initially the library contains basic components only. But after each
generation, the library is updated whereby new blocks are added and
existing blocks are ranked. In this way, it gradually includes bigger
and functionally more useful blocks as the synthesis progresses.
The ranking is done depending on fuzzy rules. Compared to crisp
numerical techniques, fuzzy logic provides a smoother gradation for
the merit of each block with respect to the design synthesized.

Also, from the second generation onwards, children circuits are
produced in two ways — one fraction through the crossover and

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.79

445

h1 (L) h2 (R)

v3 (TC)

new1

H(1)

v1 (L)

h1 h2

v3

v2v1

v3

nt a

nt a1 nt a2

Left (L) child Right (R) child

new1

Structural disassociation notations for parent node (nta):

H(1) – Horizontal division with 1 new interconnection (viz. new1)

Result: new1 is hor-out for left child (nta1) and hor-in for right child (nta2)

Terminal disassociation notations for parent node (nta):

L – Assigned to left child, R – Assigned to right child,

TC – Assigned to both (T-Connection).

v2 (R)

h1 (T)
h3 (B)

v3 (B)

V(2)
h2 (TC)

v1 (T)

h1

h2
h3

v3

v1

new1

nt b1 nt b2

Top (T) child Bottom (B) child

h2

nt b

Structural disassociation notations for parent node (ntb):

V(2) – Vertical division with 2 new interconnections (viz. new1 and new2)

Result: new1 and new2 are ver-out for top child (ntb1) and ver-in for bottom child (ntb2)

Terminal disassociation notations for parent node (ntb):

T – Assigned to top child (must for ver-in of ntb), B – Assigned to bottom child (must

for ver-out of ntb), TC – Assigned to both (T-Connection).

v2 (T)

v2

new2

new1 new2

(a) (b)
Fig. 2. Production rules (example shown): Structure and terminal disassociation rules — (a) Horizontal disassociation and (b) Vertical disassociation

mutation reproduction mechanisms of parent circuits [14], while the
rest are produced afresh from the better ranked library blocks.

III. GRAPH GRAMMAR: CIRCUIT FORMATION

A graph grammar (G) is represented by the 4-tuple:

G = (VN , VT , P, S)

where VN denotes the set of non-terminal symbols (nt-symbols) or
variables, VT the finite set of terminal symbols (t-symbols), P denotes
the finite set of production rules, and S(∈ VN) is the start symbol.
Production rules transform an nt-symbol into other nt-symbols or t-
symbols. Each production rule therefore derives a successor graph
(connected left and right graphs) out of a predecessor graph.

In this work, analog circuit topologies are treated as connected
planar graphs. This graph is generated by production rules encoded
in form of a derivation tree. The tree starts with a single root node
(start symbol) and gradually branches off through the allowable rules.
Intermediate nodes represent nt-symbols, while leaf nodes stand for
t-symbols. Fig. 6(a) shows an example topology producing derivation
tree, and Fig. 6(b) the corresponding circuit topology.

A. Start Symbol (S)

The start symbol (S) or root node of the derivation tree is the
top-level blackbox representation of the design. The terminals of the
blackbox are classified into four terminal sets, viz. horizontal-in (hor-
in), horizontal-out (hor-out), vertical-in (ver-in) and vertical-out
(ver-out). With the above consideration, node nt0 in Fig. 6(a) shows
the start symbol of a 2-input (VIN+ and VIN−), 1-output (VOUT)
design. VIN+ and VIN− belong to hor-in, VOUT to hor-out, V dd
power rail belongs to ver-in, and Gnd belongs to ver-out.

B. Non-terminal symbols or nt-symbols (VN)

All tree nodes barring the leaf nodes are composed of nt-symbols
(S is a part of VN). These are blackbox structures with the same set of
directional terminals as described above. They represent substructures
that are obtained through the step-by-step decomposition of the
main top-level structure, governed by production rules. Node ntb
in Fig. 2(b) is an example representation of an nt-symbol tree node.

C. Terminal symbols or t-symbols (VT)

nt-symbols may be replaced by t-symbols. The t-symbols form the
leaf nodes of the tree, and thereby gives the SPICE netlist. Hence
these symbols comprise of all the actual circuit elements like PMOS,
NMOS, resistors, capacitors, etc. required for the design.

Terminal renaming: To avoid pathological structures, two terminals
belonging to different sets, within the same symbol, are not inter-
connected during evolution. Hence, to evolve all kinds of topologies,
certain t-symbols have the same physical node signified as separate
terminals. For e.g., in Fig. 6(a), terminals n2 and n4 of t-symbol t0
are both the same drain node of transistor M0. In such cases, these
nodes are later renamed (the same) during netlist generation, from a
knowledge of the respective t-symbol.

D. Production rules (P)

Production rules form the core of any grammar. In this work, each
nt-symbol may either produce two new nt-symbols (children nodes)
or may be replaced by a t-symbol. nt-symbols at a lower tree depth
have higher probability for the former and vice-versa. Thereby, all
the production rules may be divided into two broad classes —

(1) nt-symbol → nt-symbol: When an nt-symbol gives rise to two
new nt-symbols, the underlying rules are again composed of two sets:

(a) Structure disassociation rules: The parent structure may disas-
sociate horizontally with the left (L) and right (R) child physically
placed adjacently, or vertically with the top (T) child placed above
the bottom (B) child. Also, the two children produced may be inter-
connected through one or more new terminals. Terminal-set wise,
they will be ‘in’ for one and ‘out’ for the other. Figs. 2(a) and (b)
demonstrate horizontal and vertical disassociation respectively. As
shown in Fig. 2(a), ‘new1’ is the new horizontal connection.

(b) Terminal disassociation rules: The directional terminals of the
parent structure are distributed among its children substructures. In
case of a horizontal break-up, the horizontal terminals are assigned
either to the left (L) or to the right (R) child. Vertical terminals can
be assigned either to L, or to R, or to both of them (TC).

For vertical disassociation, all ver-in terminals of the parent are
assigned to top (T) child, and all ver-out terminals to bottom (B)
child. Horizontal terminals may be assigned to either or both of them.
For e.g., in Fig. 2(b), terminal h1 is assigned to T, h3 to B, and h2
is assigned to both of them (TC).

(2) nt-symbol → t-symbol: In this case, there are no disassociation
rules. Instead, there is an actual terminal-terminal mapping between
those of the nt-symbol and the t-symbol. This helps in generating the
SPICE netlist. As is evident in Fig. 6(a), terminals n6, n7 and n8
of node nt0121211 corresponds to the source, gate and drain nodes
of the PMOS in t-symbol t3. t3 represents the transistor M3 in the
final circuit of Fig. 6(b).

446

IV. REPRODUCTION MECHANISMS

Topology generation trees are built in two ways — one set
from the updated block library, and the remaining ones through the
reproduction mechanisms viz. crossover and mutation of parent trees.

A. Trees from updated block library (better blocks)

Here, during tree formation, the production rule for nt-symbol →
t-symbol is applied with a higher probability. This is because after
the first generation, the t-symbols are not restricted to simple design
elements only. They also comprise of bigger subcircuits in the form
of subtrees (Section V-A). Better ranked subtrees are preferentially
selected over the poorer ones and used to form a tree.

B. Crossover

Crossover swaps subtrees (subcircuits) between two parents to
produce two offsprings. Two parents are selected through the crowded
comparison operator [13]. Subsequently, we decide on a range for
the number of design elements to be contained from each parent.
Accordingly nodes are individually selected from both the parent
trees, that match each other in terminal properties, and satisfy the
size constraints. This kind of crossover — a) Prevents the production
of pathological or structurally incorrect circuits, b) Keeps the size of
the circuit within bounds as decided by the user.

C. Mutation

To prevent premature convergence, a certain number of randomly
chosen children circuits undergo mutation, through subtree replace-
ment. A randomly selected portion of the circuit tree is replaced
with a library subtree. Also, alike crossover, we ensure the structural
integrity of the generated circuits and keep a tag on the circuit size.

V. FUZZY LOGIC GUIDED BLOCK LIBRARY UPDATE

The building block library is continually updated to include bigger
and functionally more useful blocks. This is a dynamic procedure
and is explained as follows.

A. Subtrees from circuit trees: New t-symbols (blocks)

After a circuit topology derivation tree is formed and the circuit
performance is evaluated, subtrees are extracted bottom-up out of the
main circuit tree. These subtrees (subcircuits) are then treated as new
t-symbols, that are later used in circuit formation. It is so because
they can replace any nt-symbol in a circuit tree, when there is a
match between the terminal properties of that nt-symbol and the root
node of this new t-symbol. Within the t-symbol library, a hierarchy is
maintained based on number of terminal types and number of design
elements (PMOS, NMOS, etc.) contained within the block.

B. Library building block parameters

Each library building block has two parameters [7]:

1) No. of occurrences (Nblock): This count signifies the number of
times the block has been used for circuit formation.

2) Fitness (Fblock): This denotes the merit of the block. In other
words, it is the level of appropriateness with which the block
should be used for the design under consideration.

C. Library update: Existing blocks and new blocks

The library update algorithm is given in Algorithm 1. The update
procedure followed for the different block parameters is as follows:

• Nblock: The occurrence count is incremented every time the block
is used. If the block is new, it is included into the library.

• Fblock: For each performance measure, the new average fitness
of an existing block comes from its old fitness and its newly
calculated merit - ˆFsubtree. This merit is obtained through a fuzzy

Inference

mechanism

Merit of

circuits –

Parents and

offsprings

F
u

zz
if

ic
at

io
n

D
ef

u
zz

if
ic

at
io

n

Fuzzy rule base

Merit of

Building blocks

(Both used &

newly extracted)

Fig. 3. Fuzzy logic based guidance architecture

logic based architecture explained below. For a new block, the
fitness is given by a scaled value of the merit (η - scaling factor).

At the end of each generation, the blocks are sorted and ranked based
on their fitness for each performance, as per NSGA-II.

D. Fuzzy Logic Based Guidance Architecture

1) Fuzzy system — An overview: Fig. 3 shows that a fuzzy system
has a fuzzification interface that converts the crisp input values to
fuzzy linguistic values; a set of fuzzy rules in the form of a rule base;
an inference mechanism that decides which rules are on at what time;
and a defuzzification interface that converts the conclusions reached
by the system into real or crisp values.

Fuzzy rules are in the form of if-then rules. The if part signifies
the premise or antecedent, while the then stands for the consequent.
For e.g., a rule for a two input (x and y) one output (z) fuzzy system
with possible linguistic values signified by low, medium and high,
can be:

Rule → If x is high and y is medium, then z is large.
The rule signifies the way z should be concluded, based on

the states of x and y. The values of x and y determines - (a)
whether they are small/medium/large; (b) the degree to which they are
small/medium/large, which in turn determines the strength or premise
of the corresponding rule. Each rule has a certain premise ∈ [0, 1].
Similarly, other rules may be formulated with different combinations
of low, medium and high for variables x and y.

Now, at any given instant, a crisp value of an input variable may
represent one or more linguistic values for that variable, though with
varying degrees of truthfulness. Each such derived linguistic term
triggers one or more rules, which are thereby turned on. Hence, at
any time, the output is a result of all such on rules.

Algorithm 1: Building block library update after each generation

Input: Gen-(n) block library, gen-(n) parents and offsprings
Output: Updated block library: For gen-(n+1) formation
procedure Block library - update and extension
forall parent-offspring pairs do

forall performance objectives do
f1 = fuzzy membership circuit quality();
f2 = fuzzy membership block impact();
merit = defuzzify (rules(f1, f2), centroid method);

end
end
forall offspring circuits (trees) do

Extract subtrees hierarchically out of main circuit tree;
ˆFsubtree = appropriate merit ();

forall subtrees (≡building blocks) do
if block is not found in library (i.e. new block) then

Nblock = 1; // Introduce block into the library
Fblock = ˆFsubtree ∗ η∗ generation no;

else
Nblock = Nblock + 1;
Fblock = Fblock∗Nblock+

ˆFsubtree
Nblock+1

;
end

end
end
Rank all blocks (multiobjective sorting) as per NSGA-II;

447

Non-

compliant

Partly

compliant

Fully

compliant

Extremely

non-compliant

0 1/3 x 2/3 x x

Specification: Performance >= x

Performance

Q
u

al
it

y

o
f

ci
rc

u
it

1.0

0

Percentage change in performance

Im
p

ac
t

o
f

b
lo

ck

Neutral
PositiveNegative

100-100

1.0

Bad Fair GoodVery Bad

0 0.25 0.5 0.75

Appropriateness of sub-circuit

Very Good

1.0

R
u

le
 p

re
m

is
e

1.0

(a) (b) (c)

Fig. 4. Fuzzy membership functions: (a) Input-1: Quality of circuit (shown for an e.g. objective ≥ x), (b) Input-2: Impact of block (shown for an increasing
objective), and (c) Output: Appropriateness/merit of subcircuit

2) Application to library update — Suitability of subcircuits:
Related to the inherent nature of analog circuits, the performance
of a circuit is actually contributed by the appropriateness or merit
of the participating blocks [15]. But in this CAD framework, owing
to the absence of different design heuristics and equations, we need
some further assumptions. It is assumed that during crossover, the
difference in performance (or fitness) between the child and the
parent owes equally to that of the incoming and outgoing blocks
(swapped blocks) [7]. A raise in fitness from parent to child suggests
that the incoming block was good i.e. it had a positive impact, and
the outgoing block was equally bad (negative impact).

3) Fuzzification interface: Following the above assumption, the
two inputs to the fuzzy system are — (a) Absolute performance of the
circuit produced, and (b) Impact of the subcircuit block, measured by
the change in performance from parent to offspring. These measures
are then transferred to linguistic values or fuzzy sets through the
fuzzification interface. Fuzzy sets ∈ [0, 1] gives the membership
grade or truthfulness for each of the linguistic terms. In this work,
triangular membership functions have been used. The linguistic terms
or fuzzy sets for the two inputs are:

• Performance of circuit: The crisp numerical input of the circuit
performance is categorized into four ranges. Accordingly, the
performance is symbolized with four linguistic terms, viz. Ex-
tremely non-compliant (ENC), Non-compliant (NC), Partly
compliant (PC), and Fully compliant (FC). To cite an example,
Fig. 4(a) shows an example for a ≥ objective, where the
horizontal axis stands for the crisp input value and the vertical
axis represents the membership for the corresponding linguistic
value. The demarcations for the four categories are 0, (1/3)x,
(2/3)x, and x. For e.g., if performance = (1/6)x, the circuit
quality is ENC with 0.5 membership grade, and NC with the
same (0.5) grade.

• Impact of subcircuit block: The impact of a participating subcir-
cuit block may be positive, negative or neutral. These linguis-
tic values are decided based on the % change in performance the
block introduces, related to the design. Similar to the previous
input, there are three ranges for categorizing the impact. They
are — a 100% change in performance in the favorable direction
of the objective, a 100% change in the opposite direction, and
no change in performance (or 0% change). Fig. 4(b) shows the
membership function for an example increasing objective. As
shown, a 1.0 membership grade for positive impact occurs for
a ≥ 100% increase, while that for negative impact occurs for
a ≥ 100% decrease, with intermediate values lying in between.
Similar theory applies to neutral impact.

E. Rule base

The rule base used in this fuzzy framework is given in Fig. 5.
Rules are formulated for all combinations of the circuit performance
and subcircuit impact inputs. The inferred output relates to the
appropriateness of the subcircuit involved. For e.g., if the quality

of the circuit produced is fully compliant with the specifications,
and the impact of the participating block is positive, then the
subcircuits contained within the block are considered very good for
the design. The rules show that the output follows a smooth gradation,
with linguistic values ranging from very bad to very good with
intermediate values denoting bad, fair and good. Finally, it is to be
noted that for blocks used in circuits constructed without crossover, or
for newly extracted blocks, the contribution of the subcircuit impact
towards a rule is assumed neutral.

F. Inference mechanism

The inference section of a fuzzy system is the primary decision-
making section. It collects the recommendations from each rule
to determine which rules are on, and accordingly gives linguistic
conclusions (VG, G, F, B, and VB) on the consequent. For each and-
based rule that is on, the degree of membership of the two inputs
collectively gives the premise or degree to which the relevant rule is
on. In this respect, we adopt the minimum operation in this work [11].
Thereby, the minimum among the two input memberships is used to
determine the truthfulness of the corresponding rule.

G. Defuzzification interface

A defuzzification interface converts the linguistic-natured conclu-
sions into real or crisp values. The conclusions of all the on rules
are combined to give the most certain output value. Similar to the
inputs, we use triangular membership functions for the output as
shown in Fig. 4(c). But in this case, the horizontal axis gives the
crisp output, while the vertical input axis signifies the degree of the
linguistic value of the output, which is in turn dependent on the rule
premise. To calculate the crisp output, here, we adopt the widely
popular center of gravity or centroid method [11]. For a fuzzy system
with N rules, and bi denoting the center of the membership function
of the consequent of rule-i(i ∈ N), along with wi denoting the area
under the output membership, the output is given by —

Outputcrisp value =

P
N

i=0
bi ∗ wi

P
N

i=0
wi

���������	
��	��	�������������	�
	�������������
		��	 	���	����		�	 	����		�	 	�����
		�	 	�����		��	 	���	����

 Impact of block Negative Neutral Positive

Quality of circuit

Extremely non-compliant �� �� �
Non-compliant �� � �
Partly compliant � � �
Fully Compliant � � ��

Fig. 5. Fuzzy rule base (AND rules)

448

VIN+ (L)
VOUT (R)

Gnd (TC)

Gnd (B)

H(1)
VIN- (R)

Vdd (TC)

H(1)VIN+ (R) n1 (R)

VIN- (T)
VOUT (T)

Gnd (B)

Vdd (T)

VIN- (B)

n3 (B)

Vdd (T)

n1

Gnd

n3

Vdd (TC)

Gnd (TC)
Vdd (T)

V(1)

Vdd

n4

VIN+ (T)

n2 (B)
n1 (T)

n2

V(1)

n10

Vdd

n3

n10

V(1)

Vdd

b3

n10

M8

VOUT (B)

n3

n1

Gnd

M10

VIN-
VOUT

n10

n3

M9

VIN-

VOUT

Vdd (T)

Gnd (B)

V(1) n2 (T)

n1 (B)

Vdd

b1

n4

M0

n2

n4

Gnd

M1

nt 0

t0

t8

nt 02

nt 021 nt 022

nt 0211
nt 0212

t9

t10

nt 01

nt 011
nt 012

nt 0111
nt 0112

nt 0121

nt 0122

t1

nt 01211
nt 01212

t2 nt 012121 nt 012122

nt 0121211 nt 0121212

t7

nt 0121221 nt 0121222

t3 t4 t5 t6

M6

M7

n9

n7

n5

n9

n7

n5

n6

n9

M5

n6

n9

V(1)

n5 (B)

n6 (T)

n7 (B)

H(1)

n6 (TC)

n1 (L)

n8

n5

M4

VIN+

n11

n6

n8

n7

M3

n8

n1

n5

n6

n8

n7 VIN+

V(1)

n6 (T)

VIN+ (B)

n1 (B)

n7 (T)

n5 (B)

VIN+ (L)

n5 (TC)

n5

Gnd

n2

n5

Gnd

n2

n4

Gnd

Vdd

b2

n6

M2

Vdd

n6

Vdd (T)

n1 (B)VIN+ (B)

n5 (B)

V(1)

Vdd = 5V

n4

Gnd

b1 b2 b3
M8

M9

M1

VIN+

VIN-

VOUT

M10

M4

M7

M5

M6

b4

Terminal renaming: n4=n2, n7=b4, n1=n8, n10=VOUT

M0 M2

M3

n2

n5

n10

n1

n8

n9

n7

n6

n3

(a) (b)

Fig. 6. 2-input 1-output opamp design — (a) Derivation tree for topology generation (b) Corresponding circuit topology

VI. MULTI-OBJECTIVE SIZER

Drawing a conclusion on the quality of an analog circuit topology
is possible only after the topology has been sized properly [1]. A cir-
cuit sizer assigns dimensions and values to all the active and passive
devices in the circuit like PMOS, NMOS, voltage source, resistors,
and so on. Following in line with some efficient sizers developed
lately [16], we have implemented a sizer based on the NSGA-II
algorithm. In this regard, we have used the crowded comparison
operator for selection, and the SBX method for crossover [13].

Inputs to the sizer comprise of the range and granularity of design
variables like transistor dimensions, voltage source values, etc. Same
gate-node transistors are assumed to be matched and their widths are
in integral multiples of each other. For performance evaluation, de-
spite some computational effort, HSPICE is used because it provides
accuracy, requires no set-up effort (unlike symbolic methods), and
helps to integrate the tool into any existing industry framework.

VII. EXPERIMENTS AND RESULTS

Two different designs are chosen as synthesis benchmarks. One is
an operational amplifier, while the other is a voltage controlled oscil-
lator. The specifications are given in Table I. These specifications have
been decided after carefully considering several designs [15]. The var-
ious algorithm run parameters are set after tuning the algorithm over
several runs. For topology synthesis, 30% of the circuits are formed
using library blocks and the rest 70% through crossover and mutation.
For the sizer, each topology is sized using 50 generations with 48
chromosomes per generation. The technology file used is that of
0.18μ. The range of variables are (in the format min:granularity:max)
W tran → 0.36:0.18:80μ and V bias → 0:0.1:5.0V, the symbols

carrying their usual meanings. All transistor lengths are fixed at 0.36μ
for ease in optimization.

A. Operational Amplifier Synthesis

The operational amplifier or opamp is chosen owing to its versa-
tility and wide usage, either by itself or as a part of a bigger analog
module. Such modules include comparators, filters, pre-amplification
stages, signal converters and so on [15]. The 2-input 1-output opamp
design is given (user-provided) a load capacitance (CL) of 10pF.

A total of 100 chromosomes or topologies are built per generation
and the synthesis was run for 100 generations. The results are given
in Table I. 18 designs are produced that conform to the specifications
and occupy the Pareto-optimal front. Fig. 6(b) and Fig. 7 shows two
designs. For the opamp in Fig. 6(b), the parameters are — (width in
μ) M0 = 8.46, M1 = 18.72, M2 = 3.78, M3 = 9.36, M4 = 16.92,
M5 = 16.02, M6 = 9.36, M7 = 5.4, M8 = 1.26, M9 = 34.92, and
M10 = 16.2; (voltage in volts) b1 = 1.2, b2 = 1.5, b3 = 2.5, and
b4 = 0.1. The corresponding performances are — Gain = 42.9 dB,

TABLE I
DESIGN SPECIFICATIONS AND RESULTS

SPECIFICATIONS / OBJECTIVES
Design-I: Operational Amplifier — Specifications: DC Gain ≥ 40 dB,
3dB frequency ≥ 50 MHz, UGF (Bandwidth) ≥ 5 GHz

SPECIFICATIONS / OBJECTIVES
Design-II: Voltage controlled oscillator — Specifications:
Center oscillation frequency ≥ 2 GHz, Tuning range ≥ 0.1 GHz

RESULTS Design-I Design-II
No. of Pareto-optimal designs 18 8

449

Vdd = 5V

Gnd

5.4
0.5V 2.8V

2.52
2.6V

VIN+

VIN-

VOUT

13.14

32.04

2.9V

10.08

27.7219.44

31.86
2.1V

Gain = 47.18 dB, UGF = 7.52 GHz, 3dB frequency = 327 MHz

10 pF

Fig. 7. An optimal opamp design obtained (All transistor widths are in μ)

UGF = 5.04 GHz, 3dB freq = 174 MHz. After the synthesis run,
the block library was observed. Fig. 8 shows some of the highly
ranked library blocks. They include designer identifiable blocks like
differential pairs, as well as non-bookish MOS structures.

To cite a comparison with previous works, [5] used 640, 000
chromosomes per generation and generated a single solution for
a 5dB amplifier design after 45 generations. Hence our approach
converges faster and produces more designs compared to [5].

B. Voltage Controlled Oscillator (VCO) Synthesis

We choose the voltage controlled oscillator (vco) as our next
synthesis benchmark owing to its numerous applications ranging from
phase locked loops to function generators, frequency synthesizers and
so on [15]. The oscillation frequency of a vco is varied through
a control voltage (Vc). The design parameters of interest related
to a vco are its center oscillation frequency and the tuning range.
Accordingly, the specifications are provided in Table I.

The synthesis framework uses 100 chromosomes and runs for 50
generations. The peformance metrics are obtained using HSPICE
Fourier analysis. As shown in Table I, the tool produced 8 compliant
designs that occupy the Pareto-optimal front. The design shown
in Fig. 9 is an example of an optimal design obtained. It has an
oscillation frequency of 2.86 GHz with Vc = 2.5 V. Through variation
of Vc, the tuning range achieved for the design is 0.23 GHz. This is
better than [6], which synthesized a single similar design taking 40
generations, each consisting of 600 chromosomes.

With regard to the block library, Fig. 10 shows some of the better
blocks obtained. They comprise of of a set of same-biased transistors
and diode-connected loads among others.

VIII. CONCLUSION

We have presented a fuzzy logic based guidance architecture to the
graph grammar topology generation framework for automated analog

Fig. 8. Some of the better library blocks obtained in opamp synthesis

VIN+

VOUT-
VOUT+

VIN-

VDD = 5V

7.02Vc

0.72 1.44

3.6
3.6

1.1V

0.3V

1.08 5.04

Fig. 9. VCO circuit generated (All transistor widths in μ, L = 0.36μ)

circuit design. Circuit topologies are generated based on appropriate
production rules represented though derivation trees. In the process,
a dynamically generated building block library has been used for
the purpose. The library is updated through the fuzzy architecture.
The fuzzy system includes a fuzzification interface, the fuzzy rule
base, an inference mechanism and a defuzzification interface. Results
show that our tool has been successful in synthesizing an operational
amplifier design and a voltage controlled oscillator design better
compared to previous works.

REFERENCES

[1] R. A. Rutenbar, G. G. E. Gielen, and B. A. Antao, Computer-Aided
Design of Analog Intg. Cir. and Sys. Wiley-IEEE Press, May 2002.

[2] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework
for analog circuit synthesis,” IEEE Trans. on CAD, Dec. 1989.

[3] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp synthesis
by means of a genetic algorithm,” in Proc. of DAC, Jun. 1995.

[4] J. D. Lohn and S. P. Colombano, “A circuit representation technique for
automated circuit design,” IEEE Trans. on Evol. Comp., 1999.

[5] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap,
“Automated synthesis of analog electrical circuits by means of genetic
programming,” IEEE Trans. on Evolutionary Comp., vol. 1(2), 1997.

[6] T. R. Dastidar, P. P. Chakrabarti, and P. Ray, “A synthesis system for
analog circuits based on evolutionary search and topological reuse,”
IEEE Transactions on Evolutionary Computation, Apr. 2005.

[7] A. Das and R. Vemuri, “Topology synthesis of analog circuits based on
adaptively generated building blocks,” in Proc. of ACM/IEEE Design
Automation Conference (DAC), Jun. 2008.

[8] ——, “An automated passive analog circuit synthesis framework using
genetic algorithms,” in Proc. of IEEE ISVLSI, March 2007, pp. 145–152.

[9] C. Zhao, J. Kong, J. Dong, and K. Zhang, “Pattern-based design
evolution using graph transformation,” Journal of Visual Languages and
Computing, vol. 18, no. 4, pp. 378–398, Aug. 2007.

[10] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8(3), 1965.
[11] K. M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley.
[12] A. Torralba, J. Chavez, and L. G. Franquelo, “FASY: A fuzzy-logic

based tool for analog synthesis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15(7), 1996.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Addison-Wesley Prof., 1989.

[15] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill.
[16] T. McConaghy, P. Palmers, G. Gielen, and M. Steyaert, “Simultaneous

multi-topology multi-objective sizing across thousands of analog circuit
topologies,” in Proc. of Design Automation Conference, 2007.

Fig. 10. VCO synthesis library blocks

450

Session 7B

Reliability and Design Space
Exploration

RADJAM: A Novel Approach for Reduction of Soft Errors in Logic Circuits

Koustav Bhattacharya and Nagarajan Ranganathan
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

�kbhattac,ranganat�@cse.usf.edu

Abstract

The task of achieving reliability against transient faults
poses a significant challenge due to technology scaling
trends. Several optimization techniques have been proposed
in the literature for preventing soft errors in logic circuits.
However, most approaches for avoiding soft errors in logic
circuits have significant overheads in terms of delay, area
or power. In this work, we propose a circuit level tech-
nique called RADJAM (RADiation JAMmer) to prevent soft
errors, occuring due to radiation strikes, in logic cells [17].
The RADJAM circuit when inserted at the output of a logic
can reduce the generation of transient glitches significantly.
Further, we propose an algorithm to insert RADJAM cells
on selective nodes in a logic circuit. The algorithm uses
signal logic probabilities and circuit slack for insertion of
RADJAM cells on circuit nodes, thus improving the relia-
bility of the logic circuit with minimal impact on the over-
all circuit delay. The proposed algorithm has been imple-
mented and validated on the ISCAS85 benchmarks. Ex-
perimental results indicate that RADJAM optimized logic
circuits can reduce soft error rates by around 39% with
marginal delay, area and power overheads.

1 Introduction

The trends in technology scaling have made nanome-
ter designs highly susceptible to transient faults. Tran-
sient faults occur due to several reasons, such as soft er-
rors, power supply and interconnect noise, and electromag-
netic interference. Soft errors occur when the energetic neu-
trons coming from space or the alpha particles arising out
of packaging materials hit the transistors. A soft error may
manifest itself as a bit flip in a latch or memory element.
Additionally, soft errors can occur in any internal node of
a combinational logic and subsequently propagate to and
be captured in a latch. Although, soft errors have been a
greater concern for memory elements, technology trends

like smaller feature sizes, lower voltage levels, higher op-
erating frequency and reduced logic depth, are projected to
increase the soft-error rate (SER) in combinational logic be-
yond that of unprotected memory elements [13, 3]. In a re-
cent study [9], the SER of logic circuits were quantified in
technology nodes from 600nm to 50nm and it was projected
that by 2011, the SER in logic circuits will increase by nine
orders of magnitude and will essentially be comparable to
unprotected memory.

Several approaches have been proposed in the literature
to protect logic circuits against soft errors. In [12], time re-
dundancy is exploited to detect and recover from soft-errors.
In [6], concurrent error detection circuits are added to nodes
in logic circuits which have high soft error susceptibility.
However, such approaches for soft error detection and cor-
rection by using spatial and temporal redundancy typically
incur huge area, power and delay overheads. Some of works
reported in literature have proposed methods to prevent the
generation of transient faults by sizing the individual gates
of a logic circuit. In [11], assymetric logical masking prob-
ability of nodes in a logic circuit is exploited to selectively
resize gates. In [1], an optimization framework based on ge-
ometric programming is used for simultaneous dual-VDD
assignment and sizing. In [8], the authors have proposed
a technique to reduce SER in logic circuits by simultane-
ous sizing and flip-flop selection. Although the achieved
reduction in SER rate is quite high, the area, power and de-
lay overheads for such reliability-centric sizing technique is
quite high. Relatively lower overhead SER reduction can be
achieved by circuit level optimization techniques by selec-
tively hardening circuit nodes against charges deposited by
radiation strikes [13]. In [15], gates are locally duplicated
and the duplicated gate outputs are connected by a voltage
clamper circuit. This prevents the output node of the gate
and its duplicate not to deviate in voltage due to a radiation
strike. In [14], the logic gates that are affected by radiation
strikes are isolated by using complimentary pass gates. The
complimentary pass gates act as a low pass filter and filter
out transient voltage pulses due to a radiation strike. In [16],

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.76

453

a class of soft error masking circuits is proposed using the
schmitt trigger circuit. However, most of these works still
achieve reduction in SER at the cost of high overheads in
terms of delay, area or power.

In this work, we have developed a transistor level circuit
called RADJAM which significantly reduces the generation
of random glitches due to radiation strikes. Based on this,
we have developed an algorithm for selective insertion of
RADJAM cells on critical circuit nodes. Experimental re-
sults indicate that our RADJAM based methodology can re-
duce the SER in logic circuits by about 39% with overheads
of only 4%, 7% and 6% in delay, area and power respec-
tively. The rest of the paper is organized as follows. In sec-
tion 2, we discuss the preliminaries of soft errors in logic
circuits. In Section 3, we present RADJAM, a transistor
level circuit that can reduce propagation of transients due
to radiation. Section 4 describes an algorithm to selectively
insert RADJAM cells on circuit nodes for low overheads
in delay, area and power. Section 5, describes our experi-
mental setup and illustrates the results. Finally, Section 6
concludes the paper.

2 Soft Errors in Logic Circuits

The occurences of random radiation induced energetic
neutron strikes are generally distributed fairly uniformly in
space and time. The probability of a particle strike in a cir-
cuit node is thus roughly proportional to its active area. The
charge deposition at a particular circuit node is traditionally
modeled by a double exponential current pulse ������ [4],
which can be represented as,

������ �
�

�� � ��
��
�

�
��
� �

�

�
�� � (1)

where � is the charge deposited as a result of a particle
strike, �� is the collection time-constant of the junction, and
�� is the ion-track establishment time constant. �� and ��
are generally defined by process parameters. A threshold
critical charge, �����, marks on the onset of the double ex-
ponential current pulse behavior described above. Though
the characteristics of a transient pulse at a node depends
on the energy distribution of the incident particle, the drive
strength of the gate, and the critical charge, various mask-
ing factors determine whether the transient pulse can actu-
ally propagate to the primary outputs/latches/flip-flops and
result in a soft error. The three primary factors that can po-
tentially mask radiation induced transients are as follows,

� Logical masking occurs when there is no sensitized
path from the gate node where the transient pulse oc-
curs to any of the primary outputs. The transient pulse
is filtered when it arrives to an input of a gate whose
any of the other inputs are at a controlling logic value.

� Electrical masking occurs due to electrical attenua-
tion of the transient pulse in a sensitized path, from its
occurence at a particular gate node to any of the pri-
mary outputs. Thus, the extent of electrical masking
depends on the electrical property of the gates in the
sensitized path.

� Timing-window masking occurs when the transient
pulse does arrive at the primary outputs with sufficient
strength to cause a soft error but is sufficiently sepa-
rated in time from the arrival of the clock edge. As the
latch only samples its input on the clock edge, and as
the transient pulse is momentary it does not effectively
lead to a soft error.

These masking effects thus makes various internal cir-
cuit nodes to be quite different in their susceptiblity to soft
errors [11]. We show in Section 4, how this asymmetric
distribution of masking probability can be used to optimize
only selective nodes of a logic circuit. Soft error rates also
depend on environmental factors like altitude, however, we
do not model this in our formulation.

3 Radiation Jammer Circuit

In this section, we describe a circuit level technique for
countering transient faults in a standard cell based design
flow. The technique focuses on transistor level feedback to
counter transient glitches due to radiation strikes occurring
on the active area of the cells. The feedback circuitry which
is attached to standard cell outputs, has been named ”RAD-
JAM” (RADiation JAMmer).

M4

M2

M1

n2

INPUT OUTPUT

M3

n1

INVERTER RADJAM

Figure 1. Schematic of a inverter cell pro-
tected with RADJAM

The transistor level schematic of a basic inverter pro-
tected against transient faults with a RADJAM cell is shown
in Figure 2. As shown in the figure, the RADJAM circuit

454

Figure 2. (A) Transient pulses on inverter cell due to radiation strikes of varying strength, (B) Corre-
sponding results on an inverter cell with RADJAM

consists of 4 transistors M1-M4 which is arranged in the
configuration of a cross-coupled inverter. The charge stored
on gate capacitance of M1 and M2 connected to the node ��
represents the previous stable logic state of the cell. When
a transient glitch appears on node ��, M3 and M4 tries to
switch logic states. But M1 and M2 are still controlled by
the huge charge stored due to the previous stable state. This
in turn, thus helps M1 and M2 fight the transient glitch on
node n1 by using the stable charge stored in the intermediate
node. Thus, when a transient glitch occurs on the output of
the inverter cell due to a radiation strike, the RADJAM cell
prevents the transient glitch from affecting the output. The
RADJAM circuit improves the effect of electrical masking
by adding a small keeper in the intermediate node and hence
adds memory to a memory-less node. In the RADJAM cir-
cuit, M1 and M2 are sized relatively high so that they have
a larger stored charge from the previous stable state due to
their high gate capacitances, while M3 and M4 are sized
relatively low so that they have a small delay impact during
a regular logic transitions. The exact sizes of the transis-
tors M1-M4 are based on the characterization of each stan-
dard cell and are decided based on the size configuration
that achieves the best reduction in transient pulses with the
least delay penalty. Efficient layouts of each of the RAD-
JAM protected standard cells were created by hand using
the euler path method to provide as much single strip layout
as possible.

We experimented with the RADJAM framework using
the NSCU Process Design Kit and the OSU standard cell
library using the TSMC 180nm technology. A subset of
the library cells was selected and the extracted netlist from
the layout were then simulated in SPICE with parasitics for
the original standard cells and the standard cells with RAD-
JAM. We modelled radiation strikes of deposited charges
in the range of [60fC, 135fC] with current sources as de-

fined in equation 1 with a �� of 10ps and �� of 5ps. The
range of deposited charges were considered based on typi-
cal radiation flux at the sea-level [4]. We found that RAD-
JAM is quite effective in reducing transient pulses due to
radiation strikes on standard cells. Figure 3(A) illustrates
the transient glitches generated due to radiation strikes of
varying strength on an inverter standard cell. Figure 3(B)
shows the corresponding results for inverter standard cell
with RADJAM circuitry, which shows significant reduction
in transient pulse in standard cells with RADJAM. It should
be noted that RADJAM only filters out glitches, which oc-
cur due to finite excess charge generation, using the charge
stored due to the previous stable state. Ordinary, logic tran-
sitions have a steady source of charge which eventually flips
the output state after the stored charge, due to the previous
stable state, has been removed.

4 Selective Insertion Algorithm

RADJAM through effective in reducing transients due to
radiation strikes has a high impact on delay and area on the
standard cell. Thus, protecting all standard cells in a circuit
with RADJAM may nullify the SER savings due to signif-
icant overheads in delay, area and power. In this section,
we therefore propose an algorithm for selective insertion of
RADJAM cells on circuit nodes to provide a low overhead
technique for reduction in circuit SER.

We capture the asymmetric soft error susceptibility
by computing a cumulative probability for observability
(CPO). The CPO of each net is computed using a backward
traversal of the structural netlist from the primary output to-
wards the primary inputs. The CPO of the primary outputs
are initially set to �. The CPO of each input of a gate is cal-
culated recursively by multiplying the CPO of its output net

455

Table 1. Experimental Results for RADJAM based SER optimization
Benchmark % Reduction in SER % Delay Overhead % Area Overhead % Power Overhead

c17 49.24 1.43 5.96 4.27
c432 36.74 6.96 5.77 6.17
c499 38.53 3.55 8.10 7.30
c880 35.28 6.40 9.90 8.31
c1355 35.84 3.83 6.82 6.29
c1908 41.69 1.33 7.44 5.84
c2670 39.19 8.81 6.09 4.97
c3540 38.67 11.1 8.10 7.27
c5315 36.02 5.03 10.9 11.2
c6288 34.56 4.46 7.30 6.71
c7552 39.88 2.44 6.36 5.99
AVG 38.69 4.45 7.52 6.76

with the product of the probabilities of all other inputs to
the gate being at its enabling value. The enabling value of a
gate input is the logic value that makes switching at other in-
puts of a gate to be observable at the gate output. The CPO
of the stem of a fanout node is computed by considering the
maximum CPO of all its branches. Note that, as the CPO
values are computed using logic probabilities and CPO val-
ues progressively decrease at lower logic depths, the CPO
accurately captures both electrical and logical masking ef-
fects in a circuit at the logic level.

A combinational circuit without feedback can be mod-
elled as a directed acyclic graph (DAG). The DAG can be
made polar by assigning a dummy source node connected to
all primary inputs and a sink node connected to all primary
outputs. The earliest arrival time (EAT) of each each net
can now be computed by traversing the DAG in the topolog-
ically sorted order from the source and assigning the EAT
of a gate output as the maximum of the EATs of its inputs
plus the delay of the gate. Similarly, the latest arrival time
(LAT) of each net can be computed by traversing the DAG
in the topologically sorted order from the sink and assign-
ing the LAT of a gate input as the minimum of the LATs of
its outputs minus the delay of the gate. The difference of
the LAT and the EAT provides the slack for each net.

The probability for RADJAM insertion (PSI) of each net
is now computed by taking the product of the slack and the
CPO for each net. A higher value of PSI of a gate out-
put indicates that the corresponding net has a high slack
and is highly susceptible for soft errors upsets at the reg-
isters/primary outputs due to radiation strikes on the active
area of the gate. We select a set of �� of the gate nodes,
�� , by sorting the various gate output nets based on its
PSI values. We experimented with different values of �
and we found that setting the value of � to be of ��� best
optimizes reduction in SER with minimal delay, power and

area overhead. RADJAM cells are then inserted at the out-
put of these �� gate nodes. This ensures that RADJAM
cells protect only nodes on the non-critical path, but those
which are highly susceptible to generation and propagation
of soft errors.

5 Experimental Results

The proposed algorithm was implemented on 1.5Ghz
UltraSparc processor with 4GB of memory and running
SunOS 5.8. The results were validated using the ISCAS’85
benchmark circuits. We have used the NSCU Process De-
sign Kit and a subset of cells of the OSU standard cell li-
brary based on the TSMC 180nm technology [18]. Synop-
sys Design Compiler was used to do the initial technology
mapping and for computing the enabling probability of the
nets. Many soft error estimation tools have been reported in
literature [10, 2, 7]. The SEAT-LA tool [7] models the en-
tire spectrum of neutron strikes (from charge values in the
[10fC,150fC] range) and is quite close in accuracy to actual
SPICE simulations. We extended this tool for our SER esti-
mation based on Monte Carlo Simulations. Our simulation
flow is illustrated in Figure 4.

In Figure 3, we illustrate the results of SER reduc-
tion on ISCAS85 benchmarks for our SER reduction al-
gorithm for the original structural netlist and the structural
netlist obtained by selective RADJAM insertion. We per-
formed Monte Carlo simulation runs until convergence was
achieved, and found that on average the SER was reduced
by around 39% over the unoptimized structural netlist. We
also computed the delay, area and power overhead of the
RADJAM based SER optimization technique, as the per-
centage increase in the metrics in the the RADJAM op-
timized circuit compared to the unoptimized circuit. As
shown in Table 3, on average the delay, area and power

456

Enabling and switching

Synopsis Design
 Compiler

180 nm Technology
Library (.lib)

Behavioral ISCAS
benchmarks

Technology mapped netliston the structural netlist
Extract cap file based

Script to generate
random i/p vectors

K Random i/p
 Vectors

Generate all circuit node logic
values for each i/p vector

probabilities

Simulations
Monte Carlo

Y

N

Generate avg SER rate from
accumulated SER rate

If (i < K)

N

Y
If (j < L)

Accumulate the SER rate computed

Run SEAT−LA for fault injected
at this node

for this i/p vector
Set up node values
i = i+1, j = 0

j = j+1
Select random node

to inject fault

and Delay overhead
Estimate Power, Area

for RADJAM insertion
select top M% of the nodes
for all circuit nodes and
Estimate CPO and PSI values

HSPICE simulations

% increase in delay, area and power
Estimate glitch reduction factor and

Extracted spice level netlist with RC parasitics for both

regular and RADJAM protected standard cells

Cadence DIVA extractor

Standarad Cell Layouts
RADJAM protected

Technology Kit
180 nm NCSU

Cell Layouts
OSU Standard

Figure 4. RADJAM based SER Reduction in Logic Circuits: Simulation Flow

Figure 3. SER for ISCAS85 benchmarks

overhead for RADJAM based SER optimization was around
4%, 7% and 6% respectively. Thus, selective insertion
of RADJAM cells as has been described in this work can
achieve significant reduction in SER at quite low area,
power and delay overheads.

We have also compared the overheads of our scheme
with several recent works found in literature for SER re-
duction in logic circuits. The works report various SER
reduction values and the area, power and delay overheads
associated with the approach. We have fixed a common
SER reduction rate for all approaches and compared the
percentage increase in delay, area and power for each ap-
proach. We have used the data as reported in the results

Table 2. Comparison with related works

Scheme % Delay % Area % Power
Cost Cost Cost

Gate Sizing [11] 6.20 47.40 44.67
Shadow Gates [15] 5.12 56.84 41.45

Pass Gates [14] 15.00 15.00 22.00
Sizing/rad-hard FF [8] 5.00 40.00 37.83

Our approach 4.45 7.52 6.76

of the corresponding research papers and interpolated any
missing data according to our simulation setup. The results
of these comparisons have been summarized in Table 2. Se-
lectively sizing gates of a circuit can achieve high reduction
in SER [11]. However, in order to balance the load due to
resizing a gate at the higher logic depths, the entire path
must be resized. This results in huge area and power over-
heads. As shown in the table, the problem still persists when
gate sizing is combined with radiation hardened flip-flop as-
signment [8]. Shadow Gates with diode clamper provides
a clever way for hardening circuit nodes [15]. However,
the duplication of entire cells lead to high area overheads.
Moreover, due to process variations the duplicate gate may
not have the exact delay as original gate and hence may af-
fect the performance of the hardened standard cell. Also,
the critical depth based selective insertion method that has
been used in this work, is based only logic depth and hence

457

does not take into account any logical masking effects. On
the other hand, our selective insertion models both logical
and electrical masking effects and the the slack available at a
node and hence incurs marginal delay and area overhead for
similar reduction in SER. Complimentary pass gates can act
as a low pass filter for glitches induced by radiation strikes
[14]. However, the method cannot reduce the magnitude
of transient pulses with moderate/high magnitudes. Hence,
large sized pass gates or a chain of pass gates need to be
used which, as shown in the table, makes the approach ex-
pensive in terms of area, power and delay for realistic radia-
tion flux. As RADJAM is quite effective in filtering glitches
of large amplitudes, our approach on the other hand, incurs
much lower overheads for the same SER reduction.

6 Conclusions

We have developed a transistor level circuit which can
significantly reduce soft error transients in logic circuits.
The proposed RADJAM circuit could be expensive if ap-
plied blindly to all nodes on the circuit. Towards this, an
intelligent algorithm is proposed which inserts RADJAM
cells selectively on soft error vulnerable nodes in the non-
critical paths of a circuit.

Acknowledgment

We would like to thank Dr. Vijaykrishnan Narayanan of
Penn State University for generously allowing us to use the
SEAT-LA tool for our study.

References

[1] M. Choudhury, Q. Zhou, and K. Mohanram. Design
optimization for single-event upset robustness using
simultaneous dual-vdd and sizing techniques. Proc. of
ICCAD, pages 204–209, 2006.

[2] Y. Dhillon, A. Diril, and A. Chatterjee. Soft-error
tolerance analysis and optimization of nanometer cir-
cuits. Proc. of DATE, pages 288–293, 2005.

[3] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and
S. Borkar. Scaling trends of cosmic ray induced soft
errors in static latches beyond 0.18u. Proc. of Symp.
on VLSI Circuits, pages 61–62, 2001.

[4] G. Messenger. Collection of charge on junction
nodes from ion tracks. Trans. of Nuclear Science,
29(6):2024–2031, 1982.

[5] S. Mitra, T. Karnik, N. Seifert, and M. Zhang. Logic
soft errors in sub-65nm technologies design and CAD
challenges. Proc. of DAC, pages 2–4, 2005.

[6] K. Mohanram and N. Touba. Cost-effective approach
for reducing soft error failure rate in logic circuits.
Proc. of ITC, pages 893–901, 2003.

[7] R. Rajaraman, J. Kim, N. Vijaykrishnan, Y. Xie, and
M. Irwin. SEAT-LA: A soft error analysis tool for
combinational logic. Proc. of VLSID, pages 499–502,
2006.

[8] R. Rao, D. Blaauw, and D. Sylvester. Soft error re-
duction in combinational logic using gate resizing and
flipflop selection. Proc. of ICCAD, pages 502–509,
2006.

[9] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends
on the soft error rate of combinational logic. Proc. of
DSN, pages 389–398, 2002.

[10] B. Zhang, W. Wang, and M. Orshansky. FASER: Fast
analysis of soft error susceptibility for cell-based de-
signs. Time, 1(66):2–10, 2003.

[11] Q. Zhou and K. Mohanram. Gate sizing to radi-
ation harden combinational logic. Trans. on CAD,
25(1):155–166, 2006.

[12] M. Nicolaidis. Time Redundancy Based Soft-Error
Tolerance to Rescue Nanometer Technologies. Trans.
on VTS, 99:86–94, 1999.

[13] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha,
V. Erraguntla and S. Borkar. Selective node engineer-
ing for chip-level soft error rate improvement. Proc.
of Symp. On VLSI Circuits, pages 204–205, 2002.

[14] J. Kumar and MB. Tahoori. Use of pass transistor
logic to minimize the impact of soft errors in combi-
national circuits. Proc. of Workshop on SELSE, 2005.

[15] R. Garg, N. Jayakumar, S.P. Khatri and G. Choi. A
design approach for radiation-hard digital electronics.
Proc. of the DAC, pages 773–778, 2006.

[16] Y. Sasaki, K. Namba and H. Ito. Soft Error Masking
Circuit and Latch Using Schmitt Trigger Circuit. Proc.
of the Symp. on DFT, 327–335, 2006.

[17] N. Ranganathan and K. Bhattacharya. Methodology
and Apparatus for Reduction of Soft Errors in Logic
Circuits. US Patent, Provisional Patent Application
filed on June 13, 2008.

[18] J. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave,
M. Prakash, N. Iliev, and N. Jachimiec. A Framework
for High-Level Synthesis of System-on-Chip Designs.
Proc. of Microelectronic Systems Education, 11–12,
2005.

458

Soft Error Rates with Inertial and Logical Masking∗

Fan Wang Vishwani D. Agrawal
Juniper Networks, Inc. Auburn University, Dept. of ECE

Sunnyvale, CA 94089, USA Auburn, AL 36849, USA

fanw@juniper.net vagrawal@eng.auburn.edu

Abstract

We analyze the neutron induced soft error rate
(SER). An induced error pulse is modeled by two
parameters, probability of occurrence and probability
density function of the pulse width. We calculate fail-
ures in time (FIT) rates for ISCAS85 benchmark cir-
cuits. A comparison with measured SER for SRAMs
shows better relevance of our work over other pub-
lished work. Our CPU times are reasonable; bench-
mark circuit C1908 with 880 gates requires only 1.14
seconds. Further, we study the influence of circuit
topology on SER. We find that for some circuits with
many levels of logic there exists a critical single event
transient (SET) width. For smaller induced pulse
width the SER depends not on the size of the cir-
cuit but only on the gates near the output, and only
those need to be protected. For an inverter chain
in TMSC035 technology, the critical width is between
25ps and 50ps. For a shallow circuit, e.g., a ripple-
carry adder, the critical SET width may not exist.

1 Introduction

Continuous downscaling of CMOS technologies has
resulted in clock frequencies in the multiple gigahertz
range, supply voltage below one volt and load capaci-
tances of circuit nodes dropping to femtofarads. As a
result, soft error rates in logic and processor circuits
are increasing. In addition, if other circuit noises such
as interconnect coupling and ground bounce are also
considered soft errors, the logic FIT (failure in time,
1 FIT = 1 failure in 109 hours) rate is expected to
increase faster and become comparable to the FIT
rate of memories [9]. The SER due to high-energy
neutrons in SRAM cells, latches, and logic circuits
for feature sizes from 600nm to 50nm have been re-
ported [25]. According to that study, the SER of logic
circuits is expected to increase nine orders of magni-
tude from 1992 to 2011, becoming comparable to the
failure rate of unprotected on-chip memories.

Well-known noise sources include noisy power sup-
ply, lightning, electrostatic discharge (ESD), ground
bounce, and interconnect coupling capacitances.
With advances in the design and manufacturing tech-
nology, such non-environmental conditions may not
remain the dominant influence on the sub-micron
semiconductor reliability. Errors caused by cosmic
rays and alpha particles will become the prevalent

∗This research is supported in part by the National Science
Foundation Grant CNS-0708962.

reliability issue in electronic systems. A detailed dis-
cussion on the source of alpha particles and neutrons
and their effects on electronics can be found in a re-
cent tutorial paper [30].

In Section 2, we summarize the previous work on
soft error rate estimation and in Section 3, we will re-
view a novel environment dependent soft error model,
which is based on both error occurrence rate repre-
sented as a probability, and the single event transient
(SET) pulse density represented as a probability den-
sity function [28, 29, 31]. We favor this model because
it includes both inertial and logic masking effects in-
herent in digital circuits. In Section 4, we compare
analysis results with relevant published work. We dis-
cuss various key factors that may influence logic SER.
Some of those factors are barely considered in exist-
ing logic SER estimation work. In Section 5, we study
the influence of circuit topology on soft error rate.

2 Previous Work

Soft-error studies have traditionally been experi-
mental where one uses an accelerated life environment
for a VLSI device [12]. Typically, a neutron beam ac-
celerator may be used. An alternative is a real life
environment where a tester evaluates the failure rate
for hundreds of chips at nominal conditions. Though
field testing is very expensive and takes up to a year
to obtain reliable results, it is important to validate
the accelerated testing assumptions. The long de-
lay in getting the SER results is often unacceptable
for a contemporary chip market. Alternative is ei-
ther a costly test of more chips with bigger tester or
deviation from the nominal conditions to more sensi-
tive ones [35]. For example, the test facilities in the
Jungfraujoch lab in Switzerland located at 11,000 feet
can accelerate ground-level test times by a factor of
11. In this lab, iRoC Technologies obtained a sta-
tistically significant number of soft errors on several
different devices over a period of 4 to 6 months [16].

The JEDEC (Joint Electron Device Engineering
Council) standard includes JESD89, JESD89-A [10]
and JESD89-2. In JESD89 [10], the standard speci-
fications cover soft errors due to alpha particles and
atmospheric neutrons. These standards specify that
the SER data obtained from alpha accelerated SER
tests should be extrapolated to an alpha flux of 0.001
particles/hr-cm2. For example, the neutron acceler-
ated SER (ASER) test results have been extrapolated
to the typical neutron flux observed at New York City.
For energy in the range of 10–10000 MeV, the neutron
flux is 3.9×10−3 N/cm2-s and when the energy range

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.77

459

is from 1 to 10 MeV, the neutron flux is 4.0×10−3

N/cm2-s [8, 10]. Primarily, the procedures apply to
memory devices like DRAMs and SRAMs, but with
some adjustments can be used for logic devices [10].

The existing computer programs to model the sin-
gle event effects (SEE) on electronics include SEMM,
developed by IBM [26]; CRIME, supported by U.S.
Air Force and Office of Naval Research grant [4] and
CREME96 from Naval Research Laboratory [27].

Unlike memories, soft errors in logic circuits may
be filtered out by the circuit itself and may not ef-
fect the circuit performance. This is known as logic
masking, electrical masking or temporal masking [18].
Also, the complex topology of a logic circuit is differ-
ent from memory’s regular structure.

Asadi et al. [2] present a soft error rate esti-
mation technique based on error probability prop-
agation. Rejimon and Bhanja [24] gave a single
event fault model based on probabilistic Bayesian net-
works, which captures spatial dependencies. These
approaches do not take the circuit electrical masking
factor and the characteristic of transient pulses like
pulse widths into account. An improvement was pro-
vided by Zhao et al. [33], who proposed a constraint-
aware robustness insertion methodology to protect
the sequential elements in digital circuits against var-
ious noise effects. However, the authors did not in-
clude the environmental factors like the error fre-
quency. Besides, their propagation method required
tabulating all the pulse width and height data for each
logic gate. It would thus take enormous memory for
large logic circuits. Other notable logic circuit SER
estimation work includes SEAT-LA [21], SERA [32]
and an algorithm by Rao et al. [23].

Mohanram and Touba [17] gave a cost effective ap-
proach to selectively protect high susceptibility nodes
in logic circuits. A recent paper [15] proposed sym-
bolic approaches using binary decision diagrams, al-
gebraic decision diagrams and a probabilistic model
for sequential SER analysis. Rewriting, with opti-
mization for area and power consumption, can also
be used for reducing the soft error rate [1].

3 Environment-Based Model

Different from memories, in a logic circuit, a single
event effect exists as a single event transient (SET)
pulse. An SET has its unique characteristics like po-
larity, waveform, amplitude and duration, and these
characteristics depend on particle impact location,
particle energy, device technology, device supply volt-
age and output load. A single event upset does not
occur unless the SET can survive the circuit mask-
ing effects and is captured by a clock edge of some
sequential element [16].

Environmental neutrons come from cascaded in-
teractions when galactic cosmic rays traverse through
earth’s atmosphere. These neutrons reach the ground
with finite probabilities [19]. The intensity of cosmic-
ray induced neutrons flux in the atmosphere varies
with altitude, location in the geomagnetic field, and
solar magnetic activity. The flux rate data is avail-
able from the reported measurement records over
decades [14]. Not every particle hit on the sensitive

silicon area can induce an error. An SEU occurs with
certain probability for each high-energy particle hit.
Such probability can be obtained from existing com-
puter programs, for example, IBM’s SEMM (Soft Er-
ror Monte-Carlo Modeling) program [26].

We consider all energy components in the proposed
soft error model. We average the error probability
over different energies and assign each circuit node
with a unique error occurrence probability.

The particle energy distribution at any specific ge-
ographic locations for any specific technology can be
obtained from experimentally measured results. For
example, the cosmic particle strikes were simulated
using a heavy ion beam at the Twin Tandem Van de
Graaff accelerator of the Brookhaven National Labo-
ratory. Those results suggest that in the natural envi-
ronment of space the probability distribution of high-
energy particles falls rapidly with increasing energy.
For 0.5μ and 0.35μ CMOS technology processes at
the ground level, the largest population has an linear
energy transfer (LET) of 20MeV-cm2/mg or less and
the particles with LET greater than 30MeV-cm2/mg
are exceedingly rare [7]. LET determines the ioniza-
tion energy and hence the charge collection as the
particle traverses through the material of a switching
device.

The transient current pulse created by a striking
particle with given LET has been represented by a
double exponential expression [13]:{

I(t) = Qcoll

τα−τβ
(e−

t
τα − e

− t
τβ) (a)

Qcoll = 10.8 × L × LET (b)
(1)

where Qcoll is the collected charge in the sensitive re-
gion, τα is the collection time constant, which is a
process-dependent property of the junction, and τβ
is the ion-track establishment time constant, which
is relatively independent of the technology. In bulk
silicon, the typical charge collection depth (L) is 2μ.
For every 1 MeV -cm2/mg, and an ionizing particle
deposits about 10.8fC (femtocoulomb) charge along
each micron on its track. Typical values are approx-
imately 1.64 × 10−10sec for τα and 5 × 10−11sec for
τβ from measurements [3, 33].

By charging and discharging the circuit node ca-
pacitance, the single event transient current pulse is
converted into a transient voltage pulse in Figure 1.
Figure 2 gives a neutron-induced soft error model for
logic circuits. Because the probability per hit is re-
lated to the neutron flux which is location dependent,
we can easily get the circuit SER in units of FIT for
different locations if the corresponding neutron flux
data is available.

In summary, this probabilistic soft error model is
based on two considerations: (1) the SEU occurrence
rate, represented as probability and (2) once an SEU
occurs, it exists in the logic circuit as SETs with a
random pulse width characterized by a probability
density function [28, 31].

4 Simulation Results

We compare new simulation results with the rele-
vant published work and discuss various key factors

460

Table 1. SEU error rate (SER) analysis of ISCAS85 benchmark circuits.
Circuit # # # Our approach [28, 31] Rao et al. [23] Rajaraman et al. [21]

PI PO Gate CPU s SER (FIT) CPU s SER (FIT) CPU min. Error Prob.

c432 36 7 160 0.04 1.18×103 <0.01 1.75×10−5 108 0.0725
c499 41 32 202 0.14 1.41×103 0.01 6.26×10−5 216 0.0041
c880 60 26 383 0.08 3.86×103 0.01 6.07×10−5 102 0.0188
c1908 33 25 880 1.14 1.63×104 0.01 7.50×10−5 1073 0.0011

Computing platform Sun Fire 280 R Pentium 2.4GHz Sun Fire v210
Circuit technology TSMC035 Std. 0.13µm 70nm BPTM*

Altitude Ground Ground N/A

Table 2. Comparison with measured data.
(Measured Data) (Estimated Logic Circuit SER)

(Altitude Unknown) (Ground Level)
Devices SER Our Work Rao et al. [23]

(FIT/Mbit) (FIT) (FIT)

0.13µm SRAMs [6] 10,000 to 100,000
SRAMs, 0.25µm and below [11] 10,000 to 100,000 1,000 to 20,000 1×10−5 to 8×10−5

1 GBit memory in 0.25µm [20] 4,200

LET Distribution

Double Exp. Current
Model

Statistical
Induced Current

Circuit Node Capacitance

Statistical Pulse
Width Densi ty

Charging/Discharging

Figure 1. Transforming statistical neutron
energy spectrum to SET width statistics.

S EU p ro b ab ility p er neutro n
hit fo r given c ircuit no d e

N eutron Energy
(LET) Spectrum

S o ft Erro r
F req uency

S ET W id ths
Dens ity

Proposed Soft Error
Model

Figure 2. Proposed probabilistic neutron in-
duced soft error model for logic.

that may influence logic SER.
For a detailed algorithm to propagate soft errors

through elementary logic gates and the algorithm to
calculate circuit SER, one may refer to recent publi-
cations [28, 31]. We simulated ISCAS85 benchmark
circuits by a simulator developed in C programming
language. We assume that all circuits are working at
the ground level and the probability of SEU per par-
ticle hit is 10−4. We have neglected the polarity of
SETs and the temporal masking factor. At ground
level we use the neutron energy statistics obtained
from [7] assuming the SET width density per circuit
node follows a normal distribution with mean μ = 150
and standard deviation σ = 50. These assumptions
are justified for relatively small values of particle flux
and small chip area. From [34], the total neutron
flux at sea level is 56.5m−2s−1. For a CMOS cir-
cuit in TSMC035 technology, we assume the sensitive

region to be 10μm2 for each circuit node. For a cir-
cuit with n primary outputs and m nodes, the circuit
SER is Σn

i=0(Σ
m
j=0SERi caused by j) which is different

from [31], in which we calculated the SER per gate per
output (1

nΣn
i=0(

1
mΣm

j=0SERi caused by j)). The unit
for SER is FIT.

In Table 1, we compare these results for several
benchmark circuits with available results; not all
benchmark circuit SER results have been published.
Our results have several orders of magnitude differ-
ence from the results of Rao et al [23] and the cause of
this huge discrepancy will be discussed in the follow-
ing section. The term BPTM marked with asterisk
(*) stands for Berkeley Predictive Technology Model.
The run times of our approach appear acceptable. For
example, for C1908 with 880 gates, the simulation run
time is only 1.14 second.

Field test data for logic circuits is largely unavail-
able but the actual neutron experiments on a test chip
in the future will help validate our analysis. However,
the measured SER data for memories, both SRAM
and DRAM, is available. Table 2 shows our results,
estimated logic SER from Rao et al. [23], and the
reported SRAM SER measurement data [6, 11, 20].
Clearly, our results show better relevancy with the
measured SRAM SER. In Table 3, we compare the
proposed approach with previous relevant works on
logic soft error rate estimation [2, 21, 23, 24, 32]. We
observe that none of the existing logic SER estimation
work has considered the re-convergent fanout, which
may have a significant influence on the analysis. We
will further discuss these factors in the next section.

From the specification or experimental setup com-
parison presented in Table 3 we find that to accu-
rately calculate logic SER, factors that influence logic
SER estimation should be comprehensively consid-
ered. However, no analysis has considered all of them.
Consider the following:

(1) The physics of the SEU phenomena seems in-
volved. For example, the analysis of the funneling and
the angle of incidence are not considered. We take the
energy of neutrons to be the main source that induces
the SEU. In reality, it is the physics of interaction be-

461

Table 3. Comparison of SEU error rate (SER) estimation methods.
Authors Factors considered
and LET Re-conv. Sensitive SEU Vectors Location Circuit SET
Reference Spectrum Fanout Regions prob. Applied Altitude Tech. Degradation

Our work yes no yes yes no yes yes yes
Rao et al. [23] yes no no no yes yes yes yes
Rajaraman et al. [21] no no no no yes no no yes
Asadi-Tahoori [2] no no no yes no no no no
Zhang-Shanbhag [32] yes no yes yes yes yes yes yes
Rejimon-Bhanja [24] no no no yes yes no no no

tween neutrons and silicon that produces the SEU.
Simpler modeling and assumptions may influence the
SER estimation accuracy.

(2) The sensitive region of a transistor is defined
as the channel region of an off nMOS transistor or
the drain region of an off pMOS transistor. For a
CMOS circuit, the “on” or “off” status of transistors
is determined from inputs. We statically assume that
each circuit node’s sensitive region is 10μm2. This
may bias the SER result. Although we have consid-
ered the sensitive node areas, the strikes on pMOS or
nMOS nodes also influence the polarity of the SET.
Thus, the dynamic state of the circuit is important.

(3) Compared to the earth’s surface, the size of the
sensitive region of a single transistor or a circuit board
is trivially small and continues to reduce with the
technology trend. At the surface of the earth we take
the probability of a particle strike to a sensitive node
simply by taking the ratio of the number of particle
strikes per μm2-s to strikes per m2-s. Because 1 m2

equals 1012 μm2, most probably there will be no strike
on the sensitive regions though such low probability
events cannot be neglected. Once the SEU occurs,
the SER may easily be several orders of magnitude
higher compared to the case of no strike at all. For
example, 1 SEU in 6 months (4320 hours) would be
measured as 231,480 FIT. On the other hand, a 0
SEU in those 6 months will measure as 0 FIT.

(4) For logic circuits fan-out details should be con-
sidered. Our analysis only considers the worst case
error rate for re-convergent fan-outs. For example, if
a re-convergent fanout has two paths, and one passes
through more gates than the other, our program only
takes the path that has fewer gates because it is likely
to give a higher SER. Timing and logic simulation
of all paths would be needed for better accuracy [5].
Two situations can arise as shown in Figure 3:

(a) When SET goes through a high fan-out node,
the large load capacitance can eliminate the SET
through node inertia.

(b) Or if the SET is not canceled by the fan-out
node, it goes through multiple fan-out paths. If
all paths have equal length, the SET might can-
cel itself at a re-converging point depending on
path inversions. However, in general, one SET on
the affected node can cause several propagating
SETs to further increase the SER of the circuit.

Path delays may also influence logic SER.
(5) It is highly recommended to have more field

tests for logic circuits. Also, we suggest that the SER
results from field tests for the same circuit, even in

(a)

(b)

Figure 3. Circuit fanout stem and re-
convergence of paths with different lengths.

the same working environment, may be widely differ-
ent at different times. Still, with field test data, the
logic circuit SER results can be validated. A com-
parison with measurement may be the only way to
determine which factors can be really neglected and
which assumptions and approximations are justified.

(6) None of the SER estimation approaches con-
sider process variation effects, which may also be a
factor in the vulnerability to transient errors. It is
reported that, intra-die process variation of threshold
voltage may result in SER variation of 41% in a small
circuit [22].

5 Circuit Topology and SER

The circuit topology is an important factor that
influences the logic SER. Deep and shallow cir-
cuits, having many or few levels, respectively, may
have quite different masking effects on SER. Besides,
the operating environment, technology, node capaci-
tances and supply voltage are the other factors that
should be considered. Once these factors and their
weights are taken into account, we will have infor-
mation to decide whether and how SEU protection
methods should be applied. A good analysis will give
circuit engineers opportunities to choose the most
economic protection technique instead of the costly
traditional methods like triple modular redundancy
(TMR).

We analyzed examples of the two types of circuits
mentioned above, an inverter chain as a deep circuit
and a ripple carry adder as a shallow circuit. To
apply the SER estimation method of our recent pa-
per [28, 31], we assumed the working environment is
the ground-level. The simulation results are shown
in Figure 4. Figures 4 a(1) and b(1) show the cir-
cuit schematics. In the inverter chain each gate has

462

a (1)

200
100

50

20
10

5
2

1

10

100

1000

10000

1 10 100 1000
Inverter Chain Length

SE
R

 (F
IT

)

mean=150,std dev=50

mean=50,std dev=30

mean=25,std dev=25

0

2000

4000

6000

8000

10000

12000

0 40 80 120 160 200 240 280

Size of Full Adders (bits)

SE
R

 (F
IT

)

mean=150, std dev=50

mean=50, std dev=30

mean=25, std dev=25

b (1)

a (2) b (2)

INPUT OUTPUT
Co,N-1

AN-1 BN-1

Co,N

SN-1

A1 B1

Co,1

S1

0

FA

Ci,0

A0 B0

Co,0

S0

(Ci,1)

1

FA

N

FA

Figure 4. SER for circuits with different topologies: an inverter chain structure, a(1), and its SER
simulation, a(2); a ripple-carry adder, b(1), and its SER simulation, b(2).

only one input and one output. Thus, there can be
only electrical masking and no logic masking. The
ripple carry adder has a parallel topology. With the
exception of the rippling carry signal, all other inputs
(An and Bn) propagate through the same number of
gates to arrive at output (Sumn). Figure 4 a(2) shows
the estimation results for different lengths of inverter
chains, with three different induced SET width dis-
tributions. For the two wider pulse widths (in pico-
seconds) whose normal distribution mean and stan-
dard deviation are (150, 50) and (50, 30), respec-
tively, the SER increases almost linearly with the
chain length. In the absence of logic masking, longer
the chain, larger is the probability the circuit can be
affected by the radiation source. For these two cases
the pulse widths are large enough compared to the in-
ertial delay thus survive the electrical masking. When
the neutron flux density (mean, standard deviation)
is (25, 25), the circuit SER remains fixed even with
the increasing chain length. This is because the ma-
jority of induced SET pulse widths are small enough
so the electrical masking is able to filter out these
pulses. We can, therefore, determine a critical pulse
width for the inverter chain as being somewhere be-
tween 25ps and 50ps. Majority of pulses of smaller
widths are filtered out and the SER depends only on
a few gates near the output of the chain. Only the
gates near the primary output need to be protected
against upset.

In Figure 4 b(2) the simulation results for ripple-
carry adders are presented. For SET pulse width
distributions (mean, standard deviation) of (50, 30)
and (25, 25), the two SER curves are almost iden-
tical. Even with these SET pulse widths, the SER
always increases with the increasing circuit size. This

is caused by the parallel topology of the RC adder.
Increasing number of gates will increase the cosmic
ray hit probability thus causing the circuit SER to
increase linearly with the circuit size. For ripple-
carry adder, there is no critical SET pulse width be-
low which the transients would be localized.

6 Conclusion

We have estimated the logic circuit SER based on
an environment-dependent soft error model charac-
terized by error occurrence rate and SET pulse width
density. Results show better relevancy over other
published work. Field test or accelerated test data
on logic devices would be needed to further validate
the accuracy of the our analysis. Our soft error rate
estimation method requires logic signal probabilities.
For any given set of input vectors or signal statistics,
these may be obtained either from logic simulation or
from static analysis. From our discussion, the logic
SER may be highly sensitive to factors like sensitive
region calibration, process variation and circuit char-
acterization, making soft error estimation for logic
circuits a complex problem. The influence of circuit
topology on logic circuits is studied. We proposed a
critical SET width such that for smaller pulse widths
the SER does not increase with the increasing cir-
cuit size. However, for a shallow and wide circuit
like a ripple-carry adder, the critical pulse width does
not exist. More comprehensive studies should provide
better insights for soft error protection schemes in the
future.

References

[1] S. Almukhaizim, Y. Makris, Y. S. Yang, and
A. Veneris, “Seamless Integration of SER in

463

Rewiring-Based Design Space Exploration,” in Proc.
International Test Conference, 2006, pp. 1–9.

[2] G. Asadi and M. B. Tahoori, “An Accurate SER Esti-
mation Method Based on Propagation Probability,”
Proc. Design Automation and Test in Europe Conf,
pp. 306–307, 2005.

[3] V. Carreno, G. Choi, and R. K. Iyer, “Analog-Digital
Simulation of Transient-Induced Logic Errors and
Upset Susceptibility of an Advanced Control Sys-
tem,” in NASA Technical Memo 4241, 1990.

[4] D. L. Chenette, J. Chen, E. Clayton, T. G. Guzik,
J. P. Wefel, M. Garcia-Munoz, C. Lopate, K. R. Pyle,
K. P. Ray, E. G. Mullen, and D. A. Hardy, “The CR-
RES/SPACERAD Heavy Ion Model of the Environ-
ment (CHIME) for Cosmic Ray and Solar Particle Ef-
fects on Electronic and Biological Systems in Space,”
IEEE Trans. on Nuclear Science, vol. 41, no. 6, pp.
2332–2339, 1994.

[5] A. Dharchoudhury, S. M. Kang, H. Cha, and J. H.
Patel, “Fast Timing Simulation of Transient Faults
in Digital Circuits,” in Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 1994,
pp. 719–722.

[6] Graham, “Soft errors a prob-
lem as SRAM geometries shrink,”
http://www.ebnews.com/story/OEG20020128S0079,
ebn, 28 Jan 2002.

[7] K. J. Hass and J. W. Ambles, “Single Event Tran-
sients in Deep Submicron CMOS,” in Proc. 42nd
Midwest Symposium on Circuits and Systems, 1999.

[8] T. Heijmen and A. Nieuwland, “Soft-Error-Rate
Testing of Deep-Submicron Integrated Circuits,” in
Proc. Eleventh IEEE European Test Symposium,
2006, pp. 247–252.

[9] B. Ingols and A. Rambaud, “iRoC Releases Ro-
bust SPARC Test Report,” http://www.us.design-
reuse.com/news/news65.html, 2002.

[10] JEDEC, “Measurements and Reporting of Alpha
Particles and Terrestrial Comic Ray-Induced Soft Er-
rors in Semiconductor Devices,” JESD89, August,
2001.

[11] W. Leung, F.-C. Hsu, and M. E. Jones, “The ideal
soc memory: 1t-sramtm,” in Proc. 13th Annual
IEEE International ASIC/SOC Conference, 2000,
pp. 32–36.

[12] T. C. May, D. L. Crook, D. W. Gralian, R. A.
Reininger, and R. C. Smith, “Soft Error Testing,” in
Proc. International Test Conference, 1980, pp. 137–
150.

[13] G. C. Messenger, “Collection of Charge on Junction
Nodes from Ion Tracks,” IEEE Trans. on Nuclear
Science, vol. 29, no. 6, pp. 2024–2031, 1982.

[14] G. C. Messenger and M. Ash, Single Event Phenom-
ena. Chapman & Hall, 1997.

[15] N. Miskov-Zivanov and D. Marculescu, “Circuit
Relaiability Analysis Using Symbolic Techniques,”
IEEE Trans. on CAD, vol. 25, no. 12, pp. 2638–2649,
Dec. 2006.

[16] S. S. Mitra, N. Kee, and S. Kim, “Robust System De-
sign with Built-In Soft-Error Resilience,” IEEE De-
sign & Test Computers, vol. 38, no. 2, pp. 43–52,
2005.

[17] K. Mohanram and N. A. Touba, “Cost-Effective Ap-
proach for Reducing Soft Error Failure Rate in Logic
Circuits,” in Proc. International Test Conference,
2003, pp. 893–901.

[18] H. T. Nguyen and Y. Yagil, “A Systematic Approach
to SER Estimation and Solutions,” in Proc. 41st An-

nual IEEE International Reliability Physics Sympo-
sium, 2003, pp. 60–70.

[19] E. Normand, “Single-Event Effects in Avionics,”
IEEE Transactions on Nuclear Science, vol. 43, no. 2,
pp. 461–474, 1996.

[20] OnlineResource, “Soft Errors in Electronic Memory
- A White Paper,” Technical report, Tezzaron Semi-
conductor, 2004.

[21] R. Rajaraman, J. S. Kim, N. Vijaykrishnan, Y. Xie,
and M. J. Irwin, “SEAT-LA: A Soft Error Analysis
Tool for Combinational Logic,” in Proc. 19th Inter-
national Conference VLSI Design, 2006, pp. 499–502.

[22] K. Ramakrishnan, R. Rajaraman, S. Suresh, N. Vi-
jaykrishnan, Y. Xie, and M. J. Irwin, “Variation Im-
pact on SER of Combinational Circuits,” in Proc.
8th International Symposium on Quality Electronic
Design, 2007, pp. 911–916.

[23] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester,
“An Efficient Static Algorithm for Computing the
Soft Error Rates of Combinational Circuits,” in Proc.
Conference on Design, Automation and Test in Eu-
rope, 2006, pp. 164–169.

[24] T. Rejimon and S. Bhanja, “An Accurate Probabilis-
tic Model for Error Detection,” in Proc. 18th Inter-
national Conference on VLSI Design, 2005, pp. 717–
722.

[25] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger,
and L. Alvisi, “Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational
Logic,” in Proc. International Conference on De-
pendable Systems and Networks, 2002, pp. 389–398.

[26] G. R. Srinivasan, “Modelling the Cosmic Ray-
Induced Soft-Error Rate in Integrated Circuits:
An Overview,” Microelectronics Reliability, vol. 37,
no. 4, pp. 691–691, 1997.

[27] A. J. Tylka, J. H. Adams Jr, P. R. Boberg, B. Brown-
stein, W. F. Dietrich, E. O. Flueckiger, E. L. Pe-
tersen, M. A. Shea, D. F. Smart, and E. C. Smith,
“CREME96: A Revision of the Cosmic Ray Effects
on Micro-Electronics Code,” IEEE Transactions on
Nuclear Science, vol. 44, no. 6, p. 2150, 1997.

[28] F. Wang, “Soft Error Rate Determination for
Nanometer CMOS VLSI Circuits,” Master’s thesis,
Auburn University, Dept. of ECE, May 2008.

[29] F. Wang and V. D. Agrawal, “Probabilistic Soft Er-
ror Rate Estimation from Statistical SEU Parame-
ters,” in Proc. 17th IEEE North Atlantic Test Work-
shop, May 2008, pp. 86–92.

[30] F. Wang and V. D. Agrawal, “Single Event Upset:
An Embedded Tutorial,” in Proc. 21th International
Conference on VLSI Design, 2008, pp. 429–434.

[31] F. Wang and V. D. Agrawal, “Soft Error Rate De-
termination for Nanometer CMOS VLSI Logic,” in
Proc. 40th Southeastern Symposium on System The-
ory, Mar. 2008, pp. 324–328.

[32] M. Zhang and N. R. Shanbhag, “A Soft Er-
ror Rate Analysis (SERA) Methodology,” in Proc.
IEEE/ACM International Conference on Computer-
Aided Design, 2004, pp. 111–118.

[33] C. Zhao and S. Dey, “Evaluating and Improving
Transient Error Tolerance of CMOS Digital VLSI
Circuits,” in Proc. International Test Conference,
2006, pp. 1–10.

[34] J. F. Ziegler, “Terrestrial Cosmic Rays,” IBM Jour-
nal of Research and Development, vol. 40, no. 1, pp.
19–39, 1996.

[35] J. F. Ziegler and H. P. Muhfeld, “Accelerated testing
for cosmic soft-error rate,” IBM Journal of Research
and Development, vol. 40, no. 1, pp. 51–63, 1996.

464

Accelerating System-Level Design Tasks using Commodity
Graphics Hardware: A Case Study

Unmesh D. Bordoloi Samarjit Chakraborty
Department of Computer Science, National University of Singapore

E-mail: {unmeshdu, samarjit}@comp.nus.edu.sg

Abstract— Many system-level design tasks (e.g. timing analysis,
hardware/software partitioning and design space exploration) involve
computational kernels that are intractable (usually NP-hard). As a
result, they involve high running times even for mid-sized problems.
In this paper we explore the possibility of using commodity graphics
processing units (GPUs) to accelerate such tasks that commonly arise
in the electronic design automation (EDA) domain. We demonstrate
this idea via a detailed case study on a general hardware/software
design space exploration problem and propose a GPU-based en-
gine for it. Not only does this problem commonly arise in the
embedded systems domain, its computational kernel turns out to
be a general combinatorial optimization problem (viz. the knapsack
problem) which lies at the heart of several EDA applications. Our
experimental results show that our GPU-based implementation offers
very attractive speedups for this computational kernel (up to 100×),
and speedups of up to 17× for the full problem. In contrast to
ASIC/FPGA-based accelerators – since even low-end desktop and
notebook computers are today equipped with GPUs – our solution
involves no extra hardware cost. Although recent research has shown
the benefits of using GPUs for a variety of non-graphics applications
(e.g. in databases and bioinformatics), hardly any work has been done
on harnessing the parallelism of GPUs to accelerate problems from
the EDA domain. We hope that our results and the generality of the
problem we address will motivate researchers from this community to
explore the possibility of using GPUs for a wider variety of problems
from the EDA domain.

I. INTRODUCTION

Many system-level design tasks arising within electronic design
automation (EDA), such as hardware/software co-design and schedu-
lability analysis, involve one or more computationally expensive
cores. In a typical iterative design flow, system designers repeatedly
invoke design tools which run these computational cores as a part of
their backend. Hence, the running times of these tools which often
are in the tune of several hours critically impact their usability. In
this paper we explore the possibility of using commodity graphics
processing units (GPUs) to accelerate these computational kernels,
and thereby improve the running time and usability of the design
tools that use them.

There are two main reasons behind exploiting GPUs for such non-
graphics related applications (in contrast to using, say, ASIC/FPGA-
based accelerators): (i) modern GPUs are extremely powerful (high-
end GPUs such as the nVIDIA GeForce 8800 GTX have a FLOPS
rating of around 330 GigaFLOPS, whereas high-end general-purpose
processors are only capable of around 25 GigaFLOPS) (ii) GPUs are
now commodity items as their costs have dramatically reduced over
the last few years. Hence, the attractive price-performance ratios of
GPUs gives us an enormous opportunity to change the way design
automation tools perform, with almost no additional cost. In fact,
recent years have seen the increasing use of graphics processing
units (GPUs) for different general-purpose computing tasks. These
span across numerical algorithms [15], computational geometry [1],
database processing [2], image processing [18], and bioinformatics
[17]. On the other hand, in spite of a wide variety computationally
expensive problems from the EDA domain that need to be regularly

Fig. 1. Pareto-optimal solutions.

solved by design tools running on desktops and laptops equipped
with high-end GPUs, the use of GPUs for accelerating such problems
has not been sufficiently explored so far. In fact, apart from recent
interests [9], [5] in this direction, there are no other known efforts.

In this paper, we use a common design space exploration problem
to establish the utility of the GPUs in accelerating system-level
design tasks. We have chosen this problem mostly because of
its generality. System designers today have a wide range of
implementation possibilities ranging from fully-programmable
processors, fixed-function components or hardware accelerators,
to partially-programmable engines. Thus, they are faced with a
large array of implementation possibilities each with different
trade-offs involving costs, packaging constraints, and performance
metrics (e.g. power consumption, delay and throughput). As a result,
identifying only one implementation that meets the specified design
constraints is no longer useful, but rather it is important to identify
all implementations that expose the different possible performance
tradeoffs (see Figure 1). Unfortunately, this multi-objective design
space exploration often tends to be very tedious because of two
reasons. First, a large number of designs need to be evaluated in
order to cover the entire design space. Second, evaluating even a
point in the design space may be computationally very expensive.
Traditionally, researchers have been using different techniques to
get around the high running times associated with such problems.
The most notable amongst these are genetic algorithms [10] and
approximation algorithms. However, these algorithms do not yield
exact solutions and neither do they offer any performance guarantees.

Our contributions: From a computer architecture standpoint, GPUs
naturally support what are referred to as streaming algorithms [22].
The main contribution of this paper is a reformulation of a stan-
dard design space exploration problem related to hardware/software
partitioning [12] as a streaming algorithm that can be efficiently
implemented on a GPU. Our results in this paper show that using
GPUs may result in more than 100× speedup of the core of the
design space exploration algorithm. These speedups will certainly
improve the usability of a tool for such design space exploration,
especially when used in an interactive fashion (i.e. where the designer

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.35

465

repeatedly makes small changes to the problem and invokes the tool
until a satisfactory solution is obtained).

Our contributions are also significant because the core problem
we solve is a general knapsack problem (viz. the multiple-choice
knapsack problem). Given the generality of this combinatorial op-
timization problem – which arises in a variety of EDA tasks – we
believe that our results might initiate an interest to explore the use
of GPUs for accelerating other problems within the EDA domain as
well.
Related work: Over the last two decades, numerous approaches have
been proposed to accelerate computationally expensive algorithms
arising in the EDA domain. Many of these approaches are similar
to our work in the sense that they also exploit some form of
parallelism in the application. The most notable approaches have used
multiprocessors and reconfigurable hardware like FPGAs. However,
none of them have explored the possibility of employing GPUs,
which in contrast to FPGAs involve no extra hardware cost since
most computing platforms today are equipped with GPUs. Further,
high-level APIs and programming languages such OpenGL [19] and
CUDA [4] have greatly simplified the task of programming GPUs.

Results reported in [21], [23] represent early efforts towards using
multiprocessors to reduce computation time of EDA algorithms like
VLSI routing. In [7] parallel algorithms for design space explo-
ration to be run on a multiprocessor system have been described.
More recently, [13] has proposed techniques for reducing simulation
time by building simulation models for execution on multiprocessor
systems. Further, the use of reconfigurable computing to accelerate
problems from the EDA domain has been proposed in [20]. All of
these proposals are for accelerating the Boolean SAT problem which
also lies at the core of several EDA applications. Other efforts in
this direction include hardware-based acceleration for fast simulation
[11], [14]. Towards this, hardware acceleration is used to offload
compute-intensive tasks from the software simulator.

In contrast to the above threads of work, the main advantage of
our approach stems from the low cost associated with GPU-based
acceleration since all desktop and notebook computers are now
invariably equipped with GPUs. Hence, no extra hardware investment
is necessary and EDA design tools can seamlessly incorporate our
technique in a manner that is completely transparent to the end-
user or the design engineer using the tool. Further, as mentioned
above, with the development of high-level APIs and programming
languages for graphics programming, it is now easy to exploit GPUs
to accelerate the back-end of any EDA design tool with relatively
low additional programming effort and graphics-specific knowledge.

Problem overview and our scheme: Assume a real-time application
where two tasks T1 and T2 are required to run concurrently and have
predefined deadline constraints. Both T1 and T2 can be partially
implemented in hardware, with their remaining parts implemented
as software running on the same programmable processor P . Such a
scheme is in line with coarse-grained FPGA architectures (e.g. Virtex-
II PRO from Xilinx), which consist of one or more programmable
processors embedded within the FPGA’s logic fabric. It is also in line
with customizable processors where the system designer may choose
to implement frequently occurring computation patterns in hardware.
The portions (or fractions) of T1 and T2 to be implemented in
hardware constitute the different implementation options. The two ob-
jectives to be optimized are the total hardware cost and the minimum
clock frequency of P (which, for example, might influence its power
consumption). Clearly, there can be different implementation options
which satisfy T1 and T2’s deadline constraints. If larger fractions

of T1 and T2 are implemented in hardware, then the hardware cost
increases and the required clock frequency of P decreases, and vice
versa.

For any schedulable implementation, if (c, f) denotes the corre-
sponding hardware cost and clock frequency, then a designer will
be interested in identifying all possible tuples (c1, f1), . . . , (cn, fn)
which capture the different performance tradeoffs. In the multicriteria
optimization parlance, the set {(c1, f1), . . . , (cn, fn)} is referred to
as the Pareto curve and each point (ci, fi) in this set is called a
Pareto-optimal solution [6] (see Figure 1). Each (ci, fi) in this set has
the property that there does not exist any schedulable implementation
of T1 and T2 with a performance vector (c, f) such that c ≤ ci

and f ≤ fi, with at least one of the inequalities being strict.
Further, let S be the set of performance vectors corresponding to
all schedulable implementations. Let P be the set of performance
vectors {(c1, f1), . . . , (cn, fn)} corresponding to all the Pareto-
optimal solutions. Then for any (c, f) ∈ S − P there exists a
(ci, fi) ∈ P such that ci ≤ c and fi ≤ f , with at least one of
these inequalities being strict (i.e. the set P contains all performance
tradeoffs). The vectors (c, f) ∈ S − P are referred to as dominated
solutions, since they are “dominated” by one or more Pareto-optimal
solutions as shown in Figure 1.

In this paper we present a GPU based engine – called GPU-
Pareto – for high speed computation of the Pareto curve P =
{(c1, f1), . . . , (cn, fn)}. Our algorithm consists of the following two
parts:

• The first part involves running a pseudo-polynomial time dy-
namic programming algorithm to find all the design points.
This algorithm is the computationally expensive core of the
design space exploration and in this paper we re-formulate this
algorithm as a streaming algorithm to accelerate it on GPUs.

• The second part involves retaining the non-dominated solutions
from the set of solutions found in the previous step. Since this
part is not amenable to GPU-based acceleration, we run it on
the CPU for optimized performance.

In essence, GPUPareto involves both GPU and the CPU to achieve
optimal performance improvement.

Organization of the paper: The rest of this paper is organized
as follows. In the next section we introduce our task model and
some necessary notations. Section III introduces the formal problem
statement and a pseudo-polynomial time algorithm to solve it. This
is followed by a discussion on GPU architectures in Section IV.
In Section V we present our GPU-based design space exploration
technique, followed by the experimental results in Section VI.

II. TASK MODEL

In this paper, we use the sporadic task model [3] in a preemptive
uniprocessor environment to illustrate our GPU-based design space
exploration scheme. Thus, we are interested in the schedulability
analysis of a task set τ = {T1, T2, . . . , Tm} consisting of m hard
real-time tasks. Any task Ti can get triggered independently of other
tasks in τ . Each task Ti generates a sequence of jobs, where each
job is characterized by the following parameters:

• Release Time: the release time of two successive jobs of the task
Ti is separated by a minimum time interval of Pi time units.

• Deadline: each job generated by Ti must complete by Di time
units since its release time.

• Workload: the worst case execution requirement of any job
generated by Ti is denoted by Ei.

Throughout this paper, we assume the underlying scheduling policy
to be the earliest deadline first (EDF). Our algorithm can be suitably

466

Tasks in the Task Set Workload Cost

10 15

choices for task T1 = 3 8 45

E1 = 12, P1 = 40 4 90

choices for task T2 = 2 5 24

E2 = 6, P2 = 16 2 42

8 11

choices for task T3 = 3 6 26

E3 = 11, P3 = 25 5 82

TABLE I
TASK SET PARAMETERS.

modified to handle other scheduling policies as well. Assuming that
for all tasks Ti, Di ≥ Pi, the schedulability of the task set τ can be
given by the following well-known condition.

Theorem 1: A set of sporadic tasks τ is schedulable under EDF
if and only if

(U =

m∑

i=1

Ei

Pi
) ≤ 1

where U is the processor utilization due to τ [3], [16].

III. THE PROBLEM STATEMENT

In this section, we formally state the multi-objective problem
along with the help of an illustrative example. We then discuss the
intractability of this problem even for the simple sporadic task model
described in Section II. Finally, we derive a pseudo-polynomial time
algorithm for solving it.

Recall that we are given a processor P , and a specified number of
subtasks of each task Ti which can be implemented in hardware. For
simplicity of exposition, we will henceforth assume that the processor
P ’s clock frequency is constant and all the execution times of the
tasks are specified with respect to this clock frequency. Our objective
will be to minimize P ’s utilization (by mapping certain subtasks onto
hardware) and at the same time also minimize the total hardware cost.
In other words, our goal is to compute the cost-utilization Pareto
curve {(c1, u1), . . . , (cn, un)} for a pre-specified clock frequency of
P . It is straightforward to see that such a Pareto curve can be easily
transformed into a cost-frequency Pareto curve with P ’s utilization
being ≤ 1 for the different frequency values.

For each task Ti, let there be ni hardware implementation choices.
Each of these ni choices is associated with a certain hardware cost.
Choosing the jth implementation choice for the task Ti lowers its
execution requirement on P from Ei to ei,j . Equivalently, the amount
by which the execution requirement of Ti gets lowered on P is
δi,j = Ei − ei,j . Hence, for each task Ti we have a set of choices
Si = {(δi,1, ci,1), . . . , (δi,n1 , ci,n1)}, where ci,j is the hardware
cost associated with the jth implementation choice. In this setup,
the objective is to minimize the utilization

U(S) =
m∑

i=1

Ei − xi,jδi,j

Pi

and the cost C(S) =
∑m

i=1 ci,jxi,j , where S is the chosen imple-
mentation among the various available options.

We now illustrate this problem with the help of an example. A
task set τ has three tasks {T1, T2, T3} with {E1 = 12, P1 = 40},
{E2 = 6, P2 = 16}, and {E3 = 11, P3 = 25}. The different
possible hardware implementation choices for each task in this set is
shown in Table I. Each row of this table shows the new execution
requirement of a task on P after a part of this task is implemented in
hardware, and the associated hardware cost. Note that as the execution

Algorithm 1 Minimum-cost schedulability analysis
Input: The task set τ , and a set Si for each task Ti.

1: U0,0 ←
∑m

i=1 Ei/Pi

2: for j ← 1 to mC do
3: U0,j ←∞
4: end for
5: for i← 1 to m do
6: for j ← 0 to mC do
7: For each pair (δi,k, ci,k) that belongs to the set Si

8: Ui,j ← min{Ui−1,j , Ui−1,j−ci,k
− δi,k/Pi}

9: end for
10: end for

requirement or workload of a task decreases, its associated hardware
cost increases.

Following the notation we introduced above, for T1 we have e1,1 =
10, e1,2 = 8 and e1,3 = 4. The corresponding hardware costs are
c1,1 = 15, c1,2 = 45 and c1,3 = 90. Hence, the implementation
choices for T1 are given by the set S1 = {(2, 15), (4, 45), (8, 90)}.
The choices for T2 and T3 can be similarly computed from this table.
Note that while T1 and T3 have three choices each, T2 has only two
choices. Thus, n1 = n3 = 3 and n2 = 2. The goal is to identify the
cost-utilization Pareto curve, which in this case includes pairs like
{(11, .995), (214, .425)} etc.

A. A Pseudo-polynomial Time Algorithm

Unfortunately, computing the exact cost-utilization Pareto curve
is computationally intractable. This can be easily verified from the
following two facts. First, the Pareto curve would typically contain an
exponential number of points (which obviously cannot be computed
in polynomial time). Second, computing any one point on the Pareto
curve is NP-hard. This can be easily shown by a polynomial-time
transformation of the knapsack problem [8].

Now, we present our algorithm to compute the Pareto curve.
It consists of two parts. First, a dynamic programming algorithm
(Algorithm 1) computes the minimum utilization that might be
achieved for each possible cost. This algorithm runs in pseudo-
polynomial time, and hence, turns out to be the compute-expensive
kernel of our scheme. In Section V, we reformulate this algorithm to
derive an accelerated GPU-based scheme. The second part involves
finding out all undominated solutions (cost-utilization Pareto curve)
from the entire solution set found by the dynamic programming
algorithm. This is a straightforward implementation, and is not
discussed in this paper because of space constraints.

Overview of Algorithm 1: Let Ui,j be the minimum utilization
that might be achieved by considering only a subset of tasks
from {1, 2, . . . , i} when the cost is exactly j. If no such subset
exists we set Ui,j = ∞. Let the maximum cost be C i.e. C =
max(i=1,2,...,n;j=1,2,...,ni)ci,j . Clearly, mC is an upper bound on
the total cost that might be incurred. All other notations used
are as introduced in Section II and Section III. Lines 1 to 4 of
Algorithm 1 initialize U0,0 to

∑m
i=1 Ei/Pi, and U0,j to ∞ for

j = {1, 2, . . . , mC}. The values Ui,j for i = 1 to i = m are
computed using the iterative procedure in lines 5 to 10. Thus, any
non-infinity value Un,j for j = {1, 2, . . . , mC} implies a feasible
design choice of the task set with utilization Un,j and cost j. It can
be easily verified that the running time of Algorithm 1 is O(nmC),
where n =

∑m
i=1 ni, and its space complexity is O(m2C).

IV. GPU ARCHITECTURES

Before introducing our GPU-based engine, we give a brief
overview of the GPU architecture in this section: we highlight

467

Fig. 2. The GPU graphics pipeline.

the GPU pipeline, the features that make GPUs attractive stream
processors and the challenges in programming the GPUs.

The GPU Pipeline: All of today’s commodity GPUs structure their
graphics computation in a fixed order of processing stages called the
graphics pipeline. Figure 2 shows the pipeline stages in a modern
GPU. The input to the pipeline is a list of geometry, expressed as
vertices in object (3D) co-ordinates and the output is an image in
a framebuffer. A framebuffer is the portion of the graphics card
memory that holds the information necessary to display a screen
image. The first stage of the pipeline (on vertex processors) performs
geometric transformations on each vertex and transforms each vertex
from object space (3D) into screen space (2D) and assembles the
vertices into triangles. Thus, the output of the first stage or geometry
stage is triangles in screen space. The next stage, or rasterization,
determines the screen positions covered by each triangle. The result
of the rasterization stage is a data stream of elements or fragments for
each pixel location covered by a triangle. Each incoming data element
has a set of texture co-ordinates that reference a texture memory (see
Figure 2). The third stage or the fragment stage consists of multiple
fragment processors. They generate the addresses into the texture
memory referred by the fragments and fetch their associated texture
values. This data is used by a user-defined program executing on
the processors to compute the fragment color (i.e. the color for each
pixel). The output is finally written to the frame-buffer memory.

In this work, we will concentrate only on the fragment processors.
In fact, a vast majority of general-purpose GPU applications use only
fragment programs for their computation. This is because (i) they
are the last in the graphics pipeline and their output may be read
out directly, (ii) they are highly parallel (they are more in number
than vertex processors), and (iii) they have a better memory-read
performance compared to the vertex processors.

GPUs as Streaming Processors: In order to meet the ever increasing
performance requirements set by the gaming industry, modern GPUs
use two types of parallelism. First, multiple processors work on the
vertex and fragment processing stage, i.e. they operate on different
vertices and fragments in parallel. For example, a typical graphics
card such as the nVidia GeForce 7900 GT has 8 vertex processors
and 24 fragment processors. Second, each fragment processor can
perform four concurrent vector operations such as instructions on the
texture coordinates or on the color components of the incoming data
stream.

Such explicit parallelism make GPUs an excellent platform for
stream processing applications. Streaming processors read an input
stream (which is a collection of records requiring similar computa-
tion), and apply the kernel (or operations to be performed on each
element) to the stream before writing the results into an output stream.

Since there are no dependencies between the various elements of
the stream, they provide immense data parallelism for the multiple
processors running the kernels. Another feature of stream processing
applications is that several kernels often operate successively on the
streams, and the output stream of the leading kernel is the input
stream for the following kernel (see Figure 3).

Fig. 3. Streaming model that applies kernels to an input stream and
writes to an output stream.

To realize a streaming application on GPUs, kernels are compiled
to fragment processors, textures are considered as input streams
and render buffers as output streams. Realizing several successive
kernels of a streaming application on a GPU requires several passes
on the fragment processing pipeline. Towards this, the output of the
fragment processor is stored as a texture and is then used during
subsequent passes by successive kernel programs running on the
fragment processor. This feedback loop is realized by using the
output buffer of a completed pass as input texture for the following
one (known as render-to-texture (RTT); see Figure 2).

Challenges in programming GPUs: Programming a GPU is not
as straightforward as implementing an application on the CPU.
This is because a GPU follows a highly parallel stream processing
computational paradigm as described above. Since the kernels on all
the fragment processors run in parallel, they can not have arbitrary
data dependency on each other. Hence, the challenge is to correctly
identify the data parallel segments so that dependency constraints
are not violated. Hence, given any application, it must be first
appropriately recast as an streaming application for an efficient
implementation on the GPU.

V. THE DESIGN OF GPUPARETO

Before discussing the details of our GPUPareto engine, we out-
line the overall scheme to reformulate any algorithm as a stream
processing application to run it on a GPU (see Figure 4). The first
and most important step is to identify the data parallel kernels. Next,
we need to compile these kernels to the fragment processors and
properly set up the GPU data structures. Finally, depending on the
application, we determine the number of iterations required on the
fragment processors, and on completion, download the output to the
CPU.

Following the above discussion, we first need to appropriately
identify the data parallel computation in our dynamic programming
(DP) algorithm (Algorithm 1) for it to be mapped onto the GPU. This
crucial is because in Algorithm 1 the computation of the recurrence
relation (line 7 to 8) involves non-trivial data dependencies. To
resolve this, we constructed a data dependency graph; Figure 5 shows
the dependency for the Ui,j th cell. Recall that Ui,j be the minimum
utilization that might be achieved by considering only a subset of
tasks from {1, 2, . . . , i} when the cost is exactly j. The computation
of Ui,j depends on the Ui−1,j th cell and on the values of Ui−1,j−ci,k

where k = 1, 2, . . ., i.e the Ui−1,j−ci,1 th cell, the Ui−1,j−ci,2 th cell,
and so on. Recall that ci,j is the hardware cost associated with the
jth implementation choice of task Ti. Hence, Figure 5 shows that the
computation of Ui,j depends only on the previously computed cells
i.e. cells in the i − 1th row and not on cells in the ith row.

The observation here is that computation of Ui,j1 in the ith iteration
is independent of Ui,j2 , where j1 and j2 may be any values between
1 and mC. In other words, given any iteration i computing any two

468

Fig. 4. Overall scheme to design and implement a GPU-based
algorithm.

Fig. 5. Data dependency graph for Algorithm 1.

values of Ui,j for different j are independent of each other. Hence,
in Algorithm 1, the computation of the cells in the inner loop of
the dynamic programming algorithm (i.e. lines 6 to 9) can be done
independently of each other. Therefore, the basic idea is to compute
the DP-based matrix in a row-by-row fashion.

Now we are ready to describe our formulation of this DP algorithm
as a streaming application — the cells in a previously computed
row are the streams, and the arithmetic operations specified by the
recurrence relations in lines 7 and 8 of Algorithm 1 are implemented
as kernels. Each row (streams) of the DP-based matrix is stored as a
texture in the texture memory of the GPU and the recurrence relations
(kernels) are compiled to the fragment processors (as explained in
Section IV). A complete row of the matrix is computed in parallel by
the fragment processors in the GPU. Note that since we have correctly
mapped the data parallel sections to the fragment processors, there
are no incorrect data fetches and we can achieve correct results. The
newly-computed row is then stored in the texture memory. Finally,
the subsequent kernel (i.e the next iteration of the DP) reads this
computed row form the texture memory and this process is repeated
for m passes, where m is the number of tasks in a task set τ as
explained in Section II. Of course, at the start of our streaming
application, we have to set the initial values of the cells in the first
row in the texture memory according to the initialization in lines
1 to 4 of Algorithm 1. Algorithm 2 shows the pseudo-code of the
recursive algorithm for a kernel. Uprev is the old value of a cell in the
texture memory and Unew is the new value computed by the kernel.
f() is a function which returns the column value of the cell being
computed by this kernel i.e. the corresponding value j (see Line 3).
Thus, Utmp − δi,k/Pi (line 4) corresponds to the recursive equation
in line 8 of Algorithm 1.
A. Data Structures

In this section we discuss the data structures created on the GPU
memory for handling the streams in our GPU-based computation. We
need to store two rows (which stores Ui,j values) each of size m×C,
where one previously computed row is read while the other row is
computed by the DP algorithm. Following the memory organization
supported by GPU architectures, we used two texture buffers to store

Algorithm 2 The Streaming Formulation of the DP
Input: The task set τ , and a set Si for each task Ti.

1: for i← 1 to m do
2: For each pair (δi,k, ci,k) that belongs to the set Si

3: tmp = f()− ci,k

4: Unew ← min{Uprev, Utmp − δi,k/Pi}
5: end for

Fig. 6. Data buffers in the GPU memory during the i-th pass through
the rendering pipeline.

the cells of the row – one of which serves as the source buffer
(containing the previously computed row of the matrix) and the other
serves as the destination buffer (containing the row being computed
in a certain pass). During each pass through the GPU pipeline, the
destination buffer of the previous pass serves as the current source
buffer and their roles are interchanged from one pass to the next.
Corresponding to the dependency relation shown in Figure 5, in
Figure 6 we illustrate the use of the source and destination buffers
during the i-th pass.

The above matrix computation procedure was implemented using
OpenGL’s [19] Render-to-Texture support. The two texture objects
are attached to the frame buffer object bound for rendering, with one
texture for writing and the other one for reading. These are swapped
during each new pass as explained above. In each pass, the previous
render target buffer binds as texture for reading and the previous
buffer for reading becomes the render target.

In this section we discussed the GPU-based dynamic programming
algorithm, which is the first part our design space exploration scheme.
The second part involves retaining the undominated solutions (cost-
utilization Pareto curve) from the entire solution set found in the
previous step. Since, this is not compute-intensive step and is not
amenable to GPU-based acceleration, we have implemented it on the
CPU. This algorithm is straightforward and is not elaborated here
due to space constraints.

VI. EXPERIMENTAL RESULTS

In this section we report some of the experimental results that were
obtained by running our GPUPareto engine on a set of synthetic task
sets. We have compared these results with those obtained by running
a pure CPU-based implementation.

For our experiments we randomly generated tasks with execution
requirements between 200 and 600 time units; the periods were
between 600 and 20, 000 time units. The number of hardware
implementation choices associated with any task was varied between
1 and 10, i.e. 1 ≤ ni ≤ 10. For each choice, the maximum value
associated with any δi,j was set to Ei. The parameter C, which is the
maximum cost associated with any implementation choice was set to
16384 for our experiments. This number was chosen because graphics
processors lack integer arithmetic. Using floating point values might
lead to wrong address calculations (e.g. see line 3 in Algorithm 2)
due to improper rounding-off. Thus, if C is not a power of 2 for a
given task set, one needs to choose the next higher power of 2 as
an upper bound. To show that this is not a restriction of our scheme,

469

(a) Running time of DP. (b) Total running time.

Fig. 7. Running times for a purely CPU-based implementation versus a GPU-based implementation (GPUPareto).

we choose 16384 (214) and show that even for such large values our
DP algorithm runs within a fraction of a second. Furthermore, with
C = 16384, there are upto 16384 design points, and typically around
6100 points on the pareto curve for task set with around 50 tasks.
Such large design space instances are clearly very suitable to test the
applicability of the GPUPareto scheme.

All the CPU times reported below were measured on a machine
with Windows XP, running on a 3.0 GHz CPU with 1 GB RAM.
Our machine had a PCI express board equipped with an nVIDIA
GeForce 8800 GTX GPU with 768 MB RAM, where we conducted
our GPU experiments. All the implementations were done in C++.
For the GPU implementation, we used OpenGL with Cg as the shader
language (for programming the fragment processors).

Figure 7(a) shows the time taken to run the DP algorithm on
the CPU versus the time taken on the GPU, when the number of
tasks in the task set is progressively increased from 10 to 50. Our
implementation on the GPU clearly achieves very attractive (upto
100×) speedups. Figure 7(b) shows the overall running time involved
in computing the exact Pareto curve on the CPU versus the time
taken by the GPUPareto engine. In order to accurately report the
total processing time on the GPU, we take into account the sum of
data structure uploading time to GPU memory, the computation time
on the GPU and the downloading time from GPU memory. The total
time taken by the GPUPareto engine adds this sum with the time
taken to run the second part of our algorithm, which is run on the
CPU. Recall, that to compute the exact Pareto curve, we need to run
(i) the Algorithm 1 (GPU implementation) and (ii) then retain all the
undominated solutions (CPU implementation).

Compared to a purely CPU-based implementation, the GPU-based
analysis results in significant speedups, with the analysis times
reducing from more than a minute to less than 9 seconds. Such
speedups allow a designer to get almost instantaneous feedback
during an interactive design session with an automated tool, thereby
improving design productivity. Further, this comes at no additional
cost, assuming that the desktop/notebook computer running the
design tool already has a commodity GPU.

VII. CONCLUDING REMARKS

Using a specific case study, in this paper we showed that mod-
ern commodity graphics hardware may be exploited to accelerate
computationally expensive kernels in system-level design tasks. In
particular, we presented GPUPareto, an engine to solve a standard
multiobjective design space exploration problem arising in the context
of hardware/software partitioning. Our contribution might also be
valuable in light of the fact that the core problem solved is a variant
of a classic optimization problem, viz. the knapsack problem. This
NP-hard problem is at the heart of numerous problems arising in the
context of EDA and other areas of computer science and engineering.

We believe that the generality of this problem might motivate other
researchers within the EDA community to explore the possibility of
exploiting GPUs for a variety of other system-level design problems
as well. REFERENCES

[1] P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.
Streaming geometric optimization using graphics hardware. In European
Symposium on Algorithms (ESA), 2003.

[2] A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and D. Manocha.
Query co-processing on commodity processors. In VLDB, 2006.

[3] S. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In RTSS, 1990.

[4] nVIDIA CUDA Zone, http://www.nvidia.com/object/cuda home.html.
[5] Programming massively parallel processors: the nVIDIA experience.

Tutorial, DAC, 2008.
[6] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.

John Wiley & Sons, 2001.
[7] R. Dutta, J. Roy, and R. Vemuri. Distributed design-space exploration

for high-level synthesis systems. In DAC, 1992.
[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[9] Kanupriya Gulati and Sunil P. Khatri. Towards acceleration of fault
simulation using graphics processing units. In DAC, 2008.

[10] A. Hamann and R. Ernst. Efficient priority optimization in complex
distributed embedded systems through search space adaptation. In
GECCO, 2007.

[11] R. Henftling, A. Zinn, M. Bauer, M. Zambaldi, and W. Ecker. Re-use-
centric architecture for a fully accelerated testbench environment. In In
DAC, 2003.

[12] H. P. Huynh and T. Mitra. Instruction-set customization for real-time
embedded systems. In DATE, 2007.

[13] D. Kim, S. Ha, and R.Gupta. Parallel co-simulation using virtual
synchronization with redundant host execution. In DATE, 2006.

[14] Y. Kim, W. Yang, Y.-S. Kwon, and C.-M. Kyung. Communication-
efficient hardware acceleration for fast functional simulation. In DAC,
2004.

[15] J. Krüger and R. Westermann. Linear algebra operators for GPU im-
plementation of numerical algorithms. ACM Transactions on Graphics,
22(3):908–916, 2003.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[17] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. GPU-ClustalW:
Using graphics hardware to accelerate multiple sequence alignment. In
HiPC, 2006.

[18] K. Mueller and F. Xu. Ultra-fast 3d filtered backprojection on commod-
ity graphics hardware. In IEEE ISBI, 2004.

[19] R. J. Rost. OpenGL Shading Language. Addison-Wesley, 2006.
[20] I. Skliarova and A. B. Ferrari. A software/reconfigurable hardware SAT

solver. IEEE Transactions on VLSI Systems, 12(4):408–419, 2004.
[21] L. Soulé and T. Blank. Parallel logic simulation on general purpose

machines. In DAC, 1988.
[22] S. Venkatasubramanian. The graphics card as a stream computer. In

SIGMOD-DIMACS Workshop on Management and Processing of Data
Streams, 2003.

[23] M. R. Zargham. Parallel channel routing. In DAC, 1988.

470

Session 7C

BIST, Error Modeling

Built in Self Test Based Design of Wave-Pipelined Circuits in ASICs

V. Vireen, N. Venugopalachary, G. Seetharaman, and B. Venkataramani

 National Institute of Technology, Trichy, India.
bvenki@nitt.edu.

Abstract

Wave-pipelining enables digital systems to be
operated at higher frequencies by properly selecting the
clock periods and clock skews so as to latch the output of
combinational logic circuits at stable periods. In the
literature, only trial and error and manual procedures
are adopted for these selections. The major contribution
of this paper is the proposal for automating the above
procedure for the ASIC implementation of wave-
pipelined circuits using built in self test approach. For
the purpose of verification, a Coordinate rotation digital
computer and filters using the distributed arithmetic
algorithm are implemented. To test the efficacy, these
circuits are implemented by adopting three schemes:
wave-pipelining, pipelining and non-pipelining.

From the implementation results, it is observed that
the wave-pipelined circuits are 21-29 % faster compared
to non-pipelined circuits. The pipelined circuits are 22-
48 % faster compared to wave-pipelined circuits but at
the cost of about 18-28 % increase in area.
Index terms- ASIC, Wave-pipelining, BIST, FSM, DAA,
PRSG

1. Introduction

The design of high speed arithmetic circuits is a key
element to build high-performance computing systems.
Techniques such as pipelining, wave-pipelining and
asynchronous pipelining have been proposed for
increasing the speed of arithmetic logic units.

In conventional pipelining, a combinational logic
circuit is partitioned into a number of parts or stages and
registers are introduced between adjacent stages. All the
registers are fed with a common reference clock. Even
though, this technique improves the throughput of a
logic circuit, it has a number of disadvantages such as
increase in latency, increase in area and clock
distribution complexity.

Wave-pipelining is one of the alternatives to
pipelining. It provides a method for significantly
reducing clock loads and the associated area and latency
while retaining the external functionality and timing of a
synchronous circuit.

The idea of wave-pipelining was originally
introduced by Cotton [1], who named it as maximum rate
pipelining. Cotton observed that the rate at which logic
can propagate through the circuit depends not on the
longest path delay but on the difference between the
longest and the shortest path delays. Wave-pipelining
has been employed for implementing a number of
systems on both ASICs and FPGAs [2], [3]. The concept
of wave-pipelining has been described in a number of
previous works [4], [5]. In [6], an automation technique
for tuning the clock period is proposed. This technique
uses the system clock: First, it applies the system clock
to the circuit; if the circuit is not working with system
clock then it doubles the period and applies it to the
circuit. This doubling process is continued until system
works properly. However, this approach cannot ensure
that the circuit works at the highest possible frequency.
This may be either because the circuit operating
frequency is greater than system clock frequency or
because the highest operating frequency is not exactly
equal to clock frequency / 2n where n is an integer.

An automation technique which uses on chip clock
and skew generators and Built In Self Test (BIST)
approach is proposed in [7] for adjusting the clock
period and clock skew of an FPGA based wave-
pipelined circuit. In this paper, the extension of this
technique for wave-pipelined circuits implemented on
ASICs is considered. A Coordinate rotation digital
computer (CORDIC) unit and filters using distributed
arithmetic algorithm are used for the study and
implementation.

The organization of the rest of the paper is as
follows: In section 2, an overview of wave-pipelining
and the challenges involved in the design of wave-
pipelined circuits are described. In section 3, self tuned
wave-pipelined circuit is presented. An overview of the
CORDIC unit and DAA based FIR filters are given
section 4 and 5 respectively. In section 6, the
implementation results are presented. Section 7,
summarizes the conclusions.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.46

473

2. Overview of wave-pipelining

Figure 1 shows a typical combinational logic circuit
along with the input and output registers [8]. Figure 2
depicts the flow of data through the above circuit. The
skew between the clocks at the input and output registers
is denoted as Δ. At the beginning of each clock cycle,
data is fed into the combinational logic block through the
input register. A number of paths may exist between the
inputs and output of a logic block. A change in the input
causes the output to change after a delay of Dmin, Dmax

through the shortest and longest path respectively. The
shaded regions bounded by (Dmin and Dmax) depict the
periods where the logic levels of the logic block vary
with time. The non shaded areas depict the stable
duration of the logic block.

Figure 1. Combinational logic circuit with input and
output registers.

Figure 2. Temporal /spatial diagram of data flow

through the combinational logic circuit.
In the conventional system, the output register is

clocked in the non shaded region and the minimum clock
period, Tclk is chosen to be greater than Dmax. In the
Wave-Pipelined (WP) system, the clock period is chosen
to be (Dmax - Dmin) + clocking overheads such as set up
time, hold time etc. Partitioning overhead is avoided
since the wave-pipelined circuit is not partitioned into
stages separated by synchronizers (registers). Hence, it
may result in lower power dissipation and clock routing
complexity compared to that of pipelined circuit.
However, the maximization of the operating speed of the
wave-pipelined circuit requires the adjustment of the

clock period, clock skew (δ) and equalizing the path
delays.

3. Self tuned wave-pipelined circuit

The self tuned wave-pipelined circuit is proposed by
including a BIST circuit to tune the clock frequencies
and clocks with different skews. The block diagram of
self tuned wave-pipelined circuit is shown in Figure
3. It consists of different functional blocks namely
pseudo random binary sequence (PRBS) generator,
signature analyzer, Counter, Programmable Clock
generator Circuit, Programmable skew generator circuit
and FSM.
 Operation: A self tuned wave-pipelined has two
modes of operation namely test mode and normal mode.
TM signal is used to select the mode of operation. In test
mode, FSM first gives Clock Select line (CS) = 0 and
Skew Select line (SS) = 0 for the clock generator and
skew generator circuit respectively. The programmable
clock generator circuit generates the first clock and it is
applied to PRBS circuit, programmable skew generator
circuit and input register.

The PRBS block is used for exhaustive testing and it
generates all 2n

 combinations of the inputs for an n-bit
input. The programmable skew generator circuit
generates skew and the skewed clock is applied to the
output register and counter circuit. The counter is used to
keep track of the number of test vectors fed to the
combinational block and it generates the enable signal
(sig_en) after all the test vectors have been applied.

Instead of comparing every output with the expected
output, a signature is generated from the outputs
corresponding to all the applied inputs using PRBS
generator and it is compared with stored value in
signature analyzer circuit. The signature analyzer gives
two control signals (sig_in and chng) to the FSM block
which indicates the match or not. If chng is 1, no match
occurs and select lines are changed, otherwise, the select
lines are fixed. Depending upon the control signals
received from signature analyzer, CS and SS values to
the Clock and Skew generator circuits are generated. If
there is no match, FSM changes the SS value from 0-7
for every CS value. Even after all the skews are applied
for a particular CS value, if there is no match, it changes
the CS value. In this way, FSM changes CS and SS
values until it finds a match. When match is found, FSM
fixes CS and SS values and the circuit is placed in
normal mode by changing TM=0. In normal mode, user
inputs are applied.

For large word size, exhaustive testing will take
unduly long time. In this case, the testing time can be
minimized by finding the optimal test vector set. This is
one of the challenges in the testing of wave-pipelined

474

circuits. Alternatively, a set of random vectors may be
used for testing the wave-pipelined circuits. By repeating
the test with different set of random vectors, the
confidence level of the testing scheme may be improved.

Figure 3. Block diagram of the self tuned wave-
pipelined circuit

3.1 Programmable clock generator

The block diagram of Programmable clock generator
is shown in Figure 4. It consists of buffers, multiplexers
and an inverter. The frequency of the clock to be
generated is controlled by select lines C0-C2. The FSM
block systematically varies the C0-C2 values and gives
as input to the Clock generator circuit. In Figure 4, d1,
d2, d3……d8 are buffers. The signal cflag is set to 0
initially in order to initialize the clock state to be 1. After
about 10 ns, it is set to be 1 for entire simulation. When
cflag is 1 feedback path is selected.

3.2 Programmable skew generator

The Programmable skew generator is obtained by
modifying the circuit in Figure 4 by removing the feed
back from the output to the input. The amount of the
skew to be introduced for the clock is controlled by
select lines S0-S2 (the labels C0-C2 in Figure 4 are
replaced by S0-S2 for skew generators). The FSM block
systematically varies the S0-S2 values and gives as input
to the skew generator circuit.

4. An overview of CORDIC algorithm

CORDIC [9] is an iterative arithmetic algorithm
introduced by Volder and later refined by Walther and
others. CORDIC unit uses only shifts and adds to
perform a wide range of functions including vector
rotations, certain trigonometric, hyperbolic, linear and
logarithmic functions.

Figure 4. Programmable clock generator

CORDIC algorithm is used in diverse applications such
as mathematical coprocessor units, calculators,
waveform generators, universal modulator, demodulator
digital filters carrier as well as bit time recovery circuits
and digital modems. In the rotation mode, CORDIC may
be used for converting a vector in polar form to
rectangular form. In the vector mode, it converts a vector
in rectangular form to polar form [10].

The iterative equations for the rotating a vector
(inx , iny) in a Cartesian plane by an angle θ to another

vector with the coordinates (finx , finy) using N
iterations is given by

sgn()i izδ = (1)

1 2 i
i i i ix x yδ −
+ = − (2)

1 2 i
i i i iy y xδ −
+ = + (3)

1
1 tan (2)i

i i iz z δ − −
+ = − (4)

0z θ= (5)

(,) (,)
cos cos

N N

fin fin N N
i i i i

x y
x y

θ θ
=

Π Π
 (6)

The value of iθ for i = 1, 2.., N is chosen such that

tan iθ is 2 i− . The shift and add operation required for

475

each of the iteration is carried out using a single shift and
add block in the serial CORDIC scheme (also referred to
as the folded CORDIC scheme). Separate hardware
blocks are used for each iteration in the case of Parallel
or Unrolled CORDIC scheme [11]. In this paper,
Unrolled CORDIC scheme is used for the
implementation.

5. An overview of DAA based FIR filter

Distributed Arithmetic plays an important role in
Digital Signal processing. DA can be optimized for area
efficiency, speed efficiency or for both. For efficient
implementation of DA, a number of algorithms such as
Read Only Memory (ROM) decomposition technique
and offset binary coding have been proposed in the
literature [12]. In the ASIC implementation no ROMs
are used for storing the coefficient but hardwired logic is
used to implement the coefficient ROM tables, which
greatly decreases the area and limits the flexibility.
Normally, for the computation of vector dot product
using DA, the content of DA ROM is stored assuming
multiplication using 2’s complement arithmetic with sign
extension technique.

The computation of the output of an N-tap Linear
Time Invariant (LTI) filter and computation of transform
of an Nx1 vector can be generalized as the problem of
computation of the sum of products given by [13].

1

0

() (,) ()
N

k

y n a n k x k
−

=

=∑ (7)

In the case of LTI filters and transform computation,
a(n,k) is time invariant and only x(k) varies with time. In
view of this, y(n) can be computed by using the look up
tables for multiplication. This can be achieved as
follows: The input samples x(k) may be assumed to be
represented in 2’s complement representation using W
bits and can be written as

1
()

1

() (1,) (1 ,)2
W

m

m

x k x W k x W m k
−

−

=

=− − + − −∑ (8)

 Substituting equation (8) in (7) and interchanging the
order of summation with respect to m and k, we get

2
(1)

0

() (1) ()2
W

W m

m

y n S W S m
−

− − −

=

= − − +∑ (9)

Where
1

0

() (,) (,)
N

k

S m x m k a n k
−

=

=∑ (10)

It may be noted that x(m,k), for m= 0,1, … W-1, takes
binary values 1 or 0. Hence, S(m) can be computed using
ROM with address as the bits x(m,0), x(m,1), … x(m,N-
1). Furthermore, the contents of S(m) is the same for all
values of m.

5.1. Full parallel DA algorithm

To compute y(n), W ROMs, ROM 0 – ROM (W-1)
can be used. ROM 0 – ROM (W-2) contain the same
content and correspond to S(0) – S(W-2). ROM (W-1)
corresponds to [-S(W-1)] and is actually the 2’s
complement of the content of the other ROMs. The
MSBs of all the samples are fed as the address to the
(W-1)th

 ROM. The next bits of all the samples are fed to
the (W-2)th

 ROM address bits. Similarly, the LSBs of all
the samples are fed as address to the 0th

 ROM. For W=8,
y(n) can be computed using four stages of adders. y(n) is
expressed using S(0) – S(7) in equation (11).

1 1() {[(7) (6)2] [(5) (4)2]}y n S S S S− −= − + + +
1 1 2 4{[(3) (2)2] [(1) (0)2]2 }2S S S S− − − −+ + + + (11)

Equation (11) requires multiplication of the numbers
by 2-i. If 2’s complement multiplication with sign
extension is used, this requires shifting the number
towards right i times and replicating the Most Significant
Bit (MSB) i times. For example, multiplication of a
number 10100101 represented in 2’s complement form
by 2-4

 results in the number 1111 1010 0101.

5.2. ROM Organization

If n taps are used then all 2n values are stored in
single ROM. However, to reduce the hardware
complexity ROM decomposition technique which uses
two or more ROM of smaller length is adopted in this
paper. Figure 5 shows Distributed Arithmetic using
ROM decomposition.

6. Implementation Results

The self tuned wave-pipelined circuit in Fig. 3 is
studied by using either a 13-bit CORDIC or DAA based
FIR filters with 8 and 16 taps as the combinational logic
block. These circuits are implemented using 0.35um
technology in ASIC. Verilog HDL language is used to
describe the functionality of the circuit and after the
circuit is described in HDL, functionality is verified
using Synopsys VCS simulation tool. Synopsys Design
Vision is used for synthesizing the circuit. In synthesis,
first target libraries and next HDL files are read. After
specifying the design constraints, circuit is compiled and
synthesized net list is stored in HDL file. This HDL file
is used for pre-layout simulation. Synopsys VCS
simulation tool is used to do pre-layout simulation. After
the pre-layout simulation results are satisfactory, layout
is drawn.

Cadence Encounter is used for layout. After the
design is placed and routed, routed net list is saved in
HDL file. Parasitics are extracted into .spf and .spef files
and Delay is calculated and saved to file with .sdf

476

extension. All these files are used to perform post-layout
simulation. Synopsys VCS tool is used for post-layout
simulation. A C-program is used to generate the
Signature for the test inputs and it is stored in the
signature analyzer for comparison.

One of the major advantages of this approach is that
the time for simulation is of the order of few seconds. On
the other hand, the SPICE level simulation takes a few
hours even for a smaller word size. This is one of the
major contributions of this paper.

Figure 5. Distributed arithmetic using ROM
decomposition.

Table 1. Implementation results for CORDIC unit.

Schemes

Area

Freq.

(MHz)

Power
(mW)

Power at
normalized
frequency
mW/Hz

Wave-
Pipelining

232779 84 30.98 30.98

Pipelining 257635 122 53 36
Non-

Pipelining
259046 50.7 50.7 -

CORDIC unit and the FIR filters are implemented

using three different schemes: Pipelining, Wave-
pipelining and Non-pipelining. With the help of self
adjustable clock and clock skew, wave-pipelined design
is made to operate at higher frequency. Table 1 gives the
results for 13 bit CORDIC unit using the three schemes.

From the results, it is observed that wave-pipelined
CORDIC unit is 33% faster than non pipelined
CORDIC whereas pipelined circuit is 45.3% faster than
wave-pipelined circuits but this is achieved with less
than 14 % increase in area that of wave-pipelined circuit.

Table 2 shows the synthesis result of the 8 tap-8 bit
FIR filter using distributed ROM. From the results, it is
observed that wave-pipelined circuits are 29% faster
than non pipelined circuits whereas pipelined circuits are
41.6% faster than wave-pipelined circuits but this is

achieved with less than 28 % increase in area that of
wave-pipelined circuits.

Table 2 also shows the synthesis result of the 16 tap-
8 bit FIR filter using distributed ROM. From the results
it is observed that wave-pipelined circuits are 21% faster
than non pipelined circuits whereas pipelined circuits are
44% faster than wave-pipelined circuits but this is
achieved with less than 18 % increase in area than that of
wave-pipelined circuits.

Table 2. Synthesis results of FIR filter
(8 tap-8 bit, 16 tap-8 bit) using DAA.

Taps

Schemes

Area

Freq.
MHz

power
mW

Power at
normalized
frequency
mW/Hz

8
tap
8

bit

Wave-
Pipelining

254050 58.8 2.4 2.4

Pipe
lining

325078 83.3 3.5 2.47

Non-
Pipelining

238662 45.5 1.78 -

16
tap
8

bit

Wave-
Pipelining

254050 58.8 2.4 2.4

Pipelining 325078 83.3 3.5 2.47

Non-
Pipelining

238662 45.5 1.78 -

In order to assess the superiority of wave-pipelining

with regard to power dissipation, both wave-pipelined
and pipelined circuits are operated at the same frequency
(corresponding to the maximum operating frequency of
the wave-pipelined circuit) and the results are given in
Table 1-2. The pipelined CORDIC unit and 8 tap FIR
filter dissipate 16% and 3% more power respectively
than wave-pipelined circuits. For the 16 tap filter, power
dissipation of pipelined filters is lower by 55%. The
power dissipation due to overheads decreases with the
number of taps as the filter with higher number of taps
operates at a lower frequency. At lower logic depths, the
overheads make the wave-pipelining to be inefficient. At
higher logic depths, overheads along with the increased
capacitance make the wave-pipelined DA filter to be less
efficient with regard to power dissipation.

Figure 6, Figure 7 and Figure 8 show the layout
diagram of CORDIC unit, 8-bit FIR filter with 8 taps and
16 taps using BIST approach in 0.35um technology
respectively. Cadence encounter is used for drawing the
layout. Post-layout simulation results of the 8-bit FIR
filter with 8 taps and 16 taps agree with the results
obtained through C program.

477

7. Conclusion

The automation scheme proposed for the ASIC
implementation of wave-pipelined CORDIC unit and
distributed arithmetic based 8 and 16 tap FIR filters are
implemented in 0.35u technology. Synopsys Design
Vision is used for synthesis, Synopsys VCS is used for
simulation and Cadence Encounter is used for layout.
From the implementation results it is observed that
wave-pipelined circuits are 21-29% faster than non-
pipelined circuits. The pipelined circuits are 22-48%
faster compared to wave-pipelined circuits but at the cost
of about 18-28% increase in area. When both pipelined
and wave-pipelined circuits are operated at the same
frequency, the superiority of one over the other with
regard to power dissipation depends on the logic depth
of the circuit. From the implementation results, it is
observed that, only for medium logic depths as well as
word sizes, the ASIC based wave-pipelined circuit is
found to be more efficient in both area and power
dissipation than pipelined circuit.

The technique adopted in this paper for back
annotation enables the post-layout simulation to be
carried out in few seconds. The alterate approach using
SPICE simulation typically requires few hours even for
small word sizes. This is one of the major contributions
of this paper.

The BIST approach proposed in this paper may also
be used for tuning the wave-pipelined circuit to take care
of process, voltage and temperature (PVT) variations.

8. References

[1] L. Cotton, “Maximum rate pipelined systems,” in
Proc.AFIPS Spring Joint Comput. Conf., 1969.
[2] J. Nyathi and J. G. Delgado-Frias, “A hybrid
wavepipelined network router,” IEEE Transactions on Circuits
and Systems I:Fundamental Theory and Applications, vol. 49,
no. 12, pp. 1764–1772, Dec. 2002.
[3] O. Hauck., A. Katoch and S. A. Huss, “VLSI system
design using asynchronous wave pipelines: a 0.35 μm MOS 1.5
GHz elliptic curve public key cryptosystem chip,” Proc. of
Sixth Intl. Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2000,(ASYNC 2000), pp. 188 –197, April
2000.
[4] W. P. Burleson, M. Ciesielski, F. Klass, and Liu, “Wave-
pipelining: a tutorial and research survey,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 3,
pp. 464 –474, Sep.1998.
[5] C. Thomas Gray, W. Liu and R. Cavin, “Wave Pipelining:
Theory and implementation,” Kluwer Academic Publishers,
1993.
[6] Woo Kim, Yong Kim, “Automating Wave- Pipelined
Circuit Design”, IEEE Design & Test of Computers, Vol. 20,
Nov 2003.

[7] G.Seetharaman, B.Venkataramani and
G..Lakshminarayanan, “Design and FPGA implementation of
self-tuned wave-pipelined filters,” IETE journal of research,
vol 52, no. 4, pp. 305-313, July- August 2006.
[8] C. T. Gray, W. Liu, and R. Cavin III, “Timing constraints
for wave pipelined systems,” IEEE Trans. Computer-Aided
Design, vol. 13, pp.987–1004, Aug. 1994.
[9] J. E. Volder, “The CORDIC trigonometric computing
technique,” IRE Trans. on Electronic Computers, vol. EC-8,
no. 3, pp. 330-4, Sept. 1959.
[10] W.Tuttlebee, “Software defined radio: Baseband
technology for 3G,” Wiley, 2004.
[11] R.Andraka “A Survey Of CORDIC Algorithm For
FPGAs,” Proc. of ACM/SIGDA 6th international symposium of
FPGAs (FPGA’98), Monterey, CA, pp.191-200, 1998.
[12] K. K. Parhi, “VLSI Digital Processing
Systems:Design and Implementation,” John Wiley &
Sons,1999.
[13] Mintzer, L., “FIR filters with the Xilinx-
FPGA,”FPGA’92 ACM/SIGDA Workshop on FPGAs,pp. 129-
134, 1992.

Figure 6. Layout of 13 bit CORDIC using BIST

Figure 7. Layout of the 8 tap FIR filter using BIST

Figure 8. Layout of 16 tap FIR filter using BIST

478

WOR-BIST: A Complete Test Solution
for Designs Meeting Power, Area and Performance Requirements

Chunhua Yao, Kewal K. Saluja and Abhishek A. Sinkar
Department of Electrical and Computer Engineering, University of Wisconsin-Madison

{yao, saluja, sinkar}@ece.wisc.edu

Abstract

A complete Built-In Self-Test (BIST) solution based on
word oriented Random-Access Scan architecture (WOR-
BIST), is proposed. Our WOR-BIST scheme reduces the
test power consumption significantly due to reduced
switching activity during scan operations. We also
provide a greedy algorithm to reduce the test data volume
and test application time. We performed logic simulation
of the test vectors to show its impact on the average and
peak power during testing. We implemented the scheme to
demonstrate its impact on the chip area and timing
performance. Application of our scheme to large ISCAS
and ITC benchmark circuits shows that our scheme is
superior in area, power and performance to the
conventional multiple serial scan.

1. Introduction

Testing of integrated circuits is now a front-end issue
in the semiconductor industry because of the rapid
increase in the complexity of modern VLSI circuits. Due
to the poor controllability and observability of flip-flops,
testing large sequential circuits has always been
challenging. Evolution of Design for Testability (DFT)
technology has simplified this to certain extent. Recent
DFT research has focused on reducing the test data
volume, test application time and test power consumption.
Serial Scan (SS) is the popular scan-based DFT technique
because of its simplicity and relatively low hardware
overhead. However, an important drawback of serial scan
is that the switching activity and resulting power
consumption during testing is much higher than normal
operation of the circuit. The excessive heat dissipation
caused by high power consumption can produce incorrect
responses even when the circuit is fault-free [1] or
permanently damage the circuit under test (CUT).

Unlike serial scan, Random Access Scan (RAS) [2, 3,
4, 5] allows individual access to all flip-flops in the circuit.
RAS-based DFT method was shown to have the ability to
reduce the test application time, test data volume and test

power consumption [3]. The original RAS technique is
impractical because of its large hardware overhead.

Recently, many new architectures have been proposed
to improve the testing performance of RAS with relatively
low overhead. A modified scheme of RAS is described in
[4]. To minimize the routing complexity, RAS-based
scan-cells are studied in [5, 6]. Progressive Random
Access Scan (PRAS) is a RAS-based architecture [7]
proposed to simultaneously reduce the test power, test
data volume and test time with a comparable area
overhead to that of serial scan.

While the cost of manufacturing a transistor has been
reducing rapidly, the cost of testing each transistor has
been almost constant for the past many years. Built-In
Self-Test (BIST) is a promising technique because of its
advantage of low cost compared to external testing using
automatic test equipment (ATE). Pseudo-random testing
is widely used in BIST by adopting a linear feedback shift
register (LFSR) to generate random test patterns [8, 9].
However, the existence of random-pattern-resistant faults
limits the coverage of pseudo-random testing. Two
directions have been proposed to enhance the fault
coverage achieved with pseudo-random BIST: 1) modify
the CUT by inserting test points or redesigning the circuit
[10], 2) modify the test pattern generator. Reseeding [11]
and weighted pseudo-random patterns [12] are the two
popular methods for BIST pattern generation.

In spite of numerous advantages of RAS, no BIST
scheme has been studied in RAS environment to the best
of our knowledge. In this paper, we propose a word
oriented BIST scheme based on RAS architecture. In our
scheme, one row of RAS scan-cells is written at each
clock cycle with a random row address. Test power
consumption can be reduced significantly due to reduced
switching activity during scan operations. In our scheme
high fault coverage can be achieved without a phase
shifter [13]. We also provide an algorithm to reduce the
test data volume and test application time. We compare
the WOR-BIST implementation with serial scan based
BIST by presenting the power, area and timing simulation
results for several benchmark circuits.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.74

479

The paper has the following three contributions: 1) It
extends the RAS architecture to a practical level by
employing it in a real IC design flow, 2) The
implementation of the WOR-BIST architecture carries out
an extensive study of all aspects of the design flow
including cell design and characterization, design
synthesis, scan insertion, place&route and performance
analysis etc., 3) It proposes an algorithm to reduce the test
data volume and test application time, along with the
mathematical formulation of the associated problem,
while providing high fault coverage in BIST environment.

The rest of this paper is organized as follows: The
WOR-BIST architecture is introduced in section 2. In
section 3, we analyze the test data volume, test application
time and test power consumption for our WOR-BIST
scheme. The design flow using WOR-BIST architecture is
introduced in section 4. Section 5 reports the experimental
results for large ISCAS and ITC benchmark circuits.
Finally, section 6 concludes the paper.

2. WOR-BIST architecture and test method

Figure 1 illustrates the proposed WOR-BIST
architecture. It consists of the RAS scan-cells, a Row
Address Decoder to provide the write and read row
address, an LFSR to generate pseudo-random patterns, an
Multiple Input Shift Register (MISR) to collect the
responses of the circuit, a comparator to compare the
signature from the MISR and the fault-free reference
signature, a test control logic and ROM to store the seeds
and run-lengths of each seed. The RAS scan-cells are
configured as a nm× SRAM-like grid structure. More
details of the RAS scan-cell can be found in [7]. The test-
per-scan WOR-BIST scheme works as follows.

Figure 1. WOR-BIST architecture

First, the LFSR loads one seed from ROM and the run-
length lr of the corresponding seed is sent to the test
control logic. The run-length of seed specifies the number
of vectors that are to be generated by the same seed. The
computation of run-length will be discussed in a later
section. The size of the LFSR is decided by the number of
columns (nc) in the RAS scan-cells grid. After the LFSR is
loaded with a seed, nc bits are generated in each test clock
cycle to be written into the scan-cells of the particular row
whose address is provided by the Row Address Decoder.
After number of rows (nr) cycles, all the rows, and
therefore every flip-flop, would have been written. When
the system clock is enabled one test vector (PIs and PPIs)
is applied to CUT. After that the responses of the CUT are
collected row by row by the MISR in the same manner as
they were written.

The same procedure is repeated for all the vectors
generated by the seed. After lr is reached the LFSR loads
the next seed. This process is repeated until all the seeds
in the ROM are applied. After all the responses are
collected by the MISR, the signature produced by the
MISR is compared with the reference signature, which is
obtained from the response of the fault-free circuit. If the
two signatures are different, the CUT is said to be faulty.

The pseudo code for the WOR-BIST scheme is given
in Figure 2.

Figure 2. WOR-BIST algorithm

In LFSR-based pseudo-random BIST architecture, a
phase shifter network is often adopted to eliminate the
correlations of adjacent vectors which are generated by
the same seed to improve the fault coverage [13]. The
advantage of the WOR-BIST scheme is that high fault
coverage can be achieved without the usage of phase
shifter. In WOR-BIST, each row of the scan-cells can be

Initialize the Test Control Logic and LFSR.
For each seed is , (i = 1 to seedn)

Load seed is into LFSR;

 Send rl to Test Control Logic;
For each vector iv , (i = 1 to rl)
 For each row ir , (i = 1 to rn)

 Write row ir ;
 Endfor // write one vector

 Apply the PIs;
Apply the system clock;

 For each row ir , (i = 1 to rn)

 Read row ir and update MISR;
 Endfor // read one vector
Endfor // one seed applied

Endfor // all seeds applied
Compare the signatures and generate the result.

480

accessed individually and a Row Address Decoder is used
instead of a Row Enable Shift Register [7]. This means
that the row address generated at each cycle is not
sequential from 1 to nr, but can be in any random order.
The experimental results in section 5 show that writing the
rows in a random manner has the same effect as a phase
shifter to eliminate the correlation of adjacent vectors and
achieve high fault coverage.

3. Test cost analysis

3.1 Test data volume and test application time

In this section, we will analyze the test data volume and
test application time of the proposed WOR-BIST scheme.
A greedy algorithm is proposed to reduce the test
application time and test data volume of the WOR-BIST
scheme.

For a pseudo-random pattern generator with a constant
number of seeds and constant run-length of each seed, the
total number of vectors V is:

LNV ×= (1)
where N is the number of seeds and L is the run-length.
Thus in this case each seed is used to generate exactly L
test vectors. Assuming the test clock period Ct is constant,
the test application time is proportional to the total
number of test clock cycles T. For the proposed BIST
scheme, each vector needs nr cycles to write all the rows,
one cycle to apply the PIs, one cycle to apply the system
clock, and nr cycles to read all the rows. After all the
vectors have been applied, one extra cycle is needed to
compare the signatures and generate the test outcome
(Pass/Fail). Thus, T can be computed using the following
equation:

1)22(++×××= rnLNT (2)
The performance of the pseudo-random testing is

directly affected by the quality of the seeds. For seeds
selected using a purely random procedure, experimental
results have shown that after a certain number of seeds are
applied, the remaining seeds can only improve the fault
coverage by a very small percentage. Similarly, for each
seed, after some vectors are generated, the remaining
vectors can detect very few or no new faults.

To obtain good seeds and shorter run-length to achieve
high fault coverage, a greedy heuristic is used to generate
seeds and compute their run-lengths. The proposed greedy
algorithm works as follows.

The run-length of one seed is determined by setting a
fault coverage improvement threshold. For each vector
generated by this seed, if the fault coverage improvement
is smaller than the threshold, we stop generating vectors
from the current seed.

For seeds selection procedure, ns seeds are generated
using a random number generator in each iteration. The
run-length of the seed is determined using the method
described above. The overall fault coverage of that seed
can be acquired by applying all the vectors generated by
that seed. Among all ns seeds, the one with highest fault
coverage is chosen as the seed in that iteration. The seed
selection procedure stops when the desired fault coverage
has been reached. A moderate value of ns is chosen to
contain the computation time. Better seeds may not be
generated with too small ns and too large ns will result in
unacceptable long run-time.

By using the greedy algorithm, the number of seeds N
reduces to a smaller number Ng and the run-length for each
seed is different. Assuming the run-length for a seed i is li,
the total number of vectors Vg is equal to:

∑=
=

Ng

i ig lV
1

 (3)

For the proposed BIST scheme, because only the seeds
are stored on the on-chip ROM, the test data volume
reduction ratio Rv can be calculated by:

N
NN

R g
v

−
= (4)

After applying the greedy heuristic, the total number of
vectors reduces while the number of cycles to apply one
vector remains the same, the reduced test application time
Tg is:

1)22(
1

++××= ∑ = r
Ng

i ig nlT (5)

The test application time reduction ratio Rt is equal to:

1)22(
)22()(

1

++×××

+××−×
= ∑ =

r

Ng

i ri
t nLN

nlLN
R (6)

3.2 Test power consumption

In CMOS circuits, the dominant portion of power
consumption is the dynamic switching power of the circuit
elements. For our WOR-BIST scheme, one row of scan-
cells is written in one cycle. Thus in the worst case, at
most nc scan-cells change their states. However, in serial
scan, all the scan-cells are updated during the shift
operation and at most nf number of flip-flops will switch
the states, which results in high switching activities and
high test power consumption in each test clock cycle.

In serial scan, the scan power consumption includes
both the scan-in (write) and the scan-out (read) power
consumption. The scan-in procedure and scan-out
procedure are symmetric. For the WOR-BIST scheme
proposed in this paper, the scan-out power consumption is
almost negligible due to the advantage of our word-
oriented BIST architecture. The test responses are directly
sent to MISR hence there are no transitions on the scan-

481

cells and combinational gates during the scan-out
procedure. The only contribution to the power
consumption comes from the transitions in the MISR,
Row Address Decoder and the Test Control Logic, which
are very small.

4. Design flow

Figure 3 compares the design flow for the WOR-BIST
architecture with the design flow using serial-scan based
BIST. First, BIST logic is added to the given netlist.
Then, for SS-based BIST, the serial scan insertion and
synthesis can be done by some commercial tools, such as
Synopsys DFT Compiler. For WOR-BIST, we added the
RAS scan-cell to the standard cell library and then
performed the scan insertion manually. The details of how
to add the new cell and how to do the RAS scan insertion
will be described in next section. The scanned netlist is
synthesized and the post-synthesis netlist is sent to layout
tools, like Cadence Encounter, to do the placement,
routing and timing analysis. The important thing to note
here is that both methods use similar design flow.

Figure 3. Design Flow

5. Experimental results

We applied the proposed WOR-BIST scheme and SS-
based BIST to five ISCAS89 benchmark and four ITC99
benchmark circuits and performed the power, area and
timing comparison. Table 1 gives the statistics of the
circuits: the name of circuits, the number of PIs, the
number of POs, the number of flip-flops, the number of
combinational gates and the number of detectable faults,
respectively.

Table 1. Statistics of circuits

Circuits PIs POs FFs Gates Faults
s13207 62 152 638 7,951 9,664
s15850 77 150 534 9,772 11,336
s35932 35 320 1,728 16,065 35,110
s38417 28 106 1,636 22,179 31,015
s38584 38 304 1,426 19,253 34,797
b17 37 97 1,415 27,852 76,485
b20 32 22 490 20,226 45,395
b21 32 22 490 20,571 46,090
b22 32 22 735 21,772 67,472

5.1 Test time, volume and power study

To evaluate the performance of the greedy algorithm,
we first generate 100 purely random seeds and set a
constant run-length of 100. So the total number of vectors
is 10,000. Assuming the fault coverage of these 10,000
vectors is fc, Table 2 summarizes the test data volume and
test application time reduction using greedy algorithm to
achieve the same fc. The second column lists the number
of seeds Ng needed and the third column gives the average
of run-length li. The fourth column gives the reduction of
test data volume Rv as per equation (4) in section 3. Total
number of vectors Vg is listed in the fifth column and the
test application time reduction Rt is given in the sixth
column according to the equation (6) in section 3. Finally,
the fault coverage is given in the seventh column.

Table 2. Test data volume and
test application time reduction

Circuit gN il vR gV tR fc
s13207 44 64 56% 2818 71.8% 89.4%
s15850 41 75 59% 3089 69.1% 92.7%
s35932 4 40 98% 163 98.4% 99.9%
s38417 49 88 51% 4302 57.0% 91.9%
s38584 55 70 45% 3861 61.4% 95.8%
b17 33 93 67% 3065 69.5% 65.7%
b20 48 86 52% 4137 58.6% 89.8%
b21 66 90 34% 5945 40.5% 88.4%
b22 53 82 47% 4352 56.5% 90.7%

In all the experiments, the fault coverage improvement
threshold is defined as the average of newly detected
faults by three successive vectors. When the average of
newly detected faults by three successive vectors
generated from the seed is less than 5, we stop generating
vectors from this seed. Using the average of three
successive vectors instead of one single vector avoids the
unwanted very small run-length when there exists
abnormally small value of newly detected faults at the
beginning. In seed selection the value of ns, the number of
seeds generated in each iteration, is set to 8.

Netlist

Netlis

Netlist

Add SS
BIST Logic

Serial Scan
Insertion

NetlistSynthesis

Synopsys
DFT compiler

Netlist

NetlistNetlistSynthesis

Synopsys
Design compiler

Post-Synthesis
Netlist

NetlistNetlistPlace&Route
Timing Analysis

Cadence
Encounter

Add WOR
BIST Logic

SS-based BIST WOR-based

NetlistRandom Access
Scan Insertion

482

Table 3. Test power consumption reduction

Average Switching Activities Peak Switching ActivitiesCircuit SS-BIST WOR-BIST Reduction SS-BIST WOR-BIST Reduction
s13207 2,533 203 92.0% 3,101 2,320 25.2%
s15850 2,470 234 90.5% 3,587 2,412 32.8%
s35932 4,873 507 89.6% 8,523 8,523 0%
s38417 8,368 378 95.5% 10,032 6,304 37.2%
s38584 5,154 305 94.1% 6,237 5,795 7.1%
b17 9,573 459 95.2% 11,035 7,027 36.3%
b20 6,236 352 94.4% 7,234 5,826 19.5%
b21 6,375 488 92.3% 8,739 7,239 17.2%
b22 7,942 403 94.9% 9,572 5,831 39.1%

Average 5,947 370 93.8% 7,562 5,697 24.7%

From the table, we observe that the proposed method
can reduce the test data volume by 56.6% on average and
achieve about 2.8X speed up in test application time.
Notice that benchmark s35932 reaches almost 100% fault
coverage after very few random patterns are applied. The
reduction in test data volume and the reduction in test
application time is a tradeoff. When the run-length of each
seed is shortened, more seeds are needed. On the other
hand, fewer seeds require relatively long run-length of
each seed. It is possible to use deterministic patterns as
seeds or as top-up stored vectors to obtain 100% fault
coverage, but the results given in Table 2 still remain valid.
As we set the number of scan chains of SS and the number
of columns of WOR-BIST to be the same, the test
application time and test data volume are identical for SS-
Based BIST and WOR-BIST because they both write one
row at each cycle.
Table 3 compares the test power consumptions. We
measure the dynamic power consumption by counting the
number of switching activities of combinational logics
during scan operations for both the serial scan based BIST
and the proposed WOR-BIST. The second block of the
table shows the average switching activities and the third
block compares the peak switching activities. The
proposed WOR-BIST scheme can reduce average
switching activities by 93.8% and peak switching activities
by 24.7%. During the experiment, we also found that for
the proposed WOR-BIST scheme, the peak switching
activities always happen at the phase when the system
clock is applied. The switching activities during the scan
operations are very small compared to the peak value.

5.2 Area and performance study

To implement the WOR-BIST architecture on the above
benchmarks, a new RAS flip-flop [7] was added to an
existing standard cell library [14, 15]. A 0.18µm CMOS
process was used for the technology mapping. A
multiplexer-based serial scan flip-flop was also added to
the library and both cell layouts were characterized using

the characterization procedure outlined in [15] to enable
fair comparison. The characterization results were
compiled into the file formats required by the synthesis
and place&route tools. The layout area for the RAS flip-
flop is 36.7% smaller than the SS flip-flop. Figure 4 shows
the schematic and layout of the RAS flip-flop.

Figure 4. Schematic and Layout of RAS flip-flop

Table 4 shows the results of area, routing and timing
simulation for SS-based BIST and WOR-BIST scheme. In
this table we include two large ITC99 benchmarks, b18
and b19, to show the practicality of the proposed WOR-
BIST scheme to larger circuits. As shown in figure 3, the
Synopsys DFT compiler is used for SS insertion. For
placement and routing, the Cadence Encounter is used.
For a fair comparison, the number of columns in our
scheme is set to be the same as the number of scan chains
in SS. The area of WOR-BIST scheme is smaller because
the WOR-BIST RAS cell is smaller than the conventional
scan cell. For ISCAS benchmarks, area reduction is
between 17% and 25%. For ITC99 benchmarks, area
reduction is from 3% to 9%. The routing overhead is
increased due to the extra pins in the RAS cell but it is still
in an acceptable range. Increase in routing overhead is
between 14% and 21% for ISCAS benchmarks and is
between 6% and 15% for the ITC benchmarks. Also, it
can be observed that WOR-BIST achieves better timing
performance than SS-BIST in six out of nine benchmarks.
The reason is that the multiplexer is removed from the
critical path and the two access transistors needed for the
RAS cell are not on the critical path, resulting in smaller
setup time for the flip-flop. Even in the three cases in
which WOR-BIST has lower timing performance the slack
degradation is very small.

483

Table 4 Area, routing and timing results

Area (µm2) Total routing wire-length (106µm) Best clock period/slack (ns)Circuit
SS-BIST WOR-BIST SS-BIST WOR-BIST SS-BIST WOR-BIST

s13207 598 x 587 520 x 510 0.424 0.468 6/0.224 5/0.884
s15850 602 x 589 530 x 521 0.404 0.457 6/0.258 6/0.155
s35932 992 x 985 900 x 882 0.975 1.245 5/0.638 4/0.324
s38417 1,001 x 996 912 x 906 0.805 0.938 10/0.337 9/0.45
s38584 1,014 x 997 923 x 906 1.081 1.335 7/0.533 7/0.128
b17 1,378 x 1,363 1,313 x 1,306 1.898 2.034 18/0.783 17/0.145
b18 2,489 x 2,475 2,432 x 2,421 6.589 7.036 14/0.576 13/0.093
b19 3,477 x 3,423 3,415 x 3,387 13.112 14.380 25/0.173 23/0.626
b20 1,135 x 1,117 1,099 x 1,088 1.235 1.465 14/0.869 14/0.230
b21 1,124 x 1,109 1,092 x 1,088 1.220 1.433 14/0.337 14/0.543
b22 1,407 x 1,389 1,339 x 1,337 1.909 2.147 19/0.589 18/0.769

6. Conclusion

In this paper we proposed a word-oriented BIST
architecture. In the WOR-BIST scheme, the scan-cells are
written row by row in the random order. The average test
power consumption is reduced dramatically because of
reduced switching activity during the writing operations
and almost negligible switching activity during the read
operations. We also proposed a greedy algorithm to
reduce the test data volume and test application time.
Application of our scheme on large ISCAS89 and ITC99
benchmark circuits shows that nearly 94% reduction in
average test power consumption, 53% reduction in
testdata volume and 2.8X speedup in test application time.
The area, routing and timing simulation results for the
benchmark circuits show that WOR-BIST scheme is a
comprehensive test solution for designs meeting power,
area and performance requirements.

Acknowledgment

The authors would like to thank Professors Seiji
Kajihara, Xiaoqing Wen, Kohei Miyase, and their students
for their considerable help. This work is in part supported
by National Science Foundation under Grant 6741641.

References

 [1] X.Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K.K.
Saluja, and K. Kinoshita, “On Low-Capture-Power
Test Generation for Scan Testing”, Proc. VLSI Test
Symposium, pp.265-270, May 2005

 [2] H. Ando, “Testing VLSI with Random Access Scan”,
Proc. of the COMPCON, pp.50-52, Feb. 1980

 [3] D.H. Baik, K.K. Saluja, and S. Kajihara, “Random
Access Scan: A Solution to Test Power, Test Data
Volume and Test time”, Proc. International Conf.
VLSI Design, pp.883-888, Jan. 2004

[4] B. Arslan and A. Orailoglu, “Test cost Reduction
through a Reconfigurable Scan Architecture”, Proc.
International Test Conf., pp.945-952, Oct. 2004

[5] A.S. Mudlapur, V.D. Agrawal and A.D. Singh, “A
Random Access Scan Architecture to Redhuce
Hardware overhead”, Proc. of ITC, Oct. 2005

[6] A.S. Mudlapur, V.D. Agrawal and A.D. Singh, “A
Novel Random Access Scan Flip-Flop Design”, Proc.
9th VLSI Design and Test Symp., Aug. 2005

[7] D.H. Baik and K.K. Saluja, “Progress Random Access
Scan: A simultaneous solution to test power, test data
volume and test time”, Proc. of ITC, Oct. 2005

[8] P.Bardel, W.H. McAnney, and J. Savir, “Built-in test
for VLSI”, Hohn Wiley and Sons, 1987

[9] B. Koenemann, “LFSR-Coded Test Patterns for Scan
Design”, Proc. of ETC, pp.237-242, Apr. 1991

[10] N. Tamarapalli and J. Rajski, “Constructive Multiple-
phase Test Point Insertion for Scan-based BIST”,
Proc. of ITC., pp.604-611, Oct. 1996

[11] S. Hellebrand , J. Rajski etc. Built-In Test for Circuits
with Scan Based on Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers, IEEE
Trans. on Comp., v.44 n.2, p.223-233, February 1995

[12] A.Jas, C.V. Krishna, and N.A. Touba, “Weighted
Pseudo-random Hybrid BIST”, IEEE Trans. VLSI
Systems, 12(12), pp.1277-1283, Dec. 2004

[13] J. Rajski, N. Tamaraphalli, and J. Tyszer,
“Automated Synthesis of Phase Shifters for Built-In
Self-Test Applications”, IEEE Tran. on CAD, Vol.
19, No. 10, pp.1175-1187, Oct. 2000

[14] J. B. Sulistyo, J. Perry, and D. S. Ha, " Developing
Standard Cells for TSMC 0.25um Technology under
MOSIS DEEP Rules", Department of Electrical and
Computer Engineering, Virginia Tech, Technical
Report VISC-2003-01, Nov. 2003.

[15] Jos. B. Sulistyo and Dong S. Ha," A New
Characterization Method for Delay and Power
Dissipation of Standard Library Cells", VLSI Design
15 (3), pp. 667-678, 2002.

484

An Error Model to Study the Behavior of Transient Errors in Sequential Circuits

Karthikeyan Lingasubramanian and Sanjukta Bhanja
Nano Computing Research Group (NCRG)

University of South Florida
Tampa, Florida, USA

klingasu@mail.usf.edu, bhanja@eng.usf.edu

Abstract

In sequential logic circuits the transient errors that oc-
cur in a particular time frame will propagate to consecu-
tive time frames thereby making the device more vulnera-
ble. In this work we propose a probabilistic error model
for sequential logic that can measure the expected output
error probability, given a probabilistic input space, that ac-
count for both spatial dependencies and temporal correla-
tions across the logic, using a time evolving causal network.
We demonstrate our error model using MCNC and ISCAS
benchmark circuits and validate it with HSpice simulations.
Our observations show that, significantly low individual
gate error probabilities produce at least � fold higher out-
put error probabilities. The average error percentage of our
results with reference to HSpice simulation results is only
�����. Our observations show that the order of temporal
dependency of error varies for different sequential circuits.

1. Introduction

Nano-electronic devices have increased propensity to
transient errors due to extremely low device dimensions.
Irrespective of the basic technology (CMOS, SET, RTD,
CNT, QCA, Nanowire, Magnetic RAM), all these devices
are prone to inherent transient failures. In this work, we
propose to model sequential logic circuits, where the funda-
mental logical elements are probabilistic logic as opposed
to deterministic one. We focus mostly on error probabil-
ity given an input probability space. In our model, every
gate has equal chance of becoming erroneous unlike stuck-
at fault models and single event upset models which deals
with single gate errors. Our abstract error model can be used
for any technology, given the base logic structure governing
the circuit and the failure patterns.

There has been some significant works that deal with
reliability in logic circuits. Probabilistic frameworks like
Probabilistic Transfer Matrix (PTM) [6], Markov Random

Field (MRF) [1] and probabilistic model checking [2] has
been used for reliability modeling. Study on reliable com-
puting using unreliable logics was first started by von Neu-
mann in [11] where he found an error bound on a NAND
logic and also proposed NAND multiplexing. This study
has been enhanced and used for reliability modeling in
nano-domain [10, 4]. The calculation of average and max-
imum output error probabilities was given in [9] and [7]
respectively. All the exact probabilistic inferences are NP-
hard for the combinational circuit itself. To our knowledge,
sequential probabilistic logics are not dealt with, due to ad-
ditional temporal complexity and modeling various mask-
ing effects that are device-sensitive.

In this work, we propose to use a time evolving proba-
bilistic model (Temporal Dependency Model TDM) to han-
dle the temporal behavior of the sequential circuits. We
form the TDM model (Fig. 1(d)) by unrolling the basic
probabilistic model, which represents the combinational
block of a sequential circuit, into sufficiently large number
of time slices and connecting the present state node of each
time slice ���� to the next state node of the previous time
slice ������ thereby maintaining the temporal correlations.
Then using TDM model, the error model is created based
on the miter circuit technology where the ideal behavior of
the circuit is compared with the erroneous behavior of the
circuit.

2 Sequential Logic model

We model the sequential circuits into a time evolved
probabilistic network, named as temporal dependency
model (TDM), which handles temporal dependencies. In
this section we provide the details on the modeling of a se-
quential logic into a TDM model.

��� ��� ��	
�

Let us consider the sequential circuit shown in Fig. 1(a)
where the present state node is represented as ��, the next

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.73

485

PS

NS

X1

O

X2

I

(a)

(b) (c) (d)

PSt1 It1

X1t1 X2t1

NSt1 Ot1

PSt2 It2

X1t2 X2t2

NSt2 Ot2

PSt3 It3

X1t3 X2t3

NSt3 Ot3

PSt1 It1

X1t1 X2t1

NSt1 Ot1

PSt2 It2

X1t2 X2t2

NSt2 Ot2

PSt3 It3

X1t3 X2t3

NSt3 Ot3

Latch

IPS

X1 X2

ONS

Figure 1. (a) Digital logic circuit (b) Corre-
sponding probabilistic model (c) DAG repre-
sentation which is not minimal (d) TDM model

state node is represented as ��, the primary input is repre-
sented as � , the primary output is represented as � and the
internal nodes are represented as �� and ��.

The equivalent probabilistic model shown in Fig. 1(c)
can be represented by ��� � �	��
 ���	. The nodes of the
probabilistic model, 	 , are the union of all the nodes for
each time slice.

	 �

��

���

	�� (1)

where � is the number of time slices. In our example
	�� � �����
 ����
 ���
 ���
 ����
 �����. The edges, �,
of the probabilistic model are not just the union of the edges
in a single time slice, ��� , but also includes the edges be-
tween time slices, that is, temporal edges, �������� . It has to
be noted that the copies of the same variable �� in all time
slices follow a markov property such that the following two
sets ������
 � � �
 �������� and ��������
 � � �
 �������� are in-
dependent given ����� . For example, in Fig. 1(c), ���� and
���� are independent of each other given ���� . So the
temporal edges can be defined as

�������� � �������
 �������	������ � 	��
 ������� � 	�����
(2)

where ����� is any node in time slice � and ������� is the
replica of the same node in the adjacent time slice ��� as
shown in Fig. 1(c). Thus, the complete set of edges � is

� � ��� �

��

���

����
��������	 (3)

In the probabilistic model (Fig. 1(c)), apart from the de-
pendencies from one time slice, we also have the dependen-
cies over two copies of the same variable�� across adjacent
time slices. But it is evident that ����� and ������� are inde-
pendent of each other given the present state node ������ .

Error-free block
Error-prone block
Comparator block

e
tX
1

1 e
tX
1

2

e
tNS
1

e
tO
1

e
tX
2

1
e
tX
2

2

e
tNS
2

e
tO
2

e
tX
3

1
e
tX
3

2

e
tNS
3

e
tO
3

1
1tX

1
2tX

1t
NS

1t
O

2
1tX

2
2tX

2t
NS

2t
O

3
1tX

3
2tX

3t
NS

3t
O

2t
PS

3t
PS

e
tPS
2

e
tPS
3

1t
C

2t
C

3t
C

1t
PS

1t
I

2t
I

3t
I

Figure 2. Error model obtained from TDM
model with 3rd order temporal dependence

For example the nodes ���� and ���� , from Fig. 1(c),
are independent of each other given the present state node
���� ; so even if we remove the temporal edges connecting
these nodes at consecutive time slices the underlying struc-
ture will still be intact. The same can be told for ���� and
���� .

So in the probabilistic model all the temporal edges ex-
cept those connecting the present state and next state nodes
of adjacent slices (bold lines in Fig. 1(c)) can be removed
to achieve a minimal representation as shown in Fig. 1(d),
which is termed as the TDM model. In our example, the
necessary temporal edges can be given as,

�������� � ������
 ������	����� � 	��
 ������ � 	�����
(4)

3 Error Model

From the TDM model of a given sequential circuit, an
error model is designed where the erroneous behavior of
the circuit is compared with the ideal error-free behavior of
the circuit.

��� �������

The error model contains three sections, (i) error-free
logic where the gates are ideal, (ii) error-prone logic where

486

each gate goes wrong independently by an error probabil-
ity � and (iii) XOR based comparator logic that compare
between the error-free and error-prone primary outputs. At
first two copies of the TDM model, of the given sequential
circuit, are created where one copy represents the error-free
behavior of the circuit while the other represents erroneous
behavior of the circuit. Fig. 2 illustrates the error model
for the sequential circuit given in Fig. 1(a). The Error-
free block includes nodes representing the ideal combina-
tional part of all the time slices. The Error-prone block in-
cludes nodes representing the erroneous combinational part
of all the time slices. At each time slice � an XOR logic
based node ��� is added to compare between the error-
free and error-prone primary outputs ��� and ��

��
respec-

tively. These additional nodes are included in the Compara-
tor block. Note that at every time slice � both error-free and
error-prone logic has to be fed from the same primary input
node ��� and at the first time slice � both error-free and
error-prone logic has to connect to the same present state
(PS) node ���� . Also the present state nodes, ���� and
���

��
, for all time slices � are error-free, since we assume

ideal latches. The comparator nodes ��� and the primary
input nodes ��� for all time slices � are also assumed to be
error-free.

��� ����������� 	������������ �� ��
 ����
	�� �������
� ��
���� ��	
�

Any given probability function � ���
 ��
 � � �
 �� 	 can
be written as 1 � ���
 � � �
 �� 	 �

�
	 � ��	 �����			

where ����		 are the parents of the variable �	, repre-
senting its direct causes. This factoring of the joint prob-
ability function can be denoted as a graph with links di-
rected from the random variable representing the inputs of
a gate to the random variable representing the output. Our
error model is one such graph structure where the probabili-
ties � ��	 �����		 are provided by Conditional Probability
Tables (CPTs) as shown in Table 1. It gives the CPTs for
the nodes ��� whose parents are ���� and ���� , and ��

��

whose parents are ����� and ����� from Fig. 2. The nodes
are governed by NAND logic.

The CPTs represent the underlying logic function of
each gate. In this setup it is easier to incorporate the in-
dividual gate error probability � by just changing the proba-
bilities in the CPT. For example Table. 1 gives the CPTs for
error-free ��� and error-prone ��

��
. In error-prone CPT we

just have to replace the probability values � by � and � by
�� �. This indicates that there is (�� ���)% chance for the
signal to go to state ”1” when it has to go to state ”0” and
(�� ���)% chance for the signal to go to state ”0” when it
has to go to state ”1”.

1Probability of the event �� � �� will be denoted simply by � ���� or
by � ��� � ���.

Table 1. Conditional Probabilistic Tables for
Error-free and Error-prone NAND Logic

Error-free NAND
� �����

� � �����
� � ����

� �� � ����
� ��

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Error-prone NAND
� ����

��
� � ����

��
� � ���

��
� �� � ���

��
� ��

0 0 � 1-�
0 1 � 1-�
1 0 � 1-�
1 1 1-� �

Table 2. Conditional Probabilistic Table for
Error-prone NAND Logic having variable gate
error probabilities, �� and ��

Error-prone NAND
� ����

��
� � ����

��
� � ���

��
� �� � ���

��
� ��

0 0 �� 1-��
0 1 �� 1-��
1 0 �� 1-��
1 1 1-�� ��

Also, in our model we can provide unequal gate error
probabilities for any variable ��

��
at any time slice �, such

that if � ���� � �	 � �, then � ���
��

� �	 � � � �� and
� ���

��
� �	 � ��; if � ��� � �	 � �, then � ���

��
�

�	 � �� and � ���
��

� �	 � � � ��. The corresponding
CPT of this implementation for an error-prone NAND logic
is given in Table. 2. �� is basically the error probability of
logic ”0” and �� is the error probability of logic ”1” at the
output of a gate. Increasing �� indicates that the circuit has
more �	 � errors, whereas increasing �� indicates that the
circuit has more � 	 � errors. With this implementation,
we can use our error model to study the effect of these errors
in the output of the circuit.

��� ���
�
��
 ���
�

The inference scheme basically calculates the joint prob-
ability distribution � ���
 � � �
 �� 	 efficiently by propagat-
ing the probability distributions � ��	 �����		 of locally
connected variables and thereby calculates the updated in-
dividual probability distributions of all random variables.
The inference or propagation of belief on the probabilis-
tic error model is done using the Hugin architecture [8, 5]
which is an exact method. The inference on our model
can be performed by forming clusters of nodes (cliques)
which are directly dependent on each other and perform-
ing computations on those clusters, thereby enabling local
computing. The network that is formed using these cliques
is called jointree, where information can be propagated be-
tween cliques using message passing mechanism. Since
extensive literature is already available, we will not be ex-
plaining the inference scheme in detail. Interested readers
please refer to [8, 5].

487

In order to obtain a jointree, a moral graph is created
from the error model, by adding undirected links between
the parents of each common child node, and it is triangu-
lated, to ensure that there are no cycles with more than
three nodes, to obtain a chordal graph. Then the cliques
are formed from the chordal graph and they are linked ac-
cordingly to form the jointree. Each adjacent cliques will
have one or more common variables which are termed as
separators.

To perform local computation, each clique �� and sep-
arator set �� are associated with probability potentials �
�

and ��	 respectively. At first, all clique and separator set
potentials are initialized and for each variable �	, a par-
ticular clique �� which contains �	 along with its parents
����		 is selected and the conditional probability potential
of �	 from its CPT is multiplied to the clique potential �
�

.

�
�
� �
�

� ��	�����			 (5)

After initialization the clique potentials are not consistent
with their separator set potentials and so the joint probabil-
ity of the entire network is not perfectly realized. To achieve
this consistency message passing between cliques is per-
formed where at first the marginal probability of the vari-
ables in the separator set ��, between the message sending
clique � and the receiving clique �� , has to be computed
from �

and then it is used to scale �
�
.

�
������
��

�
�

���

�

��
�

� �
�

�
������
��

���
(6)

where �
 �� are the set of variables in � that are not in
��. The transmission of this scaling factor is the primary
necessity for updating and message passing. Message pass-
ing in a jointree has to be done in both directions, from root
to leaf termed as outward pass and from leaf to root termed
as inward pass. An inward pass followed by an outward
pass will completely update all the cliques in the jointree.
Then the individual probability distribution for each vari-
able can be calculated by choosing a clique �� containing
the variable �	 and marginalizing its potential �
�

over all
the other variables ��
 �	 as, � ��		 �

�

���

�
�
.

4 Experimental Results

The output error probabilities for various sequential cir-
cuits are calculated using our experimental setup. We have
performed our experiments on standard MCNC and ISCAS
benchmark circuits. We have used HUGIN tool [5] to per-
form inference on the error model and we validate these
results with equivalent HSpice simulation.

0

1

2

3

4

5

6

7

8

9

10

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Gate error probability

N
u

m
b

er
 o

f
ti

m
e

sl
ic

es

bbara
bbtas

Figure 3. Number of time slices needed by
����� and ���� for � � �� ����

��� � !
���
���� !���
	��

At first for a given � value the probabilistic error model is
obtained. The primary input nodes ��� for all the time slices
� and the present state nodes ���� for the first time slice �
are set to be equally probable to have state ”0” or state ”1”.
The model is then inferenced and the output error probabil-
ity is obtained by noting the probability of state ”1” at the
comparator node, � ���� � �	 at every time slice �. This
inference is an exact one and it also handles reconvergence
and spatio-temporal dependencies. � ���� � �	 of the final
time slice � and � ������ � �	 of the previous time slice
��� are checked for convergence. If they do not converge
the time slices at both error-free and error-prone blocks are
increased by 1 and the procedure is repeated. Thus the cir-
cuits are inferenced with different number of time slices it-
eratively and stopped when the output error probability val-
ues converge at consecutive time slices.

��� "��!��
���� !����������
�

Table 3 gives the output error probabilities for gate error
probabilities, � � �����
 �����
 �����
 ����. For a slight
increase in � value from ����� to �����, there is at least ����
fold increase in the corresponding output error probabilities.
Also, for a considerably low influx of error at the gates for
� � ����������	, the output error probability of most of the
circuits exceed �� with �� producing the highest output
error probability of ����� which is almost 8 fold higher
than the individual gate error probability. The same can be
seen for � � �������	, where the output error probability
of most of the circuits exceed �.

��� #���
� �� ���
 ����
�

Fig. 3 shows the number of time slices needed by �����
and ���� for � � � � ����. It can be seen that the cir-
cuits needed less number of time slices for small � values

488

Table 3. Output error probabilities at � � �����
 �����
 �����
 ���� compared with HSpice simulation
results.

� � ����� � � ����� � � ����� � � ����

Circuits Error model HSpice % Error model HSpice % Error model HSpice % Error model HSpice %
diff diff diff diff

train11 0.0055 0.0057 3.51 0.0161 0.0159 1.26 0.0265 0.0263 0.76 0.0511 0.0497 2.82
lion 0.0060 0.0063 4.76 0.0177 0.0171 3.51 0.0288 0.0277 3.97 0.0545 0.0522 4.41

lion9 0.0069 0.0066 4.55 0.0200 0.0208 3.85 0.0326 0.0339 3.83 0.0614 0.0607 1.15
bbara 0.0074 0.0070 5.71 0.0213 0.0208 2.40 0.0341 0.0345 1.16 0.0621 0.0595 4.37
bbtas 0.0072 0.0069 4.35 0.0211 0.0203 3.94 0.0344 0.0354 2.82 0.0653 0.0671 2.68
s27 0.0075 0.0080 6.25 0.0220 0.0217 1.38 0.0357 0.0345 3.48 0.0676 0.0638 5.96
mc 0.0084 0.0088 4.55 0.0246 0.0250 1.60 0.0399 0.0391 2.05 0.0747 0.0733 1.91

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10

Number of time slices

O
u

tp
u

t
er

ro
r

p
ro

b
ab

ili
ty

bbara
s27
mc

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8
Number of time slices

O
u

tp
u

t
er

ro
r

p
ro

b
ab

ili
ty

lion
lion9
bbtas

(a) (b)

Figure 4. (a) Transition of output error proba-
bility across time slices for �����, ��� and ��

with � � ����, (b) Transition of Output error
probability across time slices for ����, �����
and ���� with � � ����

and then the needed number of time slices gradually in-
creases along with � value. For ����, the needed number
of time slices gets set to � pretty fast at � � ������ while
���� takes up more time slices and finally gets set at � for
� � �����. The number of time slices needed is completely
dependent on the circuit structure. The following studies
will shed more light on this aspect.

��� "��!��
���� !��!�$����� ������ ���

����
�

Fig. 4(a) & (b) gives the transition of output error prob-
ability across time slices for � � ����. Here we show two
sets of results that shows the difference in the transition of
output error across time slices. Fig. 4(a) shows the output
error transition for �����, ��� and ��, where the output
error increases gradually across time slices and finally gets
converged. Whereas in Fig. 4(b), which shows the output
error transition for ����, ����� and ����, the output error
reaches a maximum value and then gradually gets back to
a steady value. This behavior can be attributed to the rela-
tion between the present state nodes and the primary input
nodes which have random unbiased state distribution. If the
present state nodes are closely connected to the input nodes
resulting in having an unbiased state distribution, the output
error will not be significant. With a biased state distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8
Number of time slices

O
u

tp
u

t
p

ro
b

ab
ili

ty

bbtas Oe

O

Oe

Olion9

lion Oe

O

0.124

0.126

0.128

0.13

0.132

0.134

0.136

0.138

0.14

0.142

0.144

0 1 2 3 4 5 6 7

Number of time slices

O
u

tp
u

t
p

ro
b

ab
ili

ty

O

Oe
bbara

(a) (b)

Figure 5. (a) Transition of error-free and error-
prone output probabilities across time slices
for ����, ����� and ���� with � � ����, (b)
Transition of error-free and error-prone out-
put probabilities across time slices for �����
with � � ����

in the present state nodes, the output error becomes more
significant and reaches a maximum value in the early time
slices as shown in Fig. 4(b).

Fig. 5(a) & (b) gives the transition of error-free (�) and
error-prone (��) output probabilities across time slices for
� � ����. The results in Fig. 5(a) show that, for some cir-
cuits, the temporal dependence of the erroneous output con-
forms with that of the ideal error-free output. Whereas in
circuits like ����� this is not the case as shown in Fig. 5(b).
Due to this, the output error probability in ����� takes more
time to converge.

��% "��!��
���� !����������
� ��� �� �� ��

As we explained earlier in section 3.2, in our model we
can provide unequal gate error probability values, �� and ��,
to study the effect of �	 � and �	 � errors on the output
of a circuit. Fig. 6 gives the output error probabilities for
(�� � ����, �� � ����) and (�� � ����, �� � ����). It can
be clearly seen that when �� � �� the output error probabil-
ities are higher for all circuits. This indicates that a � 	 �
error can make the outputs more erroneous and signals that
stay at logic ”0” more often can be vulnerable to this ef-
fect. This might be favorable in CMOS technology, since
the � 	 � bit flip is much harder than � 	 � bit flip due

489

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

train11 lion lion9 bbara bbtas s27 mc

Circuit

O
u

tp
u

t
er

ro
r

p
ro

b
ab

ili
ty 0 = 0.01, 1 = 0.02

0 = 0.02, 1 = 0.01

Figure 6. Output error probabilities for (�� �
����, �� � ����) and (�� � ����, �� � ����)

to the less error proneness of pMOS as compared to nMOS
since holes are tougher to be dislodged by external particle
bombardments. It can also signify that circuits with series
pMOS connections can be less error prone as compared to
circuits with parallel pMOS connections.

��& '���	����� ����$ (!��
 ����������

We validate our results by comparing them with HSpice
simulation results. Even though, our error model can be
used for any technology, the lack of benchmark circuits in
any of the other emerging technologies has forced us to
compare our model with simulations using 45nm CMOS
technology. Using external voltage sources error can be in-
duced in any signal and it can be modeled using HSpice [3].
In our HSpice model we have induced error, using exter-
nal voltage sources, in every gate’s output. Consider signal
�� is the original error free output signal and the signal
� is the error prone output signal and � is the piecewise
linear (PWL) voltage source that induces error. The ba-
sic idea is that the signal � is dependent on the signal
�� and the voltage �. Any change of voltage in � will
be reflected in �. If � � ��, then � � �� , and if
� � 	 ���� !!�� ����"#	, then � �� �� , thereby induc-
ing error. The data points for the PWL voltage source �
are provided by computations on a finite automata which
incorporates the individual gate error probability �. The
width of every error pulse is fixed to ���. The results are
obtained by running the circuits for � ������� random in-
put vectors and sampling the comparator outputs. Table 3
gives the comparison between the output error probabili-
ties obtained from inference in the error model and Hspice
simulation for different circuits with gate error probability
� � �����
 �����
 �����
 ����. The % difference is calcu-
lated as, ((Error model - Hspice) / Hspice) x 100. The
highest relative difference between the inference results and
HSpice results is just ���� and on an average the relative
difference is only �����.

5 Conclusion
We have proposed a compact probabilistic model that

can handle error in sequential logic and we have presented
experimental results on ISCAS and MCNC benchmark cir-
cuits. We have observed that for low gate error probabilities
like � � ����������	, the output error probabilities are at
least 5 fold higher and at most � fold higher. Also, our ob-
servations showed that the degree of temporal dependence
differs for various sequential circuits. Another interesting
observation indicated that � 	 � errors affects the circuit
output more than � 	 � errors. We have also validated our
model using HSpice simulation results and the average %
difference is only �����. Our future effort will be to obtain
real time � values through device physics and fabrication to
model error. Also we will explore the error masking effects
for various noise width and magnitude through a statistical
study of sequential circuits.

References

[1] R. I. Bahar, J. Mundy, and J. Chen. A probabilistic based
design methodology for nanoscale computation. Interna-
tional Conference on Computer Aided Design, pages 480–
486, Nov 2003.

[2] D. Bhaduri and S. K. Shukla. Nanoprism: A tool for evalu-
ating granularity vs. reliability trade-offs in nano architec-
tures. Great Lakes Symposium on VLSI, pages 109–112,
2004.

[3] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. S. Akgul,
and L. N. Chakrapani. A probabilistic cmos switch and its
realization by exploiting noise. IFIP International Confer-
ence on VLSI, 2005.

[4] J. Han, J. Gao, P. Jonker, Y. Qi, and J. A. B. Fortes. To-
ward hardware-redundant fault-tolerant logic for nanoelec-
tronics. IEEE Transactions on Design and Test of Comput-
ers, 22(4):328–339, July-Aug 2005.

[5] Hugin inference tool. http://www.hugin.com/.
[6] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P.

Hayes. Accurate reliability evaluation and enhancement via
probabilistic transfer matrices. Design Automation and Test
in Europe (DATE), 1:282–287, March 2005.

[7] K. Lingasubramanian and S. Bhanja. Probabilistic max-
imum error modeling for unreliable logic circuits. ACM
Great Lakes Symposium on VLSI, pages 223–226, 2007.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
work of Plausible Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

[9] T. Rejimon and S. Bhanja. Scalable probabilistic computing
models using bayesian networks. IEEE Midwest Symposium
on Circuits and Systems, 1:712–715, Aug 2005.

[10] S. Roy and V. Beiu. Majority multiplexing-economical re-
dundant fault-tolerant designs for nano architectures. IEEE
Transactions on Nanotechnology, 4(4):441–451, July 2005.

[11] J. von Neumann. Probabilistic logics and the synthesis of re-
liable organisms from unreliable components. In Automata
Studies by C. E. Shannon, W. R. Ashby and J. McCarthy,
pages 43–98. Princeton University Press, Princeton, N.J.,
1954.

490

Session 8A

Advanced Nanodevice Modeling

Analysis Of The Energy Quantization Effects On Single Electron Inverter
Performance Through Noise Margin Modeling

Surya Shankar Dan1 and Santanu Mahapatra2
Nano-Scale Device Research Laboratory, Centre for Electronics Design and Technology

Indian Institute of Science, Bangalore - 560012
1dsurya@cedt.iisc.ernet.in & 2santanu@cedt.iisc.ernet.in

Abstract

Possible integration of Single Electron Transistor (SET)
with CMOS technology is making the study of semiconduc-
tor SET more important than the metallic SET and conse-
quently, the study of energy quantization effects on semi-
conductor SET devices and circuits is gaining significance.
In this paper, for the first time, the effects of energy quanti-
zation on SET inverter performance are examined through
analytical modeling and Monte Carlo simulations. It is ob-
served that the primary effect of energy quantization is to
change the Coulomb Blockade region and drain current of
SET devices and as a result affects the noise margin, power
dissipation, and the propagation delay of SET inverter. A
new model for the noise margin of SET inverter is proposed
which includes the energy quantization effects. Using the
noise margin as a metric, the robustness of SET inverter
is studied against the effects of energy quantization. It is
shown that SET inverter designed with CT : CG = 1/3
(where CT and CG are tunnel junction and gate capaci-
tances respectively) offers maximum robustness against en-
ergy quantization.

1. Introduction

The concept of hybridization of Single Electron Tran-
sistor (SET) with Complementary Metal Oxide Semicon-
ductor (CMOS) technology has attracted much attention
[1, 2, 3] as such integration can offer new functionalities,
which are very difficult to achieve either by pure CMOS
or by pure SET approaches. As a result, silicon SETs are
appearing to be more promising than metallic SETs for
their possible integration with CMOS. SETs are normally
studied on the basis of the classical Orthodox Theory [4],
where quantization of energy states in the island is com-
pletely ignored. Though this assumption greatly simplifies
the physics involved, it is valid only when the SET is made

of metallic island. As one cannot neglect the energy quanti-
zation in a semiconductive island, it is extremely important
to study the effects of energy quantization on silicon SET
logic performance.

2. Single Electron Transistors With Discrete
Energy States

Figure 1. Schematic of the energy diagram of
an SET with and without energy quantization.

There are two contributions to the energy gaps in the
quantized SET: one, due to the electrostatic energy, known
as “Addition Energy”, and the other due to quantization of
the energy states electrons can occupy, often referred to as
the “Excitation Energy”. We have considered the simplest
case of parabolic potential well approximation,whichmakes
the individual differences between subsequent energy states
in the island constant for all the discrete states within the
dot. Therefore we can say that the energy state in the island
where the electron can tunnel into (or from) gets perturbed
by an amount ΔE due to energy quantization. Before the
introduction of quantization, the energy states where elec-
trons could tunnel into (or from) were separated by gaps
given only by the electrostatic energy giving rise to the stan-
dard Coulomb Blockade in case of metallic SETs. After the
introduction of quantization, the separation between sub-
sequent energy states in the island where the electron can

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.34

493

tunnel into (or from), has increased by an amount equal to
the energy quantization as shown in Fig.1. Now, the net
energy changeΔF of the tunneling electron must take into
account the cumulative effect of both electrostatic as well
as the quantum effects, as if the Coulomb Blockade has in-
creased. From this compact formulation, we can see that the
separate treatment of the ‘addition energy’ and ‘excitation
energy’ is not necessary.

3. Calibration Of The Monte Carlo Simulator

3.1. Comparison Between Orthodox And
Quantum Models Of Single Electron
Tunneling

In the orthodox theory of single electron tunneling [4],
the electron energy quantization in the island is ignored,
i.e., the electron energy spectrum is assumed to be continu-
ous. In this model, the transition (tunneling) rate Γ (ΔF) is
Γ (ΔF) = ΔF/

[
e2RT {1− exp (−ΔF/kBT)}

]
, where

ΔF denotes the change in Gibb’s free energy of the electron
during tunneling, e,kB and T denote the electron charge,
Boltzmann constant and the temperature (in Kelvin) respec-
tively. In the non-orthodox quantummodel, Γ (ΔF)is given
by [4, 5, 6] Γ (ΔF) = Γ0/ [1 + exp (−ΔF/kBT)], where
Γ0 is the seed tunneling rate. The characteristics of the sin-
gle electron transistors can be calculated by putting the ap-
propriate values of Γ (ΔF) from the above transition rate
equations into the steady state master equation [3, 6, 7].

3.2. Monte Carlo Simulation of SET with
Discrete Energy States

One may conceptualize a metallic SET to be equivalent
to a non-metallic one in which the energy states of the island
extend from lower bound Emin → −∞ to upper bound
Emax → +∞ with the energy gaps between successive
energy statesΔE → 0. In order to study the energy quanti-
zation effects, we first simulate an SET with metallic (con-
tinuous energy spectrum) island for a particular set of de-
vice parameters (CG,CT ∼ aF and RT ∼ MΩ where CG

and CT are the gate and tunnel junction capacitance while
RT is the tunnel junction resistance respectively). Then,
for the same set of device parameters, we simulate a non-
metallic SET with discrete states, where Emin = −1eV ,
Emax = 1eV and ΔE = 0.01meV . As Emin and Emax

values are much larger and ΔE is much smaller than the
charging energy (∼ 40meV) of the SET, we can expect that
such a device should behave as metallic SET if the W and
H parameters are properly tuned.
In order to calculate the total tunnel rate through a dis-

crete energy state, one typically starts from Fermi’s golden
rule, as is done in orthodox theory, and then summed up

over all possible states on both sides of the barrier, which
spectrum a sum of δ functions. A more realistic treatment
is to include finite lifetime broadening which introduces
Lorentzian functions of the form [8]

D (E) =
�

2π
Σn

Γ

(E − En)
2
+ (�Γ/2)

2
(1)

where En are the energy levels. For Γ → 0, the Lorentzian
approaches the δ function. SIMON (a popular Monte Carlo
simulator) allows us to insert the Γ values through the height
H and the width W parameters. After exhaustive simula-
tions we have found that forH = 0.04 andW = 0.001, the
I − V characteristics of the non-metallic SET with discrete
energy states completely super-imposes over the character-
istics obtained from the metallic SET and these values ofH
and W are completely independent of device capacitances
and resistances as long as CG, CT ∼ aF & RT ∼ MΩ.
Using these calibrated values of H and W , keeping Emax

andEmin constant, we increase the value ofΔE in order to
simulate the effects of energy quantization on SET device
and inverter performance.

4. Results And Discussions

In this paper, quantization effects are studied by gradu-
ally increasing the energy gapsΔE between successive en-
ergy levels in the island of a pre-calibrated SET as described
in section 3. In this workΔE is treated as an electrical pa-
rameter and we use parabolic potential well so that all ΔE
are equal to avoid complication. When energy quantization
is introduced, the net change in the free energy of electrons
during tunneling becomes the sum of electrostatic energy
contributed by coulomb blockade and the energy gaps be-
tween the quantized energy levels. Consequently, including
the quantization term ΔE into the expression for the net
electron energy changeΔF we obtain [3, 5]

ΔFs,i

ΔFi,s
=

e

CΣ

[
±CT VDS±CGVGS∓en−

e

2

]
−

n∑
1

ΔE

(2)

ΔFi,d

ΔFd,i
=

e

CΣ

[
± (CT + CG)VDS∓CGVGS±en−

e

2

]
−

n∑
1

ΔE

(3)
Throughout this paper, in multiple equations like (2) and
(3), the upper term in the left hand side equates the up-
per symbol sequence on the right hand side and vice-versa
for the lower term in the left hand side. Here n de-
notes the number of discrete energy states in the island and
ΔFinitial,final denotes the net free energy change for the
electron tunneling from ‘initial’ to ‘final’ which may be
any of the source ‘s’, island ‘i’ or drain ‘d’ regions.

494

4.1. Analysis Of The Energy Quantization
Effects On SET Device Performance

−60 −40 −20 0 20 40 600

0.5

1

1.5

2

2.5

3

VGS (mV)

I D
 (n

A
) 0.1meV

ΔE=0.0meV

0.2meV
0.3meV
0.4meV
0.5meV
1.0meV

(a)

−60 −40 −20 0 20 40 6010−10

10−5

100

VGS (mV)

I D
 (n

A
) 10meV

1meV
ΔE=0

T=10K

T=1K

10meV
1meV
ΔE=0

(b)

Figure 2. Influence of energy quantizationΔE
on ID −VGS characteristics of an SET plotted
on (a) linear and (b) logarithmic scale (sim-
ulated for VDS = 20mV , tunnel resistance
RT = 1MΩ, gate capacitance CG = 2aF , and
tunnel capacitance CT = 1aF and tempera-
ture T = 1K).

It is evident from Fig.2(a) that increasing energy quanti-
zation ΔE reduces the drain current ID , as if the effective
tunnel resistance RT has increased while Fig.2(b) shows
that the plots shift towards the right with increasing ΔE,
thus increasing the Coulomb Blockade region. It is inferred
that energy quantization increases the coulomb blockade
periodicity from e/2CG to e/2CG + ΔE/e. Fig.2(b) also
shows that increase of temperature T reduces the coulomb
blockade region. Figure 3 shows the influence of energy
quantization on the ID − VDS characteristics of the SET
device, which also shows the decrease of drain current with
increasing energy quantization.

−20 −10 0 10 20−6

−4

−2

0

2

4

VDS (mV)

I D
 (n

A
)

ΔE=0.0meV
0.1meV

0.2meV

1.0meV
0.5meV

0.4meV
0.3meV

Figure 3. Influence of energy quantizationΔE
on ID − VDS characteristics of an SET (simu-
lated for VGS = 1V , RT = 1MΩ, CG = 2aF and
CT = 1aF).

4.2. Analysis Of The Energy Quantization
Effects On SET Inverter Performance

Figure 4. Schematic diagram of a voltage-
state SET inverter (SET1 and SET2 are iden-
tical and have CT , CG ∼ aF , RT ∼ MΩ and
load capacitance CL ∼ fF).

Fig.4 shows the schematic of the voltage-state SET in-
verter used in this work, where both the transistors T1 and
T2 are completely identical in terms of device capacitances
and resistances. Fig.5 shows the influence of energy quan-
tization on SET inverter transfer (VOUT vs. VIN) charac-
teristics. These plots indicate that increasing energy quan-
tization ΔE shifts the inverter VOUT vs. VIN character-
istics towards the right, implying that larger input voltage
VIN is required for switching of a non-metallic SET with
quantized energy states than its metallic counterpart. This

495

is analogous to the influence of fixed positive background
charges in the island, as described in [11].

−20 −10 0 10 20−20

−10

0

10

20

VIN (mV)

V O
U

T (m
V)

10meV
5meV
1meV

Δ E=0meV

α=1/3

Figure 5. Influence of energy quantizationΔE
on VOUT vs.VIN characteristics for CG = 3aF ,
CT = 1aF (α = CT /CG = 1/3) (simulated for
VDD = 20mV , VSS = −20mV , RT = 1MΩ, and
CL = 1fF at T = 1K).

−20 −10 0 10 200

10

20

30

40

50

60

70

VIN (mV)

P ST
A

TI
C (p

W
)

0.1meV
0.05meV

ΔE=0meV
1K

10K

10K1K

T=10K
1K

α=1/3

Figure 6. Variation of static output power dis-
sipation PSTATIC in pW with input voltage
VIN in mV using energy quantization ΔE in
meV and temperature T in K as the metrics.
(simulated for VDD = 20mV , VSS = −20mV ,
RT = 1MΩ and CG = 3aF , CT = 1aF (i.e.
α = 1/3), CL = 1fF at T = 1K).

Fig.6 shows the influence of capacitance ratio α, energy
quantization ΔE and temperature T on the static power
PSTATIC dissipated by the SET inverter. Here PSTATIC is
calculated as PSTATIC = (VDD − VSS) ISTATIC where
ISTATIC is the steady state current flowing from VDD to
VSS[3, 11]. It can be inferred Fig.6 that there is an enor-
mous reduction in the power dissipation due to the degra-

dation of ID with increasing energy quantization and that
power dissipation increases with increasing temperature be-
cause of the increase of leakage current in Coulomb Block-
ade region as shown in Fig.2(b).

0 10 20 30 40 50

−20

−10

0

10

20

t (ns)

V O
U

T (m
V)

Δ E=0.0meV

VIN

0.4meV
0.8meV

0.6meV

0.2meV

Figure 7. Influence of energy quantizationΔE
on delay characteristics of the SET inverter
(simulated for VDD = 20mV , VSS = −20mV ,
RT = 1MΩ, CG = 2aF , CT = 1aF , CL = 1fF
at T = 1K).

0.1 0.15 0.2 0.25 0.3 0.350

1

2

3

4

5

6

7

α = CT/CG ratio

Po
w

er
 −

 D
el

ay

Pr
od

uc
t (

pW
ns

)

Δ E=0 meV

Δ E=0.1 meV

Δ E=0.05 meV

Figure 8. Variation of power - delay product
(in pWns) with capacitance ratio α = CT /CG

using different values of energy quantization
ΔE(meV) as metric.

Fig.7 shows the variations of VOUT with time t indicat-
ing the effect of energy quantization on the propagation de-
lay of the SET inverter. It can be seen that energy quan-
tization simply deteriorates the delay characteristics as the
drive current decreases with increasing ΔE. Fig.8 shows
the variation of power - delay product with different values
of the capacitance ratio α = CT : CG using different val-
ues ofΔE as the metric. It is seen that power-delay product

496

decreases with increasing energy quantization as well as de-
creasing α.

5. Modeling The Noise Margin Of SET In-
verter With Quantized Energy Levels In
The Islands

5.1. Development Of The Analytical Model

The expressions for orthodox noise margin (NM) pa-
rameters were derived in [11] as

VOH = −VOL =
αVDD

2α2 + α+ 1
(4)

VIH = −VIL =
α2VDD

2α2 + α+ 1
(5)

NM = NMH = NML =
α (1− α) VDD

2α2 + α+ 1
(6)

Inclusion of energy quantization alters the above noise mar-
gin parameters into the following expressions

V ′

OH

V ′

OL

=
VOH

VOL
−

(
1

2α2 + α+ 1

)
ΔE

e
(7)

V ′

IH

V ′

IL

=
VIH

VIL
+

(
2α2 + 2α+ 1

2α2 + α+ 1

)
ΔE

e
(8)

Throughout this paper, primed variables refer to the
quantities including energy quantization effects, while un-
primed variables refer to the ideal classical situation with
the metallic SETs, following the orthodox theory of sin-
gle electron tunneling. Equations (8) indicate that the
entire transfer characteristics shift towards the right by
the amount ΔE

(
2α2 + 2α+ 1

)
/
(
2α2 + α+ 1

)
e with

respect to the orthodox characteristics. Equations (7) show
that both the output voltage levels decrease simultaneously
by ΔE/

(
2α2 + α+ 1

)
e. From the basic definitions of

noise margins NMH � VOH − VIH and NML � VIL −
VOL we obtain

NM ′

H

NM ′

L

= NM ∓ 2

(
α2 + α+ 1

2α2 + α+ 1

)
ΔE

e
(9)

In eq.(9) ‘−’ refers to the NM ′

H while ‘+’ refers to
the NM ′

L relations. From (9) it is evident that energy
quantization increases the noise margin for low logic and
decreases the noise margin for high logic by the same
amount 2ΔE

(
α2 + α+ 1

)
/
(
2α2 + α+ 1

)
e. Thus it is

seen that for the continuous spectrum (ΔE = 0), (9) re-
duces to orthodox model of noise margin as proposed in
our earlier work [11]. It is worth noting that in (9), the
change in noise margins due to energy quantization i.e.
2ΔE

(
α2 + α+ 1

)
/
(
2α2 + α+ 1

)
e, vary intensely with

α.

0 0.05 0.1 0.15 0.2

0.9

0.95

1

1.05

1.1

Energy quantization ΔE (meV)

N
M

’ H
 &

 N
M

’ L (n
or

m
al

iz
ed

)

NM’H
tolerance

α=1/10
α=1/8

α=1/6
α=1/4

NM’L/NM

NM’H/NM

NM’L
tolerance

α=1/3
α=1/5

α=1/7
α=1/9

Figure 9. Variation of normalized noise mar-
gins NM ′

H/NM and NM ′

L/NM of the SET in-
verter with energy quantization ΔE for differ-
ent α = CT /CG ratios at VDD = −VSS = 20mV .
The symbols represent simulated data while
solid lines indicate the results predicted by
the model (noise margin tolerance is taken as
10% of the orthodox value).

From the inverter transfer characteristics simulated in SI-
MON for different α andΔE, the values of VOH ,VOL,VIH

and VIL are recorded and the corresponding NMH and
NML are calculated. These values are plotted in Fig.9, and
it shows the variation of normalized noise margins with en-
ergy quantization. Figure 9 also demonstrates the excellent
agreement between the proposed model (9) and the simu-
lated results.

5.2. Robustness Of SET Logic Inverter
Against Energy Quantization

The maximum allowable energy quantization ΔEmax

which the SET inverter can withstand before the noise mar-
gin falls below the specific tolerable value can be tuned by
changingα. Equating the relation for normalized noise mar-
gin with the tolerable value (which is taken to be 10% in this
work), we get

NM ′

H

NM
= 1−

2

NM

(
α2 + α+ 1

2α2 + α+ 1

)
ΔE

e
= 0.9 (10)

from which we finally obtain

497

ΔEmax =
eαVDD (1− α)

20 (α2 + α+ 1)
(11)

The optimal CT /CG ratio of the SET inverter circuit for
which the maximum robustness can be achieved, is calcu-
lated by maximizing (11). Now solving ∂ΔEmax/∂α = 0
it is found that the condition for maximum robustness oc-
curs at α = 0.366 and the maximum energy quantization
an SET can tolerate isΔEmax = 0.1547meV . It is worth
noting that in our earlier paper [11] we had shown that
CT /CG = 1/3 design criteria also provides maximum ro-
bustness against background charge and device parameter
variation. On the other hand, for a given ΔE, the α value,
for which one can get maximum noise margin, can be ob-
tained from the equation ∂NM ′

H/∂α = 0. It results in the
following quadratic relationship between α andΔE.

α (ΔE)

∣∣∣∣∣
NM ′

max

=

[
±1+

√(
eVDD

ΔE

)2

+ 1∓
3

2

(
eVDD

ΔE

)

−
1

2

(
eVDD

ΔE

)]
/

[
3

2

(
eVDD

ΔE

)
∓ 1

]
(12)

Here (+,−,−) sequence is used for NM ′

Hmax

and
(−,+,+) sequence is used forNM ′

Lmax

. Eq.(12) indicates
that one needs to design SET with lower α as energy quan-
tization increases.

6. Conclusion

Using analytical models and Monte Carlo simulation
the effect of energy quantization on Single Electron Tran-
sistor device and logic inverter is studied. It is observed
that energy quantization in SET Island mainly changes the
Coulomb Blockade region and the drain current of SET de-
vices and thus it affects the noise margin, power dissipa-
tion, and the propagation delay of SET inverter. Includ-
ing energy quantization term a new noise margin model for
SET inverter is proposed and validated against Monte-Carlo
simulation. This noise margin model is then used to study
the robustness of the SET inverter against energy quanti-
zation effects. It is found that SET inverter designed with
CT : CG ∼ 1/3 offers the maximum robustness against en-
ergy quantization and the maximum tolerable value of en-
ergy quantization is found to be 0.1547meV for 10% devi-
ation over orthodox noise margin.

7. Acknowledgement

This work is supported by the Council of Scientific
and Industrial Research (CSIR), India under Grant 22
(0453)/07/EMR II.

References

[1] A.M. Ionescu,M.J. Declercq, S. Mahapatra, K. Baner-
jee, and J. Gautier, “Few Electron Devices: Towards
Hybrid CMOS-SET Integrated Circuits”, Proceedings
of 39th Design Automation Conference, pp 323–326,
2002.

[2] S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee,
and A.M. Ionescu, “Analytical Modeling of Single
Electron Transistor for Hybrid CMOS-SET Analog IC
Design”, IEEE Transactions on Electron Devices, pp
1772–1782, 2004.

[3] S. Mahapatra and A. M. Ionescu, “Hybrid CMOS
Single Electron Transistor Device and Circuit De-
sign”, Artech House Publication, ISBN 1- 59693-069-
1, 2006.

[4] K.K. Likharev, “Single-Electron Devices and Their
Applications”, Proceedings of the IEEE, vol. 87, no.
4, pp. 606–632, 1999.

[5] K. Miyaji, M. Saitoh and T. Hiramoto, “Compact An-
alytical Model for Room-Temperature Operating Sil-
icon Single-Electron Transistors with Discrete Quan-
tum Levels”, IEEE transactions on Nanotechnology,
vol. 5, no. 3, pp. 167–173, 2006.

[6] H. Averin, A.N. Korotkov, “Correlated Single-
Electron Tunneling via Mesoscopic Metal Particles:
Effects of the Energy Quantization”, Journal of Low
Temperature Physics, vol. 80, no. 3/4, pp. 173–185,
1990.

[7] H. Inokawa, Y. Takahashi, “A Compact Analytical
Model for Asymmetric Single Electron Tunneling
Transistors”, IEEE Transactions on Electron Devices,
vol. 50, no. 2, pp. 455–461, 2003.

[8] Christoff Wasshuber, “Computational Single-
Electronics”, Springer New York.

[9] C.Wasshuber, H. Kosina, and S. Selberherr, “SIMON-
A Simulator for Single-Electron Tunnel Devices and
Circuits”, IEEE transactions on Computer- Aided De-
sign of Integrated Circuits and Systems, vol. 16, no. 9,
pp. 937– 944, 1997.

[10] Personal communication with C. Wasshuber concern-
ing the operation of SIMON simulator.

[11] C. Sathe, S.S. Dan and S. Mahapatra, “Assessment of
SET Logic Robustness through Noise Margin Model-
ing”, IEEE Transactions on Electron Devices, vol. 55,
no. 3, pp 909–915, 2008.

498

Exploring Carbon Nanotube Bundle Global Interconnects for Chip
Multiprocessor Applications

Sudeep Pasricha*, Nikil Dutt†, Fadi J. Kurdahi†,

 *Colorado State University, Fort Collins, CO †University of California, Irvine, CA
 sudeep@engr.colostate.edu {dutt, kurdahi}@uci.edu

Abstract

The current paradigm of using Cu interconnects for on-chip global
communication is rapidly becoming a serious performance
bottleneck in ultra-deep submicron (UDSM) technologies. Carbon
nanotube (CNT) based interconnects have been proposed as an
alternative, because of their remarkable conductive, mechanical and
thermal properties. In this paper, we investigate the system level
performance of single-walled CNT (SWCNT) bundles, and mixed
SWCNT/multi-walled CNT (MWCNT) bundles. Detailed RLC
equivalent circuit models for conventional Cu and CNT bundle
interconnects are described and used to determine propagation
delays. These models are then incorporated into a system-level
environment to estimate the impact of using CNT bundle global
interconnects on the overall performance of several multi-core chip
multiprocessor (CMP) applications. Our results indicate that the
CNT bundle alternatives have a slight performance advantage over
Cu global interconnects. With further improvements in CNT
fabrication technology, we show how CNT bundle-based
interconnects can significantly outperform Cu interconnects.

1. Introduction
As technology scales into the ultra-deep submicron (UDSM)

region, interconnect design is becoming a major roadblock in
realizing emerging multi-core chip multiprocessors (CMPs) that have
tens to hundreds of components integrated on a single chip [1].
Interconnects used in CMPs can be classified into two categories:
local interconnects, that are used for short distance communication,
and have a delay of less than a clock cycle, and global interconnects,
that are used for long distance communication to distribute data,
clock, power supply and ground across the chip, and have a delay
spanning multiple clock cycles [23]. According to the International
Roadmap for Semiconductors (ITRS) 2005 [4], global interconnect
performance has become one of the semiconductor industry’s
topmost challenges. Conventional copper (Cu) global interconnects
have become increasingly susceptible to electromigration at high
current densities (>106 A/cm2) leading to considerable degradation in
reliability [2]. Additionally, as interconnect dimensions are scaled
down, rising crosstalk coupling noise and parasitic resistivity due to
electron-surface and grain-boundary scatterings cause global
interconnect delay to increase rapidly [3]. There is therefore a critical
need to investigate innovative global interconnect alternatives to Cu.

Recently, there has been tremendous interest in carbon nanotubes
(CNTs) as a possible replacement for Cu interconnects in future
technologies [5]-[8]. Depending on the direction in which they are
rolled (called chirality) CNTs can behave either as semiconductors or
conductors. Conducting (or metallic) CNTs possess many
extraordinary properties that make them promising candidates for
implementing interconnects in UDSM technologies. Due to their
covalently bonded structure, they are highly resistant to
electromigration and other sources of physical breakdown [5]. They
can support very high current densities with very little performance
degradation. For instance, it was shown in [15] that the current
carrying capacity of CNTs did not degrade even after 350 hours at
current densities of ~1010 A/cm2 at 250 ºC. CNTs possess high

thermal conductivity in the range of 1700–3000 W/m·K [16]. They
also have much better conductivity properties than Cu owing to
longer electron mean free path (MFP) lengths in the micrometer
range, compared to nanometer range MFP lengths for Cu [7].

CNTs can be broadly classified into single-walled carbon nanotubes
(SWCNTs) [9]-[11] and multi-walled carbon nanotubes (MWCNTs)
[12]-[13]. SWCNTs consist of a single sheet of graphene rolled into a
cylindrical tube, with a diameter in the nanometer range. MWCNTs
consist of two or more SWCNTs concentrically wrapped around each
other, with diameters ranging from a few to several hundred
nanometers. For on-chip global interconnects, bundles of SWCNTs
and mixed SWCNT/MWCNTs (Fig. 1) are of special interest because
of their superior conductivity properties. An SWCNT bundle consists
of several SWCNTs packed together in parallel [12], whereas a
mixed SWCNT/ MWCNT bundle consists of a combination of
SWCNTs and MWCNTs packed together in parallel [13].

Fig. 1. Carbon nanotube (CNT) bundle interconnect alternatives:
SWCNT bundle and mixed SWCNT/MWCNT bundle

The question arises: how do CNT bundles compare against Cu as

global interconnect materials? While there has been a lot of interest
in CNT-based interconnects in recent years, there are unfortunately
few studies that compare CNT bundle interconnects with Cu
interconnects at the system level. As complex chip multiprocessor
(CMP) systems become the norm, it is critical to evaluate the impact
of using promising new interconnect paradigms such as CNT bundles
in such systems. Such an analysis allows designers to understand
potential benefits and limitations of CNT bundle technology. It also
gives them a true insight into realistic gains that can be achieved by
switching to CNT bundle-based global interconnects in the future.

In this paper, we present such a comparative performance analysis
of conventional Cu global interconnects with the CNT bundle global
interconnect alternatives shown in Fig. 1. We investigate the
performance impact of using CNT bundle global interconnects in
place of conventional Cu global interconnects at the system-level for
several CMP applications. Detailed RLC equivalent circuit models
for Cu and CNT bundle interconnects are described and used to
determine propagation delays. The CNT equivalent RLC circuit
models capture the statistical distribution of metallic nanotubes while
accurately incorporating recent experimental and theoretical results
on inductance, crosstalk capacitance and ohmic resistance. These
models are then incorporated into a system level environment to

metallic

semiconducting

SWCNT Bundle

Mixed Bundle

SWCNT

MWCNT

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.84

499

estimate the impact of using CNT bundle-based global interconnects
on the overall performance of several heterogeneous CMP
applications with diverse data traffic profiles. Our results indicate
that CNT bundle alternatives have a slight performance advantage
over Cu global interconnects, providing up to a 1.5× speedup for the
applications explored. With further improvements in CNT fabrication
technology, we show how CNT bundle interconnects can
significantly outperform Cu interconnects.

2. Related Work

In the last few years, there has been a lot of interest in studying the
properties carbon nanotubes (CNTs). Researchers have developed
RLC circuit models for CNT interconnect alternatives and compared
their performance with Cu interconnects at the circuit level. RLC
circuit models have been developed for isolated SWCNTs [9]-[11],
SWCNT bundles [8][12][14] and MWCNTs [12]-[13]. Recently,
conductance and inductance models for mixed SWCNT/MWCNT
bundles were also introduced [13][40]. Other studies have presented
some interesting discussions on the impact of process variations on
CNT performance [18] and the possibility of CNTs replacing Cu
interconnects in future FPGA fabrics [19]. However, none of these
studies have analyzed the impact of using CNT interconnects instead
of Cu interconnects at the system-level. Recently, [17] explored the
possibility of using CNTs as global interconnect buses. The authors
described a dual-walled CNT global bus and presented experiments
to show that it outperforms SWCNT global buses. In this work, we
explore the possibility of using CNT bundles as global interconnects.
Unlike [17], we present comparisons with conventional Cu global
interconnects, and investigate CNT bundle performance for several
heterogeneous CMP applications.

3. SWCNT and MWCNT Circuit Models

In this section, we present an overview of SWCNT and MWCNT
equivalent RLC interconnect circuit models derived from literature.
These models are used as the foundation for the circuit models of the
CNT bundle interconnects, described in Section 4.

3.1 SWCNT
The fundamental (quantum) resistance of an SWCNT can be

determined using the Landauer-Buttker formula [5], RQ=h/4e2 and is
about 6.45kΩ. This is the constant resistance of an SWCNT of length
less than or equal to its mean free path length λ. For longer lengths,
SWCNT resistance has been shown to depend on its length and bias
voltage [11]. For bias voltage less than the critical bias (< 0.16V for
global wires [22]), the SWCNT resistance is:

ܴௌௐே் ൌ ܴ ൌ
݄
4݁ଶ

, ݈ ߣ

 ൌ
݄
4݁ଶ

൬
݈
ߣ
൰ , ݈ ሺ1ሻ ߣ

where h is Planck’s constant, e is the charge of an electron, l is the
SWCNT length and λ is the mean free path (MFP) length. Ideally, the
mean free path (λ) value is in the order of several µm. However, a
rigorous analysis has shown that practically, λ is around 1 µm [10].

For SWCNT interconnects, three types of capacitance should be
considered: an electrostatic capacitance with the ground (CEG), a
coupling capacitance with any adjacent SWCNTs (CEC), and an
intrinsic quantum capacitance (CQ) [6]. The electrostatic capacitance
per unit length between an SWCNT and the ground plane is:

ாீܥ ൌ
߳ߨ2

ଵି݄ݏܿ ቀ2݀ܪ௧
ቁ
 ሺ2ሻ

where ε is the permittivity of the dielectric and H is the distance
between the SWCNT and ground plane. Similarly, the electrostatic
capacitance per unit length between two parallel SWCNTs is:

ாܥ ൌ
߳ߨ

ଵି݄ݏܿ ቀ ௧݀ݏ
ቁ
 ሺ3ሻ

where s is the inter-SWCNT spacing and dt is the SWCNT diameter.
Finally, the SWCNT quantum capacitance per unit length is:

ொܥ ൌ
2݁ଶ

ிݒ݄
 ሺ4ሻ

SWCNTs have been shown to consist of four co-propagating
quantum channels, and therefore the effective SWCNT quantum
capacitance is 4CQ [6]. As per the analysis in [24], 4CQ is in series
with a parallel combination of CEG and CEC. Because electrostatic
coupling between non-adjacent SWCNTs is very weak compared to
coupling between adjacent SWCNTs, the coupling capacitance
between nonadjacent SWCNTs can be neglected in parallel global
interconnects with more than two lines [17].

An SWCNT also has two types of inductance associated with it –
kinetic and magnetic. The kinetic inductance (LK) is due to charge
carrier inertia, since electrons do not instantaneously react to an
applied electric field. The series inductance which represents this
phenomenon is [6]:

ܮ ൌ
݄

2݁ଶݒி
 ሺ5ሻ

Since a nanotube has four co-propagating quantum channels, the
effective value of kinetic inductance in the equivalent circuit is LK/4
[17]. Kinetic inductance typically dominates magnetic inductance in
SWCNTs [6].

3.2 MWCNT
An MWCNT consists of two or more concentric SWCNTs. Since

the basic building blocks of MWCNTs are SWCNTs of varying
diameters, many of the properties of SWCNTs hold for MWCNTs.
The number of shells (Ns) in an MWCNT is diameter dependent:

 ௦ܰ ൌ 1
௨௧ܦ െ ܦ

ߜ2
 ሺ6ሻ

where δ=0.34nm (van der Waals distance) is the spacing between
adjacent concentric shells, and Douter and Dinner are the maximum and
minimum shell diameters. The ratio of Douter/Dinner has been observed
to vary from 0.35 to 0.8 [12]. The approximate number of conduction
channels per shell for an MWCNT is [13]:

 ܰ/௦ሺ݀ሻ ൎ ൜
ሺܽ݀ ܾሻ ܲ, ݀ 6 ݊݉

2 ܲ, ݀ ൏ 6 ݊݉ ሺ7ሻ

where a = 0.1836 nm-1, b = 1.275, d is the shell diameter and Pm =
1/3 (similar to an SWCNT bundle). Then the resistance for the ith
SWCNT shell with diameter di is:

 ܴௌௐே்ሺ݀, ݈ሻ ൌ
ܴௌௐே்

ܰ/௦ሺ݀ሻ
 ሺ8ሻ

Each shell has its own di, λ and Nchan/shell that can be derived from
Douter. The total MWCNT resistance (RMWCNT) is a parallel
combination of the resistances of all the concentric SWCNTs:

 ሺܴெௐே்ሺܦ௨௧, ݈ሻሻିଵ ൌ ሺܴௌௐே்ሺ݀, ݈ሻሻିଵ
ேೞ

 ሺ9ሻ

where RSWCNTi is the resistance of the ith concentric SWCNT. An
inter-shell resistance (Ri ≈10 kΩ/µm) must also be considered to
account for the inter-shell tunnel transport phenomenon [17].

The metallic shell in an MWCNT constitutes an effective
electrostatic shield for its inner shells [26]. Thus the capacitance
between an internal shell and ground, and between non-adjacent
shells can be safely neglected. The electrostatic capacitance per unit
length between the outermost nanotube in a MWCNT and the ground
is given by (2), where dt is the diameter of the outermost shell.
Similarly, the coupling capacitance between the outer shells of
adjacent MWCNTs is given by (3) and the quantum capacitance is

500

given by (4). The electrostatic coupling capacitance between adjacent
shells in a MWCNT (CESC) is derived from a conventional metallic
coaxial configuration [27]:

ாௌܥ ൌ
߳ߨ2

݈݊ሺ݀ଵ/݀ଶሻ
ൌ

߳ߨ2
݈݊ሺ݀ଵ/ሺ݀ଵ െ ሻሻߜ2

 ሺ10ሻ

The quantum capacitance (4CQ) of an external shell is coupled with
a parallel combination of the three capacitances CESC, CEG and CEC in
the equivalent RLC circuit.

Finally, the total MWCNT inductance is given by a relation similar
to that for an SWCNT bundle (8):

ெௐே்ܮ ൌ ቆ
ܮ

2. ∑ ܰ/௦ሺ݀ሻேೞ
 ܮቇ . ݈ ሺ11ሻ

where Lk is obtained from (5) and Nchan/shell(di) from (7). Lm is
calculated using the equivalent conductivity method [40].

4. CNT Bundle Circuit Models

In this section, we present the equivalent RLC circuit models for
SWCNT bundle and mixed SWCNT/MWCNT bundle interconnects.
These models are used to determine CNT bundle interconnect
propagation delay in Section 5.

4.1 SWCNT Bundles
An SWCNT bundle consists of several individual SWCNTs in

parallel. An important parameter associated with an SWCNT bundle
is its metallic density (Pm) which refers to the probability that an
SWCNT in the bundle is metallic (i.e., conducting). The value of Pm
≈ 1/3 [1] with today’s best fabrication techniques, which implies that
only 1/3 of the SWCNTs in a bundle are conducting. Fig. 2 shows a
schematic of a SWCNT bundle interconnect, taking into account Pm
of the bundle by considering the spacing x between SWCNTs
(x=݀௧/ඥ ܲ) [8]. The number of conducting SWCNTs in a bundle
(nCNT) of width w and height h is:

 ݊௪ ൌ
ݓ െ ݀௧

ݔ
 , ݊ ൌ

݄ െ ݀௧
ሺ√3/2ሻݔ

 1 ሺ12ሻ

 ݊ே் ൌ ݊௪݊ െ
݊
2
 ݂݅ ݊ ݅݊݁ݒ݁ ݏ

 ൌ ݊௪݊ െ
݊ െ 1
2

 ݂݅ ݊ ݅݀݀ ݏ

where nw and nh are the number of SWCNTs in a row and along the
height of the bundle, respectively.

The resistance of an SWCNT bundle is simply the parallel
combination of nCNT metallic SWCNTs [8]:

 ܴௌௐே் ௨ௗ ൌ
ܴௌௐே்

݊ே்
 ሺ13ሻ

Fig. 2. Schematic of SWCNT bundle interconnect geometry

As far as SWCNT bundle capacitance is concerned, the electrostatic

capacitance to the ground and coupling capacitances arise mainly
from the SWCNTs lying at the edges of the SWCNT bundle. The
coupling and electrostatic capacitances to the ground of SWCNT
bundles have been analyzed extensively in [10] (using the field solver
RAPHAEL) and [22] (using the 3D field solver FastCap), and found
to be equal to the respective capacitances of a Cu wire with the same

cross-sectional dimensions. The effective quantum capacitance of a
SWCNT bundle is further reduced in a bundle and found to be
negligible compared to its electrostatic counterparts [22].

The kinetic inductance of an SWCNT bundle is the parallel
combination of individual SWCNT kinetic inductances. The
magnetic inductance remains relatively constant with wire
dimensions and cannot be ignored anymore, as was done in the case
of individual SWCNTs. The mutual inductance between SWCNTs in
a bundle is accounted for using the partial element equivalent circuit
(PEEC) model [25]. The total SWCNT bundle inductance is:

ௌௐே் ௨ௗܮ ൌ ൬
ܮ

4݊ே்
 ܮ൰ . ݈ ሺ14ሻ

4.2 Mixed SWCNT/MWCNT Bundles
A mixed SWCNT/MWCNT bundle consists of SWCNTs with a

diameter d and MWCNTs with various diameters Dinner ≤ di ≤ Douter.
It has been shown [2] that the outer diameters follow a normal
(Gaussian) distribution.

The resistance for a mixed SWCNT/MWCNT bundle is [13]:

 ܴ௫ௗ ௨ௗ ൌ ൬න
ܰሺܦ௨௧ሻ ௨௧ܦ߲
ܴெௐே்ሺܦ௨௧, ݈ሻ

൰
ିଵ

 ሺ15ሻ

where RMWCNT(Douter, l) is obtained from (9) and N(Douter) is the tube
count according to Douter’s, with a normal (Gaussian) distribution, a
mean diameter ܦ௨௧തതതതതതതത, and a standard deviation ߪೠೝ [2]. For
Nbundle CNTs in the bundle, the tube count for a given Douter is:

 ܰሺܦ௨௧ሻ ൌ
ܰ௨ௗ

 ೠೝ√2πߪ
exp െ

1
2
ቆ
௨௧ܦ െ ௨௧തതതതതതതതܦ

ೠೝߪ
ቇ
ଶ

൩ ሺ16ሻ

This relation can be used to derive a distribution curve for the tube
count. The resulting curve and the corresponding MWCNT resistance
curve can be used to determine total resistance of the mixed bundle
from (15). This resistance formulation has been validated with
experimental results from [2] in [13].

The capacitive characteristics of a mixed SWCNT/MWCNT bundle
have been shown to predominantly be determined by the cross
sectional dimensions of a bundle [1]. Therefore, similar to the case of
the SWCNT bundle, the mixed bundle electrostatic capacitance to
ground and coupling capacitances is assumed to be the same as that
of a Cu wire with identical cross-sectional dimensions. The quantum
capacitance is similarly negligible compared to its electrostatic
counterparts [22].

Finally, the total kinetic inductance of a mixed bundle is the parallel
inductance value of all the conduction channels in the bundle, similar
to (11) and (14). Magnetic inductance Lm is calculated using the
equivalent conductivity method [40].

5. Experiments

We now present the results of several experiments that explore the
impact of using CNT bundles as global interconnects. First we
compare the interconnect propagation delays for CNT bundle and Cu
interconnects. Subsequently, the performance of CNT bundle and Cu
global interconnects is compared for several multi-core
heterogeneous CMP applications at the system-level. Finally, we
predict how CNT bundle global interconnects will perform with
inevitable advances in fabrication technology, in coming years.

5.1 Propagation Delay Comparison
In our first experiment we compared the global wire delay of Cu

and CNT bundle interconnect alternatives across the 45-22 nm
UDSM process technology nodes. We use the equivalent circuit
models described in the previous section to determine wire delay for
CNTs. The equivalent circuit model for Cu wires is obtained from
[28]-[30], and used to derive the wire delay for Cu. We consider
optimal repeater sizing and insertion for both Cu and CNT wires,

Lef
t n

eig
hb

or

Right neighbor

h

w s
t

GND plane

dt

x = dt / sqrt(Pm)

501

using the formulations presented in [31]. The node driver resistance,
load capacitance and process parameters were obtained from ITRS
specifications [4]. Since global wire width is typically much larger
than minimum wire width (Wmin) to improve delay and bandwidth
characteristics, we considered an aspect ratio of 1 and used a global
wire width value of 5Wmin which is shown to optimize the power-
delay product for Cu wires [32]. This wire width is in the shallow
RLC region, where the difference between RC and RLC model
latencies is only 10% [10]. For comparison purposes, we used the
same width and aspect ratios for the SWCNT bundles and mixed
SWCNT/MWCNT bundles. For the mixed SWCNT/MWCNT
bundle, we assumed ܦ௨௧തതതതതതതത = 4.2nm and ߪೠೝ = 1.25nm [2]. The
SWCNT diameter was assumed to be 1nm, and the ratio between
outer to inner diameters for MWCNTs in the bundle was assumed to
be 0.5. The spacing between adjacent wires was assumed to be the
same as the wire width (5Wmin). The CNT mean free path λ = 1µm
and metallic density Pm = 1/3, while Cu mean free path was assumed
to be 40 nm. All of these values are practically achievable today by
using prevalent fabrication techniques.

Fig. 3. Global interconnect delay comparison between Cu and CNT
bundle alternatives (45-22 nm)

Fig. 3 shows the ratio of propagation delay of copper t(Cu) and the

propagation delay of CNT bundles t(CNT), for global wires (> 1mm
in length) across the 45-22nm technology nodes. It can be seen that
both the SWCNT bundle and mixed SWCNT/MWCNT bundle
interconnects have lower propagation delays compared to Cu. The
mixed SWCNT/MWCNT bundle interconnect has many large
MWCNTs with several shells and more conduction channels than
SWCNT bundles of the same dimensions. This is the reason why
mixed SWCNT/MWCNT bundles perform better as conductors,
compared to SWCNT bundles.

Fig. 4. A 4 cluster CMP layout, with global (pipelined) interconnects

In addition to the comparison of propagation delays between CNT

bundle and Cu interconnects, for the sake of completeness, we also
performed a comparison of the propagation delay for an isolated
SWCNT global interconnect with a Cu global interconnect. The
isolated SWCNT was found to have a much higher propagation delay
(almost 100× more) compared to Cu. This large propagation delay is
due to the very high SWCNT resistance, because of its extremely
small cross-section area. We conclude from this result that isolated
SWCNTs are unsuitable as global interconnects. They may however
someday replace Cu at the local interconnect level because of their
much lower lateral capacitance that improves latency for short

distances, as some recent studies suggest [10].

5.2 System-level Performance Analysis
For our next experiment, we selected several multi-core CMP

applications to analyze the overall performance impact of using CNT
bundle-based global interconnects at the system-level. The
applications are selected from the well known SPLASH-2 benchmark
suite (Barnes, Ocean, FFT, Radix) [33], as well as from the
networking domain (proprietary benchmarks Netfilter, Datahub and
SecurePck). These applications are parallelized and implemented on
multiple cores. The entire chip is assumed to be partitioned into
clusters (or islands) of heterogeneous computation cores. Each
cluster consists of tightly coupled cores (processors, memories etc.)
optimized for dedicated tasks (e.g., packet encryption, image
processing, etc.) and interconnected via local bus-based Cu links that
support high data bandwidths. Fig. 4 shows an example layout of a
four cluster multi-core CMP. Global pipelined links (shared bus or
point-to-point) are used to connect computation clusters with each
other, and facilitate inter-cluster data transfers. Two clusters can be
interconnected by multiple global links if higher inter-cluster
bandwidth needs to be supported. Table 1 summarizes the
implementation details of the CMP applications, such as number of
cores (including memories, peripherals, and processors),
programmable processors, computation clusters and inter-cluster
global links on the chip.

Table 1. CMP Application Implementation Characteristics

CMP
applications

Description cores prog.
processors

clusters global
links

Radix Integer radix sort 18 4 3 10
Barnes Evolution of

galaxies
26 6 4 18

FFT FFT kernel 28 6 4 12
Ocean Ocean movements 35 10 5 24

Netfilter Packet processing
and forwarding

49 22 6 32
Datahub 68 26 8 34

SecurePck 94 30 8 28

The CMP applications were modeled in SystemC [35] using a fast
and accurate transaction-based bus cycle accurate (T-BCA) modeling
abstraction [33][34][36]. The cores in each cluster (e.g. processors,
memories, peripherals) were modeled at the behavioral level
granularity, while the communication at the inter- and intra-cluster
level was modeled at a cycle accurate granularity. Each of the
applications was simulated with testbench traffic to quickly (~few
hours) and accurately estimate performance of the implementations.
The various cores were interconnected using the AMBA AXI [37]
standard interface protocol, with the address bus width set to 32 bits
and the separate read and write data bus widths set to 64 bits.

Our analysis was performed for the 22-nm process technology node
(as predicted for the 2016 node of ITRS 2005 [4]) and the
interconnect fabric was clocked at frequencies ranging from 1-10
GHz to support data transfer rates in the hundreds of Gbps range for
future high performance systems. The die size was assumed to be
20mm×20mm. A high level simulated annealing floorplanner based
on sequence pair representation (PARQUET [38]) was used to create
an early layout of the CMP application on the die, and Manhattan
distance based wire routing estimates were used to determine wire
lengths. For the global interconnects, in addition to repeater insertion,
latch insertion is performed based on wire length, wire delay and
clock frequency of the bus, to pipeline the interconnect and ensure
correct operation [39]. For instance, a global Cu wire of length 10
mm has a projected delay of 2 ns in the 22-nm technology node, for a
5Wmin wire width. To support a frequency of 10 GHz (clock period of
0.1 ns), approximately 20 latches need to be inserted to ensure
correct multi-cycle operation.

Fig. 5 (a) and (b) show the performance improvement (speedup in
application execution time) when using SWCNT bundle and mixed

µP1 MEM

UARTIF

DMA

IO

Cluster 1 Cluster 2

Cluster 3 Cluster 4

µP1

ASIC2

µP2 µP3

GPIO IO

ASIC1MEM

Bus Matrix

Hierarchical Bus

IF MEM

MEMMEM

MEM

TIMER
MEM

ASIC

DSP

GPU

IF MEM

RTCDMA

USB

MEMMEM

µP2

MEM DSP

µP1

µP2

µP3

Shared Bus

IO

Shared Bus

502

SWCNT/MWCNT bundle global interconnects, instead of Cu global
interconnects, for the 22-nm technology node, with the interconnect
fabric clocked at 10 GHz. Experiments with the interconnect fabric
clocked at lower frequencies within the 1-10 GHz range yielded
speedup results within 5% of the results shown in the figures
(assuming computation core frequencies are scaled down by the same
factor as the interconnect fabric), and hence the other results are not
presented for brevity.

(a)

(b)

Fig. 5. System level performance speedup when using CNT bundles
instead of Cu for global interconnects, assuming (a) imperfect metal-

CNT contacts, (b) perfect metal-CNT contacts

Fig. 5 (a) shows the results for the case when imperfect metal-CNT
contacts are assumed. A high metal-CNT contact resistance of 100
KΩ is added to account for the excessive electron scattering at
imperfect metal-CNT junctions. It can be seen that the application
performance with CNT bundle global interconnects is worse than
with Cu global interconnects. This is primarily an artifact of using
poor metal-CNT contacts, typically constructed using Gold,
Palladium or Rhodium. Many recent studies [20]-[21] with state-of-
the-art fabrication techniques have however managed to reduce this
contact resistance down to a very small value (a few hundred Ω).
This has dramatically improved the viability of successful integration
of CNTs with CMOS technology.

Fig. 5 (b) shows the application performance improvement under
the assumption of perfect contacts with negligible contact resistance.
The applications now perform better with CNT bundle global
interconnects than with Cu global interconnects because of the lower
CNT bundle interconnect delays. The lower CNT bundle delays lead
to more widely spaced and hence fewer pipeline latches on global
inter-cluster interconnects, resulting in global data transfers taking
fewer clock cycles and improving application performance. Among
the applications, Ocean can be seen to have a much smaller speedup
compared to other applications. This is because Ocean has fewer
inter-cluster data transfers, which reduces the advantage of having
faster CNT bundle-based global interconnects. On the other hand, the
speedup for Radix and FFT is lower than other applications because
of the smaller length of their global interconnects, which again
reduces the impact of faster CNT bundle-based global interconnects
on application performance. Overall, the results indicate that
SWCNT bundle global interconnects provide a speedup of up to
1.3×, while mixed bundles achieve speedups of up to 1.5×.

At first glance, these modest performance improvements over Cu

interconnects may appear to be not so significant as to justify a
migration to CNT bundle interconnects. However in the next section
we present results that indicate more significant CNT bundle
performance gains with inevitable improvements in CNT fabrication
technology.

5.3 Impact of MFP and CNT Metallic Density
Our system-level experiments above assumed practical values for

CNT metallic density (Pm=1/3) and mean free path (λ=1µm) while
calculating application performance gains. The modest CNT bundle
speedup obtained above can be improved if breakthroughs in
fabrication technology in the future allow for greater metallic density
(Pm) and longer MFP lengths (λ) for CNT bundles.

Fig. 6 shows the interconnect delay speedup over Cu for SWCNT
bundles and mixed SWCNT/MWCNT bundles, with increasing
values of metallic density Pm, ranging from 0.3 (practical) to 1
(ideal), for a constant MFP length λ=1µm. It can be seen that there is
a crossover point beyond which SWCNT bundle performance
improves upon mixed SWCNT/MWCNT bundle performance. This
is because as the metallic density increases, the mixed bundle has
fewer metallic nanotubes than the SWCNT bundle due to large
MWCNTs which prevent a tight packing. The SWCNT bundle has
more tightly packed and consequently more metallic tubes which
improve conductivity and performance. Fig. 7 shows a similar trend
when bandwidth density of CNT bundle interconnects is compared
with Cu, for varying metallic densities. It is clear from the figure that
SWCNT bundle bandwidth density is superior to that of Cu for
metallic densities greater than 0.3. SWCNT bundle bandwidth
density also improves upon mixed SWCNT/MWCNT bundle
bandwidth density for higher metallic densities, due to more tightly
packed metallic tubes.

 Fig. 8 and 9 show the combined performance improvement for
various configurations of metallic density (Pm) and MFP (λ) lengths
for the SWCNT bundle and mixed SWCNT/MWCNT bundle
interconnects, respectively. It is clear from the results that increasing
MFP length and metallic densities can lead to a substantial
improvement in delay (and hence performance) speedup for CNT
bundle interconnects – as much as 4.9× for SWCNT bundles and up
to 4.4× for mixed SWCNT/MWCNT bundles. Improving CNT
fabrication technology in order to achieve such performance gains is
an area of tremendous research activity today [41]-[42].

6. Conclusion and Future Work

In this paper, we presented a comprehensive comparative analysis
of the performance impact of using CNT bundle-based global
interconnects over Cu for heterogeneous multi-core CMP
applications. Our experimental results indicate that SWCNT bundles
and mixed SWCNT/MWCNT bundles lead to performance gains
over Cu global buses of up to 1.3× and 1.5× respectively. These gains
can be further improved if the CNT mean free path (MFP) lengths
and metallic densities are increased with advances in fabrication
technology that are actively being explored today. Ultimately, while
many manufacturing and technological factors will contribute to the
realization of CNT global interconnects, our preliminary results
indicate that SWCNT bundle and mixed SWCNT/MWCNT bundle
based global interconnects have the properties to be viable
replacements for Cu global interconnects in future high performance
CMP applications, as process technology scales. Our future work will
consider the impact of using CNTs as local interconnects and analyze
trade-offs between CNT interconnect power, performance and
bandwidth density.

Acknowledgements
This research was partially supported by grants from SRC (2005-

HJ-1330 and 1617.001) and NSF (CCF-0702797).

503

Fig. 6. SWCNT bundle and mixed bundle delay speedup over Fig. 7. SWCNT bundle and mixed bundle bandwidth density
 Cu for varying metallic densities Pm (x-axis) speedup over Cu for varying metallic densities Pm (x-axis)

 Fig. 8. SWCNT bundle speedup over Cu for different combinations Fig. 9. Mixed SWCNT/MWCNT bundle speedup over Cu for
 of metallic density and MFP different combinations of metallic density and MFP

References
[1] A. Naeemi, et al., “On-Chip Interconnect Networks at the End of the
Roadmap: Limits and Nanotechnology Opportunities”, IITC 2006.
[2] J. Li, et al., “Bottom-up approach for carbon nanotube interconnects,”
Appl. Phys. Lett., Apr. 2003.
[3] S. M. Rossnagel, T. S. Kuan, “Alteration of Cu Conductivity in the Size
Effect Regime,” JVST, Jan. 2004.
[4] ITRS, International Technology Roadmap for Semiconductors, 2005.
[5] M. S. Dresselhaus, et al, “Carbon nanotubes: synthesis, structure,
properties, and applications”, Springer, 2001.
[6] P. J. Burke, “Luttinger liquid theory as a model of the gigahertz
electrical properties of carbon nanotubes,” Trans. NANO, Sep. 2002.
[7] F. Kreupl, et al., “Carbon nanotubes for interconnect applications,”
IEDM Tech. Dig., Dec. 2004.
[8] N. Srivastava, K. Banerjee, "Performance Analysis of Carbon Nanotube
Interconnects for VLSI Applications," ICCAD 2005.
[9] A. Raychowdhury, K. Roy, “A circuit model for carbon nanotube
interconnects: comparative study with Cu interconnects for scaled
technologies”, ICCAD 2004.
[10] A. Naeemi et.al, “Design and Performance Modeling for Single-
Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects
in Gigascale Integrated Systems”, Trans EDL Jan 2007.
[11] A. Raychowdhury, K. Roy, “Modeling of Metallic Carbon Nanotube
Interconnects for Circuit Simulation and a Comparison with Cu
Interconnects for Scaled Technologies,” TCAD Jan 2006.
[12] A. Naeemi et al., “Performance Modeling and Optimization for
Single- and Multi-Wall Carbon Nanotube Interconnects,” DAC 2007
[13] S. Haruehanroengra, W. Wang, “Analyzing Conductance of Mixed
Carbon-Nanotube Bundles for Interconnect Applications”, IEEE EDL Aug
2007.
[14] A. Nieuwoudt, et al., “Predicting the Performance and Reliability of
Carbon Nanotube Bundles for On-Chip Interconnect,” ASPDAC, 2007.
[15] B. Q. Wei, R. Vajtai, P. M. Ajayan, “Reliability and current carrying
capacity of carbon nanotubes,” Appl. Phys. Lett., 2001.
[16] J. Hone, et al, “Thermal conductivity of single-walled carbon
nanotubes,” Phys. Rev., B, vol. 59, no. 4, 1999.
[17] D. Rossi, et al., “Modeling Crosstalk Effects in CNT Bus
Architectures”, IEEE Trans. NANO Mar 2007
[18] A. Nieuwoudt, Y. Massoud, “Assessing the Implications of Process
Variations on Future Carbon Nanotube Bundle Interconnect Solutions,”
ISQED, 2007.
[19] S. Eachempati, et al., “Assessing Carbon Nanotube Bundle
Interconnect for Future FPGA Architectures,” DATE, 2007.
[20] S. Sato et al., “Novel approach to fabricate carbon nanotube via
interconnects using size-controlled catalyst nanoparticles,” IITC 2006.

[21] O. Hjortstam, et al., "Can we achieve ultra-low resistivity in carbon
nanotube-based metal composites?" App. Phy MSP 2004.
[22] H. Cho, et al., “Modeling of the performance of carbon nanotube
bundle, cu/low-k and optical on-chip global interconnects”, SLIP 2007.
[23] S. Pasricha, and N. Dutt. “On-Chip Communication
Architectures”, Morgan Kauffman, Apr 2008.
[24] P. J. Burke, “Quantitative theory of nanowire and nanotube antenna
performance,” ArXiv Cond. Matter E-Prints, Aug. 2004.
[25] M. W. Beattie, L. T. Pileggi, “Inductance 101: Modeling and
Extraction,” DAC, 2001.
[26] P. G. Collins, P. Avouris, “Multishell conduction in multiwalled
carbon nanotubes,” App. Phy. MSP, Mar. 2002.
[27] E. R. Dobbs, Basic Electromagnetism. Chapman, Hall 1993.
[28] A. F. Mayadas, M. Shatzkes, “Electrical-Resistivity Model for
Polycrystalline Films: the Case of Arbitrary Reflection at External
Surfaces,” Phys. Review B, vol. 1, 1970.
[29] E. H. Sondheimer, “The mean free path of electrons in metals,” Adv.
Physics, vol. 1, no. 1, 1952.
[30] C. P. Yue, S. S. Wong, “Physical Modeling of Spiral Inductors on
Silicon,” Trans. EDL, 2000.
[31] Y. I. Ismail et al., “Effects of Inductance on the Propagation Delay and
Repeater Insertion in VLSI Circuits” TVLSI Apr 2000.
[33] S.C. Woo et al.“The SPLASH-2 programs: Characterization and
methodological considerations”, ISCAS, 1995.
[32] M. A. El-Moursy et al, “Optimum Wire Sizing of RLC Interconnect
with Repeaters," GLSVLSI, 2003.
[33] S. Pasricha, "Transaction Level Modeling of SoC with SystemC
2.0" In Proc. SNUG 2002.
[34] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Extending the
Transaction Level Modeling Approach for Fast Communication
Architecture Exploration", In Proc. DAC 2004.
[35] SystemC initiative. www.systemc.org
[36] W. Müller, J. Ruf,, W. Rosenstiel, “SystemC Methodologies and
Applications”, Norwell, MA: Kluwer, 2003
[37] AMBA AXI Specification www.arm.com/armtech/AXI
[38] S. N. Adya, I. L. Markov, "Fixed-outline Floorplanning: Enabling
Hierarchical Design", IEEE Trans TVLSI, Dec. 2003
[39] V. Nookala, S. S. Sapatnekar, "Designing optimized pipelined global
interconnects: Algorithms and methodology impact," ISCAS, 2005.
[40] W. Wang, et al. "Inductance of mixed carbon nanotube bundles,"
Micro & Nano Letters, IET , vol.2, no.2, pp.35-39, June 2007
[41] Liu et al., “Densification of Carbon Nanotube Bundles for
Interconnect Application”, IITC 2007
[42] Zhu et al., “Assembling Carbon Nanotube Bundles Using Transfer
Process for Fine-Pitch Electrical Interconnect Applications”, EETC 2007

504

Impact of Bias Voltage on Magnetic Inductance of Carbon Nanotube

Interconnects

K. C. Narasimhamurthy and Roy P. Paily

VLSI Design Laboratory, Dept. of ECE

Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

e-mail: kcn, roypaily@iitg.ernet.in

Abstract

Single-walled carbon nanotube (SWCNT) bundles have

the potential to provide an attractive solution for the re-

sistivity and electromigration problems faced by traditional

copper interconnects. This paper discusses the impact of

bias voltage variation on magnetic inductance of SWCNT

bundle. The variation of bias voltage on inductance was ig-

nored so far. The authors utilize existing models for SWCNT

bundle for evaluation. There is a significant variation in in-

ductance value within the available range of bias voltage.

This study shows that the inductance change with respect

to bias voltages is about 1% to 35% at different lengths of

SWCNTs.

1. Introduction

The modeling, design and implementation of on-chip in-

terconnects continue to be a fundamental roadblock to re-

alizing high-performance integrated systems. The Inter-

national Technology Roadmap for Semiconductors (ITRS)

predicts that traditional interconnects will be a major perfor-

mance and reliability bottleneck when feature sizes become

smaller [1]. SWCNT is a graphene roll with a diameter of

0.5 nm to a few nanometers and depending on its chirality,

they can be either metallic or semiconductor. SWCNT is

very close to a one-dimensional (1-D) system of electrons

that gives rise to many unique electrical and thermal prop-

erties.

Typically, inductance is seen as a parasitic component in

metal interconnects. In analog VLSI Integrated Circuit (IC)

design, inductor is one of the major components. Passive in-

ductors using the SWCNT bundles are reported [2] to have

high quality factor and high inductance compared to metal

inductors. Since the radius of carbon nanotube is several

nanometers, the magnetic field (H) induced by the current

in carbon nanotube is about one thousand times larger than

that induced by the current in normal copper wire whose ra-

dius is about several micrometers. In this paper, we have

investigated the loop inductance of ground-signal-ground

configuration (GSG) of SWCNT bundle and its dependency

on the bias voltage. To the best of our knowledge there

has been no work addressing the inductance variation with

respect to bias voltage. SWCNTs will be incorporated in

future ICs and the voltage levels across the SWCNTs will

be varying in nature. This study is relevant to the cases in

which inductance is considered as parasitic as well as a pas-

sive device element. In both cases, a change in inductances

of SWCNTs will definitely affect the circuit functionality

and its performance. An assessment of the nature and quan-

tity of inductance variation will be pertinent. The rest of the

paper is organized in the following manner. Section 2, sum-

marizes the modeling of SWCNT resistance which is es-

sential to appreciate the variation of inductance of SWCNT

bundles. In Section 3, we study the modeling of inductance

of SWCNT. Section 4, discusses the effect of bias voltage

on inductance. In Section 5, simulation results of GSG con-

figurations are discussed. Section 6, concludes the paper.

2. Modeling of Resistance of an isolated

SWCNT

Intrinsic resistance, Contact resistance and Ohmic re-

sistance are the 3 different resistances associated with an

SWCNT and are discussed below.

2.1. Intrinsic Resistance Ri

The conductance of a carbon nanotube is evaluated using

the two-terminal Landauer-Buttiker formula. This formula

states that, for a 1-D system with N channels in parallel, the

conductance G = (Ne2/h)T , where T is the transmission

coefficient for electrons through the sample, h is Planck’s

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.21

505

constant and e is the charge of a single electron. Due to

spin degeneracy and sub lattice degeneracy of electrons in

graphene, each nanotube has four conducting channels in

parallel (N=4). Hence the conductance of a single ballis-

tic SWCNT assuming perfect contacts (T=1), is given by

(4e2/h) = 155 µs which results in a resistance of 6.45 KΩ.

This is the intrinsic resistance associated with an SWCNT

that cannot be avoided [3]. In other words, Ri can be ex-

pressed as

Ri =
h

4e2
(1)

2.2. Contact Resistance Rc

A contact resistance Rc model is due to imperfect metal

contacts. As nanotube fabrication and bonding techniques

have improved, the additional resistance due to imperfect

metal contacts has been significantly reduced and in several

experimental cases has approached zero ohm [4]. In this

paper we assume Rc = 0.

2.3. Ohmic Resistance Ro

The ohmic resistance (Ro) of an SWCNT is defined as

Ro =
hlb

4e2λap

(2)

where lb is the length of the nanotube, and λap is the

mean free path for acoustic phonon scattering [3]. How-

ever, resistance of an individual SWCNT depends on the

applied bias voltage. For nanotubes operating in the low

bias regime (Vb < 0.1 Volt), the resistance is the summation

of the lumped intrinsic resistance (Ri) and contact (Rc) re-

sistances and distributed per unit length ohmic resistance

(Ro).

Rlow = Ri + Rc if lb < λap (3)

Rlow = Ro + Rc if lb > λap (4)

For high bias voltages (Vb < 0.1 Volt), the resistance of an

individual nanotube depends on the applied bias voltage.

Rhigh = Rlow +
Vb

Io

(5)

where Io is the maximum current that can flow through an

individual nanotube, which is approximately 20-25 µA.

3. Modeling Inductance in SWCNT bundles

There are two kinds of inductances associated with

SWCNT and are discussed separately below.

3.1. Kinetic Inductance lk

Inductance has conventionally been defined as the resis-

tance to current change due to Faraday’s law, and it repre-

sents the energy stored in the magnetic field generated by

current(1/2)LI2. Electric current itself is the flow of car-

riers that have nonzero mass and therefore non-zero kinetic

energy [5]. Assuming constant current density in a conduc-

tor, the kinetic inductance becomes equal to

lk =
h

2vf e2
(6)

Fermi velocity for grapheme and carbon nanotubes is usu-

ally taken as vf = 8 ∗ 105 m/s. The overall kinetic induc-

tance per unit length of a nanotube is 4 nH/µm.

3.2. Magnetic inductance

The magnetic inductance captures the impact of the volt-

age induced by the magnetic fields produced by time vary-

ing currents, which is encapsulated in Ampere’s and Fara-

day’s laws. Unlike resistance, capacitance and kinetic in-

ductance are per unit length quantities at frequencies where

magnetoquasistatic assumptions are valid. The magnetic

inductance is dependent on the entire current loop, which

typically consists of a signal line and its associated ground

return paths. Since the distribution of the current in the loop

may not be known apriori, the concept of partial inductance

is used to model [6] the magnetic inductance.

Partial inductance is a mathematical construct that as-

sumes that the current in a particular conductor (in the case

of partial self-inductance) or the current flowing in adjacent

conductors (in the case of partial mutual inductance) has a

current return path at infinity. The partial inductance con-

struct has no physical meaning by itself. However, when

the partial self and mutual inductances are combined in a

particular manner over an entire current loop, the total loop

inductance is enhanced.

The partial self-inductance (Lm) of a single nanotube

and the mutual inductance (Mm) between two parallel cur-

rent carrying nanotubes of the length l and diameter d can

be calculated using equation (7) and (8) respectively [7].

Lm = 200lb(ln(lb/d) + 0.5 + (2d/3lb)) (7)

Mm = 200lb

(

ln
(

r +
√

1 + r2

)

−

√

1 +
1

r2
+

1

r

)

(8)

where r = lb/s and s is the center-to-center spacing be-

tween the two nanotubes. To model the magnetic induc-

tance of SWCNT bundles we utilize equivalent width model

[8], in which the discrete SWCNTs in the bundle are re-

placed by a smaller number of conductors with same resis-

tivity as that of ohmic resistivity of an individual nanotube

506

Figure 1. System of Single-walled Carbon
Nanotube Interconnect bundles Implement-

ing a signal line and two adjacent ground re-
turn paths(GSG) [3].

ρt. Using this model magnetic inductance of SWCNT can

be effectively extracted. 00

00000000

4. Effect of bias voltage on inductance of

SWCNT

At high frequencies, current return path is to minimize

loop inductance [9]. In this paper we consider closest cur-

rent return path, a signal line is sandwiched between two

ground return paths as in Figure 1. This configuration is re-

ferred to as ground-signal-ground (GSG) model. It is also

possible to have more return paths.

ITRS prediction of supply voltage is 1 Volt for next gen-

eration node. At this high bias voltage (Vb > 0.1 Volt),

the resistance of SWCNT is a function of bias voltage as in

equation (5). The SWCNT bundle resistance is also a func-

tion of bundle length as in equation (2). So at high bias,

current nonlinearly varies with supply voltage. This prop-

erty of SWCNT bundle is being exploited to see the change

in loop inductance value of GSG configuration and this is

the motivation behind this paper. In conventional copper

interconnects current linearly varies with bias voltage.

To model the magnetic inductance of GSG configuration,

each SWCNT bundle is represented by an equivalent con-

ductor with resistivity same as that of an individual SWCNT

at low bias. At different high bias voltages the width and

height of the equivalent conductor is adjusted to equate the

resistance of equivalent conductor to that of the SWCNT

bundle, as in equivalent width model [8]. Loop inductance

0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5

6
x 10

−12

Pm

 L
oo

p
in

du
ct

an
ce

 (H
)

vb = 0.1 V

vb = 0.5 V

vb = 1 V

Figure 2. Loop inductance at different bias

voltages for a GSG configuration of length

10µm, width=height=10 nm and separation
1 nm

of conductor representing the SWCNT bundle [8] is

Lloop = IT LmatI (9)

Lmat =

Lm1 Mm12 · · · Mm1n

Mm21 Lm2 Mm2n

...
. . .

Mmn1 Mmn2 Lmn

(10)

where I is a vector (10) with normalized current in each

nanotube and Lmat is partial inductance matrix which is

constructed from the partial self and mutual inductances for

all n SWCNTs in the GSG interconnect configuration.

The size of Lmat is proportional to the number of

nanotubes in the bundle. For low complexity system of

SWCNT bundles, equation (10) can be used directly to cal-

culate the loop magnetic inductance. However to analyze

the loop inductance for wide range of geometries we utilize

a version of multipole-accelerated field solver, FastHenry,

which uses a partial element equivalent circuit (PEEC) for-

mulation similar to equation (10).

5. Analysis of simulation result

Loop inductance of GSG configuration is obtained using

FastHenry, by using resistivity of conductor same as that of

SWCNT resistivity. Width and height of conductor at dif-

ferent bias voltage (0.1V to 1V) is calculated by equating re-

sistance of the bundle and equivalent conductor, as in equiv-

alent width model [8]. We simulated about 1000 GSG con-

figuration of SWCNT bundles with the following geometric

507

0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−10

Pm

Lo
op

 in
du

ct
an

ce
 (

H
)

vb = 0.1 V

vb = 0.5 V

vb = 1 V

Figure 3. Loop inductance at different bias

voltages for a GSG configuration of length

1000µm, width=height=10 nm and separation
1 nm

parameters: 10 µm ≤ lb ≤ 1000 µm,10d ≤ wb ≤ 20d and

0.1wb ≤ Sb ≤ 10wb where, wb is the bundle width, Sb is

edge to edge spacing between bundles and d diameter (d=1

nm). Probability Pm that a given SWCNT in the bundle is

metallic is varied from 0.33 to 1. For all simulations, we

have taken uniform descritization and conductor is repre-

sented by 4 filaments.

From Figure 2 and Figure 3 it is observed that the loop

inductance of the GSG configuration will vary more for

shorter lines compared to longer lines with the bias volt-

age. For a given length of line, change in loop inductance

across the bias voltage is independent of Pm. The value of

loop inductance is proportional to the length of the line as

in equations (7-9).

However, the variation in loop inductance is 45% for a

length of 10 µm when the Pm changes from 0.33 to 1 for

a given bias voltage, but it is 70% for a length of 1000 µm.

That means, if the line is a part of analog tuned circuit, then

change in Pm of SWCNT bundle during its growth may af-

fect considerably the tuning of the circuit. This shows that

there should be a good control over Pm in the growth of

SWCNT, to use them in analog circuit applications. How-

ever it has been reported that, there will be no change in the

capacitance of the SWCNT bundle if the number of metallic

CNTs in the bundle change [10].

While analyzing the simulation results of Figure 4 and

Figure 5 for the line with lb = 10 µm and wb = hb =
10 nm it is found that 34% variation in percentage change

in loop inductance across Vb for Pm = 1, Sb = 1 nm =1nm

and it is 21% when Pm = 0.33 and the same is just 9.5%

and 8% respectively for Sb = 100 nm. This trend contin-

ues for any width and height(wb = hb) of the line. This

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Bias voltage (V)

P
er

ce
nt

ag
e

ch
an

ge
 in

 lo
op

 in
du

ct
an

ce
 (%

)

Pm = 0.33

Pm = 0.66

Pm = 1

Figure 4. Percentage change in loop induc-

tance of a GSG configuration of length 10µm,

width=height=10 nm and separation 1 nm for
different voltages at different Pm

shows that as the separation increases the variation of loop

inductance with respect to bias voltage reduces. The above

analysis is extended to different lengths and we obtained the

graph in Figure 6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Bias voltage (V)

P
er

ce
nt

ag
e

ch
an

ge
 in

 lo
op

 in
du

ct
an

ce
 (

%
)

pm = 0.33

pm = 0.66

pm = 1

Figure 5. Percentage change in loop induc-

tance of a GSG configuration of length 10 µm,
width=height=10 µm and separation 100 nm
for different voltages at different Pm

Figure 6 shows the variation of change in loop induc-

tance for different length and different across the bias volt-

age. The loop inductance variation is less than 1% for

longer lines. However, it is 21% 14% and 8% for Sb of

1 nm, 10 nm, 100 nm respectively. Therefore loop induc-

tance variation at different bias voltage is critical for inter-

508

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Bias voltage (V)

P
er

ce
nt

ag
e

ch
an

ge
 in

 lo
op

 in
du

ct
an

ce
 (

%
)

 lb =10um,sb=10nm

lb=10um,sb=1nm

 lb=10um sb=100nm

Large lb

Figure 6. Change in loop inductance as
length increases for Pm = 0.33 with respect

to bias voltage for different Sb

mediate interconnects. For local interconnects because of

high intrinsic resistance of SWCNT, Cu is preferred.

The loop inductance of GSG configurations of copper

(Cu) are obtained using FastHenry. While calculating the

resistivity of Cu, surface scattering and scattering due to

grain boundary are considered. The comparison of the loop

inductance of SWCNT with that of Cu is shown in Figure 7.

Figure 7 shows a large deviation in loop inductance be-

tween the Cu and SWCNT at longer length, this is due to

lower value Pm which results in high resistance of SWCNT,

leading to representation of equivalent conductor by lesser

dimension. However for Pm = 1, deviation in inductance

values are less because the dimension equivalent conductor

are almost same as of Cu. Even though loop inductance of

SWCNT is more, at nm dimensions SWCNT is preferred

over Cu, because Cu resistance is very large compared to

SWCNT.

6. Conclusions

We have briefly discussed the modeling of CNT. The im-

pact of bias voltage on magnetic inductance of SWCNT

bundle was evaluated using the existing SWCNT models.

This study showes that the inductance change with respect

to bias voltages is about 35% to less than 1% at different

lengths. The highest change in inductance was for shorter

lengths and high Pm. SWCNT is a promising candidate

to replace Cu interconnects for semi global and global in-

terconnects [9] for improving delay, power and bandwidth.

But selective and lateral growth is a challenge. There are

reports of selective production of long, horizontally aligned

carbon nanotubes (> 1 mm) [11]. It is anticipated that with

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−10

Length (micrometer)

Lo
op

 in
du

ct
an

ce
 (

H
)

CNT pm = 1

Cu

CNT pm = 0.33

Figure 7. Comparison of loop inductance of

GSG configuration with copper and SWCNT

bundles for different length at different Pm

improved processing technology SWCNT will replace ex-

isting Cu interconnects and the presented study is very rel-

evant in such cases.

References

[1] International technology roadmap for semiconductors.

Technical report, 2005. ch. Interconnect.

[2] Artur Nieuwoudt and Yehia Massoud. Predicting the

performance of low-loss on-chip inductors realized

using carbon nanotubes. IEEE Trans. Electron de-

vices, 55(1):298–312, Jan. 2008.

[3] Artur Nieuwoudt and Yehia Massoud. Evaluating the

impact of carbon nanotube bundles for vlsi interecon-

nect using diameter dependent technique. IEEE Trans.

Electron Devices, 53(10):517–520, Oct 2006.

[4] P.L. McEuen and J.-Y. park. Electron transport in

single walled carbon nanotubes. Mater.Res.Soc.Bull.,

29(4):272–275, Apr. 2004.

[5] J.P. Bruke. Luttinger liquid theory as a model of giga-

hertz electrical properties of carbon nanotubes. IEEE

Trans.Nanotech., 1(5):129–144, Sept. 2002.

[6] A.E. Ruehli. Inductance calculation in a complex in-

tergated circuit environment. IBM J. Res. Develop.,

pages 470–481, Sept. 1972.

[7] F.Grover. Inductance Calculations: Working Formu-

las and Tables. Dover, New York, 1962.

509

[8] Artur Nieuwoudt and Yehia Massoud. Understanding

the impact of inductance in carbon nanotube bundles

for vlsi interconnect using scalable modeling tech-

niques. IEEE Trans. Nanotech., 5(6):758–765, Nov.

2006.

[9] So Young Kim, Yehia Massoud, and S. Simon Wong.

On the accuracy of return path for loop inductance

extraction for 0.1 um technology and beyond. pages

401–404. ISQED, 2003.

[10] Aszad Naeemi, Reza Savari, and James D. Meil-

ndl. Design and performance modelling and opti-

mization for single walled carbon nanotubes as lo-

cal, semiglobal and global interconnects in gigascale

integrated systems. IEEE Trans.Electron Devices,

54(1):26–37, Jan 2007.

[11] A. Reina, M. Hofmann, D. Zhu, and J. Kong. Growth

mechanisms of Horizantally aligned Carbon Nan-

otubes. CVD MTL annual research report, 2007.

510

Conservative QCA Gate (CQCA) for Designing Concurrently
Testable Molecular QCA Circuits

 Himanshu Thapliyal and Nagarajan Ranganathan

Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, USA

E-mail : {hthapliy,ranganat}@cse.usf.edu

Abstract

Nanocircuits based on molecular QCA are prone to
high error rates. In this paper, we present a novel
conservative logic gate termed ‘CQCA’ (conservative
QCA) to design concurrently testable circuits for
molecular QCA. In conservative logic gates, there
would be an equal number of 1s in the output as there
would be on the input. Thus, conservative logic gates
are parity preserving, that is, the parity of the input
vectors is equal to the output vectors. CQCA is
proposed in this work as molecular QCA is based on
majority voting. We analyzed the fault patterns in
existing popular conservative Fredkin gate and
proposed CQCA gate due to single missing/additional
cell defect in molecular QCA. We found that if there is
a fault in molecular QCA implementation of Fredkin
and CQCA gates, there is a parity mismatch between
the input and the output; otherwise the input parity is
same as output parity. Thus, any permanent and
transient fault in molecular QCA can be concurrently
detected if implemented with conservative Fredkin and
CQCA gates. We applied novel method of using
majority and minority voting to detect the fault in
conservative gates. We propose to use CQCA gate
compared to existing popular Fredkin gate as CQCA
excels Fredkin gate in parameters of
complexity(number of majority voter), speed and area.
The results are well supported by synthesizing
standard benchmark combinational functions. The
QCA design of 2 pair 2 rail checker is also presented
for the first time ever in literature. The design of QCA
layouts and the verification of the designs are
performed using the QCADesigner and HDLQ tools.

1. Introduction

The existing CMOS technology is reaching its limits
beyond which the down scaling in feature size and
proper working of the device is becoming extremely
difficult. CMOS devices suffer from heat generation as

they have to discharge all the stored energy when
flipping from 1 to 0. Quantum dot cellular automata
(QCA) is one of the emerging nanotechnologies in
which it is possible to achieve circuit densities and
clock frequencies much beyond the limit of existing
CMOS technology. QCA has significant advantage in
terms of power dissipation as it does not have to
dissipate all its signal energy hence considered as one
of the promising technologies to achieve the
thermodynamic limit of computation [1-2]. The basic
QCA logic devices comprise the majority voter (MV),
the inverter (INV), binary wire and the inverter chain.
Figure 1 shows the basic QCA cell and logic devices.

 (a) QCA Cell (b) Majority Voter

(c) Inverter

 (d) Binary Wire (d) Inverter chain

Figure 1. Basic QCA Devices

 The Launder four phase clocking scheme is
generally used in QCA design, and the present work is
also based on this. Due to significant error rates in
nano-scale manufacturing, nanotechnologies including

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.75

511

QCA require extremely low device error rate [5].In
manufacturing QCA, defects can occur in the synthesis
and deposition phases. However, defects are more
likely to take place during the deposition phase [6].
QCA devices are also prone to transient faults caused
by thermodynamic effects, radiation and other effects,
as the energy difference between the ground and the
excited state is small [10,11]. Thus, in literature
researchers have used the novel concepts such as
reversible logic to improve the testability of molecular
QCA [5].
 In this work, we explore the concept of
conservative logic gates as a means for designing
concurrently testable circuits for molecular QCA.
Conservative logic gates have equal number of 1s in
the output as there would be on the input [15]. Thus,
they are parity preserving, that is, the parity of the
input is always equal to the parity of the output. As
molecular QCA is based on majority voting, the design
based on conservative logic will be completely
different from conventional CMOS designs. In
literature, conservative Fredkin gate is the most
popular gate but we find that Fredkin gate is not
suitable for all molecular QCA designs as the designs
based on it requires more clocking zones, majority
gates and area. Since QCA logic is based on majority
voting, this led us to propose CQCA gate (conservative
QCA gate). CQCA requires only two clocking zones
compared to four clocking zones required by the
Fredkin gate and it requires only two majority gates
compared to six majority gates required by the Fredkin
gate. The benefits of using CQCA over Fredkin gate in
terms of area and delay is shown by synthesizing
standard combinational benchmark functions. To
demonstrate the effectiveness of conservative Fredkin
and CQCA gates for concurrently testable molecular
QCA design, we have done the fault pattern study of
conservative Fredkin and CQCA gates due to single
missing/additional cell defect in QCA. We found that
when there is permanent fault due to above defects,
there is parity mismatch between the input and the
output of the conservative Fredkin and CQCA gates.
Due to parity preserving property, any permanent and
transient fault in molecular QCA can be concurrently
detected. We demonstrated a novel strategy of using
majority and minority voter gates to detect parity
mismatch between the input and output of the 3 input 3
output conservative gates instead of XOR gates, as it is
costly to implement XOR function in QCA compared
to majority/minority voter. The QCA design of 2 pair 2
rail checker is also presented for the first time ever in
literature. Thus, this work lays the foundation of
concurrent testing of molecular QCA which is
susceptible to high error rates.

 The paper is organized as follows: Section 2
presents the QCA defects and related work; Section 3
presents existing and proposed conservative gates.
Section 4 presents concurrent testing of molecular
QCA using conservative logic gates; Section 5 shows
the QCA design of 2 pair 2 rail checker; Section 6
presents the comparison between Fredkin and CQCA
conservative gates; Section 7 provides the conclusions.

2. Background and related work

In manufacturing QCA, defects can occur in the
synthesis and deposition phases. However, defects are
more likely to take place during the deposition phase
[6]. Researchers assume that QCA cells have no
manufacturing defects and in metal QCA faults occur
due to cell misplacement. These defects can be
characterized as cell displacement, cell misalignment
and cell omission [7]. Researchers have proved that
molecular QCA cells are more susceptible to
missing/additional QCA cell defects [8,17].
Additional cell defect is due to the deposition of an
additional cell on the substrate while missing cell
defect is due to loss of a particular cell

2.1. Related work

The testing of QCA is first time addressed in a seminal
work in [6]. In [6], the defect characterization of QCA
devices is investigated and is shown how the testing of
QCA differs from conventional CMOS. In [8], the
modeling of QCA defects at molecular level is done
for combinational circuits. Fault characterization is
done for single missing/ additional cell defect on
different QCA devices such as MV, INV, fan-out,
Crosswire and L-shape wire. In [7], test generation
framework for QCA is presented. It is seen that
additional test vectors can be generated for detecting
QCA defects which remain undetected by stuck-at
fault model. Bridging fault on QCA wires is also
addressed. In [5], reversible logic is used to detect
single missing/additional cell defects. It is seen that
reversible 1D array is C-testable. In [14], fault-tolerant
QCA designs are presented using triple modular
redundancy with shifted operands. The strategy is
proposed considering the wire delay and faults in wires
in QCA.

3. Conservative gates for QCA

There is an existing popular conservative gate called
Fredkin gate [15]. Fredkin gate is shown in Fig.2.a.
Fredkin gate can be described as mapping (A, B, C)

512

to (P=A, Q=A’B+AC, R=AB+A’C), where A, B, C are
input and P, Q, R are output, respectively. Fredkin gate
produces the same number of 1s in the output as on the
input. The QCA design of Fredkin gate is shown in
Fig. 3 using four-phase clocking scheme, in which the
clocking zone is shown by the number next to D (D0
means clock 0 zone, D1 means clock 1 zone and so on,
MV in the figure represents majority voter). Thus, it
can be seen that Fredkin gate has two level majority
voter (MV) implementation and it requires 6 MVs to
implement it.

(a). Fredkin gate (b). Proposed CQCA gate

Figure 2. Conservative QCA gates

Figure 3. Fredkin gate QCA design

(D0 to D3 represent clock zones 0 to 3)

Table 1. Truth table of CQCA gate

A B C P Q R

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 1

3.1. Proposed CQCA gate

The existing conservative Fredkin gate is costly in
molecular QCA implementation. This led us to
propose novel conservative gate especially suiting

molecular QCA MV (majority voter) based design and
is termed CQCA (Conservative QCA gate). The input
to output mapping of CQCA is: P=A; Q=AB+BC+AC
[MV(A,B,C)]; R=A’B+A’C+BC [MV(A’,B,C)], where
A, B, C are input and P, Q, R are output, respectively.
Figure 2.b shows the block diagram representation of
CQCA gate. Table 1 shows the truth table of the
CQCA gate. It shows that it has the same number of
1’s in the input as in the output. Figure 4 shows the
QCA implementation of CQCA gate. It is seen that the
CQCA can be implemented with one level MV logic
and requires only two MVs to implement it. A detailed
comparison between CQCA and Fredkin gate is
presented in Section 6.

Figure 4. QCA implementation of CQCA gate

4. Concurrent testing of molecular QCA
with conservative gates

To the best of our knowledge and as far as existing
literature is concerned, concurrent testing for
molecular QCA designs has never been addressed and
the proposed work is the first attempt in this direction.
In this work, our analysis is also based on
missing/additional QCA cell defects. Figure 5 shows
the QCA layout of the CQCA gate (the QCA layout of
the Fredkin gate is described in [12]). We have
modeled the Fredkin and CQCA gates QCA layouts,
with the presence of all possible single
missing/additional cell defects in MV, INV, fan-out,
Crosswire and L-shape wire [8]. The modeling is done
using HDLQ [16], a design tool which provides the
Verilog HDL library of QCA devices, i.e., MV, INV,
fan-out, Crosswire, L-shape wire with fault injection
capability. The design is simulated in Verilog HDL
simulator in the presence of faults to determine the
corresponding output.
 The exhaustive testing of the Fredkin and CQCA
gates with 8 input patterns and all possible single
missing/additional cell defects is done using the Active
HDL simulator. The exhaustive testing for Fredkin
gate generated 20 unique fault patterns. The

513

exhaustive testing of CQCA generated 8 unique fault
patterns as shown in Table 2. In the fault patterns study
in Table 2, ai is the 3 bit pattern having an equivalent
decimal value of i, for example a0 represents 000
(decimal 0) and a7 represents 111(decimal 7).We
carefully observe each fault pattern and found that in
the occurrence of a fault, there is a parity mismatch
between the output and the input of the Fredkin and
CQCA gates (i.e., parity of the input vector is not
equal to the output vector). This led us to conclude that
Fredkin and CQCA gates can detect concurrently
permanent fault by matching the parity. Since Fredkin
and CQCA gates are logically parity preserving, they
can detect also the transient faults. Hence, Fredkin and
CQCA gates can concurrently detect permanent as well
as transient fault based on parity preserving in
molecular QCA. In CMOS circuits, parity match is
checked as A B C=P Q R.. However,
implementing the XOR gate in QCA is costly as the
process requires 3 majority gates. In QCA,
implementing A B C would require 6 majority
gates and similarly P Q R would require 6 majority
gates. Thus, comparing A B C=P Q R would
require a total of 12 majority gates.
 In order to check the parity mismatch we propose
an alternative strategy to use majority voter for input
vector and minority voter for output vector. Let
D=MV(A,B,C) where D is the output of the majority
gate and A,B,C are the input of the CQCA gate. Let
S=mV(P,Q,R) where S is the output of the minority
voter and P,Q,R are the output of the CQCA gate.
Thus when there is no fault D will be complementary
to S, and when there is a fault D will be same as S. The
minority voter required can be designed by
complementing the majority voter or as a novel design
proposed in [13]. The proposed approach requires only
2 majority gates to compare the input and output of
conservative CQCA gate. An example of the proposed
approach is demonstrated for CQCA gate in Fig. 6
(The strategy is also applicable for Fredkin gate). The
CQCA gate along with the majority and minority voter
will be referred to as conservative testable block
(CTB) in this paper. The reason for generating S and
D as complementary in case of fault free condition is
to make use of 2 pair 2 rail checker in comparing them.
It can be argued that majority and minority voter used
for generating D and S may have faults leading to
incorrect results. Hence fault-tolerant majority gate are
required, one of its design is described in [3]. The
correct outputs D and S can be also be generated by
using triple modular redundancy approach (TMR) for
majority and minority voting [14]. The design of 2
pair 2 rail checker and its use to detect the fault is
discussed in the next section.

Figure 5. QCA layout of CQCA gate

Figure 6. Conservative testable block

Table 2. Fault patterns in CQCA Gate

Input
Vector

Fault
Free

Fault Patterns

1 2 3 4 5 6 7 8
a0 a0 a0 a0 a0 a0 a0 a2 a0 a0

a1 a1 a3 a0 a3 a1 a1 a1 a0 a0
a2 a1 a3 a0 a1 a3 a3 a3 a1 a1
a3 a3 a3 a3 a1 a1 a3 a3 a3 a2
a4 a4 a4 a4 a6 a6 a4 a4 a4 a5
a5 a6 a4 a7 a6 a4 a4 a4 a6 a6
a6 a6 a4 a7 a4 a6 a6 a6 a7 a7
a7 a7 a7 a7 a7 a7 a7 a5 a7 a7

5. 2 pair 2 rail checker

The 2 pair 2 rail checker is required for testing that the
output D and S generated by the majority and minority
voting, respectively, are complementary or not. The
error checking functions required in the 2 pair rail
checker are E1=X0Y1+Y0X1 and E2= X0X1+Y0Y1;
where X0/Y0 & X1/Y1 are complementary.
 The 2 pair 2 rail checker produces the
complementary output at E1 & E2 if the input passed
to it are complementary. If the input are not
complementary, the output E1 & E2 will be identical.
We are also presenting a design of 2 pair 2 rail checker

514

based on MV QCA gate in Fig. 7. To the best of our
knowledge, this is the first ever reported QCA design
of 2 pair 2 rail checker. This design features 6 MV
gates. Figure 8 shows the testing of conservative
testable blocks (CTB) as described in Section 4 with 2
pair 2 rail checker. The output D and S (D1 and S1 in
Fig. 8) of one testable block will be the input X0 and
Y0 of the 2 pair rail checker. The other testable block
output, D and S (D2 and S2 in Fig. 8) will form the
other input X1 and Y1. Thus, 2 pair 2 rail checker can
check 2 testable blocks at a time. The cascading of the
2 pair 2 rail checkers is done in a tree fashion, so that
only the final 2 output are externally observable.

Figure 7. QCA design of 2 pair 2 rail checker
(MV represents majority voter)

Figure 8. CTB testing using 2 pair 2 rail
checker (2 CTBs can be tested with 1 checker)

6. Comparison of Fredkin and CQCA gate

Table 3 shows the comparison between the Fredkin
and CQCA gates. In Table 3, since the number of
clocking zones required to design CQCA conservative
gate is less, it will be faster compared to Fredkin gate.
The total number of QCA cell required in CQCA gate
is only 47% of cells required by Fredkin gate and the
area occupied by CQCA is only 29% of the area

occupied by Fredkin gate (Fredkin gate requires 246
QCA cell with the area of 0.37 um2 while CQCA
requires 117 QCA cell with the area of 0.11um2).
Thus, the proposed CQCA gate excels Fredkin gate in
all aspects.

6.1. Simulations for verification

The designs were verified using QCADesigner ver.
2.0.3 [9]. In the bistable approximation, we used the
following parameters: cell size=18 nm, number of
samples=182800, convergence tolerance=0.001000,
radius of effect=41 nm, relative permittivity= 12.9,
clock high=9.8e-22, clock low=3.8e-23, clock
amplitude factor=2.000, layer separation=11.5000nm,
maximum iterations per sample=1000.

Table 3. A comparison of Fredkin and CQCA

 Fredkin CQCA
Clk Zs 4 2
MVs 6 2
Total Cells 246 117
Area 0.37um2 , where

L=0.4812um and
W= 0.76984um

0.11um2 , where
L=0.30012 um
W= 0.36454um

6.2. Comparison on benchmark functions

In order to have to have the comparison of the Fredkin
and proposed CQCA gate for logic synthesis, we have
implemented thirteen standard three variable Boolean
combinational functions proposed in [4] for molecular
QCA. These thirteen functions cover all the 256
Boolean functions for three variables. Table 4 shows
the comparison between the two by synthesizing these
13 standard functions. It requires a total of 246 MVs
and 136 clock zones to implement the standard
functions using Fredkin gate. While it requires only 86
MVs and 62 clock zones when these standard
functions are implemented with proposed CQCA gate.
Thus implementing with CQCA achieves a reduction
of 65% and 54.4% in terms of MVs and clock zones,
respectively, which shows that CQCA gate performs
better than Fredkin gate in terms of speed and area.

7. Conclusions

We propose the use of conservative logic gates to
design concurrently testable circuits for molecular
QCA. CQCA gate as presented shows that it is better
than most popular Fredkin gate in terms of area and
speed. The results are supported by synthesizing
standard benchmark functions.

515

Table 4. Synthesis comparison of thirteen standard functions

 A novel strategy of majority and minority voting
mismatch is proposed to detect fault in the input and
output of the conservative gates for molecular QCA.
The design of 2 pair 2 rail checker is presented for
molecular QCA for the first time ever time in
literature. In conclusion, the proposed CQCA gate is of
great importance to fault susceptible molecular QCA
nano-computing.

8. References

[1] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and

G. L. Snider, “Realization of a functional cell for
quantum-dot cellular automata,” Science,vol. 277, pp.
928–930, 1997.

[2] P. Tougaw and C. Lent, “Logical devices implemented
using quantum cellular automata,” J. Appl. Phys., vol.
75, no. 3, pp. 1818–1825, 1994.

[3] A. Fijany, B.N. Toomarian, “New Design for Quantum
Dots Cellular Automata to Obtain Fault Tolerant Logic
Gates”, Journal of Nanoparticle Research, vol. 3, pp.
27-37, Feb. 2001.

[4] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, "A
method of majority logic reduction for quantum cellular
automata," IEEE Trans. Nanotechnol., vol. 3, no. 4, pp.
443--450, Dec. 2004.

[5] X. Ma, J. Huang, C. Metra, F.Lombardi, “Reversible
Gates and Testability of One Dimensional Arrays of
Molecular QCA”, Springer Journal of Electronic
Testing, Vol.24, No. 1-3, pp. 297-311,June, 2008.

[6] M. B. Tahoori, J. Huang, M. Momenzadeh, and F.
Lombardi, “Testing of quantum cellular automata,”
IEEE Trans. Nanotechnol., vol. 3, no.4, pp. 432–442,
Dec. 2004.

[7] P.Gupta, N.K. Jha, L.Lingappan, "A Test Generation
Framework for Quantum Cellular Automata Circuits",

IEEE Trans. VLSI Syst., Vol. 15, no.1,pp. 24-36, Jan
2007.

[8] M. Momenzadeh, M. Ottavi, F. Lombardi, "Modeling
QCA defects at molecular level in combinational
circuits", Proc. DFT in VLSI Systems, Monterey, CA,
USA, 3-5 Oct 2005, pp. 208–216.

[9] http://www.qcadesigner.ca/
[10] T. Tanamoto et al.,"Quantum effect device", United

States Patent 5710436, Jan 1998.
[11] R. K. Kummamuru et al., "Operation of a Quantum-Dot

Cellular Automata (QCA),Shift Registers and Analysis
of Errors", IEEE TRANS. Electron Devices, Vol. 50,
No. 9, pp 1906-1913, Sep. 2003

[12] H. Thapliyal and N. Ranganathan, “Testable Reversible
Latches for Molecular QCA”, Proc. IEEE NANO 2008,
Arlington,TX, Aug 2008, pp. 699-702. (invited paper
after peer review process)

[13] S. Roy, B.Saha and B.K Sikdar,"Design and
Characterization of Minority Gate as a Universal Logic
for Quantum-Dot Cellular Automata", Journal of
Computational and Theoretical Nanoscience, Vol.3,
No.5, pp. 684-695,Oct 2006.

[14] T. Wei,K. Wu, R.Karri and A. Orailoglu, "Fault tolerant
quantum cellular array (QCA) design using Triple
Modular Redundancy with shifted operands",Proc.
ASPDAC 2005, Shanghai, China, Jan 2005, pp.1192-
1195

[15] E. Fredkin, T Toffoli, “Conservative Logic”,
International Journal of Theor. Physics,
21(1982),pp.219-253.

[16] M. Ottavi, L. Schiano, and F. Lombardi, "HDLQ: A
HDL Environment for QCA Design", ACM Journal on
Emerging Technologies in Computing Systems, Vol. 2,
No. 4, pp. 243–261, Oct. 2006.

[17] M. Momenzadeh, J. Huang and F. Lombardi, “Defect
Characterization and Tolerance of QCA Sequential
Devices and Circuits,” Proc. Defect and Fault Tolerance
in VLSI Systems, CA, Oct 2005. pp. 199-207.

Standard Function

 Fredkin Implementation

CQCA Implementation

of Fredkin # of MVs Clk Zs # of CQCA # of MVs Clk Zs
1 F=ABC 2 12 8 2 4 4
2 F=AB 1 6 4 1 2 2
3 F=ABC+AB’C’ 3 18 12 3 6 4
4 F=ABC+A’B’C’ 4 24 12 6 12 8
5 F=AB+BC 2 12 8 2 4 4
6 F=AB+A’B’C 5 30 16 5 10 8
7 F=ABC+A’BC’+AB’C’ 6 36 16 6 12 6
8 F=A 1 6 4 1 2 2
9 F=AB+BC+AC 5 30 16 1 2 2

10 F=AB+B’C 1 6 4 3 6 4
11 F=AB+BC+A’B’C’ 6 36 16 6 12 8
12 F=AB+A’B’ 2 12 8 4 8 6
13 F=ABC+A’B’C+AB’C’+A’BC’ 3 18 12 3 6 4

 Total 41 246 136 43 86 62

516

Session 8B

Timing Analysis and Optimization

An Approach to Measure the Performance Impact of Dynamic Voltage
Fluctuations Using Static Timing Analysis

Vishweshwara R, vishwa@ti.com
Texas Instruments India

Venkatraman R, rvenkat@ti.com
Texas Instruments India

Udayakumar H, uday@ti.com
Texas Instruments India

Arvind N V, aravind@ti.com
Texas Instruments India

Abstract

Design closure for predictable silicon performance is
emerging as the most challenging digital VLSI design prob-
lem in advanced deep-submicron technology nodes. One
of the significant problems is effective power-grid distribu-
tion, and the comprehension of the impact of voltage drops
in the power grid on design timing and performance. This
paper proposes a way by which the complex interactions
between timing and dynamic power drops can be compre-
hended without being significantly pessimistic, while also
not losing out on accuracy. We highlight the heuristics that
we have used in this regard to reduce the complexity of the
timing analysis, and to reduce the overall computation time.
The overall method uses conventional analysis approaches
for dynamic voltage-drop and timing. This method proposes
options for comprehending effects of dynamic voltage drops
during traditional design-closure methods and also high-
lights means of validating any assumptions made. Compar-
ison results between performance degradation due to volt-
age drop assumptions and the traditional margin based ap-
proaches show significant reduction in the pessimism and
these are presented in this paper.

1 Introduction

Effective power-grid design has been one of the key chal-
lenges for high-performance digital designs. One of the key
aspects of importance in this context is the measurement of
the impact of the power grid on design performance. While
a poorly designed power grid can cause a significant degra-
dation of design performance, it is usually difficult to assess
the impact of the power-grid quality on timing.

In this paper we look at options to analyse the impact
of time-varying voltages on design performance using con-
ventional power-grid analysis and timing-analysis methods.
The next section presents the motivation behind this work

in detail, where we also highlight work already published in
this area. Section-III presents the options we have pursued
to quantify the performance impact of time-varying volt-
ages in the power-grid. We present the results of our work
on real designs in the subsequent section. We conclude with
future work that we could extend this work to.

2 Motivation

The main goal of this work is to understand and quantify
the impact of time-varying voltages in the power-grid on the
design performance. Traditional approaches have been to
look at average (static) power-drop on the grid and to model
the impact of this drop on the voltage by suitably scaling the
delays of the cells in the design. While analysing for the dy-
namic voltage fluctuations on the grid has also been a stan-
dard design practice, one of the significant gaps in design
approaches has been the inability to define a target for the
voltage drop that would guarantee the performance targets
of a design. One of the options for this has been detailed
SPICE simulations to understand the overall performance
implications, but this is usually resource intensive and quite
impractical for very large designs.

There have been a few publications in the literature on
this topic of voltage-aware timing analysis. [1] proposes a
path-based solution, but this does not address the problem
of the analysis being computationally intensive when ap-
plied to a full system-on-chip (SoC) design. Another ap-
proach for timing analysis comprehending voltage drops is
proposed in [2]. This method uses iterative analysis to im-
prove accuracy, and also requires characterisation of the cell
library for higher voltage drops, while for lower values of
the drop, the analysis uses a linear scaling of the delays with
voltage drops. An alternative approach is presented in [3]
where determining the impact of voltage fluctuations on de-
lay is formulated as a constrained non-linear optimisation
problem where the currents drawn from the supply are the
optimisation variables. This method depends on gate-level

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.45

519

simulation data to help generate the information of currents
in the logic blocks. This approach needs changes to the
characterisation data and mandates multiple static timing
analyses to ensure convergence. Also, this method helps in
computing the delay changes for a given voltage drop tar-
get, and does not necessarily ensure that the actual voltages
seen are comprehending in the timing analysis. We propose
a frame-work where conventional static timing analysis so-
lutions can be used to analyse a timing path in the context
of the instance-based time-varying voltages computed from
a power-grid analysis

3 Timing Analysis

To analyse a digital design represented as a netlist of
standard cells and conventional macros, we start with the
assumption that the voltage variations over time are avail-
able - these are usually the result of switching scenario
based design analysis for voltage drops [4]. We also as-
sume that given a voltage value, static timing analysis ca-
pabilities exist to compute the delays of cells at the volt-
ages specified [5]. Given these assumptions, the problem of
analysing for timing impact of voltage variations is reduced
to a problem of identifying an appropriate voltage value for
each instance in a design at which the timing impact can be
assessed, and the accuracy of such an approach is directly
dependent on the accuracy of the voltages thus used. The
outline of this methodology is depicted in Fig.1

STA Dynamic IR drop

Analysis

Timing

Windows

Voltage

Waveforms

Processing

Cell Specific

Voltages

STA

Solution

Proposed

Fig.1 Methodology outline

The proposed methodology involves path based timing
analysis. Some graph based timing analysis approaches for
simultaneous analysis of multiple paths, with some amount
of pessimism, using the graph based timing analysis are also
presented.

QD D Q
Launch Clock

Path

Data Path

Capture Clock Path

Common clock path

Fig.2 A standard register to register timing path
Some of the terminologies used in this paper are defined in
this section. Fig.2 shows a standard timing path between
2 registers. Capture Clock Path: The path as traced by the
clock from the source to the capture register.
Launch Clock Path: The path as traced by the clock from
the source to the launch register.
Data Path: The path traced by the signal from the launch
register to the capture register.
Clock Common Path: The part of the path common
between the launch and capture clock paths.
Timing Window: It is a window between a minimum and
maximum times where a transition can occur.
Max Path Delay: The maximum delay a path can incur.
Min Path Delay: The minimum delay a path can incur.
Voltage Waveform : The instantaneous difference between
the power and ground voltages seen by a cell.

We now discuss the current and the proposed approaches
that can be used for timing analysis.

3.1 Current Approach

A simple and straight-forward approach is to assume that
the voltage waveforms through the duration of power grid
analysis are directly relevant for timing computation. From
the voltage waveforms of each cell, compute the Vmin and
Vmax for each cell as the absolute minimum voltage and
the maximum voltage seen by the cell during the whole du-
ration of analysis. The Vmin hence computed will be used
for max delay condition for the cell and the Vmax will be
used for the minimum delay condition for the cell. Thus
for setup analysis, the launch clock path and the data path
will work on the Vmin voltage and the capture clock path
will work on the Vmax voltage. The converse will happen
for hold analysis. In general, the Vmin and Vmax numbers
can be the absolute minimum and maximum voltages that
could otherwise be assumed for the design under consider-
ation. This is normally how designs are timed. In general,
for setup timing analysis, the clock common paths should
be operating at different voltages when evaluating launch
and capture paths, as the IR drop numbers could differ for
the same cell at different clock edges.

The advantages of this technique are that the method is
straight-forward, and that the approach is independent of
the design timing mode. However, this method is likely to

520

be pessimistic in terms of assessing performance impact as
only the voltage variations around the duration of switching
are likely to impact the delay through a circuit, and that
the absolute minimum and maximum values only bound the
voltage of relevance.

3.2 Proposed Solution

3.2.1 Using Timing Windows

One way to reduce pessimism in the voltage computation is
to analyze the voltage waveforms of the cells in the back-
drop of their switching scenarios. Ideally, what affects the
delay of a switching circuit is the voltage the circuit sees
during its switching. Knowing the path based timing win-
dow [6] of switching for a cell, we could compute the Vmax
and Vmin for any cell as the maximum and minimum volt-
age in the cell’s timing window as against the full wave-
form. These voltages can now be used for static timing anal-
ysis. The assumption here is that accurate voltage wave-
forms corresponding to the scenario of operation of the de-
sign is available.

The advantages of this technique are that this approach is
computationally not intensive, while simultaneously remov-
ing a good amount of pessimism in timing analysis. How-
ever, the approach is likely to be useful only if the timing
window for an instance is small enough compared to the full
duration of analysis. Considering that the timing window of
a cell is dependent on the fanin cone, this assumption may
not be true for design cells with large fanin logic cones. Fig
3 shows the effect of large fanin cones to the timing window
at a node.

A

C

D

Y

TW at A

TW at B

TWat C

TW at D

TW at Y

B

Time

Fig.3 Effect of fanin cones on the timing window at a node.
Also, for designs with multiple clocks, this approach would
necessitate consideration of the overall switching duration
independent of clocks, resulting in some amount of pes-
simism to be retained in the analysis.

3.2.2 Shrinking the Timing Window for Voltage Com-
putation

In this section, we look at the two options causing potential
pessimism: large timing windows for some cells, and de-

sign scenarios with multiple clocks. Fig.4 shows the time-
variant voltage of a cell instance and the timing window of
consideration.

time

voltage
cell

0.99

1 cell delay 1 cell delay

Cell Timing Window (From Path based STA)

VminVmax

TW min
TW max

Fig.4 A sample time variant voltage for a cell and its timing
window
If TWmax is the right edge of the timing window, then tran-
sitions happening at this t=TWmax on the launch clock and
data path will be the most constraining for setup analysis.
Similarly, transitions happening at t=TWmin on the capture
clock path will be most constraining for setup analysis.
The converse will be good for hold timing analysis. To
compute a ”realistic” Vmin, we could consider a small
window around TWmax. The width of this small window is
assumed to be 1 cell delay (Td) of the corresponding cell.
This essentially means that there can not be a lower voltage
before t=TWmax-Td which can cause a delay degradation
of the cell beyond 100%. Thus
Vmax = minimum voltage seen by the cell b/w t=TWmax-
Td and t=TWmax
Vmin = maximum voltage seen by the cell b/w t=TWmin
and t=TWmin+Td.

These voltages are now annotated on the cells and static
timing analysis is performed. Note that for every cell, the
timing window is analyzed at the output pin of the cell.
Also, only for the capture flop, the minimum voltage in the
timing window corresponding to the clock pin needs to be
used so as to account for the worst setup time possible.

This method assumes that the delay degradation on a cell
instance cannot be more than 100% due to voltage consid-
erations alone. This is definitely a practical assumption to
make as the voltage effects in designs rarely causes more
than 10-15% degradation in timing.

This definitely makes the timing window considered for
assessing voltage variations realistic, while requiring ad-
ditional processing of the voltage waveforms. Since we
now analyse only one timing window at a time, we still
have a limitation of needing separate analyses for different
clock phases of interest, where the related timing windows
for switching could be different. Another main drawback
of this approach is that timing degradation that propagates

521

through the logic cone is not comprehended in the impact
analysis, and hence there is a new error component that is
introduced in the timing computation.

3.2.3 Performing Iterations for Convergence

We now look to address the limitation of the previous ap-
proach not comprehending progressive delay degradation
on a timing path as a result of voltage fluctuations. One way
to solve this problem is to do an iterative timing analysis.

After doing a static timing analysis with Vmax and Vmin
computed as described above, we could recompute the tim-
ing windows of all the cells. The Vmax and Vmin are recal-
culated using these new timing windows and another round
of static timing analysis is done. This loop can be repeated
until convergence is achieved.

Convergence criteria : We show that there is a point
of convergence in iterative timing analysis using the above
technique. We define that the timing analysis has converged
if and only if the timing numbers for every cell on the
path across two consecutive iterations of analysis remain
the same or if the timing delta across a given iteration comes
out positive compared to the previous analysis.

We can show this to be true and valid logically.

• Assuming that across iterations there does come out a
negative timing delta, we understand that the analysis
has not converged.

• However, if the timing deltas turn out to be zero, then
the timing windows considered for identifying volt-
ages of interest have not changed, hence any succes-
sive iteration would only continue to indicate the same
timing numbers, directly indicating convergence.

• On the other hand, if the timing deltas across itera-
tions do come out positive, it just shows that the more
pessimistic of voltages was actually comprehended in
the previous iteration, this previous iteration being the
point of convergence. Any further analysis would only
get the timing numbers closer to the previously anal-
ysed point as the minimum/maximum voltages of in-
terest would only tend to the numbers used in the pre-
vious iteration.

While the feedback mechanism makes the flow robust and
ensures accuracy of results, this method is prohibitive in
terms of compute time for realistically large designs, more
so considering that the approach would still handle only one
clock phase of interest in multi-clock design scenarios.

3.2.4 Progressive Timing Window Adjustment for
Voltage Computation

Considering the definition of the point of convergence
above, and the propagation of the delay degradation through

logic cones, we now look to improve upon the definition
of the actual window of timing used for assessing voltage
fluctuations. We propose a heuristic approach, where we
intend to find minimum/maximum voltages around the tim-
ing window edge of interest (TWmin/TWmax). Previously,
we proposed the use of a small window on either side of
these edges, we now propose that we could avoid the it-
erative analysis by considering an augmented window on
either-side of these edges. Fig.5 shows the modified timing
window as per the new approach.

time

voltage
cell

0.99

1 cell delay 1 cell delay

Cell Timing Window (From Path based STA)

Vavg

VminVmax

TW min
TW max

Cumulative TW shift due

delay degradation at previous

stages

Timing window used for

Vmin calculation

Cumulative TW shift due

delay degradation at previous

stages

Timing window used for

Vmax calculation

T1 T2T3 T4

Fig.5 Cell voltage waveform and its modified timing window

For the nth cell of a path the Vmin and Vmax is computed
as:

Vmin(n) = minimum voltage in the timing window be-
tween T1 and T2 where,

T1 = TWmax(n)− Td(n)

T2 = TWmax(n) + Tshift cum max(n)

Vmax(n) = maximum voltage in the timing window be-
tween T3 and T4 where,

T3 = TWmin(n)

T4 = TWmin(n) + Td(n) + Tshift cum min(n)

Where:
TWmax(n)= Max edge of the timing window of the nth

cell of the path after STA.
TWmin(n)= Min edge of the timing window of the nth cell
of the path after STA.
Td(n)= Delay of the nth cell at the nominal voltage.
Tshift cum max(n)= The cumulative shift in the timing
window in the maximum corner at the nth stage due to
voltage degradation along the path given by the following
formula.

Tshift cum max(n) = Tshift cum max(n− 1) +

δD(n− 1)

Tshift cum max(0) = 0

522

δD(n) = Delay delta for the nth cell due to voltage drop.
STA using CCS scaling [7] techniques can compute this.

Alternatively, a worstcase voltage-delta to delay-delta
scale-factor can be calculated for the library and used for the
computation of δD(n). It is to be noted that the assumption
of a worst-case scale-factor for delay dependence on voltage
has only an indirect effect on the results. This effect can be
shown to be pessimistic by assessing the timing-stage based
delay degradation and ensuring that this is smaller than the
timing window shift as predicted by the use of the scale-
factor.

Given these newly computed voltage numbers, we can
now estimate the voltage-induced timing degradation di-
rectly in a single iteration.

This technique now avoids the iterative analysis in en-
tirety, with the only overhead of a preliminary design in-
dependent library analysis to compute the scale factor used
for delay degradation estimation. In case the analysis shows
that the shift in arrival times at a particular node in a tim-
ing graph is worse than what was assumed using the scale-
factor, the analysis iteration can be repeated to reach con-
vergence however, this is likely to be a remote possibility
so long as the scale factors are estimated in a conservative
fashion. Also, the CPU time for computing the cell volt-
age from the waveforms is negligible and it is linear to the
number of cells on the path of consideration.

3.2.5 Enabling simultaneous analysis of multiple paths

We now try to address the problem of not being able to real-
istically comprehend multiple clock phases of relevance, as
also trying to see if the voltages for each cell can be made
independent of the paths being analysed.

Multiple paths can be analysed in the same analysis
session if we can have one voltage annotation per cell
that accounts for all paths passing through that cell. The
following approach can be used for this purpose:
1. Get all possible timing windows at the output of every
cell. This includes all clock domains and edges.
2. Using the method specified in the above technique,
compute the min voltage in each of the timing windows.
The minimum of these voltages can be used as Vmin for
STA. A similar approach can be used for Vmax.

It is to be noted that this method will not be the most
accurate but is just a means of trading off run-time cost with
pessimism in the delay degradation assessment.

4 Results

The various techniques presented above were used in a
large real-life design. This design was in the 90nm node,

and was a multi-core chip of 202 sq.mm. area, designed in
a 7-layer flip-chip process. Paths of various clock groups
across the design were considered for analysis. The run
time and CPU requirements depend on the size of the design
being analysed. The analysis runtime was around 2hours for
the design mentioned using a 64bit Linux box and 16GB of
memory. Fig6 shows the slack for each of these paths, with
each of the techniques described above.

Fig.6 Slack distribution for 6 paths using various techniques.

Fig7 shows the path delay degradation due to voltage
drop with various techniques as a percentage of the path
delay in the normal static timing analysis.

As can be seen, the slacks for the paths for each of
the techniques become more positive as we refine the tech-
niques. Also, for the last technique described wherein mul-
tiple paths can be analysed simultaneously, the slack re-
duces due to the pessimism we added in the voltage com-
prehension. Note that the path delay degradation does not
go beyond 6% which tallies with our margin assumption.

Fig.7 Profile of Path delay degradation with various tech-
niques.

523

SPICE analysis was done on a few paths for correlation
analysis, the results for one the paths is presented. The volt-
age waveform obtained from dynamic IR drop analysis was
used for every cell of the path in the SPICE netlist. Sample
waveform for one of the buffer cells in the path is shown in
Fig8.

Fig.8 Voltage waveforms for a buffer on a sample path during
SPICE analysis.
The path slack for the analyzed path with various techniques
are summarized below.

• Path slack reported by margin based STA : 2.5678ns.

• Path slack reported by the proposed flow (Section
3.2.5) : 2.826ns

• Path slack reported by SPICE analysis : 2.9850ns.

So the proposed methodology removes significant amount
of pessimism inherent in the margin based STA approach.
The run time and CPU overhead of the approach on a nor-
mal static timing analysis is also minimal. The above results
also highlight improvement of path slack due to lower volt-
age drops which could effectively be used for critical path
analysis.

5 Conclusion and Future Work:

We have proposed a solution to gauge the performance
impact due dynamic voltage fluctuations in the design. The
above methodology enables us to directly measure the im-
pact of power network robustness on the system perfor-
mance. Also, this framework can be used to validate qual-
ity of the power network for a given performance target.

The methodology enables reduce significant pessimism as-
sociated with the conventional margin based approach to
account for IR drop. This should help better performance
correlation between static timing analysis estimates and as
observed on silicon. Also, this technique could be effec-
tively used to analyse and signoff critical paths of the de-
sign, taking the benefit of a good quality power network if
applicable.

As future work in this regard we need to correlate the
performance predicted by the proposed methodology and
that observed on silicon. As a first step, we plan to cor-
relate the results with SPICE simulation on a wider range
of paths. The effort for this is ongoing. The methodol-
ogy further needs to be refined to handle cells with multi-
ple rails like memories/IOs effectively. Handling crosstalk
noise induced delay effects is another area of future work
in this direction. The methodology does not account for
the changes in the voltage waveform due to shifts in tim-
ing window/arrival times due to voltage degradation. This
is something we plan to look into as an iterative approach.

References

[1] D Kouroussis, R Ahmadi, , and F.N. Najm. Voltage-aware
static timing analysis. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 25:2156 – 2169,
October 2006.

[2] M Graziano, C Forzan, and D Pandini. Including power sup-
ply variations into static timing analysis: Methodology and
flow. SOC Conference, pages 229 – 232, September 2005.

[3] S Pant and D Blaauw. Static timing analysis considering
power supply variations. International Conference on Com-
puter Aided Design, pages 365–371, November 2005.

[4] S Lid, M Nagata, K Shimazak, K Satod, M Sumita, H
Tsujikawa, and A.T. Yang. Full-chip vectorless dynamic
power integrity analysis and verification against loouv/loops-
resolution measurement. Custom Integrated Circuits Confer-
ence, pages 509–512, October 2004.

[5] Solvnet Article. CCS Timing. Homepage. https://
solvnet.synopsys.com/.

[6] Aravind NV, Rajagopal KA, Ajith HS, and Suparna Das. Path
based approach for crosstalk delay analysis. VLSI Design,
pages 727–730, 2004.

[7] Solvnet Article. CCS Voltage and Temperature Scaling
for Timing and Noise. https://solvnet.synopsys.
com/.

524

Optimisation Quality Assessment in Large, Complex SoC Designs –
Challenges and Solutions

R.Venkatraman*, Shrikrishna Pundoor**, Arun Koithyar*, Madhusudan Rao*, Jagdish C.Rao*

* Texas Instruments India Ltd., Bangalore, INDIA
** Analog Devices India Ltd., Bangalore, INDIA

rvenkat@ti.com, shrikrishna.pundoor@analog.com, arun.koithyar@ti.com, bgm-rao@ti.com, j-rao@ti.com

Abstract

Design optimisation of large system-on-chip
(SoC) designs presents significant challenges in terms
of the number of care-abouts in today’s chip design
scenario. While optimisation approaches have focused
on key aspects like design timing, power and
routability, there are several critical aspects that do
not get modelled by the abstraction approaches used
in current solutions, resulting in local areas of
potentially bad quality of results (QoR). The definition
of design quality metrics for assessing various aspects
of interest thus comes out as a key requirement in
designs today. In this paper, we highlight the key
challenges in the design of large, complex SoCs and
propose some design metrics that identify problem
areas for improvement. We highlight how
conventional abstraction schemes tend to mask such
problems when looking at design-level averaging for
the relevant cost-functions. We present the results of
these metrics and also show why not resolving some of
these potential bottle-necks could lead to significant
challenges in overall design closure.

I. Introduction

With increasing chip sizes and shrinking
technology nodes, the complexity of design
optimisation continues to grow. Conventional
optimisation techniques break-down when expected to
optimise long interconnects and handling macro-
dominated floor plans. In this paper, we analyse select
practical problems in chip design closure and highlight
the challenges that need be addressed with today’s
complex designs and propose design metrics that help
identify problem areas and provide better diagnosis
capabilities to address QoR gaps.

The rest of the paper is organised as follows.
Section-II details the motivation behind this work,
where we also highlight recent work done in the area
of concurrent multiple cost-function optimisation. In

section-III, we identify select problem areas and
challenges and propose metrics to quantify the quality
of optimisation, indicating results that were used to
improve design QoR. Section-IV summarises these
results, concluding the paper, with our thoughts on
how optimisation approaches could be improved upon.

II. Motivation

Current-day design complexities tend to
accentuate gaps in some of the optimisation algorithms
used for chip design. While the focus of these
algorithms has always been on multi-cost optimisation
(for e.g., placement algorithms have been concurrently
optimising for timing and congestion for some time
now), the complexities of design scenarios like large
die-sizes, significantly large macro component in the
design (like the use of memories, pre-designed hard-
macros etc.), the significance of the interconnect in
design closure and the importance of estimating the
effects correctly early in the design phase, and a large
increase in the bus-widths and the associated
complexities all add to concurrent and effective
optimisation challenges.

Design optimisation and its various components
viz. placement, buffering, global-routing and
optimisation are well researched-upon topics,
considering different criteria for design optimisation.
[1] proposes a means of interconnect planning in a
design through block buffer planning. This highlights
the fact that the feasible region for buffer placement is
large, even in cases of tight delay constraints. An
algorithm for identifying optimal buffer locations is
presented in [2]. This work highlights ways to identify
optimal buffer locations while balancing overall
placement densities. This helps in minimising the
placement impact of subsequent optimisation
techniques, so that the buffers do not move away from
the optimal locations. The need for custom
optimisation techniques to handle specific design
scenarios in complex designs is highlighted in [3,5-
12]. A refinement-based design approach for shrinking

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.52

525

process nodes, given the problems in conventional
timing-closure approaches and design variable
dependencies is highlighted in [4].

This paper focuses on assessment metrics for
several practical scenarios seen in today’s designs.
While the authors believe that several of these are
straight-forward definitions of sub-optimality, the
point we would like to highlight is that several
commercial automation solutions today lose sight of
these problems in the abstractions of cost metrics used
for the targeted holistic solutions. Hence an awareness
of design issues with respect to some of these problem
scenarios would help in faster design closure and in
overall better QoR.

III. Optimisation Assessment & Metrics

We broadly classify the definition of metrics into
four categories, according to the typical physical
design flow: standard cell placement assessment,
repeater synthesis assessment, optimisation quality
assessment and route-quality assessment. The
scenarios shown in the following sections are all from
a 202 sq.mm., 90nm, multi-core flip-chip design
which posed considerable timing-optimisation and
routability challenges to the optimisation environment.

A. Placement assessment

Conventional placers optimise the design for
timing, congestion and wire-length. This being an NP-
complete problem, the heuristics used during
placement optimisation do impact the quality of
optimisation significantly. We propose a simple
assessment of placement quality of identifying if logic
in the fanout cone between two identified netlist cells
actually get placed in the minimum-containing
rectangle (MCR) of these two cells (Fig.1)

Fig.1 Sub-optimal placement. S1, S2 are source for cell
under consideration, where as K1 and K2 are sinks for the
same. Dotted line represents the bounding box drawn by the
farthest source/sinks. The cell under consideration is placed
outside the bounding box

We propose to do a placement assessment for
every cell in the design by thus looking at the
immediate predecessors in the fan-in cone and the
immediate successors in the fan-out cone. The
following pseudo-code highlights this simple
procedure.

Let D = [Set of all drivers in the design]
Let D’= NULL
For every d ∈ D {
 Let S = [Set of all immediate successor cells of d]
 Let P = [Set of all immediate predecessor cells of d]
 M = Minimum containing rectangle(P and S)
 M′= M, expanded with a known tolerance δ
 D’ = D’ U {d} if { d not placed in M′}
}
Return D′

In this, we allow a small tolerance for the

placement by expanding the MCR by a factor δ. While
this relaxes the goals for the check, the authors have
found this efficient in comprehending practical
constraints during the assessment. A distance equal to
about 5 standard-cell placement rows has been found
to be sufficient for this tolerance when analysing large
fan-in and fan-out cones. While the factor δ itself
could be made cell-count dependent (i.e. dependent on
the size of union of S and P: cell-count N = |S U P|),
the authors have not used such an approach in their
assessment. Fig.2 shows an instance of a real design
scenario of sub-optimal placement. While the reason
for the sub-optimality was actually high local
utilisation in the area of interest as seen from the snap-
shot, conventional solutions to the long-nets created
by poor placement would be to add more repeaters to
the design, further increasing the design utilisation,
resulting in a non-convergent design scenario or
overall poor QoR.

Fig.2 A practical sub-optimal placement. There are no
visible standard cell blockages in the region.

526

The real solution to problem scenarios like these
is to control cell placement to ensure that the local
utilisation in regions of interest does not cross an
upper-limit, which could be determined based on the
number of poorly placed cells as identified by the
proposed metric, and their distribution. It is to be
emphasised that conventional congestion relief and
wire-length minimisation techniques used as cost
functions in placement may not resolve problem
scenarios like the one in Fig.2.

B. Repeater synthesis assessment

(i) On-route buffering assessment. The placement
metric defined in III-A can be customised to assess
specific qualities of repeater trees. When analysing
design critical paths or areas of design congestion, we
typically find scenarios of inefficient repeater
insertion, with the repeaters (or repeater-chains) not
getting placed within a reasonable distance from the
minimum-containing-rectangle of the driver and the
sink cells under consideration, the interconnection
between which was the original candidate for repeater-
insertion. III-A can be customised to analyse all buffer
trees, with the MCR being defined by the pre-buffeing
driver and its sinks. This assessment highlights a
simple but useful means to assess poor buffering
topologies, which otherwise might not be noticed, but
would limit design entitlement in a given floorplan.

The authors would like to point out that in most
commercial solutions, design placement and repeater
synthesis are two distinct design optimisation phases,
which use very different algorithms and cost-functions
(wire-length, congestion, timing for placement; and
timing, area and design transition time constraints for
buffering). Hence a placement analysis of the
repeaters in the design (as proposed for the generic
case in III-A) would also be an independent useful
assessment.

(ii)Over-buffering metric. A standard-cell library
can be pre-assessed for optimal performance and
quality by analysing the drive capabilities of the
repeater cells, and understanding an optimal typical
buffering distance, given the routing assumptions.
Given this information, and given the assessment
method (i), we now can analyse whether a repeater,
even when optimally placed, is actually necessary or
not.

Let L =Optimal typical wire-length for repeater addition
Let D= [Set of non-buffer/inverter drivers in the design]
Overbuffered = null array
For every d ∈ D {
 Let S = [Set of all non-buffer/inverter sinks of d]
 Let B = [Set of all repeaters on the output of d]
 M = Minimum containing rectangle(d and S)

 M′= M, expanded with a known toleranceδ
 P = semi-perimeter of M′
 Expected buffer count, E = P/L
 Over-buffered(d) = TRUE if (E > size(B)), else FALSE
}

While the above could be directly applied if the
repeaters used are all of a given drive-strength, this
may need some considerations when we have
repeaters of different electrical drive capabilities. One
option in the latter scenario is to make the parameter L
dependent on the drive-strength, and analyse the
design on a cell basis:

Let L(r) = Optimal typical wire-length for repeater r

Electrically, the capacitive loading on the repeater
is what defines its optimality, and not the wire-length.
Considering that the loading is dependent on the layer
used for routing (as parasitic loads in DSM designs are
very dependent on the metal layer used), this particular
assessment could get tedious. To over-come this, the
authors propose a variant of this metric to first assess
the drive-strength of repeaters for optimality.

(iii) Over-driving repeaters. Knowing the optimal
driving distance for each repeater, or, consequently,
the maximum capacitive load for each repeater, we
could modify the definition of metric-(ii) above to
analyse whether given a known distance (and hence
the capacitive load under known routing assumptions),
the right drive-strength has been used. This metric is
very useful for assessing long interconnects in the
design which potentially cause significant routability
and timing optimisation challenges, and are vulnerable
to poor repeater QoR. Fig.3 shows a profile of a block
in the design, highlighting how many over-sized
repeaters exist in the design.

Fig.3 Drive strength histogram.

Reviewing the results of a section of repeater trees in
the design, we conclude that the trees actually have
several over-driven states, with potentially 50% of the

527

buffers over-driving by a factor of 2 or more,
compared to an optimal design scenario. These results
indicate potential design power dissipation issues that
could be alleviated by appropriately optimising the
repeater trees, with practically negligible impact to
design timing.

(iv) Repeater tree assessment. We now look to
combine the above metrics which individually assess
connectivity and library cell choice to help identify
potential issues in repeater tree construction on high-
fanout nets.

Ideally, the construction of a repeater tree should
result in as short an overall wire-length as possible,
which is possible only if the buffers all follow the
topology of the minimum Steiner tree (MST) for the
net. A common issue in conventional repeater trees is
an early fanout split in the tree, resulting in multiple
paths from the root of the tree reaching a local area
near the sinks (Fig-4).

Fig.4 Early bifurcation of repeater tree

We propose to identify such issues by a sliding

window technique to look for redundant nets of the
same logic in the repeater tree

Let D = [Set of non-buffer/inverter drivers in the design] |
(fanout > threshold)
Let W = Window size of interest
Let Bad_W = null array
For every d ∈ D {
 Let S = [Set of sinks of d]
 Let M = MCR(d and S)
 For every window w of size W⊂ M{
 If (w contains duplicate wires for the same signal* in the
same direction**){
 Add w to Bad_W{d}
 }
}
 Return Bad_W

Note:
*: This assumes the same logic in any unateness through the
repeater tree (inverted or non-inverted)
**: Horizontal or vertical

Fig.5(a) shows another real-design scenario with a
larger amount of redundancy due to the loops. This
unnecessarily increases the design routing congestion
causing other serious design quality issues like
routability and timing closure challenges. Fig.5(b)
shows what the ideally intended connectivity is when
the high-fanout net is routed without any repeater
insertion. In an ideal repeater synthesis scenario, the
repeaters need to follow the global route topology
without causing loops in the tree. The authors would
like to highlight that small deviations from this
topology are normally expected, which is what is
modelled in the placement assessment metric defined
earlier as a tolerance window.

Fig.5(a) Sub-optimal repeater tree with loops. The entire
tree shown here is post-repeater scenario of a single net.

Fig.5(b) Global route of the same high fanout net, which
ideally should be the routing topology to be retained even
after repeater insertion.

C. Route quality assessment

(i) Routing wire length deviation. Complex
floorplans dominated by many channels pose
problems at different stages of routing, that is from
estimates during placement, to global route and finally
detailed routing. Changes from a Manhattan estimate
to actual global route may impact the timing of a
design drastically. Although modern routers account
for many different constraints, the deviations exist in
numbers large enough to affect design quality and

528

warrants iterations or incremental refinement. Similar
deviations occur from global to detailed routing, this
time however, due to requirements of complex DRC
rules on the detailed router, more so in 65nm and
45nm technologies. The requirement of a wide-via, for
example, may dictate the route to use a different
floorplan channel compared to what was suggested by
the global router. We propose a metric where we
measure the wire-length deviations at these two levels
to isolate the timing/congestion problem that happens
only due to this mismatch in the wire-length. The
deviations are reported as a histogram of error
between Manhattan & global-routing estimated and
also between global and detailed routes.

Fig.6 Wire-prediction miscorrelation through the design
phase: Manhattan estimates to Global-routing estimates and
further on to detailed-routed wire-lengths

The assessment results from a reasonably large

congested block in the design (~147K nets) shown in
Fig-6 indicates that several nets have unexpected
detours and hence add to unpredictability in design
closure. Only nets longer than 20um have been
considered to ensure that the percentages are not
skewed by short-net observations. These results
clearly indicates that overall wire-length optimisation
in the presence of congestion and timing challenges
can potentially be sub-optimal for some nets (~3-4%)
in the design.

(ii) Routing predictability of critical nets. While the
previous metric does identify long detours, short jogs
do tend to get masked in the assessment. In the
detailed-routing phase, short jogs are created on nets
when addressing layout-design rule check (DRC)
errors. The DRC closure operations are usually not
timing-aware in most design environments. While this
has been a reasonable assumption to be made in earlier
technology nodes, sub-100nm designs actually pay a
penalty due to the via-resistances which are high in
these nodes. We propose a metric to assess timing

criticality of nets before, during and after the DRC
closure, to assess the impact, and to suitably guide the
DRC-closure algorithms to not impact critical nets of
interest. Fig. 7 shows an analysis of about 1000 stages
(cells + nets) of critical nets in a design, and the
corresponding delay (in picoseconds) change through
DRC-closure.

Delay change per stage

0
10
20
30
40
50

20 40 60 80 10
0

12
0

14
0

Delay Change in ps

N
um

be
r o

f S
ta

ge
s

Fig-7 Critical net routing predictability with DRC closure

D. Optimisation Quality Assessment

We now propose additional metrics to profile the
quality of optimisation in a design.

(i) Wire length Vs Slack metric. We propose to
identify outliers in the plot of a path slack against the
wire-length of a particular net under consideration. A
bad placement of cells in the critical path could result
in long wires, and unnecessary repeater requirements
or timing-closure challenges. Critical nets should
remain short enough to be shielded from layer-
assignment discrepancies at global/detailed routing
and any potential congestion-relief mechanisms which
could result in detours. Fig 8 shows a snap-shot of the
design through the optimisation phase. The encircled
points are the areas of concern where the optimisation
schemes need to ensure that relevant care-abouts are
comprehended for these nets.

(ii) Slew Vs Slack metric. We propose to review slew
plots against the corresponding slack at a given node
in the design as an aid to identify additional
optimisation issues and help find solutions. All nodes
in the design need to meet a maximum transition time
constraint, but timing critical nodes should ideally see
the best slews possible while non-timing-critical nodes
should be close to the worst transition-time constraint
as specified, to help optimise on design area and wire-
length. [12] proposes a power-optimisation technique
using such an analysis. Fig.9 shows a profile of this
assessment on a block in the design, which can also
help fine-tune critical-path optimisation.

Routing length assessment

0

20

40

60

80

100

120

140

160

180

 1
50

 - 2
00

 2
00

 - 2
50

 2
50

 - 3
00

 3
00

 - 3
50

 3
50

 - 4
00

 4
00

 - 4
50

 4
50

 - 5
00

 5
00

 - 5
50

 5
50

 - 6
00

 6
00

 - 6
50

 6
50

 - 7
00

 7
00

 - 7
50

 7
50

 - 8
00

Percentage difference

N
um

be
r

of
 n

et
s

Global vs. Manhattan estimates
Detailed vs. Global route estimates

529

Fig.8 Wire length Vs Slack histogram

Fig.9 Slew-slack histogram. It is to be noted that though the
design global target was 400ps, nodes with even +2ns slack
have very sharp slews.

IV. Conclusion and Future Work

The authors have used these methods to assess the
quality of optimisation in a complex system-on-chip
(SoC) design in a 90nm, 7LM design process. This
design was a large (202 sq.mm.), multi-core CPU
system, with both timing and power targets being
critical. The design was considerably macro-
dominated, the macros being of various sizes, thus
creating challenges of high complexity to conventional
commercial placement optimisation solutions in
handling the floorplan. All the techniques highlighted
in this paper have been automated to help generate
relevant metrics several times through the design
optimisation phase, and have been suitably integrated
into the design environments used. The run-times for
generating the profile data was only a small
percentage of the overall design time (typically <2%
of the overall optimisation cycle-time). These analyses
aided the design closure process immensely, both in
terms of identifying the right problems to fix, while
also highlighting the best optimisation strategies for
use with commercial optimisation tools.

In this paper, the authors have highlighted and
presented design assessment techniques which help
identify issues in design optimisation which are not
otherwise modelled accurately by the abstracted cost-
functions used during various phases of optimisation.
These metrics have helped the authors guide the
optimiser to focus on root-causes of potential
problems in the design-closure a complex SoC.

While the authors note that some of these metrics
are simplistic, we would also like to highlight that
there is a need to augment currently available
commercial optimisation solutions to help address
some of these potentially basic limitations to help
improve overall QoR of a design. A typical case in
point would be in terms of handling a mix of macros
and standard-cells in design optimisation, which
usually is the main source of several of the sub-
optimalities highlighted in this paper. With focus on
further improvement in optimisation that is potentially
likely, the authors are also looking to define additional
metrics to help assess congestion and clock tree
synthesis and routing under various view-points.

References

[1] Jason Cong et.al., “Block buffer planning for
interconnect planning and prediction”, IEEE Trans. VLSI
Sys., pp: 929-937, Dec 2001
[2] Charles J. Alpert et.al., “A Fast algorithm for identifying
good buffer insertion candidate locations”, Proc. Int. Symp.
Phy. Des, 2004
[3] Peter J. Osler et.al., “Placement Driven Synthesis Case
Studies on Two Sets of Two Chips: Hierarchical and Flat”,
Proc. Int. Symp. Phy. Des 2004
[4] Olivier Coudert et.al., “Timing and Design Closure in
Physical Design Flows” Proc. Int. Symp. Qual. in Elect.
Des., 2002
[5] Tim Chan et.al, “hallenges of CAD Development for
Datapath Design”, Intel Technology Journal, Q1, 1999
[6] X. Tang et.al., “Planning buffer locations by network
flows,” in Proc. Int. Symp. Physical Design, 2000
[7] P.Sarkar et.al., “Routability-driven repeater block
planning for interconnect-centric floorplanning,” in Proc.
Int. Symp. Physical Design, 2000.
[8] C. J. Alpert et.al.,“Buffered Steiner Trees for Difficult
Instances”, IEEE Trans.on Computer-Aided Design, 21 (1),
2002, pp. 3-14.
[9] J. Lillis et.al., “Simultaneous Routing and Buffer
Insertion for High Performance Interconnect”, Sixth Great
Lakes Symposium on VLSI, 1996.
[10] T. Okamoto et.al., “Buffered Steiner Tree Construction
with Wire Sizing for Interconnect Layout Optimization”,
IEEE/ACM Intl Conf on Computer-Aided Design, 1996
[11] P. Saxena et.al., “The Scaling Challenge: Can Correct-
by-Construction Design Help?”, Proc. Intl. Symposium on
Physical Design, 2003
[12] Shrikrishna Pundoor et.al., An efficient method of
leakage optimization in timing critical designs, IEEE Elect.
Des. Proc. Symp., 2007

530

Unified Challenges in Nano-CMOS High-Level Synthesis

Abstract:

The challenges in nano-CMOS circuit design include the following: variability, leakage, power,
thermals, reliability, and yield. This talk will focus on interdependent consideration of these
challenges during high-level (aka architectural or behavioral) synthesis. The majority of the
existing design techniques related to these challenges are at the device or logic level of circuit
abstraction and few are at the architectural level, however, the research is full swing in this
direction. At the architecture level, there are balanced degrees of freedom to vary design
parameters and take fast and correct design decisions at an early phase of the design cycle
without propagating the design errors to lower levels of circuit abstraction, where it is costly to
correct them. In addition, designing at higher levels of abstraction is an efficient way to cope with
complexity, facilitate design verification, and increase design reuse.

For maximizing yield of circuit design in the presence of variability the designers can rely on pre-
silicon or post-silicon techniques. The pre-silicon techniques are statistical optimization
approaches of design phases that use statistical power, leakage, and timing analysis for design
space exploration and maximize the parametric yield. A variety of approaches for scheduling,
resource sharing, and module selection techniques have been proposed in current literature in
this respect. The post-silicon techniques are approaches like adaptive body biasing and adaptive
supply voltage which are used to tune the fabricated chips such that the circuit yield can be
optimized. This talk will discuss all these techniques proposed in the context of HLS.

Speaker Bio:

Saraju P. Mohanty is an assistant professor in the Dept. of Computer Science and Engineering at
the University of North Texas, USA. He obtained his Ph.D. in Computer Science and Engineering
from University of South Florida, USA, in 2003. His research is in Design and CAD for Nanoscale
Digital and Analog/Mixed-Signal Circuits. He researches power, leakage, and timing models,
incorporates them in Design/CAD flow through optimization methodology, and demonstrates
them through computationally intensive multimedia applications. He is the author of 75 peer
reviewed journal and conference publications and 1 book and the inventor of 2 (pending) patents.
He is a senior member of IEEE.

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.124

531

Session 8C

Processor Design and Scheduling

Exploring the Limits of Port Reduction in Centralized Register Files
Sandeep Sirsi and Aneesh Aggarwal

Electrical and Computer Engineering Department
Binghamton University, Binghamton, NY

{aneesh@binghamton.edu}

Abstract

Register file access falls on the critical path of a
microprocessor because large heavily ported register files are
used to exploit more parallelism. In this paper, we focus on
reducing register file complexity by reducing the number of
register file read ports. The goal of this paper is to explore the
limits of read port reduction in a centralized integer register
file i.e. how few read ports can be provided to a centralized
integer register file, while still maintaining performance? A
naïve port reduction may result in significant performance
degradation and does not give a true measure of the limits,
while clever techniques may be able to further reduce the
number of ports. Hence, in this paper, we drastically reduce
the number of ports and then investigate techniques to
improve the performance of the reduced-ported register file.
Our experiments show that the techniques allow further port
reduction by improving the performance from reduced-ported
RFs. For instance, with our experimental parameters, the
naïve port reduction method requires at least five read ports
to maintain a performance impact of less than 5%, whereas,
our techniques require only three ports.

Keywords: Complexity-effective design, Register file, Port
reduction, Instructions per cycle

1 Introduction

Modern microprocessors use heavily ported large register files
(RFs) for exploiting instruction level parallelism. Since the
register file lies in the critical path of dependent instruction
execution, heavily ported large register files have significant
clock cycle time and energy dissipation implications in
microprocessor design [1, 3, 4]. In fact, a study [5] has shown
that for current out-of-order superscalar processor designs
such as MIPS R10000 [7] and Alpha 21264 [6], RF consumes
the largest fraction of the total chip power consumption.

One method to reduce the RF complexity is to have multiple
RF banks. In this method, a single centralized RF is
constructed from the multiple interleaved register banks [1,
13], or the banks are used in a decentralized fashion for
clustered processors [6, 21]. Our work differs from multi-
banked register files, as we consider a centralized RF. For a
centralized RF, there are two possible design options to reduce
RF complexity – reduce the number of registers in the RF
and/or reduce the number of RF ports. Both the options can
significantly reduce the amount of instruction level parallelism
that can be exploited. However, the relative performance
degradation between the two options depends on whether the
registers or the RF ports are in demand.

To be able to achieve good performance from the reduced
complexity RFs, it is important to investigate techniques that

increase the parallelism exploited when using them. Several
techniques [8, 9, 10] are proposed to improve the parallelism
from an RF with fewer registers. Unfortunately, there has been
only one other effort to investigate the performance of a
centralized reduced-ported RF [12]. The goal of this paper is
explore the limits of RF read port reduction (i.e. the lowest
number of RF read ports that can be provided) in a centralized
integer register file, while still maintaining good performance.
A brute-force method of port reduction may result in
significant performance degradation, thus restricting the extent
of port reduction. Clever port reduction techniques, on the
other hand, may be able to further reduce the number of ports.
Hence, in this paper, we drastically reduce the number of read
ports and then propose and investigate techniques to
efficiently utilize the reduced read ports provided in a
centralized RF. In this paper, we focus only on the integer
register file.

To alleviate the performance impact of a reduced-ported RF,
our techniques (i) limit the drop in the number of operands
read from the forwarding path, and (ii) increase the effective
number of read ports in the reduced-ported RF. Our
experiments show that our techniques significantly improve
the parallelism that is exploited from reduced-ported RFs, thus
allowing further reduction in the number of RF read ports. For
instance, the brute force method incurs a performance impact
of 25% for a two-ported RF, where our techniques incur a
performance impact of only about 9% for the two-ported RF.

2 Register File Design

2.1 Brute-Force Reduced-Ported Register File (TraRP—
RF) design

Fewer RF read ports can be provided because not all
instructions have both the register operands and many
operands are read from the forwarding path. The scheduler can
be modified so that only those instructions that can be serviced
with the reduced number of ports are issued (for instance,
using bypass hints as discussed in [12]). This implementation
can have a significant impact on the already complex dynamic
scheduler design [28]. We use an alternative approach that
performs port arbitration on the issued instructions, and
requires little modifications to the scheduler. For a full-ported
RF, the issued instructions read their operands in the next
cycle. However, with the basic implementation of reduced
number of ports, the issued instructions arbitrate for ports, and
only those instructions that acquire the required number of
ports proceed to the next stage. Port arbitration logic (PAL)
involves port requirement analysis followed by the actual port
arbitration. The PAL ensures that only the required number of
ports is requested and that a consumer instruction is not
executed before the producer. The instructions that acquire the

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.29

535

ports proceed to the following stages, whereas those that do
not acquire the required ports stall and again arbitrate for the
ports in the next cycle. We do not discuss detailed
implementation of PAL to conserve space.

2.2 Limitations with the brute-force approach

In the basic implementation of reduced-ported RFs, at least
two ports are required because instructions may read both their
operands from the RF. In this implementation, the stalled
instructions result in more register file reads. For instance,
consider an instruction that requires one operand from the RF
whereas the other operand is available from the forwarding
logic. By the time the instruction acquires an RF read port, the
other operand’s value is written into the RF and is no longer
available from the forwarding path. The stalled instructions
also reduce the effective issue width of the processor (the
issue slots where the instructions are stalled are frozen),
delaying the issue of dependent instructions.

The brute-force approach also results in wastage of read ports,
which are a precious commodity in reduced-ported RFs.
Wastage of read ports results because an instruction cannot
proceed till it has all the required ports. For instance, if there is
just one free read port available and all the instructions
arbitrating for the read ports require two operands from the
RF, then the read port is wasted because it cannot be allocated
to any of the instructions.

2.3 Split-instruction Reduced-Ported Register File (SiRP—
RF) Design

As discussed in the previous section, operands of the stalled
instructions can be dropped from the forwarding path by the
time these instructions acquire the required RF read ports.
These dropped operands are then read from the register file
increasing the RF read port requirements. In this technique, we
propose splitting the issued instructions between the operands
whose values are available and those whose values have not
yet been read from the RF. Hence, for issued instructions, the
register operands for which RF ports are allocated and those
that are available from the forwarding path are forwarded to
the next pipe stage. In this approach, it may happen that only
one register operand (out of the two) for an instruction is
forwarded, splitting the instruction among the two pipeline
stages. The register operands that are forwarded to the next
stage obtain the values using the ports or off the forwarding
path in the next cycle, irrespective of whether the instruction is
split or not, and move to the following stage. The register
operand that is left behind again arbitrates for a port in the
next cycle. In the following cycles, the remaining operands of
a “split” instruction are given priority for RF ports. When all
the operands of an instruction are available, the instruction
executes on the corresponding functional unit. This technique
alleviates the limitations of the TraRP—RF approach.

Figure 1 illustrates an example of this RF design. In Figure 1,
instruction X requires both the operands from the RF and
instruction Y requires one operand from the RF and the other
from the forwarding path. The RF is provided with a single
read port. In the next cycle, X acquires the one port and hence
op1 of X and op2 (obtained from the forwarding path) of Y
proceed to the allocated port latches. In the next cycle, these

two operands get their values, which are written into the
corresponding ready-to-execute latches, and X again acquires
the one read port and its op2 also moves forward. In addition,
another issued instruction Z takes the place of X. In the next
cycle, both Z and Y again arbitrate for the ports.

Figure 1: Example Illustrating the Working of the SiRP—

RF design

2.4 Split Ported Reduced-Ported Register File (SpoRP—
RF) Design

This technique is proposed to increase the effective number of
ports in a reduced-ported RF and is implemented on top of the
SiRP—RF design. This design exploits the observation that
many of the operands used by instructions, and read from the
RF, are narrow in size (require fewer bits for representation)
[14]. Our experiments showed that almost about 50% of the
operands read from the RF are narrow. A value is defined as
narrow if it has 16 or more (out of a maximum of 32) leading
bits as zeros. In this design, we partition each available RF
read port into two portions. The portion that can read the
upper bits of a register is called the upper port and the other
portion is called the lower port. For a 32-bit register, the upper
port reads the upper 16 bits and the lower port reads the lower
16 bits. Of course, this technique requires one decoder per
narrow port. In this design, the instructions specifically
arbitrate for ½ or 1 or 1½ or 2 ports, depending on the size of
the operands. The sizes of the values written into the RF are
recorded using a size bit for each register. Note that it is not
required to determine the size of the operands read from the
forwarding path.

This RF design will still result in the lower ports being utilized
more often and the upper ports being idle. For instance, if two
issued instructions both want to read a narrow operand from
the RF, they both will want to acquire the lower port. Hence
we replicate a narrow value in the register so that a narrow
value can be read by either one of the upper and the lower
ports. For instance, a value 0x000067f3 will be stored in the
register as 0x67f367f3. The replication operation is performed
in the dummy memory pipeline stage for non-memory
instructions and in parallel to the cache output multiplexers for
memory instructions.

In this design, upper or lower portions of ports may still be
wasted. For instance, for a single-ported RF, if the lower port
is already acquired by an instruction and another instruction
wants to read a normal-sized operand, then that instruction can
acquire both the lower and the upper ports only in the next

536

cycle. So, in this cycle, the upper port is wasted. To resolve
this issue, we further split the operands between the several
pipeline stages.

Figure 2(a) shows the schematic organization of a
conventional register file (RF) with four read ports dedicated
to the two functional units (FUs). Figure 2(b) shows the
TraRP—RF organization with two ports for the two FUs. In
this case, the output of the port is supplied to both the
operands of the two FUs. Figure 2(c) shows the SpoRP—RF
organization with one partitioned read port for the two FUs. In
SpoRP—RF, the operand values read from the register file can
either be “0L” or “0U” or “UL”, where “0” specifies 16 zero
bits, “L” specifies the 16 bits read using the lower port and
“U” specifies the 16 bits read using the upper port. Note that
this multiplexer implementation will have minimal affect on
latency because the control signals for the multiplexers are set
in parallel to reading the registers.

Figure 2: (a) Conventional RF with a dedicated port for
each operand; (b) TraRP—RF with two ports; and (c)

SpoRP—RF with one partitioned port

2.5 Arbitration of Ports

The performance impact of reduced read ports also depends on
the arbitration policy used for allocating the ports. We
experimented with four different arbitration policies for read
port allocation. Latch position based is the simplest of the
allocating policies, where priority is given to an instruction in
the topmost pipeline latch, and then to the instruction in the
following latch and so on. Load preference based policy is still
latch position based, however, higher priority is given to load
instructions, followed by ALU instructions and then by store
instructions. In age based policy, an older instruction (in terms
of its position in the program order) is given a higher priority
during allocation of ports. The implementation of this policy
will be more complex than the latch position based. We
observed that the port-requirement based policy, in which the
PAL gives the highest priority to the instruction requiring the
fewest ports, is the best performing one. A tie is broken by
using a latch position based priority.

3 Experimental Results

3.1 Experimental Setup

Table 1 gives experimental parameters for our baseline
superscalar processor without a reduction in RF ports. For this
study, we experiment with a relatively wider machine because
the port requirements are anyways low for a narrow machine.
In this paper, the schemes are only applied to the Integer RF

accessed by the Integer FUs and the write ports are kept intact.
To measure IPCs, we modify the SimpleScalar simulator [18],
simulating a 32-bit PISA architecture. For benchmarks, we use
a collection of 13 SPEC2000 integer and floating point
benchmarks. The statistics are collected for 200M instructions
after skipping the first 1B instructions. Our base pipeline has 8
frontend stages. An additional stage is introduced after issue
for the PAL. We assume a single pipe stage for register access
and two pipe stages for data memory access.

Parameter Value Parameter Value

Fetch/Commit
Width

8 instructions Floating-
point FUs

3 ALU, 1
Mul/Div

Unified Register
File

128 Int/128
FP

Integer FUs 4 ALU, 2
AGUs, 1
Mul/Div

Integer RF 10 read / 5
write ports

FP RF 6 read / 3
write ports

Issue Width 5 Int/ 3 FP Issue Queue
Size

96 Int/64
FP

Branch
Predictor

4K Gshare BTB Size 4K entries,
2-way

L1 Icache 32K direct
mapped 2
cycle lat

L1 Dcache 32K, 4-
way, 2

cycle lat

Memory
Latency

100 cycles
first word 2
cycle inter-

word

L2 cache Unified
512K, 8-
way, 10
cycle lat.

ROB Size 256
instructions

Load/store
buffer

64 entries

Table 1: Default Experimental Parameters for the Base
Superscalar Processor

3.2 Experimental Result

Our experiments showed that on an average more than 50% of
the integer operands are obtained from the forwarding path
and about 40-50% operands read from the RF are narrow in
size. Interestingly, we observed that even though the
percentage of narrow-sized register values produced was
significantly higher than 20%, most of the narrow values
produced are consumed off the forwarding path, resulting in
only about 20% being read from the RF.

Next, we evaluate the performance of the different RFs in
terms of instructions per cycle (IPC). We only present the
results with the best performing port requirement based port
allocation policy to conserve space. We observed an average
of about 25% IPC drop for the two-ported TraRP—RF
configuration with respect to the base superscalar with a 10-
ported RF. Figure 3 compares the IPCs of single- and two-
ported SiRP—RF and SpoRP—RF configurations with that of
a two-ported TraRP—RF. Figure 3 shows that the parallelism
exploited increases in SiRP—RF and SpoRP—RF. On an
average, the two-ported SiRP—RF and SpoRP—RF

537

configurations perform about 5% and 10% better than
TraRP—RF. However, the single-ported SiRP—RF and
SpoRP—RF configurations perform, on an average, about 30%
and 17% worse than TraRP—RF. The best performing
configuration – two-ported SiRP—RF – still performs about
16% worse than the base 10-ported RF. This suggests that
further techniques are required to reduce the performance
impact, or more read ports have to be provided.

Figure 3: Normalized Performance of SiRP—RF and
SpoRP—RF with respect to the TraRP--RF

4 Enhancements to Improve Performance

In the SpoRP—RF design, the provided ports are fully utilized,
i.e. none of the lower or upper ports are idle if there are issued
instructions that want to read a value from the RF. However,
even the SpoRP—RF design still incurs delays in the issue of
dependent instructions because of the waiting instructions.
Delays in the issue of instructions reduce the effective issue
width and further increase the RF read port requirements.
Figure 4 compares the percentage of operands for integer
instructions obtained from the forwarding path for one- and
two-ported SpoRP—RF and two-ported TraRP—RF. Figure 4
shows that the percentage of operands obtained from the
forwarding path reduces by about 15% for two-ported
SpoRP—RF and by about 18% for two-ported TraRP—RF.
The reduction for one-ported SpoRP—RF is about 20%. The
enhancements proposed in this section further improve the
parallelism exploited from the SpoRP—RF by (i) further
reducing the port requirement by making more operands
available from the forwarding path, and (ii) further increasing
the effective number of ports available for the instructions. We
discuss the results of all the enhancements in Section 4.4.

4.1 Latching the Forwarded Values

In a traditional back-end pipeline stages, a result value can be
forwarded from several pipe stages. Similarly, different pipe
stages may be forwarding different results. Hence, to
determine the register whose value is present on a particular
forwarding path, a buffer is typically used to store the register
identifiers of the values on the forwarding path. As the register
values pass through the backend pipeline stages, their register
identifiers are written into the RID buffer. Once a value is
available from a register, the valid bit for the register is set.
From then onwards, all the instructions that require that value
read it from the register.

Figure 4: Percentage of operands read from the
forwarding path for the integer instructions

In the SpoRP—RF design, many of the functional units (FUs)
may not be utilized every cycle because the instructions issued
to those FUs are waiting for RF read ports to read their
operands. Hence, no new values are produced at the outputs of
these FUs. Also instructions such as branch instructions do not
produce any result. We propose a technique where the values
produced by FUs are latched onto the forwarding paths till
new valid values are present. Note that the latched values are
still driven on the forwarding path every cycle. With this
enhancement, a value is available from the forwarding path if
its register identifier is still present in the RID buffer. In this
technique, even the delayed dependent instructions may be
able to read their operands from the forwarding path,
increasing the number of operands read from the forwarding
path. For instance, this enhancement increased the operands
obtained from forwarding path from about 38% to about 44%
for two-ported SpoRP—RF.

4.2 Servicing Multiple Instructions with a Single Port

This technique also attempts to increase the effective number
of read ports. With multiple instructions vying for RF read
ports, it may happen that in the same cycle, multiple
instructions require a value from the same register. In all our
techniques so far, different RF read ports are used to read the
same register for these instructions. So with limited read ports,
one instruction may have to wait for a read port even though
its operand value is read from the RF. We also experimented
with a technique in which the value read from the RF using a
single port (which could be the lower or the upper port or the
entire port) is also passed on to all instructions that require that
value. To implement this technique, in parallel to vying for the
RF read ports, an issued instruction also compares its source
operands’ register identifiers with all the other issued
instructions. If an instruction (lets say X) does not acquire an
RF read port, but the register identifier of its source operand
(op1) matches with that of an instruction (Y) that has acquired
a port, then op1 of instruction X also proceeds to the following
stages. In this case, the value read from the RF is forwarded to
both the instructions.

4.3 Additional RF read port for few registers

We also experiment with a technique that increases the overall
effective number of RF read ports by providing just one
additional read port to only a few registers. We observed in
our experiments that about 63% of the normal-sized operands

538

from the register file are read for the load/store instructions,
especially for address computation. This is because an address
value cannot be narrow. Hence, we propose a technique where
a few registers are provided with an additional unpartitioned
read port. For a centralized RF, this technique can be
implemented by providing the additional port for the bottom
registers. For instance, for a 128-entry RF, the registers
numbered 118 to 127 can be provided with the additional port.
We call such registers as addport registers. The addport
registers can also be read using the other (non-additional)
ports. The addport registers are allocated to instructions
whose results can be used for address computation in load and
store instructions. For this technique, we provide an additional
bit for each instruction in the instruction cache. This bit is
dynamically set for the instructions whose result can be used
in address computation. Such instructions are identified when
they execute for the first time. Note that the output of this
additional port is dedicated only to the AGUs used for address
computation of load/store instructions.

In this technique, when an instruction that produces a result
used in address computation of load/store instructions is
renamed, it is allocated an addport register. If no such
registers are free, then it is allocated any other register. In
addition, the addport registers can also be allocated to other
instructions (whose results are not used in load/store address
computation) if the remaining registers are all allocated.
However, only the load/store instructions that need to read the
addport registers can vie for the additional port. We
implemented this technique by providing the additional
unpartitioned port for 16 registers (out of the 128 registers).

4.4 Results

Figure 5 presents the performance results for the SpoRP—RF
organization when the techniques – latching the forwarded
values (LFV), providing an additional read port for a few
registers (ARP), and servicing multiple instructions with a
single port (SMP) – are applied individually, and when all the
enhancements are applied together (ALL). As compared to
two-ported TraRP—RF, the ALL enhancements improve IPC
(parallelism) by about 21% for two-ported SpoRP—RF (a
maximum of more than 50% for bzip2) and about 10% for
one-ported SpoRP—RF (a maximum of more than 30% for
vortex). All the enhancements achieve reasonable performance
improvement even when they are applied individually. Note
that the ALL enhancements improve the IPC of one-ported
SpoRP—RF from almost 20% less than to about 10% more
than the two-ported TraRP—RF configuration. The two-ported
SpoRP—RF organization with ALL enhancements still
performs about 9 % less than full-ported RF, but down from
25% for the two-ported TraRP—RF.

Next, we investigate the performance of the SpoRP—RF
configuration with ALL enhancements as the number of ports
is increased. Figure 6 presents the normalized IPC of the one-,
two- and three-ported SpoRP—RF configuration with ALL
enhancements and three-ported TraRP—RF as compared to
two-ported TraRP—RF. As can be seen, the two-ported
SpoRP—RF configuration performs better than three-ported
TraRP—RF. The three-ported SpoRP—RF configuration is
about 6% better than two-ported SpoRP—RF, about 11%

better than three-ported TraRP—RF, and only about 4% less
than the full-ported RF. The three-ported TraRP—RF is about
16% lower than the full-ported RF. To maintain a performance
impact of less than 5%, we observed that the brute-force port
reduction method requires at least five read ports.

Figure 5: Normalized Performance of one- and two-ported
SpoRP—RF (with respect to two-ported TraRP—RF) with
and without the enhancements; using the port requirement

based policy

Figure 6: Normalized IPC with respect to two-ported

TraRP—RF for varying number of ports

5 Related Work

Most of the low-complexity RF schemes propose banking or
partitioning a register file or reducing the number of registers.
The only other technique that has been proposed to reduce the
number of ports a centralized RF also uses bypass hints to
reduce the RF port requirements [12]. The bypass hint
mechanism uses the wakeup tag search to determine
bypassibility. This can significantly increase the complexity of
the dynamic scheduler. In our schemes, we avoid
modifications to the complex dynamic scheduler hardware.

539

We also propose many more schemes to further improve the
parallelism with reduced RF ports.

Software controlled two-level RFs have been proposed in [15,
16, 17]. Cruz, et al [3] proposes a two-level hierarchical RF.
They use a fully associative upper level RF, and run-time
caching and prefetching to store the critical register values in
the upper level RF, as was also proposed in [19]. The authors
in [1] propose a two-level RF, which uses a Usage Table to
record information for every physical register. The L1 RF is
the conventional RF, to which a L2 RF is added. Registers are
written to the L2 RF only when the number of physical
registers falls below a pre-set threshold.

Partitioning or replication of monolithic register files has been
proposed in the context of clustered processors [20, 21, 6, 22].
These organizations reduce the porting requirements per
cluster while adding inter-cluster communication. Partitioned
register files have also been proposed in [23] for a VLIW
processor. Balasubramonian, et al [1] also propose reducing
the ports per bank by modifying the scheduler.

Researchers have exploited the inefficiencies in register usage
to reduce the number of registers in three major ways. One set
of solutions delays the actual allocation of physical registers
until the time that the result is written back [e.g. 24, 25]. The
second set of solutions reduces the number of registers
through the use of register sharing [e.g. 26]. The third set of
techniques aim at reducing the register file pressure by using
the early deallocation of physical registers [e.g. 8].

6 Summary and Conclusions

Heavily ported large register files are provided to achieve
good performance for modern processors with large issue
queue sizes and issue widths. Such a large register file has a
significant impact on the processor clock cycle time and
power consumption. The register file size can be reduced by
reducing the number of read ports that are provided. However,
a naïve reduction of the register file read ports results in
significant performance degradation, thus limiting the extent
of port reduction. In this paper, we propose and investigate
various techniques to improve the parallelism that can be
exploited from a reduced-ported RF, thus enabling further
reduction in ports.

We propose a unique RF where the operands are split among
various pipeline stages and the ports are partitioned so that a
single port can read two narrow operands from different
registers. These techniques reduce the number of operands
dropped from the forwarding path and increase the effective
number of available read ports. We proposed further
enhancements to this technique, such as latching the values in
the forwarding paths, forwarding a register value read from
the register file to all the instructions requiring that value, and
providing an additional read port for a few registers. With
these techniques, the parallelism exploited from a reduced-
ported RF is significantly increased. These techniques allow
reducing the number of integer RF read ports from 10 to three,
while maintaining an average performance impact of less than
5%.

References
[1] R. Balasubramonian, et. al., Reducing the Complexity of the
Register File in Dynamic Superscalar Processors, Proc. Micro-34,
2001.
[2] K. Farkas, et. al., Register File Considerations in Dynamically
Scheduled Processors, Proc. HPCA, 1996.
[3] J.-L. Cruz, et. al., Multiple-Banked Register File Architectures,
Proc. ISCA-27, 2000.
[4] D. M. Tullsen et. al., Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Processor,
Proc. ISCA, 1996.
[5] V. Zyuban and P. Kogge, Optimization of High-Performance
Superscalar Architectures for Energy Efficiency,
Proc. ISLPED, 2000.
[6] R. Kessler, The Alpha 21264 Microprocessor, IEEE Micro,
March/April 1999.
[7] K. C. Yeager, The MIPS R10000 Superscalar Microprocessor,
IEEE Micro, April 1996.
[8] Martinez, J., Renau, J., Huang, M., Prvulovich, M., Torrellas, J.,
"Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors", in Proc. of MICRO-35, 2002.
[9] Monreal, et.al., “Delaying Register Allocation Through Virtual-
Physical Registers”, in Proc. of MICRO-32, 1999.
[10] Ergin O., et.al., “Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure”, in Proc. Of .MICRO,
2004.
[11] P. Shivakumar and N. Jouppi, CACTI 3.0: An Integrated Cache
timing, Power, and Area Model, Technical Report, DEC Western
Lab, 2002.
[12] Park, I., Powell, M., Vijaykumar, T., "Reducing Register Ports
for Higher Speed and Lower Energy", in Proc. of MICRO-35, 2002.
[13] Tseng, J., Asanovic, K., "Banked Multiported Register Files for
High Frequency Superscalar Microprocessors", in Proc. of ISCA-30,
2003.
[14] D. Brooks and M. Martonosi, Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance, Proc.
HPCA, 1999.
[15] J. Zalamea, et. al.,Two-Level Hierarchical Register File
Organization for VLIW Processors, Proc. Micro-33, 2000.
[16] R. Russell, The Cray-1 Computer System, Readings in
Computer Architecture, 2000.
[17] J. Swensen and Y. Patt, Hierarchical Registers for Scientific
Computers, Proc. ICS, 1988.
[18] D. Burger and T. M. Austin, The SimpleScalar Tool Set, Version
2.0, Computer Arch. News, June 1997.
[19] R. Yung and N. Wilhelm, Caching Processor General Regsiters,
Proc. ICCD, 1995.
[20] A. Capitanio, et. al., Partitioned Register Files for VLIWs: A
Preliminary Analysis of Trade-offs, Proc. Micro-25, 1992.
[21] K. Farkas, et. al., The Multicluster Architecture: Reducing Cycle
Time Through Partitioning, Proc. ISCA-24, 1997.
[22] S. Rixner, et. al., Register Organization for Media Processing,
Proc. HPCA, 2000.
[23] J. Janssen and H. Corporaal, Partitioned Register File for TTAs,
Proc. Micro-28, 1995.
[24] Gonzalez, A., Gonzalez, J., Valero, M., “Virtual-Physical
Registers”, in Proc. of HPCA-4, 1998.
[25] Wallase, S., Bagherzadeh, N., "A Scalable Register File
Architecture for Dynamically Scheduled Processors", in Proc. PACT-
5, 1996.
[26] Srinivasan S., et.al., “Continual Flow Pipelines”, in Proc. of
ASPLOS 2004.
[27] G. Loh, “Exploiting data-width locality to increase superscalar
execution bandwidth,” Proc. Micro-35, 2002.
[28] S. Palacharla, et al., “Complexity-Effective Superscalar
Processors,” Proc. ISCA, 1997.

540

Temperature Aware Scheduling for Embedded Processors

Ramkumar Jayaseelan Tulika Mitra
Department of Computer Science
National University of Singapore
{ramkumar,tulika}@comp.nus.edu.sg

Abstract

Power density has been increasing at an alarming rate
in recent processor generations resulting in high on-chip
temperature. Higher temperature results in poor reliability
and increased leakage current. In this paper, we propose
a temperature aware scheduling technique in the context of
embedded multi-tasking systems. We observe that there is a
high variability in the thermal properties of different embed-
ded applications. We design temperature-aware schedul-
ing (TAS) scheme that exploits this variability to maintain
the system temperature below a desired level while satisfy-
ing a number of requirements such as throughput, fairness
and real time constraints. Moreover, TAS enables explo-
ration of the tradeoffs between throughput and fairness in
temperature-constrained systems. Compared against stan-
dard schedulers with reactive hardware-level thermal man-
agement, TAS provides better throughput with negligible
impact on fairness.

1 Introduction

Decreasing feature sizes and increased complexity have
resulted in very high power density in modern processors.
The power dissipated is converted into heat and the proces-
sors are pushing the limits of packaging and cooling solu-
tions [2]. The problem is prominent in the embedded do-
main where mobility and size constraints do not warrant for
elaborate cooling mechanisms such as fan and heat sink.
Increased operating temperature affects reliability. More-
over, leakage power increases exponentially with operating
temperature. Increasing leakage power can further raise the
temperature resulting in a thermal runaway [14]. Hence,
there is a need to control temperature at all levels of system
design.

Designing the thermal package for the worst-case power
dissipation has become prohibitively expensive. Instead,
packages are designed for worst typical behavior and rely
on Dynamic Thermal Management (DTM) techniques to
control the temperature. Many hardware and software-
based DTM techniques have been proposed recently [3, 6,
7, 12, 13, 15]. Most of them, with the exception of [15],

are reactive in nature. They invoke appropriate mechanism
to cool down the system when the temperature reaches a
threshold. Cooling down typically involves techniques such
as global clock gating or dynamic voltage scaling that de-
grade the system throughput. As such, reactive techniques
do not have control over the system behavior that leads
to the threshold temperature. In contrast, predictive tech-
niques [15] anticipate the future thermal behavior and take
appropriate measures to avoid thermal emergencies.

Recently there has been significant interest in ther-
mal management in embedded systems. Majority of the
thermal management techniques proposed in the context
of embedded systems employ static or design-time ap-
proaches [18, 8]. Recently, there have been a huge prolifer-
ation of multimedia-dominated personal embedded devices,
such as PDAs, cell phones, portable audio/video players etc.
These high-performance devices provide multiple function-
alities, include operating system, and support concurrency
through multi-tasking. For example, it is quite common for
a user to run a audio clip decoder on his/her PDA, while at
the same time browse the web or perform word processing.

In this scenario, where the embedded device runs a mix
of soft real-time applications (e.g., audio decider) and best
effort tasks (e.g., word processing) chosen at runtime by the
user, the static or design-time thermal management tech-
niques are no longer effective. Hence we propose a dy-
namic predictive temperature-aware scheduling (TAS) strat-
egy for embedded multi-tasking systems consisting of a
mix of soft real-time applications and best-effort applica-
tions. Our scheme exploits the variation between the tem-
perature profiles [14, 15] of different applications to main-
tain the temperature below the threshold while maintaining
high throughput. The basic idea of the scheduler is to dif-
ferentiate among the tasks based on their predicted thermal
profiles and penalize the hot tasks if necessary to maintain
high system throughput. Moreover, we show that a sim-
ple parameter can control the tradeoffs between throughput
and fairness of the TAS scheme. We evaluate our schedul-
ing scheme on a ARM cortex A8 like embedded processor
model. We observe that TAS can achieve higher throughput
while maintaining QoS guarantees for soft real-time tasks
with marginal loss in fairness among the best-effort tasks

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.42

541

compared to traditional schedulers employed in conjunction
with DTM techniques.

2 Related Work

Dynamic Thermal Management (DTM) mechanisms can
be hardware or software-based. In both hardware and soft-
ware based schemes, the temperature sensors on the pro-
cessor are continuously monitored and when this temper-
ature exceeds a predefined threshold, appropriate mecha-
nisms are invoked to reduce the temperature. Different
thermal management schemes differ in the mechanisms that
they employ to maintain the temperature below the thresh-
old. Hardware-based DTM mechanisms include chip wide
mechanisms such as dynamic voltage scaling [14], global
clock gating [6] and ILP-based techniques [3, 15, 7].

Recently there has been widespread interest in software
and system level thermal management schemes. Rohou et
al. [12] propose a software-based technique where hot tasks
are not allocated processing time when the system reaches
a threshold. Kumar et al. [9] propose a similar software-
based technique that examines the interplay between hard-
ware and software thermal management. Reactive thermal
management for hard real time systems has been discussed
in [16]. While the above mentioned schemes are reactive
in nature, predictive schemes for thermal management have
also been proposed. Predictive techniques anticipate the
future thermal behavior and take appropriate measures to
avoid thermal emergencies. A predictive scheme for multi-
media applications has been proposed in [15]. It exploits
the frame-based nature of media applications to predict the
temperature of the next frame based on the offline profiles
of execution of similar frames. It is not immediately clear
how this technique can be extended to predict the tempera-
ture of arbitrary applications.

In this paper we present a temperature aware schedul-
ing strategy in the context of high performance embedded
multi-tasking systems. Unlike previous reactive and pre-
dictive thermal management schemes, our strategy can op-
timize the system performance while maintaining other re-
quirements such as real time constraints and fairness. In the
next section we present our temperature aware scheduling
framework and the temperature model.

3 Temperature Aware Scheduling Frame-
work and Thermal Model

The goal of our thermal management framework is to
maintain the temperature below the threshold while satisfy-
ing a variety of system level scheduling requirements such
as throughput, fairness and real time constraints. Power
consumption and hence the the thermal profiles vary be-
tween different tasks. Given a set of tasks with varying
thermal profiles, the temperature can be controlled by vary-
ing the relative amount of time for which hot tasks and cold

tasks execute. Our thermal aware scheduling framework ex-
ploits this observation in conjunction with voltage scaling
to maintain the processor temperature below the maximum
specified temperature.

The framework consists of a predictive thermal model
and the temperature aware scheduler. The predictive ther-
mal model is used to characterize the thermal properties of
each task and also predict the change in temperature when a
task executes starting from an initial temperature. The tem-
perature aware scheduler uses the thermal properties of the
tasks from the model and the task execution time require-
ments to determine the time for which each task executes.
Our framework consists of both real time and best effort
tasks. The scheduler ensures that real time tasks meet the
deadline and for best effort tasks, the goal is to maximize
the throughput while maintaining a user supplied level of
fairness. For maintaining fairness as well as to maintain
real time constraints, our scheduler exploits dynamic volt-
age and frequency scaling. Next we present our thermal
model and Section 4 presents our temperature aware sched-
uler.
3.1 Thermal Model

In this section, we present a thermal model to predict the
processor temperature at any point during the execution of
a specific application. We use a predictive thermal model
which models the temperature profile of a given application
as an exponential function of the form [18]

T (t) = Ts− (Ts−Tinit)× e−Kt (1)

where Ts is the steady state temperature of the application
which is defined as the temperature the processor would
reach if the application executes indefinitely, T (t) is the
temperature of the processor after the application executes
for t time units, Tinit is the initial temperature, and K is a
processor specific and application independent constant.

The value of the application independent processor spe-
cific constant K can be determined by fitting the observed
temperature profiles for different applications into the expo-
nential function. This process is done offline and the com-
puted value of K is used in the predictive thermal model.
For our processor model1 we compute the value of K =
0.00472.

The steady state temperature of an application can be de-
termined online by observing the temperature change over a
period of time when the application executes and rearrang-
ing Equation 1.

Ts =
Tc−Tinit × e−Kc

(1− e−Kc)
(2)

where Ts is the steady state temperature of the application,
Tc is the temperature after the application executes for c

1The details of the processor model is presented in the experimental
section

542

Frame Exec
Time Prediction

Soft Real Time
Scheduler

Execution
Time

Temperature
Adjustment

Schedule

Stochastic Scheduler

Best Effort
Scheduler

T r
eq
,s
la
ck

Temperature Aware Scheduler

Figure 1. Temperature Aware Scheduling Policy

time units, Tinit is the initial temperature before the applica-
tion starts execution, and K is the application independent
processor specific constant that is computed offline.

Once the steady state temperature of the application is
known, Equation 1 can be used to predict the change in tem-
perature when this application executes starting from any
initial temperature.

Accuracy of the Prediction Model In order to check the
accuracy of the predictive thermal model, we run a set of
embedded benchmarks on a ARM Cortex A8 [1] like em-
bedded processor model and observe the temperature pro-
files of the processor. We compare the observed temperature
from these runs with the temperatures predicted from the
model. For each application, we obtained the temperature
curve from HotSpot with a sampling frequency of 1 milli-
second. We also applied our model to predict the temper-
ature variations and compared the temperature curves from
the model and from HotSpot. For each benchmark, we mea-
sured the peak error that this the temperature difference at
the point at which the predicted and the observed curves
diverge the most. The maximum peak error is 0.6oC and
the average peak error is 0.14oC across all the benchmarks.
Hence our model provides sufficient accuracy for software
based thermal management. In the next section we present
our temperature aware scheduler.

4 Temperature Aware Scheduling

An overview of our thermal aware scheduler is shown in
Figure 1. Our system consists of soft real-time (multimedia)
and best-effort tasks. Our soft real time tasks comprise of
periodic multimedia tasks that release a job per period, e.g.,
decoding a video frame every 30 ms. We employ a hier-
archical scheduling structure typically used in multi-media
systems [5, 10, 11].

The thermal aware scheduler consists of two sub-
schedulers to handle soft real time tasks and best effort
tasks. The execution requirements for the next frame is pre-
dicted using a frame execution time predictor. We employ
the histogram based method for execution time rediction
proposed in [17] for its accuracy and ease of implementa-
tion. The predicted frame execution times are given as input
to the soft real time scheduler which schedules the soft real

time tasks. We employ a simple static priority soft real time
scheduler in our scheme where the audio decoding task has
a higher priority than the video decoding task.

Our thermal aware scheduler has an additional thermal
adjustment phase. This phase takes the soft real time sched-
ule and the predicted frame execution time requirements as
input and has two main parts (i) Ensure that the soft real
time task remains below the threshold frequency/voltage
scaling the soft real time tasks if necessary (ii) Compute
the starting temperature (Treq) for the next period so that
the temperature of the soft real time tasks remain below the
threshold. The slack and the required temperature (Treq) is
provided as input to the best effort task scheduler. We em-
ploy a modified version of a round robin scheduler as our
best effort scheduler. Our best effort scheduler classifies
tasks into hot and cold tasks and controls temperature by
changing the execution time provided to the hot and cold
tasks. Next we present the thermal adjustment phase em-
ployed in conjunction with the soft real time scheduler.

4.1 Thermal Adjustment Phase

The thermal adjustment phase takes the frame execution
time prediction and soft real time schedule as input and
performs the following tasks (i) Compute Treq the starting
temperature for the next set of soft real time task such that
temperature during the next invocation remains below the
threshold (ii) Ensure that current set of soft real time tasks
maintain the temperature below the threshold , voltage scal-
ing/ dropping frames if necessary. We explain a case with
two real time tasks R1 and R2 in the remainder of this dis-
cussion but the scheme can be extended to multiple soft real
time tasks

4.1.1 Computing Treq

Treq is defined as the maximum initial temperature such that
the execution of the next real-time task(s) is guaranteed not
to exceed Tmax. As the execution time and period of real-
time tasks are known, it is easy to compute Treq. For ex-
ample, suppose the system will execute two soft real-time
tasks for t1 and t2 time units in the near future with steady
state temperatures Ts1 and Ts2. Then Treq can be determined
by using Equation 1 as

Treq = Ts1− (Ts1−Ts2)eKt1 +(Ts2−Tmax)eK(t1+t2) (3)

This can be easily extended to multiple soft real-time tasks.

4.1.2 Voltage Scaling Soft Real Time Tasks

This phase also checks if the execution of the soft real time
tasks maintains the temperature below the threshold using
the model. For instance if the present temperature of the
system is Tinit and there are two soft real-time tasks for t1

543

N units

Pc Ph

(1-β) ×N β×N

Tinit

Tmid

Tfin

N units

Tinit

Tmid

Tfin

(a)
Tcurr>Tsc

(b)
Tcurr<=Tsc

PcPh

(1-β) ×Nβ×N

Figure 2. CPU Share between Hot and Cold Tasks

and t2 time units in the near future with steady state tem-
peratures Ts1 and Ts2. The temperature at the end of Task 1
and Task 2 are given by

T1 = Ts1− (Ts1−Tinit)e−Kt1 (4)
T2 = Ts2− (Ts2−T1)e−Kt2 (5)

If T1 < Tmax and T2 < Tmax then the phase computes the
slack and presents the slack and Treq to the best effort sched-
uler. If either one of tasks exceed the threshold then the
then the corresponding tasks’s frequency is lowered to the
next lower frequency level. After lowering the frequency
the temperature and deadline constraints are verified.If ei-
ther constraints are not met then the frame is dropped. At
the end of the temperature adjustment phase, a feasible soft
real time schedule with frequency levels for each task as
well as the corresponding slack and Treq values are com-
puted. The slack and Treq values are sent to the best effort
scheduler which uses it for scheduling the best effort tasks.
Next we present our best effort scheduler.

4.2 Best Effort Scheduler

We first categorize the best-effort tasks into hot tasks
and cold tasks. Pc is a cold task if its steady state tempera-
ture is below Treq as it would cool down the system. Simi-
larly, Ph is a hot task if its steady state temperature is above
Treq as it may heat up the system beyond Treq.

We observe that a schedule alternating between hot and
cold tasks provides a good solution. The scheduler consid-
ers a pair of tasks (one hot and one cold) at a time. The
problem now boils down to dividing up CPU share between
these two tasks so as to keep the temperature below Tmax
and the temperature at the end of the schedule is below Treq.
If the set of best effort tasks consists of only hot tasks then
our best effort scheduler uses a voltage scaled version of the
hot task as the cold task.

4.3 CPU Share between a Hot and Cold Task

Given (1) current temperature Tcurr, (2) a hot task (Ph)
with steady state temperature Tsh, and (3) a cold task (Pc)
with steady state temperature Tsc, the goal of the scheduler
is to allocate N time units between Ph and Pc so as to main-
tain the system temperature below Tmax and the temperature

at the end of the schedule is Treq. In particular, we deter-
mine the maximum share 0≤ β≤ 1 that can be allocated to
the hot task (i.e., it executes for βN) while maintaining the
system temperature below Tmax and temperature at the end
of the schedule is less than Treq.

Case 1: Tcurr ≥ Tsc In this case, the cold task should be
scheduled first to cool down the system and maximize the
share for the hot task. Figure 2(a) shows the temperature
curve over N time units. Tmid is the temperature after exe-
cuting the cold task and Tf in is the final temperature.

Tf in = Tsh− (Tsh−Tmid)× e−KβN (6)

Tmid = Tsc− (Tsc−Tcurr)× e−K(1−β)N (7)

Clearly, the temperature constraints are satisfied if Tf in <
Treq. Hence, the maximum value of β can be obtained by
substituting Tf in = Treq and solving for β

β =
ln(C2

C1+C3×e−KN)

K×N
(8)

where C1 = Tsh−Treq; C2 = Tsh−Tsc; C3 = Tcurr−Tsc

Case 2: Tcurr < Tsc In this case the maximum share for the
hot task is obtained when it is scheduled first. This scenario
is shown in Figure 2(b). Here the temperature is guaranteed
to be below Tmax if Tmid <= Tmax and the final temperature
constraint is satisfied if Tf in <= Treq. So the value of β can
be obtained from

Tmid = Tsh− (Tsh−Tcurr)× e−KβN (9)

Tf in = Tsc− (Tsc−Tmid)× e−K(1−β)N (10)

Substituting Tmid = Tmax and solving for β

β1 =
ln(Tsh−Tcurr

Tsh−Tmax
)

kN
(11)

Using Tf in = Treq we get

β2 =
ln((Treq−Tsc)+(Tsh−Tcurr)

Tsh−Tsc
)

kN
(12)

β = min(β1,β2) (13)

Best Effort Scheduling Policy The run queue consisting
of the ready tasks is split into two queues corresponding
to the hot and cold tasks, respectively. The scheduler also
keeps track of the CPU share given to each task so far.
Whenever the scheduler is invoked, it selects the task with
least share in the hot queue (Ph) and the task with the least
share in the cold queue (Pc). Let N be the scheduling unit.
The maximum share, β, that can be allocated to Ph in the
next 2N time units is determined using Eqn 8 or Eqn 13.
Our best effort scheduler examines the CPU share allocated
to both the tasks and tries to maintain fairness while ensur-
ing that the hot task gets no more than β×2N time units.

544

Enforcing Fairness The scheduling scheme discussed
earlier cannot ensure fairness as it gives higher preference
to cold tasks in trying to keep the system temperature be-
low Tmax. To obtain a tradeoff between throughput and fair-
ness, we employ selective voltage scaling for the hot tasks in
conjunction with our thermal-aware scheduler. We assume
that the processor supports two voltage levels Vmin and Vmax
with corresponding frequencies fmin and fmax. To ensure
fairness, we define minimum share smin for any task. If
the current share of a hot task is below smin, then its volt-
age scaled version is transferred to the cold queue. The
parameter smin represents the tradeoff between fairness and
throughput. Given an aggressive value of smin, the system
spends most of its time in voltage scaled mode thus reduc-
ing throughput. A smaller value of smin, in contrast, may
lead to unfairness towards the hot tasks.

5 Experimental Evaluation

Setup We use SimpleScalar 3.0 architectural simulator
with configurations similar to a ARM Cortex A8 Embedded
Processor [1]. The processor model is a in-order dual is-
sue processor with 32 KB instruction/data caches, 512 entry
branch miss-prediction buffer and a 13 entry branch miss-
prediction pipeline. The temperature values are obtained us-
ing HotSpot-3.0 [14], an architecture-level thermal simula-
tor working in conjunction with Wattch [4], an architecture-
level power simulator. We use Wattch’s linear scaling to
obtain the power consumption at 1.2 V and 1.5 Ghz [1] and
for voltage scaling we use a lower operating frequency of
800 Mhz which we find sufficient to remove all temperature
violations [13]. We use a thermal resistance of 1.83oC/W
and a thermal capacitance of 112.4mJ/oC and an ambi-
ent temperature of 40oC. We assume that the temperature
should not exceed 80oC based on the cooling solution [9].
The benchmarks selected from MiBench, MediaBench and
EEMBC benchmark suites have steady state temperatures
in the range 63.65oC− 88.5oC. We have tasks with low
(patricia, gs, apcm), medium (jpeg, mpeg, mp3,
blowfish,crc,) and high (rijndael, sha, susan)
thermal profile. We create eight task sets using different
combinations of these benchmarks as shown in Table 1.
Each task set contains applications with varying thermal
characteristics. Four of these task sets have soft real-time
applications (mpeg and mp3) while the other four have
only best-effort applications. We assume a frame rate of
30 ms for mpeg and 26 ms for mp3. Tasks sets contain-
ing real-time applications are simulated till 450 video or au-
dio frames complete decoding. Tasks sets containing only
best effort applications are simulated for a total of 500 time
slices (each time slice = 20ms). Of these task sets, S8 con-
sists of only hot applications and hence in this case our
scheduler performs scheduling by using a voltage scaled
version of available hot tasks as cold tasks.

Soft Real-Time Best Effort
S1 mpeg, mp3 sha, jpeg, adpcm, crc
S2 mpeg, mp3 rijndael, susan, patricia, gs
S3 mpeg, mp3 susan, jpeg, blowfish, gs
S4 mpeg, mp3 rijndael, sha, adpcm, patricia
S5 jpeg, susan, crc, gs
S6 sha, rijndael, crc, gs
S7 sha, susan, jpeg, patricia
S8 susan, rijndael, jpeg, blowfish

Table 1. Composition of Task Sets

78.5

79

79.5

80

80.5

81

81.5

0 200 400 600 800 1000 1200 1400
Time (milli second)

Te
m

pe
ra

tu
re

 (o
C

)

TAS Unconstrained

Figure 3. Temperature Profile for TAS
Traditional Thermal Management: Our temperature-

aware scheduler (TAS) maintains the temperature below the
threshold by appropriately scheduling the best-effort tasks.
We compare it against a standard round robin (RR) sched-
uler for the best-effort tasks with a time slice of 20ms. The
RR scheduler cannot guarantee that the temperature will
not exceed the threshold and hence dynamic thermal man-
agement (DTM) techniques need to be engaged. We em-
ploy two popular DTM techniques in conjunction with RR
scheduler: dynamic voltage scaling (DVS) and global clock
gating (CG). DVS lowers the voltage/frequency of the pro-
cessor whenever the system hits the threshold temperature.
In case of CG, the processor global clock is gated (i.e., the
processor remains idle). Once a DTM mechanism is en-
gaged, the system begins to cool down. The normal operat-
ing voltage and frequency are resumed once the system tem-
perature goes sufficiently below the maximum temperature.
We implement a binary DVS scheme [13] that is shown to
be performing as well as multi-level DVS schemes.

Maintaining Temperature : Figure 3 shows the temper-
ature profiles for our thermal aware scheduling scheme as
well as the temperature profile if no DTM scheme is present.
We observe that TAS is able to keep the temperature below
Tmax for all the task sets by changing either the share of pro-
cessing time given to hot and cold tasks or by appropriately
scaling the operating frequency.

Throughput: Let tmin and tmax be the time the system
spends in lower (800 MHz) and higher frequency (1.5GHz)
for DVS and TAS. Note that TAS does not use low voltage
as a consequence of hitting the threshold temperature. In-
stead, it selectively lowers the voltage of hot tasks to ensure
fairness. For both cases, the throughput is defined as

T hroughput =
tmax +0.53× tmin

tmax + tmin
(14)

545

Task Throughput Fairness
Set TAS(0) TAS(0.2) DVS CG TAS(0) TAS(0.2) DVS CG
S1 1.0 0.96 0.91 0.82 0.94 0.97 0.98 0.94
S2 1.0 0.92 0.89 0.84 0.89 0.96 0.98 0.92
S3 1.0 0.89 0.86 0.82 0.84 0.94 0.98 0.94
S4 1.0 0.98 0.94 0.88 0.91 0.96 0.97 0.90
S5 1.0 1.0 0.95 0.87 0.97 0.97 0.98 0.91
S6 1.0 0.93 0.92 0.89 0.88 0.96 0.98 0.96
S7 1.0 0.96 0.90 0.81 0.89 0.92 0.98 0.90
S8 0.82 0.82 0.84 0.73 0.99 0.99 0.99 0.96

Table 2. Throughput and Fairness of Thermal-aware Scheduler (TAS) with smin = 0, smin = 0.2 and DTM Schemes

Let tidle be the idle time under global clock gating. Then

T hroughputCG =
tmax

tmax + tidle
(15)

Table 2 shows the throughput for TAS, DVS and CG. We use
two versions of TAS scheme with different values of smin
that controls fairness (see Section 4.3). The first version
(smin = 0) maximizes the throughput while ignoring fair-
ness. The second version (smin = 0.2) introduces a voltage-
scaled version of a hot task when its share drops below 0.2.

The results shows that TAS performs better than clock
gating in all cases. It performs better than DVS in cases
where there is at least one cold task (S1-S7). In the case
where only hot tasks are available (S8), TAS gives almost
the same throughput as DVS. As expected, the throughput
of TAS drops as the minimum expected share (smin) is in-
creased from 0 to 0.2.

Fairness: The share of a best effort task Pi is given by

s(i) =
tmax(i)+0.53× tmin(i)

Σ
Q
i=1tmax(i)+0.53×Σ

Q
i=1tmin(i)

(16)

sCG(i) =
tmax(i)

Σ
Q
i=1tmax(i)

(17)

where tmax(i) and tmin(i) are the amount of time task Pi
spends at maximum and minimum voltage and Q is the
number of best-effort tasks. Based on the share given to
each best effort application, our metric for fairness is

F = 1−
Σ

Q
i=1|s f air− s(i)|

Q
(18)

where s f air is the expected fair share.
Table 2 shows the fairness metric for TAS, CG, and

DVS. TAS with smin = 0 maximizes the throughput with
lower fairness than DVS. However, if we use smin = 0.2,
then the fairness improves and becomes comparable to DVS
with higher throughput than DVS . As the scheduler tries
to be more fair (higher smin), the throughput drops. Thus
our predictive scheme can provide a tradeoff between sys-
tem throughput and fairness when operating under thermal
constraint. A reactive DVS scheme, on the other hand, only
operates at one of these points.
6 Conclusion

In this paper, we have proposed a simple thermal model
to predict the temperature when an arbitrary application

starts execution from an initial temperature. Based on our
model, we have designed and experimentally evaluated a
thermal-aware scheduling strategy for multi-tasking embed-
ded systems. Our thermal-aware scheduler can provide bet-
ter throughput in comparison to DTM employed in conjunc-
tion with conventional schedulers.

7 Acknowledgements
This work is partially supported by NUS research project

R-252- 000-292-112.
References

[1] ARM Cortex A8 Processor. http://www.arm.com/products/CPUs/
ARM_Cortex-A8.html.

[2] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4), 1999.

[3] D. Brooks and M. Martonosi. Dynamic Thermal Management for High-
Performance Microprocessors. In HPCA, 2001.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-level Power Analysis and Optimizations. In ISCA, 2000.

[5] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler for Multime-
dia Operating Systems. In OSDI, 1996.

[6] S. Gunther et al. Managing the Impact of Increasing Microprocessor Power
Consumption. Intel Technology Journal, 2001.

[7] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activity
Migration. In ISLPED, 2003.

[8] W-L. Hung et al. Thermal-aware task allocation and scheduling for embedded
systems. In DATE, 2005.

[9] A. Kumar et al. HybDTM: A Coordinated Hardware-Software Approach for
Dynamic Thermal Management. In DAC, 2006.

[10] J. Nieh and M. S. Lam. A smart scheduler for multimedia applications. ACM
Trans. Comput. Syst., 2003.

[11] J. Regehr and J. A. Stankovic. Hls: A framework for composing soft real-time
schedulers. In RTSS, 2001.

[12] E. Rohou and M. Smith. Dynamically Managing Processor Temperature and
Power. In Workshop on Feedback-Directed Optimization, 1999.

[13] K. Skadron. Hybrid Architectural Dynamic Thermal Management. In DATE,
2004.

[14] K. Skadron et al. Temperature-aware Microarchitecture: Modeling and Imple-
mentation. ACM TACO, 1(1), 2004.

[15] J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal Management for
Multimedia Applications. In ICS, 2003.

[16] S. Wang and R. Bettati. Reactive Speed Control in Temperature-Constrained
Real-Time Systems. In ECRTS, 2006.

[17] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU Scheduling
for Mobile Multimedia Systems. In SOSP, 2003.

[18] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-aware
scheduling problem. In ICCAD, 2007.

546

SACR: Scheduling-Aware Cache Reconfiguration for Real-
Time Embedded Systems

 Weixun Wang and Prabhat Mishra Ann Gordon-Ross
Department of Computer and Information Science and Engineering Department of Electrical and Computer Engineering

 University of Florida, Gainesville, FL University of Florida, Gainesville, FL
 wewang@cise.ufl.edu, prabhat@cise.ufl.edu ann@ece.ufl.edu

Abstract
Dynamic reconfiguration techniques are widely used for efficient
system optimization. Dynamic cache reconfiguration is a
promising approach for reducing energy consumption as well as
for improving overall system performance. It is a major challenge
to introduce cache reconfiguration into real-time embedded
systems since dynamic analysis may adversely affect tasks with
real-time constraints. This paper presents a novel approach for
implementing cache reconfiguration in soft real-time systems by
efficiently leveraging static analysis during execution to both
minimize energy and maximize performance. To the best of our
knowledge, this is the first attempt to integrate dynamic cache
reconfiguration in real-time scheduling techniques. Our
experimental results using a wide variety of applications have
demonstrated that our approach can significantly (up to 74%)
reduce the overall energy consumption of the cache hierarchy in
soft real-time systems.

1. Introduction
Design and optimization of real-time embedded systems have been
widely studied over the last few decades. These systems require
unique design considerations due to time constraints placed on the
tasks. Hard real-time system tasks have deadlines and tasks must
complete execution by their deadlines in order to ensure correct
system behavior. Due to these stringent constraints, real-time
scheduling algorithms must perform task schedulability analysis
based on task attributes such as priorities, periods, and deadlines
[4][12]. A task set is considered schedulable if there exists a
schedule that satisfies all timing constraints. As embedded systems
become ubiquitous, real-time systems with soft timing constraints
(missing certain deadlines are acceptable) are gaining widespread
acceptance. Soft real-time systems can be found everywhere
including gaming, multimedia, and housekeeping devices. Tasks in
these systems remain effective even if their deadlines are not
guaranteed to be met. Minor deadline misses may result in
temporary service or quality degradation, but will not lead to
incorrect behavior.

One of the most important optimizations in real-time embedded
systems is energy consumption reduction since most of these
systems are battery-operated devices. Processor idle time (also
known as slack time) provides a unique opportunity to reduce the
overall energy consumption by putting the system into sleep mode
using Dynamic Power Management (DPM) techniques [2].
Alternatively, Dynamic Voltage Scaling (DVS) [8] methods can be
used to reduce the clock frequency such that the tasks execute
slowly but do not violate their deadlines [10][16].

In recent years, reconfigurable computing provides the unique
ability to tune the system during runtime (dynamically reconfigure)
to meet optimization goals by changing tunable system parameters.
The primary aspect of reconfigurable computing research
emphasizes tuning algorithms, which determine how and when to

dynamically reconfigure tunable parameters to achieve higher
performance, lower energy consumption, and/or balance overall
system behavior. One such tunable component is the cache
hierarchy. An efficient reconfigurable cache framework and tuning
algorithms are proposed in [7].

Although reconfigurable caches are highly beneficial in
desktop and embedded systems, currently, reconfigurable caches
have not been considered in real-time systems due to several
fundamental challenges. For example, how to employ and make
efficient use of reconfigurable caches in real-time systems remains
unsolved. Determining the appropriate cache configuration
typically requires some amount of runtime evaluation of different
candidates. Furthermore, any change in cache configuration on-the-
fly may alter task execution time. In hard real-time systems, the
benefit of reconfiguration is limited since both of these facts can
make scheduling decisions difficult and eventually may lead to
unpredictable system behavior. On the other hand, soft real-time
systems offer much more flexibility, which can be exploited to
achieve considerable energy savings at the cost of very minor
impacts to user experiences. Our proposed research focuses on soft
real-time systems.

To the best of our knowledge, this is the first approach in
exploiting dynamic reconfigurable caches in real-time systems.
This paper presents a novel methodology for using reconfigurable
caches in real-time systems with preemptive tasks. Our proposed
methodology, Scheduling-Aware Cache Reconfiguration (SACR),
provides an efficient and near optimal cache tuning strategy based
on static program profiling for both statically and dynamically
scheduled real-time systems. The goal is to optimize energy
consumption with performance considerations via reconfigurable
cache tuning while ensuring that the majority of task deadlines are
met.

The rest of the paper is organized as follows. Section 2 surveys
the background literature addressing both dynamic cache
reconfiguration and real-time scheduling techniques. Section 3
describes our proposed research on scheduling-aware cache
reconfiguration in soft real-time systems. Section 4 presents our
experimental results. Finally, Section 5 concludes the paper.

2. Related Work
There are no prior works in the area of dynamic cache
reconfiguration in real-time systems. Our proposed research is the
first attempt in this direction. This section surveys the background
literature in the following three related domains.

2.1 Real-Time Scheduling Techniques
Based on task properties and associated systems, scheduling
algorithms can be classified into various types [12]. Earliest
Deadline First (EDF) scheduling [4] and Rate Monotonic (RM)
scheduling [12] are the most frequently referenced fundamental
scheduling algorithms in the real-time systems community.
Periodic tasks, which usually have known worst case execution

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.66

547

time (WCET), period, and deadline are scheduled using such
methods. Sporadic tasks are accepted into the system only if the
task passes an acceptance test when it arrives. Since sporadic tasks
normally have hard time constraints, all accepted tasks are
guaranteed to meet their deadlines, and are thus treated as periodic
tasks. Aperiodic tasks are scheduled whenever enough slack time is
available. Hence, aperiodic tasks normally have soft deadlines and
can only be scheduled as soon as possible. In reality, these three
kinds of tasks may exist simultaneously. In this work, we use EDF
as the scheduling algorithm for tasks with only soft real-time
constraints. However, RM is also applicable with minor changes in
our approach.

2.2 Caches in Real-Time Systems
Incorporating caches into real-time embedded systems faces certain
difficulties due to the unpredictability imposed on the system.
Scheduling algorithms have difficultly calculating WCET for tasks
since data access time cannot be predetermined in the presence of
caches. A great deal of research efforts are directed at employing
caches in real-time systems either by proving schedulability
through WCET analysis and/or avoiding hazardous compulsory
miss uncertainty altogether. WCET analysis is a static, design time
analysis of tasks in the presence of caches to predict cache impact
on task execution times [14]. Cache locking [15] is a technique in
which useful cache lines are “locked” in the cache when a task is
preempted so that these blocks will not be evicted to accommodate
the new incoming task. Through cache line locking, the WCET and
cache behavior becomes more predictable since the major delay
from data replacement and access is avoided. Cache partitioning
[19] is a similar but more aggressive approach where the cache is
partitioned into reserved regions, each of which can only cache
data associated with a dedicated task. However, a potential
drawback to both cache locking and cache partitioning is per-task
reduction of cache resources. To alleviate this limitation, cache-
related preemption delay analysis [18] features tight delay
estimation so that prediction accuracy is higher than in traditional
WCET analysis. This improved accuracy can in turn result in a
durable task schedule. Our approach is applicable to real-time
systems that employ caches.

2.3 Reconfigurable Cache Architectures
In power constrained embedded systems, nearly half of the overall
power consumption is attributed to the cache subsystem [13].
Fortunately, since applications require vastly different cache
requirements in terms of cache size, line size, and associativity,
research shows that specializing the cache to an application’s needs
can reduce energy consumption by 62% on average [6].

There exists much work in dynamic cache reconfiguration [1]
[7]. The reconfigurable cache architecture proposed by Zhang et al.
[20] imposes no overhead to the critical path, thus cache access
time does not increase. Furthermore, the cache tuner consists of
small custom hardware or a lightweight process running on a co-
processor, which can alter the cache configuration via hardware or
software configuration registers. The underlying cache architecture
consists of four separate banks, each of which acts as a separate
way. Way concatenation, which logically concatenates ways
together, enables configurable associativity. Way shutdown
effectively shuts down ways to vary cache size. Configurable line
size, or block size, is achieved by setting a unit-length base line
size and then fetching subsequent lines if the line size increases.

Given a runtime reconfigurable cache, determining the best
cache configuration is a difficult process. Dynamic and static
analyses are two possible techniques. With dynamic analysis,

cache configurations are evaluated in system during runtime to
determine the best configuration. However, it is inappropriate for
real-time systems as it either imposes unpredictable performance or
significant energy overhead, both due to the exploration of
suboptimal cache configurations. During static analysis, various
cache alternatives are explored and the best cache configuration is
selected for each application in its entirety (application-based
tuning) [7] or for each phase of execution within an application
(phase-based tuning) [17]. Regardless of the tuning method, the
predetermined best cache configuration (based on design
requirements) may be stored in a look-up table or encoded into
specialized instructions. The static analysis approach is most
appropriate for real-time systems due to its non-intrusive nature.
However, previous methods focus solely on energy savings or
Pareto-optimal points trading off energy consumption and
performance. However, none of these methods consider task
deadlines, which are imperative in real-time systems.

3. Scheduling-Aware Cache Reconfiguration
A major challenge for cache reconfiguration in real-time systems is
that tasks are constrained by their deadlines. Even in soft real-time
systems, task execution time cannot be unpredictable or prolonged
arbitrarily. Our goal is to realize maximum energy savings while
ensuring the system only faces an innocuous amount of deadline
violations (if any). Our proposed methodology, Scheduling-Aware
Cache Reconfiguration (SACR), provides an efficient and near
optimal strategy for cache tuning based on static program profiling
for both statically and dynamically scheduled real-time systems.
Our approach statically executes, profiles, and analyzes each task
intended to run in the system. The information obtained in the
profiling process is fully utilized to make reconfiguration decisions
dynamically. The remainder of this section is organized as follows.
First, we present an overview of our approach using simple
illustrative examples. Next, we present our static analysis
technique for optimal cache configuration selection. Finally, we
describe how the static analysis results are used during runtime for
statically- and dynamically-scheduled real-time systems.

3.1 Overview
This section presents a simple demonstrative example to show how
reconfigurable caches benefit real-time embedded systems. This
example assumes a system with two tasks, T1 and T2. Traditionally
if a reconfigurable cache technique is not applied, the system will
use a base cache 1 configuration Cacheୠୟୱୣ throughout all task
executions. In the presence of a reconfigurable cache, as shown in
Figure 1, different optimal cache configurations are determined for
every phase of each task. For ease of illustration, we divide each
task into two phases. Phase1 starts from the beginning to the end,
and phase2 starts from the half position of the dynamic instruction
flow (midpoint) to the end. The terms CacheTଵଵ , CacheT12 , CacheTଶଵ ,
and CacheTଶଶ represent the optimal cache configurations for phase1
and phase2 of task T1 and task T2, respectively. These

1 In this paper, we use the term “base cache” to refer to the cache used in

typical real-time systems. Caches in such systems, as discussed in
Section 2.2, are chosen to ensure durable task schedules.

CacheTଵଵ CacheTଶଵ

CacheTଵଶ

T1 T2

CacheTଶଶ

Figure 1: Cache configurations selected based on phases

548

configurations are chosen statically to be more energy efficient
(with same or better performance), in their specific phases, than the
global base cache, Cacheୠୟୱୣ.
 Figure 2 illustrates how energy consumption can be reduced
by using our approach in real-time systems. Figure 2(a) depicts a
traditional system and Figure 2(b) depicts a system with a
reconfigurable cache (our approach). In this example, T2 arrives (at
time P1) and preempts T1. In a traditional approach, the system
executes using Cacheୠୟୱୣ exclusively. With a reconfigurable cache,
the first part of T1 executes using CacheTଵଵ . Similarly, CacheTଶଵ is
used for execution of T2. Note that the actual preemption point of
T1 is not exactly at the same place where we pre-computed the
optimal cache configuration (midpoint). When T1 resumes at time
point P2, the cache is tuned to CacheTଵଶ since the actual preemption
point is closer to the midpoint compared to the starting point.

The overall energy consumed using a reconfigurable cache
results from the energy savings due to use of different energy
optimal caches for each phase of task execution compared to using
one global base cache in the traditional system. Our experimental
results suggest that the proposed approach can reduce energy
consumption up to 74% without introducing any performance
penalty.

3.2 Phase-based Optimal Cache Selection
This section describes our static analysis approach to determine the
optimal cache configurations for various task phases. In a
preemptive system, tasks may be interrupted and resumed at any
point in time. Each time a task resumes, cache performance for the
remainder of task execution will differ from the cache performance
for the entire application due to its own distinguishing behaviors as
well as cold-start compulsory cache misses. Thus, the optimal
cache configuration for the remainder of the task execution may be

different. Figure 3 depicts the general case where a task is divided
by n potential preemption points (0, P1, P2 … Pn-1). We define a
static profiled phase as the period of time between a predefined
potential preemption point (also called partition points) and task
completion. Here, C1, C2 … Cn represent the optimal cache
configuration (either energy or performance) for each phase,
respectively. Again, the potential preemption points, which define
phases, are decided during the static profiling stage and are not
necessarily the same as actual preemption points observed during
system execution.

During static profiling, a partition factor is chosen that
determines the number of potential preemption points and resulting
phases. Partition granularity is defined as the number of dynamic
instructions between partition points. The partition granularity is
determined by dividing the total number of dynamically executed
instructions by the partition factor. Smaller granularities result in
finer grained configuration, and potentially greater energy savings.
However, making granularity too fine would result in a
prohibitively large look-up table which would not be feasible due
to area constraints. Thus, a trade-off should be made to determine a
reasonable partition factor based on energy-savings potential and
acceptable overheads.

An important question is whether a larger partition factor (finer
granularity) reveals more energy savings. Our experimental results
show that once the partition factor is larger than a certain threshold
for a task, more and more neighboring partitions share the same
optimal cache configuration. This is evident due to the well-
established 90/10 rule of execution – 90% of the execution time is
spent in only 10% of the code – in which the 90% of the time is
typically spent executing small loops. For each loop iteration,
except the first and last, execution behavior is typically similar,
thus resulting in the same optimal cache configuration for all
iterations. For a loop with N iterations, the partition factor need
only be large enough to capture all dynamic instructions of
iterations 2 through N – 1, as any smaller granularity would
capture a subset of iterations, each of which have the same optimal
configuration. Clearly, if there is no variation, no energy savings is
possible. Even if variations can be observed, according to our
experiments, they only happen with very limited ranges, which
means a minor energy saving is possible only when
preemption/resumption takes place in these ranges (8% of the
dynamic instruction flow on average). Thus, the goal of a system
designer is to find a partition factor which leads to maximized
energy reduction and minimizes the number of partition points that
need to be stored. Based on our experience, a partition factor
ranging from four to seven is sufficient to generate a static profile
table that SACR can utilize efficiently.

The profile table is the output of static analysis that stores the
potential preemption points and the corresponding optimal cache
configurations for each task. Section 3.3 and 3.4 describe how this
profile table is used during runtime of statically- as well as
dynamically-scheduled systems.

3.3 Statically Scheduled Systems
With static scheduling, arrival times, execution times, and
deadlines are known a priori for each task and this information
serves as scheduler input. The scheduler then provides a schedule
detailing all actions taken during system execution. According to
this schedule, we can statically execute and record the energy-
optimal cache configurations that do not violate any task’s deadline
(in hard real-time systems) for every execution phase of each task.
For soft real-time systems, global (system-wide) energy-optimal

Figure 3: Task partitioning at n potential preemption points (Pi)
resulting in n phases. Each phase comprises execution from the
invocation/resumption point to task completion. Ci denotes the

cache configuration used in each phase

……

0 P1 P2 Pn-1
Task Execution Time

phase 1 (0/n)
C1

C2
phase 2 (1/n)

phase 3 (2/n)
C3

Cn
phase n (n-1/n)

Cacheୠୟୱୣ Cacheୠୟୱୣ Cacheୠୟୱୣ

CacheTଵଵ CacheTଶଵ CacheTଵଶ

(a) Traditional system

(b) Our approach

Figure 2: Dynamic cache reconfigurations for tasks T1 and T2.

P2

P1 P2

T2 T1

P1

549

configurations can be selected as long as the configuration
performance does not severely affect system behavior. After this
profiling step, the profile table is integrated with the scheduler so
that the cache reconfiguration hardware can tune the cache
accordingly for each scheduling decision.

3.4 Dynamically Scheduled Systems
With dynamic scheduling (online scheduling), scheduling decisions
are made during runtime. In this scenario, task preemption points
are unknown since new tasks may enter the system at any time
with any feasible time constraint. In this section, we present two
versions of our technique based on the nature of the target system.

3.4.1 SACR - Conservative Approach
In some soft real-time systems where time constraints are pressing,
only an extremely small number of violations are tolerable. The
SACR conservative approach could ensure that given a carefully
chosen partition factor, almost every task could meet their
deadlines with only few exceptions. To ensure the largest task
schedulability, any reconfiguration decision will only change the
cache into a lowest energy configuration whose execution time is
not longer than that of the base cache. In other words, to maintain a
high quality of service, only cache configurations with equal or
higher performance than the base cache are chosen for each task
phase. Note that the chosen energy-optimal configuration may not
be the global lowest energy configuration but is the one with
lowest energy consumption given the time constraint. We denote
them as deadline-aware energy-optimal cache configurations.

The scheduler chooses the appropriate cache configuration
from the generated profile table that contains the deadline-aware
energy-optimal cache configurations for each task phase. Table 1
(a) shows the profile table for task i with a partition factor p.
EOi(n/p) represents the deadline-aware energy-optimal cache
configuration for partition phase n/p (which means the execution of
this phase is from the partition point of n/p until the end of the
task) in task i. Here, n/p represents the n’th phase in the set of p
phases. The total dynamic instruction count (TIN) refers to the
number of dynamic instructions executed in a single run of that
task.

During system execution, the scheduler maintains a task list
keeping track of all existing tasks as shown in Table 1(b). In
addition to the static profile table records from Table 1(a), runtime
information such as arrival time (Ai), deadline (Di), and remaining
number of dynamic instructions (RIN) is recorded. This
information is stored not only for the scheduler, but also for the
cache tuner. When a newly arrived task begins execution, the
deadline-aware energy-optimal cache configuration (EOi(0/p)) is
obtained from the task list entry, and the cache tuner adjusts the
cache appropriately.

As indicated in Section 3.2.1, potential preemption points are
pre-decided during the profile table generation process. However,
it is highly unlikely that the actual preemptions will occur precisely
on these potential preemption points. Hence, a nearest-neighbor
technique is used to determine which cache configuration should
be used. Essentially, if the preemption point falls between partition
points n/p and (n+1)/p, the nearest point will be selected as the
current cache configuration. As our experimental result shows,
conservative SACR obtains significant energy savings with little or
no impact on quality of service.

3.4.2 SACR - Aggressive Approach
In a soft real-time system with less pressing time constraints, a
more aggressive version of SACR can reveal additional energy

savings at the cost of possibly violating several low priority future
task deadlines, while remaining in an acceptable range.

Similar to the conservative approach, a profile table is
associated with every task in the system; however this profile table
contains the performance-optimal cache configuration (whose
execution time is the shortest) in addition to the energy-optimal
configuration (the one with lowest energy consumption among all
candidates) cache for every task phase. In order to assist dynamic
scheduling, the profile table also includes the corresponding
phase’s approximate execution time (in cycles) for each
configuration. Table 2(a) shows the profile table for task i with a
partition factor of p. The terms EO, EOT, PO, and POT stand for
the energy-optimal cache configuration, the energy-optimal cache
configuration’s execution time, the performance-optimal cache
configuration, and the performance-optimal cache configuration’s
execution time, respectively.

Table 2(b) shows the task list entry for the aggressive

Table 1: (a) Static profile table and (b) Task list entry
for task i for the conservative approach.

Table 2: (a) Static profile table and (b) task list entry for
task i in the aggressive approach.

 Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

……

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

Task ID: i Partition Factor: p
Arrival time (Ai) Deadlinei (Di)

Total Instruction Number
(TIN)

Remaining Instruction
Number (RIN)

Current Phase (CP)
EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

……

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

(a)

(b)

Task ID: i Partition Factor: p
Arrival time (Ai) Deadline (Di)

Total Instruction Number
(TIN)

Remaining Instruction
Number (RIN)

EOi(0/p)
EOi(1/p)
EOi(2/p)

……

EOi(p-1/p)

Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p)
EOi(1/p)
EOi(2/p)

……

EOi(p-1/p)
(a)

(b)

550

approach. The difference from the conservative approach (shown
in Table 1(b)) is that every task list entry also holds a Current
Phase (CPi) identifier. CPi denotes the partition point that this
task’s execution just passed and is useful for cache reconfiguration
upon task resumption. In addition to the task list, the scheduler also
maintains another runtime data structure called the ready task list
(RTL), which contains an identifier representing each task currently
ready to execute in the system.

To explain the SACR aggressive approach, we use an
illustrative example in which there are three tasks, T1, T2, and T3,
with deadlines DT1, DT2, and DT3, where DT2 < DT1 < DT3.
According to EDF, the priority sequence is simply the opposite of
the deadlines, which is Pri2 > Pri1 > Pri3. Figure 4 shows a
schedule for these tasks. Note that P0, P1, P2, and P3 represent the
time instances when any event (arrival, completion, etc.) occurs. At
time point P0, T1 arrives and the scheduler generates the task list
entry for T1 and adds T1 to the RTL. Since T1 is currently the only
task in the system, the scheduler instructs the cache tuner to
configure the cache to EOT1(0/p) if and only if P0 + EOTT1(0/p) <
DT1, otherwise the cache will be tuned to POT1(0/p), which ensures
that T1’s deadline will be met. At time point P1, T2 arrives with
priority higher than the currently active task T1. The scheduler
calculates T1’s current phase CPT1 and updates T1’s task list entry.
Note that T1’s deadline may be violated if the following inequality
holds:

 P1 + POTT1((CPT1+1)/p) + POTT2(0/p) > DT1 (1)
This is obviously an underestimation of the execution time that T2
and the remaining portion of T1 will take, thus more aggressive,
but it favors tasks with higher priority. However, if we use
POTT1(CPT1/p) in Equation 1, T2 may have a lower chance of
being accepted, but T1 would likely meet its deadline.

If Equation 1 does not hold, the scheduler determines T2’s
cache configuration CT2 as follows (assuming POTi(0/p) < Di for
all tasks i otherwise task i is not schedulable in any situation):

if (P1 + EOTT2(0/p) > DT2)
 then CT2 = POT2(0/p)
else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) < DT1)
 then CT2 = EOT2(0/p)
else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) > DT1)
 then CT2 = POT2(0/p)
At time point P2, T2 completes and T1 resumes since it is the

only ready task. The scheduler utilizes CPTI to determine the
appropriate partition to choose a cache configuration. This
technique is similar in principle to the nearest neighbor approach
used in Section 3.4.1, except that a decision should be made
whether to use the energy-optimal or performance-optimal
configuration based on the remaining time budget. At some point
during T1’s execution, T3 arrives but since T3 has a lower priority
than T1, T3 begins execution after T1 completes execution. By this
time, T3 is the only task and its cache configuration decision is
made using the same method as task T1 at time P0.

4. Experiments
4.1 Experimental Setup

To quantify energy savings using SACR, we examined selected
benchmarks from the MediaBench [11] and EEMBC Automotive
[5] benchmark suites, representing typical tasks that might be
present in a real-time system. All applications were executed with
the default input sets provided with the benchmarks suites.

We utilized the configurable cache architecture developed by
Zhang et al [20] with a four-bank cache of base size 4 KB, which
offers sizes of 1 KB, 2 KB, and 4 KB, line sizes ranging from 16
bytes to 64 bytes, and associativity of 1-way, 2-way, and 4-way.
For comparison purposes, we define the base cache configuration
to be a 4 KB, 2-way set associative cache with a 32-byte line size,
a reasonably common configuration that meets the needs of the
benchmarks studied.

To obtain cache hit and miss statistics, we used the
SimpleScalar toolset [3] to simulate the applications. Our energy
model, adopted from the one used in [20], calculates both dynamic
and static energy consumption, memory latency, CPU stall energy,
and main memory fetch energy. We updated the dynamic energy
consumption for each cache configuration using CACTI 4.2 [9].

To populate the static profile tables for each benchmark, we
utilize SimpleScalar’s external I/O trace files (eio file),
checkpointing, and fastforwarding capabilities. This method allows
for every benchmark phase to be individually profiled via
fastforwarding execution to each potential preemption point. In our
experiments, we examined partition factors ranging from two to
seven potential preemption points. Driven by Perl scripts, the
design space of 18 cache configurations is exhaustively explored
during static analysis to determine the energy-, performance-, and
deadline-aware energy-optimal cache configurations for each phase
of each benchmark.

4.2 Results
To model sample real-time embedded systems with multiple
executing tasks, we created four different task sets as shown in
Table 3. In each task set, the three selected benchmarks have
comparable dynamic instruction counts in order to avoid
behavioral domination by one relatively large task. For system
simulation, task deadlines and priorities are as described in Section
3.4.2. We examine a varying set of preempting points and average
these values so that our results represent a generic degree of
scheduling decisions since task T2 may preempt task T1 at any
point in time.

We compare the energy consumption for each task set using
different schemes: a fixed base cache configuration, the SACR
conservative approach, and the SACR aggressive approach. Energy
consumption is normalized to the fixed base cache configuration
such that value of 1 represents our baseline. Figure 5 and Figure 6
present energy savings for the instruction and data cache
subsystems, respectively. Energy savings in the instruction cache
subsystem ranges from 22% to 36% for the SACR conservative
approach, while it reaches as high as 74% for the SACR aggressive
approach. Energy savings average 28% and 51% for the SACR
conservative and aggressive approaches, respectively. In the data
cache subsystem, energy saving is generally less than that of the

Table 3: Benchmark task sets.

Figure 4: Task set and sample scheduling.

Task 1 Task 2 Task 3
Task Set 1 epic* pegwit* rawcaudio*
Task Set 2 cjpeg* toast* mpeg2*
Task Set 3 A2TIME01** AIFFTR01** AIFIRF01**
Task Set 4 BITMNP01** IDCTRN01** RSPEED01**

* MediaBench **EEMBC

T1
P0 P1 P2 P3

T2 T1 T3

T1 arrives T2 arrives,
preempts T1

T2 completes,
T1 resumes

T3 arrives T1 completes,
T3 begins

551

instruction cache subsystem due to less variation in cache
configuration requirements. In the data cache subsystem, energy
savings range from 15% to 47% for the SACR conservative
approach, while it reaches as high as 64% for the SACR aggressive
approach, and average 17% and 22% for the SACR conservative
and aggressive approaches, respectively.

The remainder of this section describes the overhead of
implementing the profile table in hardware. The profile table is
stored in SRAM and accessed by the cache tuner to fetch the cache
configuration information. The size of the table depends on the
number of tasks in the system and the partition factor used. The
table entry consists of five bits since the configurable cache
architecture used in this study offers 18 possible cache
configurations. We have implemented the profile table using
Verilog HDL and synthesized using Synopsis Design Compiler
with TSMC 0.18 cell library. Table 4 illustrates our results. Each
row in the table indicates the area, dynamic power, leakage power,
and critical path length for profile table with different sizes. We
assume a table lookup frequency of one million nanoseconds
during dynamic power computation, which means there is a table
lookup every five hundred thousand cycles (a reasonably frequency
based on normal task sizes) using a 500MHz CPU. We observed
that on average for each task set, the energy overhead of our
approach only account for less than 0.02% (450 nJ comparing to
2825563 nJ) of the total energy savings. Therefore, the energy
overhead of implementing the profile table is negligible compared
to the energy savings produced by our approach.

Table 4: Overhead of different lookup tables
Table

size (# of
entries)

Area
(µm2)

Dynamic
Power
(nW)

Leakage
Power
(nW)

Critical
Path Length

(ns)
64 61416 134.40 114.37 0.91
128 121200 266.22 224.90 0.91
256 244520 544.73 461.30 1.08
512 483416 994.20 904.70 1.20

5. Conclusions
Dynamic reconfiguration techniques are widely used in designing
efficient embedded systems. Dynamic cache reconfiguration is a
promising approach to improve both energy consumption and
overall performance. The contribution of this paper is a novel
scheduling aware dynamic cache reconfiguration technique for soft
real-time embedded systems. To the best of our knowledge, this is
the first approach integrating dynamic cache reconfigurations into

real-time embedded systems. Our methodology employs an ideal
combination of static analysis and dynamic tuning of cache
parameters with minor or no impact on timing constraints. Our
experiments demonstrated a 50% reduction on average in the
overall energy consumption of the cache subsystem in soft real-
time embedded systems.

References
[1] D. H. Albonesi, “Selective cache ways: on demand cache resource

allocation”, Journal of Instruction Level Parallelism, May 2002.
[2] L. Benini, G. De Micheli, “A survey of design techniques for system-

level dynamic power management”, TVLSI, 8(3):299-316, June 2000.
[3] D. Burger, T. Austin, S. Bennet, “Evaluating future microprocessors:

the simplescalar toolset”, CS-TR-1308, University of Wisconsin, 2000.
[4] G. Buttazzo, Hard Real-Time Computing Systems. Kluwer 1995.
[5] EEMBC, http://www.eembc.org.
[6] A. Gordon-Ross, F. Vahid, N. Dutt, “Automatic Tuning of Two-Level

Caches to Embedded Applications”, DATE, page 10208, 2004.
[7] A. Gordon-Ross, F. Vahid, N. Dutt, “Fast configurable-cache tuning

with a unified second level cache, ISLPED, pages 323-326, 2005.
[8] I. Hong et al., “Power optimization of variable voltage core-based

systems”, IEEE TCAD, 18(12):1702-1714, December 1998.
[9] HP Labs, CACTI 4.2, http://www.hpl.hp.com/
[10] R. Jejurikar, R. Gupta, “Energy-Aware Task Scheduling With Task

Synchronization for Embedded Real-Time Systems”, IEEE TCAD,
25(6):1024-103, June 2006.

[11] C. Lee et al. “Mediabench: A tool for evaluating and synthesizing
multimedia and communication systems”, MICRO, 1997.

[12] J. Liu, Real-Time Systems. Upper Saddle River, Prentice-Hall 2000.
[13] A. Malik et al., “A low power unified cache architecture providing

power and performance flexibility”, ISLPED, pages 241-243, 2000.
[14] I. Puant, “Cache analysis vs static cache locking for schedulability

analysis in multitasking real-time systems”, ECRTS, 2002.
[15] I. Puant et al., “Low-Complexity Algorithms for Static Cache Locking

in Multitasking Hard Real-Time Systems”, RTSS, 114-125, 2002.
[16] G. Quan, X. S. Hu, “Energy Efficient DVS Schedule for Fixed-

Priority Real-Time Systems”, ACM TECS,6(4),article 29, 2007.
[17] T. Sherwood et al., “Discovering and exploiting program phases”,

IEEE Micro, December 2003.
[18] Y. Tan, V. Mooney, “Timing Analysis for Preemptive Multitasking

Real-Time Systems with Caches”, ACM TECS, (6)1, article 7, 2007.
[19] A. Wolfe, “Software-Based Cache Partitioning for Real-time

Applications”, IWRCS, 1993.
[20] C. Zhang, F. Vahid, W. Najjar, “A Highly Configurable Cache for

Low Energy Embedded Systems”, ACM TECS, 6(4):362-387, 2005.

Figure 5: Instruction cache subsystem energy consumption
normalized to the base cache configuration for each task set

Figure 6: Data cache subsystem energy consumption
normalized to the base cache configuration for each task set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 n
o
rm

a
li
ze

d
 t

o

th
e
 b

a
se

 c
a
ch

e
 c

o
n

fi
g

u
ra

ti
o
n

Base Cache SACR Conservative SACR Aggressive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 n
o

rm
a
li
ze

d
 t

o

th
e
 b

a
se

 c
a
ch

e
 c

o
n

fi
g

u
ra

ti
o

n

Base Cache SACR Conservative SACR Aggressive

552

H-NMRU: A Low Area, High Performance Cache Replacement Policy
for Embedded Processors

Sourav Roy
Freescale Semiconductors, India Design Center

sourav.roy@freescale.com

Abstract

We propose a low area, high performance cache re-
placement policy for embedded processors called Hier-
archical Non-Most-Recently-Used (H-NMRU). The H-
NMRU is a parameterizable policy where we can trade-
off performance with area. We extended the Dinero
cache simulator [1] with the H-NMRU policy and per-
formed architectural exploration with a set of cellular
and multimedia benchmarks. On a 16 way cache, a
two level H-NMRU policy where the first and second
levels have 8 and 2 branches respectively, performs as
good as the Pseudo-LRU (PLRU) policy with storage
area saving of 27%. Compared to true LRU, H-NMRU
on a 16 way cache saves huge amount of area (82%)
with marginal increase of cache misses (3%). Similar
result was also noticed on other cache like structures
like branch target buffers. Therefore the two level H-
NMRU cache replacement policy (with associativity/2
and 2 branches on the two levels) is a very attractive
option for caches on embedded processors with associa-
tivities greater than 4.

1 Introduction

Older generation embedded processors would consist
of a large internal SRAM and an external memory in-
terface connecting to a DRAM outside the chip. Most
applications would fit in the internal SRAM comfort-
ably. Caches were not preferred due to real-time vari-
ability in memory access latencies. As embedded sys-
tems became more complex, applications became very
large and caches became inevitable. In the last decade,
cache architectures have penetrated the world of em-
bedded processors. At present embedded processors
have cache architectures as complex as general pur-
pose processors. The architecture of embedded proces-
sor caches, especially on mobile devices, is complicated
by the fact that all three metrics of performance, power

and area have to be satisfied simultaneously within the
given constraints. This is different from general pur-
pose processors, where performance is the clear pri-
ority, followed by power (in recent times). Today in
the multi-core era, there is a trend to move to em-
bedded systems with multiple processors, each of low
area and frequency connected with high throughput
interconnect fabric. Hence there is a need to reduce
the complexity, area and power of individual proces-
sor components like caches, with minimal performance
reduction.

Cache replacement policies determine which line to
replace when there is a miss. In a set-associative cache,
a miss occurs when the accessed set is full. There
are three replacement policies that are widely used :
LRU (least recently used), FIFO (first in first out)
and RAND (random). Among these LRU is widely
accepted to be the most preferred cache replacement
policy. LRU most closely corresponds to the concept of
temporal locality. Typically, on general purpose bench-
marks FIFO and RAND amplifies the LRU miss rate by
12% and 20% respectively [2] [3]. More recently there
has been some work on cache performance evaluation
on SPEC2K benchmarks [4] [5]. The LRU policy is im-
plemented as a circular stack as shown in fig 1. During
a hit the most recently accessed line is placed at the top
of stack. During a miss, the line at the bottom of the
stack is replaced and the newly inserted line is placed at
the stack top. Though LRU is the preferred policy from
a performance angle, it is also the most complicated to
implement. Each set comes with its own LRU history
bits and they are updated with each memory refer-
ence to that set. For a m-way set-associative memory
(m− 1) ∗ log2m bits are required per directory entry of
a set [2]. This is a big overhead in embedded processors
where area is extremely important. To overcome this
problem, approximations to LRU which occupy much
lesser area have been suggested. The most prominent
and widely used among them is Pseudo LRU (PLRU).
The PLRU is extensively used in the PowerPC series

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.32

553

of microprocessors [6]. The PLRU is implemented a
binary tree, whose leaf nodes are the lines in the set,
as shown in fig. 1. During a hit, the path to the refer-
enced leaf node is traversed and on the way the node
values are flipped to point to the other branch. Dur-
ing a miss the tree is traversed according to the node
values to find the line for replacement. For a m-way
set-associative cache, PLRU requires (m − 1) bits per
directory entry of a set. The PLRU while occupying
much lesser area has been reported to perform as well
as the LRU policy on general purpose benchmarks [4].
Most embedded processors use LRU or PLRU as their
cache replacement policies. Processors using LRU re-
placement policy typically avoid associativities higher
than 4 due to extra area overhead of LRU history bits.
PLRU can be also used for higher associativities like 8
and 16, and in other highly or fully associative cache
like structures like branch-target-buffers (BTB).

Figure 1. LRU and PLRU cache replacement
policies

Cache replacement policies have been explored thor-
oughly over the last two decades. For embedded pro-
cessors, the known cache replacement policies are effi-
cient enough to provide high performance. However in
today’s multi-core era there is an acute requirement to
reduce the complexity and area of caches, with minimal
performance impact. In this work we have proposed a
new cache policy H-NMRU to reduce area without sac-
rificing non-negligible performance over the LRU pol-
icy. The rest of this paper is organized as follows. Sec-
tion 2 introduces the H-NMRU cache replacement pol-
icy and its computational and space complexity. Sec-
tion 3 describes the results of using H-NMRU cache
replacement policy on a set of cellular and multimedia
benchmarks, vis-a-vis other popular cache replacement
policies. Section 4 gives further results of applying H-

NMRU replacement policy in BTBs on a UMTS voice
call trace. Section 5 concludes with the advantage of
using H-NMRU over LRU and PLRU policies.

2 The H-NMRU Cache Replacement
Policy

The H-NMRU cache replacement policy can be ex-
plained using a multi-way tree, where the leaf nodes
represent the lines in the set. Each intermediate node
stores the value of its most-recently-used (MRU) child.
Let us take an example of a 16-way set-associative
cache as shown in fig. 2. In this example, the root
has 4 branches. Each child in turn has 2 branches, fol-
lowed by another 2 branches in the next level. This
multi-way tree has 3 levels. It is represented using H-
NMRU(4,2,2) where the numbers represent the num-
ber of branches at each level of the tree. The nodes of
the tree store the value of the most recently traversed
branch.

During a cache hit, the H-NMRU tree is traversed
to reach the accessed line at the leaf node. On the
way, the value of the nodes are updated to point to
the path of traversal. In this way, the most recently
used branches are stored at each node of the tree. On
a cache miss, the tree is traversed selecting a random
value different from the MRU value stored in the node.
From each level a non-MRU path is selected. In this
way, this algorithm points to a leaf node which has not
been accessed in recent times. For example in fig. 2,
the most recently used way is 11, which can be de-
termined by a simple tree traversal. The dotted lines
represent the current set of branches that can be tra-
versed randomly for way replacement. Hence the H-
NMRU policy selects one from way 3, way 5, or way
14 for replacement. The random replacement is done
in hardware with simple linear feedback shift registers
(LFSR). The random selection is done only for the ac-
cessed set in the cache. Hence it occupies negligible
hardware area.

Since this is a parameterizable policy, the key is to
find the correct number of levels and the number of
branches for each level. Let us define a generic H-
NMRU policy for a cache with associativity N:

Cache Policy : H-NMRU(i0, i1, . . . , in−1)

with
n−1∏
j=0

ij = N

The PLRU can then be defined as a special case of
H-NMRU where each of the ij = 2 and n = log2N .

554

Figure 2. H-NMRU(4,2,2)

Similarly NMRU is also a special case of H-NMRU.

PLRU = H-NMRU(2, 2, . . . , 2)
NMRU = H-NMRU(N)

The computational complexity of H-NMRU is di-
rectly related to the number of levels in the multi-way
tree i.e., n. Let us now find the space complexity of
the H-NMRU policy. A node that has m branches can
be represented using log2m bits. Hence the number of
history bits per set required for the H-NMRU policy is
given by,

No. of bits per set =
n−1∑
j=0

(
j−1∏
k=0

ik) ∗ log2(ij) (1)

The randomizer hardware needs to select the non-
MRU branch at every level. Hence it can select one
out of (ij − 1) branches. For any level with greater
than 2 branches, the LFSR needs to have log2(ij) bits.
In a simple implementation of the randomizer hard-
ware we create a pseudo-random sequence of (ij − 1)
states excluding the all-zero state. When this state is
exclusive-OR ed with the MRU state value, we get the
random non-MRU state.

Next we explore the design space of the H-NMRU
policy by evaluating the performance for a 16 way,
16 KB data cache with different parameters. Fig. 3
plots the average misses for different H-NMRU config-
urations. The misses are normalized with respect to
that of PLRU or H-NMRU(2,2,2,2). The misses are
measured by simulating a large number of cellular and
multimedia benchmarks on the Dinero cache simulator
which has been extended to support the configurable
H-NMRU replacement policy. As seen from the plot,

three other H-NMRU configurations have very similar
performance (within 2% degradation) to that of PLRU
but with much lower area requirement. The most at-
tractive is the H-NMRU(8,2) configuration which uses
only 11 bits per set entry instead of 15 as in PLRU,
yet deliver a performance with only 2% degradation.
As we reduce the number of bits per set, the miss
rate of the H-NMRU policy increases. For the same
number of bits, H-NMRU(8,2) performs better than
H-NMRU(2,2,4).

3 Performance and Area of H-NMRU
policy

In this section we will discuss the performance of the
H-NMRU cache replacement policy. We extended the
Dinero cache simulator to support the H-NMRU cache
replacement policy. Then we applied several real-life
traces on it to measure the cache performance. The
benchmarks included in the paper are cellular and mul-
timedia applications - Adaptive MultiRate (AMR) en-
coder, G.729 speech codec, MPEG4 decoder, Session
Initiation Protocol (SIP), protocol stack of 3G voice
call with HSDPA, and MP3 decoder. All the traces
consist of more than 100 million instruction and data
accesses. This is to ensure that we do not get mislead-
ing results from small traces. Level 1 instruction and
data caches with 16 ways and 32B line size have been
simulated using Dinero. Among the entire set of H-
NMRU configurations, we have chosen H-NMRU(8,2)
and H-NMRU(4,2,2). The former is the most attrac-
tive option from an area vs. performance trade off,
whereas the latter is the best performance obtained
from a non-PLRU H-NMRU policy. The results of in-
dividual applications are shown in fig. 4 and the av-

555

Figure 3. Design Space Exploration of H-NMRU policy on 16KB Data Cache

Figure 4. Comparison of various cache replacement policies

556

erage over all the applications is shown in fig. 5. We
conclude that the miss rate for H-NMRU(8,2) is only
3% higher than LRU and 1.5-2.0% higher than PLRU.
Other cache metrics like traffic depend on the miss rate,
and so we have only analyzed the cache misses. Though
we have considered only level 1 caches here, similar rel-
ative miss rates can be observed on level 2 caches as
well. This directly follows from the hypothesis that
if the level 1 cache is small compared to the level 2
cache, the performance of the latter can be computed
by assuming that no level 1 cache is present [7].

Figure 5. Average Performance

The H-NMRU(N/2,2) option is the best option in
terms of area savings with very marginal performance
loss. For an associativity N, PLRU bits per set is given
by (N − 1) whereas H-NMRU(N/2,2) bits per set is
given by log2(N/2) + N/2. As N increases, the area
savings of H-NMRU is higher. For large N, N/2 >>
log2(N/2), hence H-NMRU bits ≈ N/2 and PLRU
bits ≈ N . Therefore theoretically H-NMRU(N/2,2)
takes half the storage bits of PLRU for large associa-
tivities. For typical associativities of 16 and 32, H-
NMRU reduces storage requirement by 27% and 35%
over PLRU. Compared to LRU, the H-NMRU savings
are 82% and 87% respectively. Fig. 6 compares PLRU
and H-NMRU(N/2,2) storage bits across cache sizes
and associativities. It is important to note that it is
not only the storage bits that are reduced but also the
associated logic around the storage elements.

From an absolute area perspective, L1 caches typ-
ically implement replacement storage bits using regis-
ters to avoid frequency reduction. Approximate sav-
ings of H-NMRU(N/2,2) over PLRU for 16 way, 16KB
and 32KB L1 caches will be 20,000 and 50,000 um2

in 65nm technology. For a typical 256KB L2 cache,
the approximate saving of H-NMRU over PLRU is 2.5
mm2 in 65nm technology. Sometimes L2 cache replace-
ment bits are stored in SRAMs as they are not timing
critical. Then the approximate area savings would re-
duce to 0.2 mm2. Hence H-NMRU is practically more

suited for higher associativities and also for large caches
as found in L2 cache. It is to be noted here that real sil-
icon area depends on the timing of the particular chip
and also on the technology.

Figure 6. Area Comparison of PLRU and H-
NMRU(N/2,2)

4 H-NMRU replacement for BTB

In this section we explore the performance of the H-
NMRU replacement policy for another processor com-
ponent called Branch Target Buffer (BTB). The BTB
is a cache like structure that is used to reduce the per-
formance penalty of branches by predicting the path of
the branch. Each entry in the BTB typically contains
the branch address, the target address and the predic-
tion bits. When the processor fetches the instruction,
its address is compared with the entries in the BTB. If
there is a match with any entry, the prediction bits are
used to predict if the branch will be taken or not. In
case the prediction is branch taken, then the target ad-
dress is used as the next instruction fetch address. This
saves the branch penalty of the pipeline. There are two
aspects of the BTB that are important for effective op-
eration viz., BTB prediction accuracy and the BTB hit
ratio. We will deal with the latter here in connection
with replacement algorithm. If there is a BTB miss,
it is advantageous to predict that program flow should
go in line. Once there is a BTB miss and the program
takes a branch, the BTB needs to be updated with the
new branch entry. In this case an entry needs to be
evicted to make space for the new entry. Typically, the
LRU policy is used as the replacement policy. In this
section we explore the performance of both PLRU and
H-NMRU policies for BTB.

Several embedded processors with deeper pipelines

557

have started using BTB for branch performance im-
provement. Popular examples are ARM11 [8] and Star-
Core 3400 [9]. The challenge in embedded processors
is to improve branch performance with limited area
overhead. Typically modest size BTBs in embedded
processors have high associativity, even fully associa-
tive or only very few (2-4) sets. This increases the area
of LRU bits. To reduce the area overhead of history
bits for cache replacement, the H-NMRU replacement
policy can be used. In fig. 7 we plot the BTB misses
for LRU, PLRU and H-NMRU(size/2,2) policy. The
BTB explored here has full associativity and the ap-
plication is a 3GPP UMTS voice call application. Few
billion instructions have been simulated to study the
BTB miss rates. As we see the H-NMRU policy per-
forms very close (within 2-3%) to the LRU and PLRU
policies while saving substantial area. For example the
PLRU policy requires 31, 63, 127, 255 bits whereas the
H-NMRU(size/2,2) would require 20, 37, 70, 135 bits
respectively. Since the H-NMRU policy reduces stor-
age bits and has only two levels in the tree, the timing
also considerably improves.

Figure 7. BTB Misses for UMTS voice call

5 Conclusion

In this paper we presented a new cache replace-
ment policy called H-NMRU that saves substantial
area while providing similar performance to LRU
and PLRU. The H-NMRU is a parameterizable pol-
icy and among them an attractive option is H-
NMRU(way/2,2). On a 16 way cache, it saves 27% area
over PLRU with minimal loss of performance(1.5%).
The absolute area saving is encouraging for highly as-
sociative and level 2 caches. This policy can also be
used for BTB entry replacement, where typically as-
sociativity is high. Timing also improves considerably

due to lower number of bits and only two levels in the
tree. Hence H-NMRU(N/2,2) policy can help to reduce
complexity, area and standby power of cache structures
in present-day multi-core mobile platforms.

Here we have explored H-NMRU cache replacement
policy in relation with embedded processors as area is
a high priority for them. However we would also like to
encourage architects in the general purpose computing
domain to explore H-NMRU.

6 Acknowledgments

We would like to thank Brace Randall and Itay
Peled at Freescale Semiconductors for the application
traces that we used for cache performance evaluation.

References

[1] J. Elder and M. Hill. (1997) Dinero IV trace-driven
uniprocessor cache simulator. [Online]. Available:
http://www.cs.wisc.edu/∼markhill/DineroIV

[2] A. J. Smith, “Cache memories,” ACM Computing
Surveys, vol. 14(3), pp. 473–530, Sep. 1982.

[3] J. D. Gee, M. D. Hill, and A. J. Smith, “Cache
performance of the SPEC benchmark suite,” Uni-
versity of California at Berkeley, CA, USA, Tech.
Rep. CSD-91-648, 1991.

[4] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic,
“Performance evaluation of cache replacement poli-
cies for the SPEC CPU2000 benchmark suite,” in
Proceedings of the 42nd annual ACM Southeast re-
gional conference, Huntsville, Alabama, 2004.

[5] J. F. Cantin and M. D. Hill, “Cache performance
for selected SPEC CPU2000 benchmarks,” ACM
SIGARCH Computer Architecture News, vol. 29(4),
pp. 13–18, Sep. 2001.

[6] A. Kennedy, M. Alexander, E. Fiene, J. Lyon,
B. Kuttanna, R. Patel, M. Pham, M. Pu-
trino, C. Croxton, S. Litch, and B. Burgess, “A
G3 PowerPC superscalar low-power microproces-
sor,” in Proceedings of COMPCON 97, 1997.

[7] M. J. Flynn, Computer Architecture - Pipelined and
Parallel Processor Design. Jones and Bartlett Pub-
lishers Inc., 1998.

[8] ARM1136JF-S and ARM1136J-S, Technical Refer-
ence Manual, ARM Limited, 2002.

[9] MSC8144 Quad Core Digital Signal Processor,
Freescale Semiconductors, Apr. 2008.

558

Session 9A

VLSI Education

Infrastructures for Education, Research and Industry in Microelectronics - a look
worldwide and a look at India

B. Courtois, K. Torki, S. Dumont, S. Eyraud, J-F Paillotin, G. di Pendina
CMP - 46 Avenue Felix Viallet, 38031 GRENOBLE Cedex, FRANCE

email: Bernard.Courtois@imag.fr

Abstract

Infrastructures to provide access to custom integrated
hardware manufacturing facilities are important
because they allow Students and Researchers to access
professional facilities at a reasonable cost, and they
allow Companies to access small volume production,
otherwise difficult to obtain directly from
manufacturers. This paper is reviewing the most recent
developments at CMP like the introduction of a CMOS
45nm process, the cooperation between the major
infrastructures services available worldwide and
recent developments w.r.t. India. The conclusion is
addressing technical developments as well as
considerations like globalization and excellence.

1. The need for infrastructures

Infrastructures to provide access to custom integrated
hardware manufacturing facilities are important for
several reasons:
- they allow Students and Researchers to access

professional facilities at a reasonable cost,
- they allow Companies to access small volume

production, otherwise difficult to obtain directly from
manufacturers.

The needs of Universities, Research Laboratories and
Companies can be summarized as follows:
- Universities need to have access to technology for

teaching their students. Those students will be in the
industry. Therefore they have to be trained at least on
the actual state of the art technology processes.

- Research Laboratories usually need to have high
performance technologies to validate new concepts.
The quality of the research results depends mostly on
the quality of the technologies. Accessing to up to
date technologies is a necessity.

- Industrial users also need to access to the state of the
art of the offered technologies. This is vital for
industrial users. The development of a product is
usually long (more than 1 or 2 years). It is necessary
that an industrial user has access to an up to date
process, giving guaranty on product life.

Offering manufacturing Services has to be governed by

the following basic principles:
- Industrial quality process lines should be used

(University process lines cannot offer a stable yield),
- Design kits to link CAD and MPC/MPW facilities

should be offered to ease the design.
It is also to be noted that almost every country or
continent is a high cost country or continent to another
one at the time of global markets. It is thus important
to keep students, researchers, industrialists ahead of
others in order to stay in business. To stay ahead means
to train, research, use, advanced design methods and
tools and to design on advanced processes.

2. Developments at CMP

A review of early national efforts can be found in [1],
and a review of first cooperative initiatives may be
found in [2]. Since 1981, several periods may be
distinguished at CMP:

Development at CMP
Several periods may be distinguished.
1981–1982 : launching CMP with NMOS
1983–1984 : development of NMOS, launching CMOS
1984–1986 : development of CMOS
1987–1989 : abandon NMOS, increase the frequency of
 CMOS runs
1990–1994 : launching Bipolar, BiCMOS, GaAs
 MESFET, GaAs HEMT, advanced CMOS
 (.5 µ TLM)
1995–1997 : launching CMOS and GaAs compatible
MEMS, DOEs, deep-submicron CMOS (.25µ 6LM)
1998 : launching silicon surface micromachining,
 abandon MESFET GaAs
1999 : launching SiGe, deep submicron CMOS
 (.18µ 6LM), SOI/SOS CMOS (.5µ)
2000 : launching SiGe BiCMOS (.35µ 5LM)
2001 : launching very deep submicron CMOS (.12µ
 6LM)
2002 : launching Inp HBT process
2003 : launching 0.35µ CMOS-Opto
2004 : launching very deep submicron CMOS
 (90nm, 7LM), HBT Sige:C BiCMOS 0.25µ
2006 : launching CMOS 65nm (7LM)
2008 : launching CMOS 45nm

Processes available

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.17

561

Presently the processes available for ICs and MEMS
manufacturing are depicted in Table 1.

Austriamicrosystems 0.35µ CMOS C35B4C3
0.35µ CMOS C35B4M3
0.35µ CMOS-Opto C35B4O1
0.35µ CMOS Flash C35B4E3
0.35µ SiGe BiCMOS S35D4M5
0.35µ HV-CMOS H35B4D3

STMicroelectronics 45nm CMOS CMOS045
65nm SOI
65nm CMOS CMOS065
90nm CMOS CMOS090
0.12µ CMOS HCMOS9GP
0.12µ SOI
0.25µ SiGe:C BiCMOS7RF

OMMIC 0.2µ HEMT GaAs ED02AH
SANDIA SUMMiT
MEMSCAP PolyMUMPs

SOI MUMPs
Metal MUMPs

TABLE 1: IC AND MEMS PROCESSES AVAILABLE

ICs design kits and CAD software
Design kits and libraries are distributed by CMP for
most of the processes and most commonly used CAD
tools. CMP sometimes develop design kits, in
cooperation with the manufacturers and the CAD
vendors. CMP also offers special CAD software
conditions from a few CAD vendors. As a focal point,
CMP also distributes information on configuration
files, converters, etc. About 40 design kits are available
for each process and the main CAD tools.

Other services
Packaging and testing services are also offered.
Various types of packages are supported, including
DIL, SOIC, CQFP, JLCC, PGA, etc. Test of prototypes
is usually done by the final user. On request, especially
for low volume production, CMP may take over testing
together with manufacturing.

Key figures
Since 1981, CMP has served more than 1000
Institutions from 66 countries in various processes.
Support to Industry started in 1993 for small volume
production. CMP is ISO 9002-1994 certified from
2000 to 2003. CMP is working on the certification ISO
9002-2000.

Recent developments
Recent developments have been the move to very deep
submicron processes: 120nm CMOS, 90nm CMOS,
65nm CMOS and 65nm SOI, 45nm CMOS, .35µ HBT
SiGe BiCMOS, .25µ Sige:C HTB BiCMOS from
STMicroelectronics and the exploration of new MEMS
fabrication offerings.

The move to very deep submicron processes.
CMP introduced 120nm CMOS as early as 2001. A
total of 175 circuits were fabricated from 2001 to June
2007. CMP introduced 90nm CMOS in 2004 and
nearly 100 circuits have been fabricated up to now.
Finally 65nm CMOS was launched in 2006 and a ten
of circuits have been fabricated already. This means a
total of nearly 300 circuits coming from about 50
Research Laboratories and Industrial Companies.
These processes have been very well received. Let’s
detail what happened with the CMOS 90nm. The 90nm
CMOS has been announced in 2004, first DRMs and
design kits have been shipped to designers in 2004.
The list of Institutions who have used the 90nm CMOS
to date is depicted in Table 2. One can notice a number
of top level Universities in Europe and North America
mostly. All Canadian Universities are using the 90nm
CMOS process. The move to 65nm has started. The
65nm CMOS has been announced in 2006. The Table
3 depicts the list of Institutions who have received the
DRMs and design kits up to now. Again there are
many top level Universities in Europe and in North
America who are moving to 65nm CMOS. About 30
Institutions have received the 45nm design rules.

TABLE 2: INSTITUTIONS HAVING SUBMITTED
CIRCUITS 90NM CMOS

AUSTRALIA : 1
BELGIUM : 4
BRAZIL : 2

Institution Town Country
U. of Calgary Calgary CANADA
U. of Waterloo Waterloo CANADA
Carleton U. Carleton CANADA
U. of British Columbia Vancouver CANADA
U. of Toronto Toronto CANADA
Ecole Polytechnique de Montréal Montréal CANADA
McGill U. Montréal CANADA
CMC Microsystems Kingston CANADA
U. of Alberta Edmonton CANADA
Queen's U. Kingston CANADA
Techn. U. of Denmark Lyngby DENMARK
VTT Espoo FINLAND
IMEP Grenoble FRANCE
ISEN Lille FRANCE
U. Stuttgart Stuttgart GERMANY
U. of Modena Modena ITALY
INFN Pavia ITALY
U. degli studi di Pisa Pisa ITALY
Novelda AS Kviteseid NORWAY
U. of Oslo Oslo NORWAY
Norwegian U. of Sc & Technol. Trondheim NORWAY
Instituto Microelectronica Sevilla SPAIN
Linkoping U. Linkoping SWEDEN
U. of Neuchatel IMT Neuchatel SWITZERLAND
ETH Zentrum IIS Zurich SWITZERLAND
U. of Michigan Ann Arbor USA
UC Berkeley - BWRC Berkeley USA
MIT Cambridge USA
U. of Virginia - DECE Charlottesville USA
Georgia Electronic Design Center Atlanta USA
UCLA - El. Eng. Dept. Los Angeles USA
Sun Microsystems Inc. Mountain View USA
U. of Washington Seattle USA
Stanford U. Stanford USA
TOTAL 34 Institutions from 11 countries

562

CANADA : 16
DENMARK : 3
FINLAND : 2
FRANCE : 27
GERMANY : 7
ITALY : 15
JAPAN : 2
KOREA : 1
NETHERLANDS : 2
NORWAY : 2
SINGAPORE : 1
SOUTH AFRICA : 1
SPAIN : 7
SWEDEN : 3
SWITZERLAND : 4
TUNISIA : 1
UNITED ARAB EMIRATES : 1
U.K : 6
USA : 20

TOTAL: 128 Institutions from 22 countries

TABLE 3: INSTITUTIONS HAVING RECEIVED
THE 65NM DRMS & DESIGN KITS

Advanced MEMS processes.
CMP offered manufacturing for MEMS as early as
1995, being the first service to offer MEMS. It is
important that MEMS can be obtained from the same
service delivering ICs, so that integration (either at the
packaging level or at the die level) is made easier.
For many years, CMP has been offering the MUMPS
processes from MEMSCAP: PolyMUMPS,
MetalMUMPS, SOIMEMS. These MUMPS services
enjoy a 10 years MEMS experience, obtained through
more than 70 runs, more than 200 designs. Recently
CMP has been introducing SUMMITV from SANDIA
and to a MEMS process based on the CMU post
process capabilities.
The SUMMIT (Sandia Ultra-planar Multi-level MEMS
Technology) fabrication process is a five-layer
polycrystalline silicon surface micromachining process
(one ground plane/electrical interconnect layer and
four mechanical layers). The MEMS structures made
possible by this five-layer planarized surface
micromachining process are extremely diversified.
CMU post process is a post CMOS processing from
Carnegie Mellon University. This post process, applied
to an advanced process proposed by CMP (0.35 SiGe
BiCMOS from STMicroelectronics), allows to
combine on the same chip MEMS structures
(resonnators, cantilevers, accelerometers, etc.) and
microelectronics structures of an advanced BiCMOS
process.
CMP also introduced long ago low cost bulk post
process micromachining based on a CMOS processes.

3. Other major infrastructures

There are 7 major infrastructure services today: CIC in
Taiwan, CMC in Canada, CMP in France, ICC in
China, IDEC in Korea, MOSIS in the USA and VDEC
in Japan. They are briefly described below. Three of
them, CMC, CMP and MOSIS have decided in 2002 to

cooperate. It might happen that further cooperations will
be developed later on. The following depicts these 7
services as per their inputs to the 2007 CMP Annual
report.

CIC
National Chip Implementation Center (CIC) Project
was initiated by the National Science Council in 1992.
This project aims to pave the way for a national
research and service center for IC/System design.
In 2007, the process technologies provided by CIC are
listed below
 UMC 90nm MS CMOS,
 TSMC 0.13μm MS/RF CMOS,
 TSMC 0.13μm Logic/MS CMOS,
 TSMC 0.18μm 1P6M CMOS,
 TSMC 0.35μm 2P4M CMOS,
 TSMC 0.35μm SiGe BiCMOS,
 WIN 0.15μm PHEMT GaAs,
 TSMC 0.35μm CMOS MEMS Post Process,
 TSMC 0.18μm CMOS MEMS Post Process.

Totally, there were 1721 prototyped ICs being
successfully fabricated in 2007. Up to now, CIC has
provided MPC services for over eighty universities in
Taiwan with 10,029 prototyped ICs including 9,044
ICs from the academics (universities and polytechnics)
and 985 ICs from the research institutes as well as
industrial sectors. Furthermore, CIC also develop Sip
module and CMOS MEMS technologies for academia.

CMC
CMC Microsystems (www.cmc.ca) provides national
infrastructure for microsystems research and
technology development.
As of 2007, CMC’s services include:
- 65-nanometre CMOS (STMicroelectronics through

CMP)
- 90-nanometre CMOS (STMicroelectronics through

CMP)
- 0.13µ CMOS (IBM through MOSIS)
- 0.18µ CMOS (TSMC through MOSIS)
- 0.35µ CMOS (TSMC through MOSIS)
- 0.8µ CMOS in three process flavors: high-voltage--

up to 300V, mid-voltage range--+/-20V, and
standard-voltage--2.7V to 5.5V (DALSA
Semiconductor).

- 2.5 GHz Bipolar linear array (Gennum Corporation)
- PolyMUMPs surface micromachining process

(through partnership with CMP and MEMSCAP)
- MetalMUMPs (through partnership with CMP and

MEMSCAP)
- Micragem SOI-based micromachining process

(Micralyne Generalized MEMS process)
- Protolyne for semi-custom microfluidics devices

(Micralyne)

563

- Photonics/optoelectronics: InP, GaAs, EPI-only
InP/GaAs, Silica/Si and Silicon-on-Insulator based
technologies (through Canadian Photonics
Fabrication Centre)

- On an exploratory basis: Microfluidic process with
metallization (through Micronit)

A total of 378 designs were fabricated in 2007 using
the technologies listed above.

ICC
Founded in 2000 by Science and Technology
Commission of Shanghai Municipality, Shanghai
Research Center for Integrated Circuit Design (so-
called ICC) is dedicated in promoting Shanghai and all
China IC Design industry to realize durative rapid
development. The services ICC provides include
Multi-Project Wafer service, SoC design platform,
testing service, training and evaluation, information
service, etc. From 1996 to 2000, Shanghai MPW
Service (SMS), operated by Fudan University, was
mainly open to academic users, with totally 116
designs fabricated. From 2001, ICC began to operate
SMS, expanded the service to industrial sectors and
became the China National MPW Center. Totally 877
designs from more than 250 design houses, universities
and research institutes were prototyped on MPW runs
and low volume production since 2001.
The following technologies were available in SMS in
2007:
- CSMC 0.6um CMOS
- Chartered 0.35um CMOS
- Chartered 0.25um CMOS
- Chartered 0.35um SiGe
- TSMC 0.13um CMOS
- TSMC 0.18um CMOS
- TSMC 0.25um CMOS
- TSMC 0.35um CMOS
- SMIC 0.13um CMOS
- SMIC 0.18um CMOS
- SMIC 0.35um EEPROM
- HJTC 0.18um CMOS
- HJTC 0.25um CMOS
- HJTC 0.25um EEPROM
There are totally 22 runs in the year of 2007. 158 chips
from 75 customers were successfully fabricated. In
2007, ICC provided an SoC design support platform
with the cores from ARM, ZSP, Synopsys and etc,
such as ARM7TDMI, ARM926EJ, NEO, ZSP200,
ZSP400.

IDEC
IDEC (Integrated Circuit Design Education Center)
was launched in 1995 with the support of the Ministry
of Commerce, Industry and Energy and major

semiconductor industries for the purpose of educating
designers in the non-memory IC field.
Currently, IDEC provides MPW services for 62 WGs
(Working Groups) in Korea. As of January 2008, a
total of 1,814 IC chips have been successfully
fabricated through the IDEC MPW (Multi-Project
Wafer) program. The technologies provided in 2007
are listed below:
• CMOS 0.35 µ, 1-poly 4-metal, Samsung Electronics
• CMOS 0.18 µ, 1-poly 4-metal, Samsung Electronics
• CMOS 0.35 µ, 2-poly 4-metal, Magnachip/Hynix
• CMOS 0.18 µ, 1-poly 6-metal, Magnachip/Hynix
• CMOS 0.18 µ, 1-poly 6-metal, Dongbu Electronics
• InGaP HBT, Knowledge-on

MOSIS
MOSIS is a low-cost prototyping and small volume
production service for VLSI circuit development with a
worldwide customer base. Since 1981, the service has
fabricated more than 50,000 integrated circuit designs
for use by commercial firms, government agencies and
universities and has served as the model for similar
operations throughout the world. It is a not-for-profit
organization started in 1980 by DARPA (Defense
Advanced Research Projects Agency of the U.S.
Department of Defense) at the Information Sciences
Institute to provide their research community with
access to advanced IC fabrication lines in a cost
effective manner. Fast-turnaround prototype and low-
volume fabrication of integrated circuits is available
through a number of major commercial IC fabrication
vendors such as Agilent/HP (now Avago)
Technologies (0.5µ CMOS), AMI Semiconductor
(0.35µ, 0.5µ, 0.7µ, 1.5µ CMOS), IBM (65nm, 90nm,
0.13µ, 0.18µ and 0.25µ CMOS; 0.13µ, 0.18µ, 0.25µ,
0.35µ and 0.5µ SiGe BiCMOS) and TSMC (0.13µ,
0.18µ, 0.25µ, 0.35µ CMOS). CMOS-compatible
MEMs technologies are also available. Other
technologies such as austriamicrosystems (0.35µ
CMOS, 0.35µ HV CMOS, 0.35µ SiGe BiCMOS) are
available through a partnership with CMP in France.

VDEC
VLSI Design and Education Center (VDEC), which is
located in the University of Tokyo, has been utilized
by academic users in Japan since its foundation in
May, 1996. As an MPC service center, VDEC aims at
improvements of education on VLSI design and
supports on VLSI chip fabrication for national
universities, public universities, private universities
and colleges in Japan. VDEC receives a lot of supports
from Japan government, as well as semiconductor
industries through STARC (Semiconductor
Technology Academic Research Center).
Presently the following technologies are available for

564

chip fabrication service.
 2-poly 2-metal CMOS 1.2 µm process from SCG
Japan Ltd. (OnSemiconductor Ltd.)
 1-poly 5-metal CMOS 0.18 µm process from Rohm
Co. Ltd.
 2-metal 0.8µm bipolar process from NEC Compound
Semiconductor Devices Ltd.
 1-poly 6-metal CMOS 90 nm from ASPLA
 VDEC-MOSIS CMOS 0.25µm /0.18µm from TSMC
 VDEC-MOSIS Si-Ge BiCMOS 0.5µm from IBM

In last VDEC fiscal year (2006.4 – 2007.3), there were
totally 24 chip fabrication runs in the last year, each
with a 2 to 3 months period. 103 professors and
research groups from 55 universities and colleges
participated chip design and fabrication through
VDEC. Totally 433 chips on 5397 mm2 silicon area
were designed and fabricated.

4. Present cooperative efforts

Presently, the major cooperative effort is undertaken
by CMC, CMP and MOSIS. These 3 infrastructure
services announced it at DAC in June 2002. Since then,
the cooperation has been steadily expanding [3].
Recently, CMP has entered an agreement with IDEC to
serve Korean Universities with STMicroelectronics
processes. Separately, CMP has also set up a number
of bilateral cooperation with infrastructure services,
with special groups in various countries, and has
established distributors in several parts of the world.

5. A look at india

Up to now, India Universities/Research Centers made
modest use of CMP services. A few Instructions have
received the Austriamicrosystems design rules
including IIT Kanpur and 2 have received the 90nm
design rules: Vellore Institute of Technology in
Chennai and Birla Institute of Technology and Science
in Pilani. IIT Kanpur is finalizing a design for
manufacturing in September 2008 in the .35µ CMOS
process. Interestingly, a University of the Philippines is
finalizing a circuit in the 90nm process for
manufacturing in July 2008. These are positive signs of
moves from India and other countries who are not yet
in the Table 2.

6. Conclusion

Key issues at CMP in 2007 have been:
- More and more circuits: +25% from 2005 to 2006,

+22% from 2006 to 2007
- Industrial circuits is maintained to about 20% of the

total number of circuits and low volume production
is provided up to tens of wafers

- A large portfolio of technologies (17 different

processes from low cost processes to very advanced
ones) for ICs and MEMS

- Cooperation continues with other major services in
the world

Several general conclusions are addressed in the
following, according to 3 broad lines:

- more Moore
- more than Moore
- more than more than Moore

and 2 considerations:
- going global
- being excellent

More Moore
It has been recognized that Students, Researchers and
SME designers must be provided with the possibility to
have their circuits fabricated. From its inception in
1981, CMP has been successfully pursuing this goal
and experiencing a very significant growth to reach
and to keep its present level. The success is partly due
to the basic principles which have been governing the
choices of the Service: use of industrial and advanced
process lines. Advanced processes are more and more
necessary because of the need for very skilled
designers and because CAD industrial software is more
widely available to Universities (instead of University
CAD software). Since new versions of CAD software
are targeted to industrial use, there is no choice but to
use advanced processes. Industry makes also more and
more use of the Service. During the 80s, the CMP
processes were not very advanced, but they approached
more and more industry state of the art during the 90s,
because of CAD software reasons and because of the
increasing industry use of CMP. Since then, CMP is
always offering state of the art processes.

More than Moore
The quest for always larger densities may also be
satisfied with 3D processes, possibly not including
very advanced process dies. 3D processes lead to easier
to manage interconnections and to reasonable cost.
CMP will introduce soon 3D processes using TSVs
(through silicon vias).

It is also recognized that complementary developments
must be addressed, in order to address more diversified
needs. With this respect, CMP has been a pioneer in
being the first service in the world to offer MEMS
processes as early as 1995. Going further, more than
mechanics-electronics is to be addressed like
photonics, optics, fluidics, etc. CMP will be actively
promoting these developments in the future.

More than more than Moore
Going further beyond, other communities than EE and
CS should be addressed, for which electronics will

565

offer more and more opportunities in the future. CMP
has started to address the BioMed community [4].
Many kinds of BioMed applications are addressed in
this paper, ranging from neurosciences to surgery aid,
to endoscopy, to skin treatment. Many other kinds of
applications might be devised in the future. Going
further from dermatology for example, hardware
devices might be designed in view of the coming
market dealing with dermonutrition or nutricosmetics,
depending on the way companies are coming from.
Danone is offering yoghurts “nourishing the skin from
inside”, and L’Oreal is offering with Nestle nutritional
food fighting the skin aging: nutraceuticals with
cosmetic benefits (the so-called beauty pills). In both
cases, the efficiency can be scientifically measured by
specific devices.

What is important for the BioMed community is that
Education and Research should take advantage of these
infrastructures, in the same way as Education and
Research in microelectronics have taken advantage of
these infrastructures in the 80s. At that time, these
infrastructures offered the possibility to EE and CS
students, teachers, researchers, to focus on the design
of complex circuits hence to focus on the applications,
because these infrastructures gave them the
opportunity not to be burden by the manufacturing
processes, nor by the cost of their projects. Today,
various CMOS and MEMS processes can allow
students, teachers, and researchers to focus on BioMed
applications. Not all possible applications can be
reached by standard processes offered by service
organizations like CMP, but many can be addressed.
Other communities could take advantage of such
services in the same way.

Going global
All the above requires cooperation between services
like CMP, since it is difficult for one single service to
offer a wide set of processes of its own. CMP had set
up a cooperation with CIC (Taïwan) long ago.
Recently, CMC (Canada), CMP and MOSIS (USA)
announced a reinforcement of their cooperation in
2002. More recently CMP announced a cooperation
with ICC (China) and IDEC (Korea). It is expected that
CMP will reinforce such cooperations in the future.

On the side of the users of CMP and of other similar
services, the design way is also going more and more
global in the sense that more and more IP blocks may
come from various sources. This is due to the ever
increasing complexity of designs, including parts
coming from various teams, countries, companies, etc.
An initiative is being developed to go this way: the

Global Education for Microelectronic Systems
(GEMS) [5].

Being excellent
Globalization also requires to be excellent in order to
stay ahead of others. This is important at the time of
global markets, when every country or continent is a
high cost country or continent to another one. Some
countries or continents that were said to be “low-cost”
countries or continents a few years ago already
experience that other countries or continents are
coming to the picture with lower costs, forcing them to
outsource their own outsourcing [6]. The way to
combat that is to stay ahead of the others. The way to
stay ahead is to educate and research using top level
electronic processes available from top level services
like CMP.

7. References

[1] “MPC Services available worldwide”, invited paper,

APCCAS’94 IEEE Asia-Pacific Conference on Circuits
and Systems, December 5-8 1994, Grand Hotel, Taipei,
Taiwan.

[2] “Infrastructures for Education and Research: from
National Initiatives to Worldwide Development”, invited
talk, Technical University of Darmstadt, M. GLESNER
60th birthday ceremony, 29 August 2003.

[3] CMC, CMP and MOSIS, “The Scale of Cooperation
Increases as the Dimensions of Microchips Decrease”,
invited paper, 3rd International Conference on
Microelectronic Systems Education, 1-2 June 2003,
Anaheim, USA.

[4] COURTOIS B., CHARLOT B., DI PENDINA G.,
RUFER L., Infrastructures for Education, Research and
Industry: CMOS and MEMS for BioMed, Invited paper
at the 12th World Multi-Conference or Systemics,
Cybernetics and Informatics (WMSCI 2008), Orlando
USA, 29 June – 2 July 2008.

[5] RUCINSKI A. “Global Education for Microelectronic
Systems, www.ieee-gems.edu”.

[6] India outsources its own outsourcing – Pioneer nation
fends off new rivals, International Herald Tribune – 25
September 2007.

566

Invited Paper

Phase Locked Loops

Specification driven design of Phase locked loops

Prakash Easwaran, Prasenjit Bhowmik, Rupak Ghayal

Cosmic Circuits Pvt. Ltd.

Bangalore, India

prakash@cosmiccircuits.com

prasenjit@cosmicciruits.com

rupak@cosmiccircuits.com

Abstract— The factors that impact the topology and the

performance specifications for a Phase locked loop (PLL) is

presented. Correct specification of the PLL is critical for

optimizing the performance and power of the system. PLL

specifications for different systems have been derived and the

architectural tradeoffs have been discussed. Three PLL

design examples have been presented for WLAN base-band

PLL application, DVB-H receiver base-band PLL application

and a high speed (MIPI) transmitter application.

Index terms— Charge-pump, Phase locked loop (PLL), jitter,

phase noise.

I. INTRODUCTION

Phase locked loops (PLL) are used to implement different

kind of timing related functionality such as frequency

synthesis [1], clock and data recovery [2] and clock de-

skewing . The output of such a PLL may be used in variety of

applications like analog sampling, system clock generation,

high speed serial links etc. In this paper the architectural

choice and design approach have been presented for PLLs for

different applications.

The paper is organized as follows. Section II provides an

introduction to the various PLL topologies and the

advantages and disadvantages of each topology. Section III

presents various figures-of-merit for a PLL. Section IV

discusses the various noise sources in a charge-pump PLL.

Section V presents the performance requirements for PLLs in

a variety of application. Section VI presents the design

aspects of charge-pump PLLs and the conclusion is given in

Section VII.

II. PLL TOPOLOGIES

The PLL is a negative feedback loop where the feedback
clock edge is aligned to the input clock edge [3]-[6],. The most
popular architectures of choice are the charge-pump
architecture [7] and digital architecture [8].

Fig. 1 shows a typical block diagram of a charge-pump
PLL. The Phase Frequency detector (PFD) generates a pulse-
width modulated signal, where the pulse width is proportional

to the timing difference between the reference clock (Fref) edge
and the feedback clock (Ffbclk) edge. The Charge Pump (CP)
output is a current pulse whose pulse-width is determined by
PFD. The loop-filter converts the current pumped by CP into
voltage where the voltage is proportional to timing difference
between two clocks at PFD input. The voltage controlled
oscillator’s (VCO) frequency changes proportionally to the
applied correction-voltage.

At steady state (for an ideal charge-pump PLL) ,VCO
input voltage is static, CP output current is zero, Timing error
between clock-edges at PFD input is zero and hence Ffbclk=Fref.
Now Ffbclk=Fsys/N where N is the division number. This
implies Fsys=N*Fref

VCO

Fsys
PFD

DIV

Fref

Ffbclk

C2

C1

CPUMP

UP

DN

Icp
Vctl

VCO

Fsys
PFD

DIV

Fref

Ffbclk

C2

C1

PFDPFDPFD

DIV

Fref

Ffbclk

C2

DIVDIV

Fref

Ffbclk

C2

C1C1

CPUMP

UP

DN

Icp
Vctl

Fig. 1 Block diagram of a charge-pump PLL

Fig.2 shows a typical block diagram of a digital PLL
(DPLL).

Digital

PFD
TDC

Digital

LPF
DCO

Divider

Fref Fdco
Digital

PFD
TDC

Digital

LPF
DCO

Divider

Fref Fdco

Fig. 2 Block diagram of a DPLL

PFD for DPLL is similar to the PFD for a charge-pump
PLL. The time to digital converter (TDC) is equivalent to
Time to CP current in a charge-pump PLL. The resolution of

2009 22nd International Conference on VLSI Design

Unrecognized Copyright Information

DOI 10.1109/VLSI.Design.2009.97

569

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.97

569

the TDC limits the accuracy to which phase can be aligned
between reference and feedback clocks. The digital LPF is
synthesized as Z domain transfer function equivalent of loop
filter of a charge-pump PLL. Generally, frequency of
operation of loop filter is Fref. The VCO in a charge-pump
PLL is replaced by as DCO in the case of digital PLLs. The
DCO normally consists of a digital-to-analog converter (DAC)
and a current controlled oscillator (ICO). Fig.3 shows a typical
DCO configuration.

Current

ICO

Digital

Word
DAC

Digital

LPF

Current

ICO

Digital

Word
DAC

Digital

LPF

Fig. 3 Block diagram of a DCO

 The resolution of the DCO is defined by the gain of the
ICO and the resolution of the DAC. This kind of PLL
normally gives higher jitter compared to a charge-pump
implementation as the LPF has a finite resolution and
increasing the number of bits requires exponential increase in
the DAC elements. Matching becomes a big problem in a
DAC array with large number of elements. A sigma-delta
DAC can be implemented to overcome these issues to get a
good resolution out of a DCO.

Comparing the two architectures, it can be seen that the
digital implementation has a frequency quantization error in
addition to all the noise sources of a charge-pump PLL. Due to
this a digital PLL exhibits more frequency accuracy error
compared to a charge-pump PLL. In terms of phase error, the
frequency error accumulates for one cycle of reference clock.
Also the TDC resolution adds to the long term phase error as
the loop doesn’t react when the phase error is within the
resolution of TDC.

Charge-pump PLLs usually need an external capacitor in
the loop filter for very low bandwidth applications. The
advantage of using a digital architecture is that it can get rid of
the external component in such applications. Also the PLL
loop parameters like the bandwidth can be very well
controlled with initial calibration. A digital PLL is less
sensitive to dc drifts and reduces design time because of easy
portability. These advantages make this architecture more
amenable to processor clocking applications where long term
phase error is not of importance (described in section V) and
low bandwidth applications whereas charge-pump PLLs are
preferred where long term phase error specifications is more
critical.

As discussed, the basic structure of both these topologies is
similar and hence all the analysis in this paper will be

restricted to charge-pump PLLs which is more popular. The
analysis can be very easily extended to digital PLLs.

III. PLL PERFORMANCE METRICS

PLL performance specifications can be clubbed into

following categories.

A. Lock time

This is defined as the minimum time required after power

up for the output to be usable. The time can be specified as
frequency locking time which is defined as the time required
for the output to reach within a predefined accuracy. The
bound depends on the application. Frequency lock time
specifications are pertinent to PLLs which supply the clock for
digital systems.

The time can also be specified as phase locking time which
is defined as the time required for the output phase errors to
reach within a permissible limit. Phase lock time
specifications are pertinent to PLLs which supply the clock for
analog sampling applications.

B. Clock stability metrics

An oscillatory signal can be represented as

The phase of the signal can be represented as

If is time variant, the zero crossings of will have
an uncertainty. The measure of this uncertainty is
represented as jitter in time domain and phase noise in
frequency domain.

The instantaneous frequency is given by

1) Jitter

The uncertainty of the zero crossings of an oscillatory

signal is measured as jitter in time domain [9]. There are
different ways to specify jitter. The different types of jitter can
mainly be classified as period jitter, cycle-to-cycle jitter and
time interval error which is also classified as long term jitter.
Each of them can be measured in terms of their root-mean-
square (rms) value or peak to peak value. If the jitter is caused
by random noise, it is advisable to specify it in terms of its rms
value. If the jitter is caused by some deterministic pattern, then
a peak-to-peak number represents the jitter distribution in a
better way. In any PLL system, the jitter will be caused due to
combination of both types of noise and hence it is better to
split the contribution and specify the rms number caused due
to random noise along with the peak-to-peak number caused
due to a deterministic noise. The random contribution number
can be converted to a peak-to-peak number by multiplying the
rms number by a suitable number depending on the

)()(φω += tVSintV

)()(ttt φω +=Φ

)(tφ)(tV

dt

d
t

φ
ω +=Ω)(

570570

application. In most cases +/-3 time the rms jitter is sufficient
whereas in clock data recovery applications where a bit error
rate (BER) of 1e

-14
needs

to be achieved, +/-7 times the rms

jitter is taken as peak–to-peak. The three basic types of jitter
are defined below:

1. Period jitter: This is measured as the variation of
time period over a sufficiently large number of
samples.

2. Cycle-to-cycle jitter: This is measured as the
variation of the difference between successive time
periods over a sufficiently large number of samples.

3. Long term/accumulated jitter: This is measured as
the deviation of the zero crossing with respect to an
ideal zero crossing over sufficiently large samples.

2) Phase noise

An oscillatory signal can have a phase modulation in two

ways:

1. Noise modulating the frequency of the signal and hence
the phase e.g. noise current in a ring oscillator. An oscillatory
signal with this kind of noise can be written as

 (1)

 Using (1)

 (2)

Expanding (2) assuming the modulation is very small

 (3)

2. Noise directly modulates the phase without affecting
the frequency e.g. noise current in a clock slicer, buffers or
dividers. An oscillatory signal with this kind of noise can be
written as

 (4)

 (5)

 (6)

Equation (3) and (6) can be used to plot the modulated
output spectrum for any type of modulating noise. Fig. 4
shows one particular case where the noise consists of flicker
and white noise.

Modulating
Noise PSD

Frequency

Flicker noise
Corner frequency

10 dB/decade

Modulated
signal PSD
in case of
noise modulating
phase

Frequency

Flicker noise
Corner frequency

10 dB/decade

Modulated
signal PSD
in case of
noise modulating
frequency

Frequency

Flicker noise
Corner frequency

30 dB/decade

20 dB/decade

Fig. 4 Modulated output spectrum for phase and frequency modulation

The dominant phase modulation in an oscillatory signal
close to the carrier happens due to frequency modulation

For an oscillatory signal (7)

Phase noise at an offset fn from the carrier is defined as
[10]

 (8)

From (8) (9)

From (9) (10)

a) Relation between jitter and phase noise

Jitter and phase noise can be related by equating the noise

energy of phase in frequency and time domain [11]

Noise energy in frequency domain is given by

 (11)

Where power spectral density of the phase error.

From (7) (12)

If the oscillatory signal is characterized in the time domain
by a long term rms jitter of , then the noise energies can
be equated using (10) ,(11) and (12) to give

 (13)

Equation (13) defines the relation between SSB phase noise
and long term rms jitter with respect to an ideal clock.

In case of self referred jitter, the window opening of N cycles
modifies the spectrum of

Self referred N-cycle jitter is given by [11]

 (14)

Where

))(()(
0

m dttSinSinVtV
t

nm ∫ += ωωω

)()(
n

nm

m

tCos
tSinVtV

ω

ωω
ω +=

)(
2

)(
2

)(ttCos
f

fV
ttCos

f

fV
tSinVtV n

n

mm

n

n

mm

m ωωωωω −+++=

)()(tSintSinVtV nnm ωφω +=

).()(tSintCostSinVtV nnm ωφωω +=

)(
2

)(
2

)(ttSin
V

ttSin
V

tSinVtV n

nm

n

nm

m ωω
φ

ωω
φ

ω −+++=

)()(tSintSinVtV nnm ωφω +=

]
lfundamentatheatpower

fofoffsetanatbandwidth1Hzainpower
[10log*10)(

n

=nfL

()

2

)(2

8

.
2

m

nm

n

V

V

fL

φ

=

4
)(

2

n

nfL
φ

=

∫
∞

(
0

2

0

2

)
4

dffST φ
π

=)(fSφ

∫(
+∞

=
0

2

0

2

2

)(
2

) dffLTt
π

σ

)t(σ

2

2

)(
n

nfS
φ

φ =

)(fSφ

∫(
+∞

=
0

2

2

0

2

2

)()() dffNTSinfS o
T

NT πφ
π

σ

∫
+∞

=
0

2

2

0

2

)()(.2 dffNTSinfL o
T π
π

carrier thefrom foffset an at noise phase SSB)(

period timeideal 0

=

=

fL

T

571571

Substituting N=1 in (14) the relation between period jitter and
phase noise can be obtained as

 (15)

b) Jitter due to periodic noise

Fig.5 shows a periodic noise modulating frequency of a

PLL output clock.

Fig. 5 Frequency modulation with a periodic pattern

The instantaneous frequency is given by

)***2(tfSinf
noisep

π (16)

 where fp = peak frequency variation and fnoise= frequency
of the periodic noise. Integrating (16) over an interval of

0.5*fnoise. Peak to peak phase variation is given by

noise

p

f

f
*2 .

Equation can be used to get the rms jitter as

nomnoise

p

ffsqrt

f

***2*)2(π

 (17)

Where fnom= nominal clock frequency

3) Reference spur

Reference spur is defined as the reference frequency
component at the output of a PLL. This is mainly caused due
to the static phase offset present in the charge-pump which is
caused by the mismatch between the charge and discharge
paths.

For a static phase offset of
e

φ the reference spur is given

by [12]

−

p

ref

ref

vcoe

cp

f

f

f

K
RI

log*20
*2

**
2

*2

log*20

φ
π

 (18)

Where Icp= Charge-pump current

 Kvco= VCO gain

 R= loop filter resistor

 fref= Reference clock frequency

 fp= Loop filter pole

IV. PLL NOISE SOURCES

This section gives a qualitative understanding of the
effects of various noise sources in a charge-pump PLL [13].
The basic block diagram of the charge pump PLL with the
various noise sources is shown in Fig. 6.

i/p div PFD CP

L
P

F

VCO

feedback div

o/p div

Feedback divider

random noise

+power supply noise

VCO random

noise + PSRR
PFD+CP random

noise+ PSRR
Slicer + I/p divider

random noise+ PSRR

Thermal

noise of

The LPF resistor

PLL o/p

i/p div PFD CP

L
P

F

VCO

feedback div

o/p div

Feedback divider

random noise

+power supply noise

VCO random

noise + PSRR
PFD+CP random

noise+ PSRR
Slicer + I/p divider

random noise+ PSRR

Thermal

noise of

The LPF resistor

PLL o/p

Fig. 6 Charge-pump PLL block diagram with noise sources

Any noise source occurring before the loop filter of the
PLL gets low pass filtered (REFCLK noise, PFD + CP noise,
Divider noise) and any noise source occurring at the VCO
input (thermal noise of loop filter resistor) gets band-pass
filtered and any noise source at the VCO output gets high pass
filtered.

A. VCO noise

The phase noise of the VCO is typically the most
dominant noise contributor in Charge Pump PLLs. This is so
because most VCOs are ring oscillator based whose phase
noise is inferior to that of LC oscillators. Also, in deep sub-
micron processes the flicker noise corner frequency is much
higher (hundreds of kHz) causing a high 1/f^3 corner
frequency. Hence typically it is the oscillator's flicker noise
that contributes maximum phase noise.

Power supply noise can also contribute significantly to
jitter at the PLL output. The finite power supply rejection of
the VCO changes the frequency which gets corrected by the
loop. The noise can accumulate over multiple cycles till the
loop correction takes place leading to both accumulated as
well as period jitter.

Since the VCO noise gets high pass filtered by the PLL, it
is desirable to keep as high a loop bandwidth as possible. A
number of design techniques to reduce the phase noise and
supply noise for various VCO topologies have been reported

∫
+∞

=
0

2

2

0

2

2
)()(.2)(dffTSinfLt oper

T πσ
π

572572

B. Loop filter resistor thermal noise

The thermal noise of the resistor appears as a noise on the
control voltage of the VCO and hence gets gained up by the
VCO gain. The noise contributed gets band-pass filtered by
the PLL transfer function. To minimize this noise
contribution, the loop filter resistor value and the gain of the
VCO needs to be minimized.

C. PFD + Charge-pump noise

The transistor noise in the phase frequency detector and
charge pump also contribute to overall phase noise and sees a
low pass transfer function. Among these the charge pump
current noise can contribute significant noise especially in
fractional PLLs where the charge pump currents are switched
on for longer periods of time. In integer PLLs this noise
source is typically much smaller since the time for which the
current sources are switched on (determined by static phase
offset) is as as low as 100 ps.

 To minimize this noise contribution, the static phase offset
is minimized by ensuring good matching of the current
sources in the charge pump and ensuring negligibly small
leakage in the loop filter capacitor. Also, the input current to
the charge pump is heavily filtered.

D. Divider noise

 The random noise contribution of the dividers is typically
much smaller when compared to the deterministic noise due
to supply noise and crosstalk. Multiple output dividers running
at different frequencies share the same supply causes not of
asynchronous switching noise on the supply voltage. Crosstalk
due to other clock lines routed nearby also introduces periodic
jitter.

To minimize the deterministic noise contribution from the
dividers, the clock path lengths should be minimized with
synchronizers using a low jitter clock (normally the VCO
output). Care should be taken in layout to ensure adequate
separation (or shielding) between clock lines of different
frequencies.

The different noise transfer functions can be summarized
as listed in Table I. Here for simplicity, the gains have been
grouped into two sections. The forwards path gain comprises
the PFD gain, charge-pump gain, loop filter impedance and
VCO gain and has been clubbed as G1. The feedback divider
has been specified as gain G2.

TABLE I. PLL NOISE TRANSFER FUNCTIONS

V. JITTER/PHASE NOISE REQUIREMENTS

PLLs find usage in different kinds of applications. These
applications can be broadly grouped into following categories:

1. Sampling clock for data converters (ADC and DAC).

2. Frequency synthesis application for generating system
clock from crystal oscillator.

3. Frequency modulation and demodulation needs in
wireless communication systems.

4. Extracting clock from random bit stream in
asynchronous serial link transmission systems.

This section describes the jitter and phase noise
requirements for these four categories.

A. Analog sampling applications

Fig. 7 Effect of phase noise in sampling

Fig. 7 shows the effect of phase noise while sampling a
data. Fig. 8 shows the same thing in time domain.

t

v

τ

f(t)

t

v

τ

f(t)

Fig. 8 Effect of jitter in sampling

In Fig.8 the signal is represented as (19)

From Fig. 8 (20)

From (19) and (20) (21)

Equation (21) can be represented in frequency domain as

 (22)

Block NTF Characteristics

Reference G1/(1+G1*G2) Low Pass

Slicer/PFD/CP 1/Kp*G1/(1+G1*G2) Low Pass

VCO 1/(1+G1*G2) High Pass

N-Divider G1/(1+G1*G2) Low Pass

Loop Filter Not straight forward ~Band Pass

τ*)/(dtdfv =

)*0sin()(tAtf ω=

)cos(**0*)(tAtv ωτω=

)(*)(*0*)(foffAfv −= δτω

573573

From (22)

 (23)

Equation (23) gives the noise power.

From (23) the SNR at the output of the sampling circuitry

when the sampling clock has rms long term jitter of τ is given

by

 (24)

From (24) depending on the SNR requirement at the
maximum signal frequency, the sampling clock jitter
requirement can be found out. The sampling instant decides
the sampled voltage and any deviation of the sampling instant
with respect to an ideal sampling instant determines the error
in the sampled value. The jitter of interest due to this reason is
the deviations of the zero crossings with respect to an ideal
zero crossing and hence the long term jitter decides the
performance.

Table II gives the performance requirement for some typical
applications:

TABLE II. JITTER REQUIREMENTS

These applications require a maximum long term rms jitter
specification to be met on the sampling clock. The input clock
in most cases is provided from a clean crystal oscillator and
VCO phase noise and power supply rejection becomes the
dominant contributor. This mandates a PLL to be used with
maximum bandwidth permissible by the input frequency and
the VCO needs to have a low phase noise at its output. Also in
most of the cases reference spur needs to be lower than a
specified value. This mandates a charge-pump with low static
phase offset.

B. System clock generation

In this kind of application the PLL provides clock for the
digital core. In most cases data is latched at the rising edge and
then other operations are performed and the data has to be
stable before the next rising edge. The constraints that drive
the clock purity in this kind of application is the frequency
deviation or time period variation as the time window of
interest is the difference between two consecutive edges of the

clock. In this kind of application period jitter specification
becomes the important parameter. Fig. 9 demonstrates the
period jitter.

Fig. 9 Illustration of period jitter

Fig.10 shows the effect of period jitter on the data set-up
time.

Fig. 10 Effect of period jitter

These applications require a maximum peak-to-peak
period jitter specification to be met on the sampling clock.
Input clock jitter, VCO phase noise, power supply rejection of
the VCO and the jitter introduced by the delay variation due to
power supply noise in any buffer path after the VCO becomes
the dominant contributor. The PLLs for these applications are
designed with a very low bandwidth to filter out any input
jitter and also to prevent large corrections at the VCO control
voltage. This doesn’t introduce any stringent design
requirement for the VCO as from (15), it can be easily seen
that only the high frequency portion of the VCO phase noise
contributes to the period jitter. An open loop oscillator’s
output phase noise can be represented as [14]

 (25)

 Using (14) and (25)

∫ .

∫
.

∞+

∞+

+

=

0

2

0

2

0

20

2

2

0

2

)(..2

)(
.

.2[

).(

).(

dffNTSincb

dffNTSinc
a

o

o

TN

f

TNT

π

π

π

π
π

)
2

NT(σ

∫ .

∫
.

∞+

∞+

+

=

0

2

0

2

0

20

2

2

0

2

)(..2

)(
.

.2[

).(

).(

dffNTSincb

dffNTSinc
a

o

o

TN

f

TNT

π

π

π

π
π

)
2

NT(σ

 (26)

The Sinc function has nulls at

2,1;
0

== m
NT

m
f

 (27)

Equation (26) and (27) can be graphically represented as in
Fig. 11

System ADC

Spec

Maximum
Signal Freq

Jitter spec

VDSL 14b

70MSPS

12MHz 2pS

(SNR=76dB)

WLAN 10b

80MSPS

10MHz 15pS

(SNR=60.5dB)

Base
Station

12b

200MSPS

100MHz 350fS

(SNR=73dB)

)2(/*0* sqrtAv ><>=< τω

)*0(10log*20 ><= τωSNR

ff

ba
fL 23)(+=

574574

Fig. 11 Integrand plot for N=1 and N=40 [14]

Fig.11 clearly explains that only the high frequency
portion of the phase noise contributes to period jitter.

Also care needs to be taken for reducing any buffer path
delay to reduce the jitter introduced by them. In case long
buffer delays are unavoidable, care has to be taken to make the
buffer path immune to power supply noise.

C. RF front end applications

Fig. 12 shows the effect of sampling clock phase noise on
receiver.

Fig. 12 Effect of phase noise in a RF receiver

Rx SNR:

Mixing of PLL phase noise and signal brings noise
components from complete band due to convolution in
frequency domain. This governs integrated phase noise of
PLL.

Rx Interferers level with respect to desired signal:

Out of band interferers convolve with PLL phase noise and get
converted to in-band noise during down conversion. Out of
band phase noise is governed by this.

Tx Mask specification

Out of band PLL phase noise convolves with transmitted
base-band signal and produces noise. Out of band phase noise
is governed by this.

D. Clock data recovery applications

In clock data recovery applications in high speed
asynchronous serial links, the PLL specifications are
determined by the jitter generation mask, jitter transfer mask,
jitter tolerance mask and the receiver BER.

The PLL needs to be designed to meet a maximum closed
loop peaking number for meeting the jitter transfer
characteristics. The jitter tolerance mask decides the PLL
bandwidth. The jitter generation mask along with the BER
requirement decides the VCO phase noise requirements.

VI. DESIGN ASPECTS OF CHARGE-PUMP PLLS

The first step in designing a PLL is to fix the loop
parameters e.g. bandwidth, closed loop peaking etc. A phase
domain model can be used to fix these parameters. The PFD
gain is taken to be 1. All the dividers are set by the user
depending on the input and output requirements. This leaves
one with the task of choosing the VCO gain, charge-pump
current and loop filter order and loop filter pole zero locations.
The loop filter order is most of the times a second order filter
with a zero unless the application demands more rejection of
input noise (which can come either from the reference clock
itself or from a sigma delta modulator used in fractional-N
PLLs). Even in the case of higher order loop filters , till 3
times bandwidth the characteristic is governed by a 2nd order
kind of filter. So for all practical purposes the loop parameters
can be chosen assuming a 2nd order loop filter with a zero.

The PLL bandwidth is chosen to be less than 0.1 times the
reference clock frequency. The bandwidth is chosen
depending on the output jitter and phase noise requirements
and the noise contributors. As seen in section IV , any noise at
the input of the PFD sees a low pass transfer function whereas
noise injected anywhere after the VCO to the output point sees
a high pass transfer function. Also from section III , it can be
seen that period jitter at the output is governed by the high
frequency components of the phase noise whereas the long
term jitter is governed by the low frequency components of
the phase noise. The bandwidth is decided based on what kind
of jitter is important for the system and also whether the input
clock comes from a clean reference like a crystal or from
some noisy source like another PLL or from a RC oscillator.
E.g. if the performance of interest is long term jitter and the
PLL gets a clean reference clock from a crystal oscillator, the
PLL bandwidth should be made as high as 0.1 times the
reference clock. But if the reference clock is noisy, the best
bandwidth has to be found. Similarly if period jitter is of
interest, a very low bandwidth should be chosen as that
reduces the amount of correction on the control voltage.

 From the phase domain model, it can be seen that the PLL
open loop transfer function has two poles at origin, one
coming from the loop filter and the other one coming from the
frequency to phase conversion in VCO. So the loop filter zero
has to come before the open loop bandwidth of the loop. The
relative location of the zero with respect to the open loop
bandwidth can be fixed depending on the closed loop peaking
requirement of the PLL. The 2

nd
 pole of the loop filter is

placed more than 3 times the open loop bandwidth of the
system.

575575

The VCO gain is fixed from the VCO range that needs to
be supported and the control voltage range that can be used
without degrading the power supply rejection and the phase
noise performance of the VCO. The VCO gain has two
contradictory requirements. A small VCO gain ensures that
loop filter components can be at its minimum value which
ensures a small area. Also the noise of the loop filter has lesser
gain when it comes at the output. But this has the disadvantage
of supporting a smaller VCO frequency range. Normally the
VCO minimum operating frequency to maximum operating
frequency ratio is kept as 1:2. The range problem can be taken
care of by adding a separate control loop to lock the VCO very
close to its operating frequency before the main loop takes
over. Then the actual loop has to take care of smaller range
mainly due to temperature variation of the oscillator
frequency.

The charge-pump current can be put as minimum as
possible keeping the linearity good. Normally the charge-
pump structures suffer from problems like static phase offset
and gain nonlinearity. Gain nonlinearity originates from clock
feed-through and charge-injection errors in the charge-pump
switches and modifies the bandwidth depending on the phase
error and can cause more jitter at the output. Careful charge-
pump architecture selection, careful switch sizing, clock feed-
through cancellation and loop filter capacitor selection reduces
this effect and the gain can be well controlled to within +/-
5%. Static phase offset is caused due to current mismatch in
the charging and discharging paths in a charge-pump. This
causes a reference spur at the output as the control voltage is
modulated every reference cycle.

PFD architecture should be chosen such that there is no
dead zone in the PFD. Presence of dead zone makes the PLL
system open loop once the phase error enters this range. This
also increases the jitter at the output of the PLL.

Once the loop parameters are fixed, the next step is to
derive the noise specifications for each block. The phase
domain model can be used to find the phase noise requirement
to meet the performance. The reference spur specification
decides the static phase offset that can be tolerated. The power
supply rejection ratio of each block can be found depending
on the noise amplitude that needs to be tolerated.

Three examples are discussed in the following subsections
using the design methodology discussed above.

A. WLAN baseband Analog frond end applications

Table III shows a typical specification for a WLAN base-
band analog front end PLL application. The PLL supplies the
sampling clock for the receiver ADC, the data latching clock
for the transmitter DAC and other clocks for running the
digital logic of the SOC.

The input reference clock to the PLL is typically from a
crystal oscillator hence the PLL has to support the typical
crystal frequencies as shown in the table. The VCO frequency
is chosen to provide flexibility.

TABLE III. WLAN BASEBAND PLL REQUIREMENTS

Parameter Value Units

Reference

frequency

13,19.2,20,26,39.2,40 MHz

ADC sampling

clock

80 MHz

Long term jitter

(rms)

10 pS

Lock time 40 uS

The accumulated jitter requirement is to ensure that the
degradation in RXADC (or TXDAC) SNR due to sampling
clock jitter is significantly lower than the SNR specification
which is typically 52 dB for a maximum input bandwidth of
10 MHz. Applying (24), for sampling clock jitter of 12 ps rms
it can be seen that SNR is limited only to 62 dB due to clock
jitter. The period jitter requirement on SOC clocks is to ensure
sufficient timing margins for the digital blocks.

Since the input clock comes from the relatively jitter free
crystal oscillator, it is the VCO noise (both due to phase noise
as well as due to power supply) that dominates. So it is desired
to keep the PLL bandwidth as high as possible but since the
minimum input clock frequency is 13 MHz, the PLL's
bandwidth has to be kept below 1 MHz to ensure that the
continuous time approximation is still valid. The bandwidth of
the PLL is typically kept the same for all input clock
frequencies by proportionally changing the charge pump
current.

The PLL locking behavior can be split into two portions;
frequency locking and phase locking. During frequency
locking, the charge pump current continuously charges the
loop filter capacitor (slewing) and brings the VCO frequency
very close to N*Input clock frequency, where N is the
feedback division number. During phase locking, the settling
time is decided by the PLL loop bandwidth. So to ensure lock
time specification is met apart from having maximum possible
bandwidth we also need to have sufficiently high charge pump
current to ensure fast frequency settling.

This PLL was fabricated in 65 nm process node. Fig. 13

shows the measurement results which show very close match

with the simulation results. The measurements were done

with PLL input of 20 MHz, VCO running at 1920 MHz and

output division of 196 to get a 20 MHz output. The measured

long term jitter is 8.79 ps (rms) and the period jitter rms at

20MHz output is 5.89 ps.

576576

Fig. 13 Measured jitter histogram

B. Receiver baseband clock for DVB-H application with

frequency tracking

Table IV shows a typical specification for a DVB-H base-
band analog front end PLL application. The PLL supplies the
sampling clock for the receiver ADC and the digital core.

TABLE IV. DVB-H BASEBAND PLL REQUIREMENT

Parameter Condition Value Units

Reference

frequency

 10-40 MHz

Output clock 135-225 MHz

Frequency step at

output

For full input

range

0.5 Hz

Long term jitter

(rms)

Integrated

from

 1 KHz – 5

MHz

30 pS

1.45 MHz

offset

-130 Phase noise at

Output clock/6

 10 MHz offset -145

dBc/

Hz

The frequency step of 0.5 Hz coupled with the low long
term jitter and out of band phase noise requirements mandates
the use of sigma delta fractional-N architecture. The
requirement of 0.5 Hz frequency step at the output is derived
from the requirement that the receiver PLL should be able to
track the frequency drift of the transmitter clock with respect
to the receiver clock. Also the steps have to be linear
throughout the full fractional range of -1 to +1 for the
frequency correction loop to have a controlled gain.

The long term jitter specification is derived from the ADC
SNR requirements. Using (24), for a 4 MHz maximum signal
frequency, the SNR due to clock jitter is going to be 62 dB
which is 10 dB below the typical ADC requirement of 52 dB.
The phase noise specification comes from out of band
attenuation requirement of adjacent channels. In a DVB-H
application, the N+1 adjacent carrier is at 1.45 MHz. The
maximum power difference between the interferer and the

wanted signal is 38 dB. The required SNR needs to be 25 dB
and the noise bandwidth is 8 MHz. The single side band
(SSB) phase noise required at 1.45 MHz offset can be
calculated as [15]

Phase noise= -38 -25 – 10*log10(BW) (28)

Using (28) SSB phase noise required at 1.45 MHz offset is
-132 dBC/Hz. The N+2 adjacent carrier is at 9.45 MHz. The
maximum power difference between the interferer and the
wanted signal is 45 dB. The required SNR needs to be 25 dB.
The required SSB phase noise can be similarly calculated to
be -142 dBC/Hz at 9.45 MHz offset.[*]

The PLL parameter selection in this case is governed by
both the jitter and phase noise requirement. A very high
bandwidth would reduce the accumulated jitter and phase
noise contribution of the VCO but would increase the phase
noise contribution due to sigma-delta (SD) noise at higher
frequency and it would be difficult to meet the phase noise
mask beyond 1 MHz. A low bandwidth would attenuate the
SD noise but would increase the VCO contribution and would
require lot more power to be burnt in the VCO to meet the
specifications. An optimization needs to be done to choose the
SD noise transfer function, bandwidth and VCO phase noise
to get the best power performance for meeting the
specifications.

This PLL was fabricated in 90 nm process node. A 3
rd

order SD modulator with a 3

rd
 order loop filter was used. The

bandwidth is kept at the maximum possible value allowed by
the sigma delta noise transfer function. Fig.14 shows the
fractional linearity data. Fig. 15 shows the measured jitter for
a 13 MHz input across the whole output range.

Output frequency Vs Fractiona code for an input of 13 Mhz and

output around 220 Mhz

217

218

219

220

221

222

223

224

225

-1 -0.5 0 0.5 1 1.5

fractional code normalized to max code

o
u
tp

u
t
fr
e
q
u
e
n
c
y
(
in

 M
H
z
)

Fig. 14 Output frequency linearity with fractional code

output long term jitter (rms) for inp=13 MHz

16.20

16.40

16.60

16.80

17.00

17.20

17.40

100 120 140 160 180 200 220 240

output frequency (in MHz)

lo
n
g
 t
e
rm

 r
m

s
 j
it
te

r
(
in

 p
s
)

Fig. 15 Measured jitter vs output frequency

577577

C. High frequency clock for synchronous serial link

transmiters e.g. MIPI/HDMI

Table V shows a typical specification for a PLL for MIPI
transmitter application in an image sensor chip. The PLL
supplies the high frequency clock for the MIPI transmitter.

TABLE V. MIPI PLL REQUIREMENT

Parameter Condition Value Units

Reference

frequency

 6 - 64 MHz

Output clock 200 - 800 MHz

 0.1 UI Peak-to-peak

period jitter Output

clock=800

MHz

125 pS

3.3V supply 50 mV Tolerable supply

noise(p-p) 1.5V supply 30 mV

The input clock in this case comes from a noisy source.

The PLL is required to filter the input jitter other than meeting
the specifications mentioned in the table. This dictates a
bandwidth low enough to filter the input clock. A prior
knowledge of input jitter spectrum helps in choosing the
bandwidth. Also among the specifications, achieving a low
period jitter of 0.1UI at 800 MHz in the presence of the supply
noise becomes a complex design issue. As discussed earlier, a
lower bandwidth is normally preferred in case period jitter
spec is the main specification as that reduces any large
excursion of control voltage to the VCO.

In this kind of PLL the 3.3V supply will be shared with
I/O buffers and 1.5V supply will be shared with digital core.
This makes the supply to the PLL very noisy and the PLL
performance needs to be guaranteed in the presence of this
noise. Different blocks needs to have a power supply rejection
(PSRR) specification depending on the supply noise
magnitude. In the present case, the VCO has been budgeted to
contribute 10 ps p-p period jitter at 800 MHz output for a
supply tone of 50 mV at 3.3 V supply. The VCO consists of a
Voltage-to-current converter (V2I) and a current controlled
oscillator (ICO). The ICO gain is 1MHz/uA. The ICO is pretty
linear and it needs 800uA for generating an 800 MHz output.
For a VCO, the noise at the supply would modulate the current
into the ICO and that will modulate the output frequency. For
a peak frequency modulation of fn at a frequency fnom the peak-

to-peak period jitter is given by
2

*2
nom

n

f

f
 (29)

Using (29) and using the ICO gain of 1 MHz/uA, for a
peak-to-peak period jitter of 10 ps , the peak-to-peak current
variation into ICO needs to be less than 6.4 uA. The V2I has
to be designed such that for the worst case noise tone (V2I
rejection would have a zero and the PSRR profile would peak
at some frequency) of 50 mV p-p the current change into the
ICO has to be less than 6.4 uA p-p.

Most dominant contributor to period jitter is the noise on
the 1.5V supply. This noise changes the digital path delay and

contributes most of the period jitter. Normally the process
would have a worst case number for percentage delay
variation per 100 mV of noise. That would dictate the
maximum noise that can be tolerated depending on the path
length. This noise can also get coupled to the oscillator and
create lot more jitter. Care has been taken so that this noise
couples least to the oscillator and the digital path delay has
been made minimum to reduce the effect of this noise.

VII. CONCLUSION

Various performance parameters for a PLL have been
presented. PLL specifications have been derived for analog
sampling applications and have been qualitatively discussed
for other applications. Different noise sources and their effect
at the output have been presented for charge-pump type PLLs.
Finally, three design examples have been discussed.

ACKNOWLEDGMENT

The authors like to thank Prasunkali Bhattacharyya and
Sriram G for their valuable contribution towards the concepts
and results presented in this paper. Authors would also like to
thank the Cosmic Circuits testing team for providing with the
measurement data reported in this paper.

REFERENCES

[1] J.Alvarez, H. Sanchez, G.Gerosa and R. Countryman, A Wide
Bandwidth Low-Voltage PLL for PowerPCTM Microprocessors,” IEEE
J. Solid-State Circuits,vol. 30, no. 4, pp. 383-391, April 1995.

[2] L.Devito, J.Newton, R.Croughwell, J. Bulzacchelli and F.Benkley, “A
52 MHz and 155MHz Clock-Recovery PLL,” ISSCC Dig. Tech.
Papers, pp 142-143, Feb. 1991.

[3] F.M.Gardner, Phaselock Techniques, 2nd edition, John Wiley & Sons,
New York, 1979.

[4] R. E. Best, Phase-Locked Loops: Theory,Design and Applications, 2nd
edition, McGraw-Hill Inc, 1993

[5] J. A. Crawford, Frequency Synthesizer Design Handbook , Artech
House, 1994.

[6] W. F. Egan, Frequency Synthesis by Phase Lock, John Wiley & Sons,
1981.

[7] F. M. Gardner, “Charge-Pump Phase Lock Loops,” IEEE Trans.
Commun., vol COM-28, no. 11, pp. 1849-1858, Nov. 1980

[8] R. Tonietto, E. Zuffetti, R.Castello, I. Bietti, “ A 3 MHz Bandwidth
Low Noise RF All Digital PLL with 12 ps Resolution Time to Digital
Converter,” ESSCIRC 2006, pp. 150-153.

[9] F. herzel, B. Razavi, “A Study Of Oscillator Jitter Due To Supply And
Substrate Noise,” IEEE CASII:Analog aand Digial Signal Processing,
vol.. 46, no. 1, pp. 56 -62, Jan. 1999.

[10] J. Craninckx, M. Steyaert, Wireless CMOS Frequency Synthesizer
Design, Kluwer Academic Publishers, 2001

[11] B.Drakhlis, “Calculate oscillator jitter by using phase-noise analysis,”
Microwaves and RF, Jan/Feb. 2001.

[12] W. Rhee, “Design Of High-Performance CMOS Charge Pumps In
Phase-Locked Loops,” in Proc. Of ISCAS ’99, vol. 2, pp. 545-548.

[13] A. Hajimiri, “Noise in phase-locked loops,” in Southwest symposium
on Mixed-Signal Design, 2001, pp. 1-6.

[14] Un-Ku Moon, K. Mayaram and J.T.Stonick, “Spectral analysis of time
domain phase jitter measurements,” IEEE Trans. Circ. Sysyt-II,Vol. 49,
No. 5, pp. 321-327, May. 2002.

[15] P. Antoine et.al., “ A Direct-Conversion Receiver for DVB-H,” IEEE J.
Solid-State Circuits, vol. 40, no. 12, pp. 2536 – 2546, Dec.2005

578578

Invited Paper

Design for Variations

Figure 1 Variation in ION and IOFF of transistors (Source: Intel)

Coping With Variations Through System-level Design
 Nilanjan Banerjee†, Saumya Chandra‡, Swaroop Ghosh†, Sujit Dey‡, Anand Raghunathan† and Kaushik Roy†

†School of Electrical and Computer Engineering, Purdue University
‡Department of Electrical and Computer Engineering, University of California at San Diego

Abstract— Manufacturing and operation-induced variations have

emerged as a critical challenge in designing integrated circuits (ICs)

under the nanometer technology regime. Most work on addressing

variations has focused on device, circuit, and logic-level solutions. As

the magnitude of parameter variations increases with technology

scaling, these techniques are not sufficient to address the negative

impact that variations have on IC performance, power, yield, and

design time. Therefore, in recent years, the research community has

shown great interest in techniques to address variations starting from

the other end of the design process, i.e., at the system level. In this

paper, we provide an overview of various techniques that we have

developed for coping with variations through system-level design. The

presented techniques include a paradigm for designing variation-

tolerant systems through critical path isolation for timing adaptiveness,

application-specific techniques to achieve variation-tolerance by

trading off quality of the result, variation-aware system-level power

analysis, and system-level power management under variations. These

techniques demonstrate that addressing variations during system-level

design can greatly mitigate the effects of variations, enabling the

design of integrated circuits in scaled technologies.

I. INTRODUCTION
Variations in the characteristics of integrated circuits have always

been an inevitable result of the fabrication process used to
manufacture them, and the side-effects of their operation. In
technologies with larger feature sizes (> 90nm), variations were
sufficiently small that their effect could be incorporated using simple
approaches such as the use of design margins or guard banding. With
the scaling of device feature sizes, however, the incessant increase in
the magnitude of variations implies that these approaches lead to
excessively conservative designs [1][2][3]. Consequently, designers
are faced with a choice between significant overheads due to over-
design, increased design turn around times, an inability to meet
performance or power targets, or parametric yield loss.

The sub-90nm era has witnessed a surge in research efforts
directed at modeling and addressing the effects of variations. These
techniques are largely at the mask, circuit, and logic levels. At the
mask level, techniques such as optical proximity correction (OPC)
can compensate for variations that arise due to lithographic effects.
At the circuit level, techniques such as adaptive body biasing and
voltage scaling [4], clock tuning [5], dynamic error correction [6],
and variation-tolerant logic families [7] have been developed. At the
logic level, statistical timing and power analysis [8][9][10] has been
widely investigated and several commercial EDA tools now support
this capability. Statistical timing analysis has been used to drive
logic synthesis optimizations such as gate sizing [11][12].

From the viewpoint of simplicity in design methodologies, it
would be ideal if techniques at the circuit and logic levels could
solve the problems introduced by variations. However, there is
significant concern in the semiconductor industry that these
techniques are not sufficient to contain the increasing impact of
variations as circuits scale into the deep nanometer regime [1][2][3].
Consequently, there has been a lot of interest in recent years to
address variations earlier in the design cycle, namely at the
architecture and system levels, where it is possible to effectively
trade-off variation-tolerance, power, performance, and other metrics
such as “quality of results”. System-level design for variations can
take advantage of information that is not easily available at the lower
levels of abstraction, provide designers feedback about the impact of

variations early on in the design cycle, and facilitate better design
decisions at the system-level.

In this paper, we provide an overview of our recent work in the
area of system-level design for variations. In Section II, we provide a
brief background on the sources and impact of variations. Section III
describes a paradigm for the design of variation-tolerant digital
systems that is based on isolation of paths that may become critical
under variations, and adaptively stretching them over multiple clock
cycles. Section IV discusses how an understanding of the application
can lead to variation-tolerant designs where performance (or power)
is maintained by trading off the quality of the result. Section V
presents a methodology for system-level power analysis considering
the impact of variations. Sections VI shows how widely used power
management techniques such as shutdown and dynamic voltage
scaling can be adapted in the presence of variations. Collectively, the
techniques described clearly establish the value of coping with
variations through system-level solutions.

While this paper presents an overview of the authors’ work on
system-level design for variations, it bears mentioning that several
other researchers have significantly contributed to this area [13]-[18].
We encourage readers interested in a broader overview of the field to
read these and other related publications.

II SOURCES AND IMPACT OF VARIATIONS
Variations can be classified based on whether they are caused by

the manufacturing process (manufacturing-induced variations) or due
to the circuit’s operation (operation-induced variations). Variations
can also be classified as spatial or temporal. Spatial variations in the
circuit characteristics occur between different parts of a die, across
dies, or across wafers, as they manifest at “t=0”, i.e., at the beginning
of the circuit’s operational lifetime. Temporal variations, on the other
hand, refer to variations in circuit characteristics over time.

 Manufacturing-induced variations are artifacts of the
lithography-based IC manufacturing process that has been in use for
decades. These effects are exacerbated by the scaling of device
feature sizes to a point where they are smaller than the wavelength of
light used in the lithography process. Imperfect manufacturing
processes result in fluctuations in transistor length (L), width (W),
and oxide thickness (TOX), as well as dopant fluctuations and line
edge irregularities. For example, let us consider random dopant
fluctuations. The number of dopant atoms per transistor has been
steadily decreasing with feature size, from thousands to hundreds,
and will reach tens in sub-45nm technologies. The manufacturing
process cannot precisely control the number of dopant atoms in the
channel of each transistor. The resulting statistical fluctuation
becomes more significant as the nominal number of dopant atoms
per transistor decreases, translating into increased variation in the
threshold voltages of transistors. Another source of variations is line

2009 22nd International Conference on VLSI Design

1063-9667/09 $25.00 © 2009 IEEE

DOI 10.1109/VLSI.Design.2009.96

581

Figure 2(a) Timing diagram illustrating

CRISTA

Figure 2(b) Shannon expansion based CRISTA

design for random logic

(d) (c)

(a) (b)

1D-DCT

x0

x2

x1

x3

x4

x5

x6

x7

w8 w16w24w32w40
w48w56w0

w2

w1

w3

w4

w5

w6

w7

y0

y2

y1

y3

y4

y5

y6

y7

1D-DCT

z0

z2

z1

z3

z4
z5
z6

z7

Slower

Computation

Computation

Faster

Slower

Faster

Faster Slower

(d) (c)

(a) (b)

1D-DCT

x0

x2

x1

x3

x4

x5

x6

x7

w8 w16w24w32w40
w48w56w0

w2

w1

w3

w4

w5

w6

w7

y0

y2

y1

y3

y4

y5

y6

y7

1D-DCT

z0

z2

z1

z3

z4
z5
z6

z7

Slower

Computation

Computation

Faster

Slower

Faster

Faster

(c)

(a) (b)

1D-DCT

x0

x2

x1

x3

x4

x5

x6

x7

x0

x2

x1

x3

x4

x5

x6

x7

w8 w16w24w32w40
w48w56w0

w2

w1

w3

w4

w5

w6

w7

w8 w16w24w32w40
w48w56w0

w2

w1

w3

w4

w5

w6

w7

w0

w2

w1

w3

w4

w5

w6

w7

y0

y2

y1

y3

y4

y5

y6

y7

y0

y2

y1

y3

y4

y5

y6

y7

y0

y2

y1

y3

y4

y5

y6

y7

1D-DCT

z0

z2

z1

z3

z4
z5
z6

z7

z0

z2

z1

z3

z4
z5
z6

z7

Slower

Computation

Computation

Faster

Slower

Faster

Faster Slower

…
…

…
…

…
…

…
…

…
…

…
...

…
…

…
…

…
…

…
…

…
…

…
...

Ri, j

Gi, j−1

Gi+1, j

Gi, j+1

Gi−1, j

Ri, j+2

Ri+2, j

Ri -2, j

Ri, j -2

M1

Vdd

G’1

G’2

G’i,j

………………………….………

…………………………………..

V2

>>2

>>2

>>1 ―

―

V1
Vdd nominal

M

Vdd

…
…

…
…

…
…

…
…

…
…

…
...

…
…

…
…

…
…

…
…

…
…

…
...

…
…

…
…

…
…

…
…

…
…

…
...

…
…

…
…

…
…

…
…

…
…

…
...

Ri, j

Gi, j−1

Gi+1, j

Gi, j+1

Gi−1, j

Gi, j−1

Gi+1, j

Gi, j+1

Gi−1, j

Ri, j+2

Ri+2, j

Ri -2, j

Ri, j -2

Ri, j+2

Ri+2, j

Ri -2, j

Ri, j -2

M1

Vdd

G’1

G’2

G’i,j

………………………….………

…………………………………..

V2

>>2>>2

>>2

>>1 ―

―

V1
Vdd nominal

M

Vdd

x[n]s

Z-1 Z-1 Z-1 Z-1

c0x[n]

Common Subexpression Elimination tree

cnx[0]

Delay Stage

cn-1x[1]

Non-important

computations

c1x[n-1]

Important

computations

y[n]

Height “L”

determines

the delay

of the filter

Non-important

computations

m
a
x
 L
-1
 l
e
v
e
ls

Only non-imp coefficients affected

x[n]s

Z-1 Z-1 Z-1 Z-1

c0x[n]

Common Subexpression Elimination tree

cnx[0]

Delay Stage

cn-1x[1]

Non-important

computations

c1x[n-1]

Important

computations

y[n]

Height “L”

determines

the delay

of the filter

Non-important

computations

m
a
x
 L
-1
 l
e
v
e
ls

Only non-imp coefficients affected

Figure 3(a) Voltage scalable, variation

tolerant DCT architecture

Figure 3(b)Voltage scalable, variation tolerant

color interpolation architecture

Figure 3(c) Voltage scalable, variation tolerant FIR filter

architecture

edge roughness (LER), which results in
irregular channel edges, changing transistor
strengths and causing mismatches between
identical transistors within a chip.

Figure 1 illustrates the impact of
manufacturing-induced variations on the off
current (leakage) and on current (drive
strength) of transistors. The data
demonstrates that the spread in leakage is
two orders of magnitude, while the spread in
on current is a factor of two. The large
impact of variations on leakage current is
compounded by the increasing contribution
of leakage to total power dissipation [19].

The operation of ICs puts stress on the devices that constitute them,
leading to operation-induced variations. For example, operation of an
IC leads to a variation in the temperatures at different parts of the IC
due to fluctuations in the workload or applications executed,
impacting the devices’ operating characteristics. Similarly, time-
dependent dielectric breakdown (TDDB) can lead to variations in
leakage current or threshold voltage due to degradation and
formation of conductive paths in the dielectric material. Negative
Bias Temperature Instability (NBTI) is a phenomenon that impacts
PMOS transistors, increasing their threshold voltage, reducing
channel mobility or inducing parasitic capacitances, thereby
degrading performance. Electromigration is the transport of material
caused by the gradual movement of the ions in a conductor due to the
momentum transfer between conducting electrons and diffusing
metal atoms. The resulting thinning of the metal lines over time
increases the resistance of the wires and ultimately leads to failures.

From the perspective of a system designer, variations manifest as
deviations from the expected behavior of components within an IC,
or across different instances of the IC. In the following sections, we
describe techniques to address variations during system level design.

III CRITICAL PATH ISOLATION FOR TIMING
ADAPTIVENESS

CRISTA [20] is a new paradigm for low-power, variation-tolerant
digital system design, which allows for aggressive voltage over-
scaling. The CRISTA design principle (a) isolates and predicts the
paths that may become critical under process variations, (b) ensures
that they are activated rarely, and (c) avoids possible delay failures in
the critical paths by adaptively stretching the clock period to two
cycles. This allows the circuit to operate at reduced supply voltage
while achieving the required yield with small throughput penalty
(due to rare two-cycle operations). The concept of CRISTA is
illustrated in Figure 2(a) through an example of three pipelined
instructions, where Instruction2 activates the critical path. The
possible delay failure during Instruction2 is avoided by extending the
clock period to two cycles. This is achieved by gating the third clock
pulse during the execution of Instruction2. The regular clock and

gated CRISTA clock waveforms are shown in Figure 2(a). The
critical paths are isolated in the logic through hierarchical Shannon
expansion and gate sizing (Figure 2(b)). Silicon measurement of a
two-stage pipelined ALU designed using CRISTA shows ~40%
power savings with only 9% area overhead and very small
throughput penalty [21]. Note that CRISTA can be applied at the
circuit level as well as the architecture level. In [22], the authors
describe a variant of CRISTA called Trifecta, which is an
architectural technique that completes common-case sub-critical path
operations in a single cycle but uses two cycles when the critical path
is exercised. Trifecta improves the parametric yield while preserving
performance and power. This technique was applied to the critical
pipeline stages of a superscalar out-of-order and a single issue in-
order processor, namely instruction issue and execute, respectively.
Experiments show that the rare 2-cycle operations result in a small
decrease in Instructions per Cycle (5% for integer and 2% for
floating point benchmarks of SPEC2000). However, the increased
delay slack causes an improvement in yield-adjusted throughput by
20% (12.7%) for an in-order (out-of-order) processor configuration.

IV. VARIATION-TOLERANCE BY TRADING OFF
QUALITY-OF-RESULTS

Application Specific Integrated Circuits that implement DSP and
media processing algorithms provide an extra knob to tolerate
process variations namely, quality of the result. For example,
variation induced timing errors in an image processing system can be
tolerated by exploiting the fact that not all computations are equally
important to obtain “good” image quality. It is possible to identify
computational paths that are vital in maintaining high quality and
design the architecture such that more important computations (in
terms of quality) have shorter paths than less important ones. Such
an architecture can enable us to tolerate variation-induced errors with
minimal Peak Signal to Noise Ratio (PSNR) degradation of the
image. Next, we consider various DSP applications (namely, DCT,
color interpolation, and FIR filters) and demonstrate designs that
enable trade-offs between power, quality, and process tolerance.
1. DCT: It has been noted [23] that all coefficients of the 2-D

582

DCT matrix do not affect the image quality in a similar manner.
Analysis of various images shows that most of the input image
energy (85% or more) is contained in the first 20 entries of the DCT
matrix after the 2D-DCT operation. With this in mind, [23] proposes
an architecture that computes the high-energy components of the
final DCT matrix faster than the low-energy components (Figure
3(a)). Designing the architecture in such a manner a) isolates the
computational paths based on high energy and low energy
contributing components, and b) allows voltage overscaling to trade-
off power dissipation and image quality under variations. Results
show that under process variations and supply voltage scaling (1V
down to 0.8V), there is an acceptable degradation in image quality
(33dB down to 23dB) with considerable power savings (41% to
62%) compared to traditional implementations which fail under such
conditions.
2. Color Interpolation: In order to develop a variation-tolerant

color interpolation architecture, the computations required for
interpolation are divided into two parts based on their impact on the
output image quality [24]. The first part consists of the “bilinear”
component (absolutely necessary for interpolation), and the second
part consists of a “correction” term (used to improve PSNR).
Interpolation of a missing color value at a pixel is achieved through
linear combination of the bilinear and correction terms. The
correction term is defined as a 2-D vector gradient of an image
intensity function, with the components given by the derivatives in
the horizontal and vertical direction at each image pixel. The basic
idea behind the variation-tolerant architecture is to retain the bilinear
component in all scenarios, and vary the size and complexity of the
gradient component to achieve low power and variation-tolerance
(Figure 3(b)). To maintain reasonable image quality under variations,
[24] reduces computation complexity by varying the number and
values of coefficients used in evaluation of the gradient component.
Simulation results show that even at a scaled voltage (53% of
nominal) and under severe process variations, the design provides
reasonable image PSNR and 72% power savings [24].
3. FIR filter: The concept of segregating the more and less

important computations for variation tolerance has been applied to
FIR filters by developing a Level Constrained Common
Subexpression Elimination (LCCSE) algorithm [25]. LCCSE can
constrain the number of adder levels required to compute each of the
coefficient outputs. By specifying a tighter constraint (in terms of
adder levels) on the important coefficients, LCCSE ensures that the
later computational steps process only the less important coefficients.
In case of errors due to voltage scaling or process variations, only the
less important outputs are affected, resulting in graceful degradation
of filter quality and 25-30% power savings.

V. VARIATION-AWARE SYSTEM-LEVEL POWER
ANALYSIS

In this section, we show how to incorporate
manufacturing and operation-induced
variations into system-level power analysis.
We consider both inter-die and intra-die
variations in parameters such as effective
channel length (Leff) and threshold voltage
(Vth). The power analysis methodology [35]
effectively combines fast trace analysis,
power-state based leakage modeling, efficient
thermal analysis, and Monte Carlo sampling to
generate System-on-Chip (SoC) power
distributions and power variability over time.
V.1. Impact of Variations on SoC Power

We illustrate the issues involved in
variation-aware system-level power analysis
by analyzing the impact of variations on power
for an example SoC shown in Figure 4(a). The

SoC contains an ARM946 processor [26] that executes an image
processing application and dedicated hardware (Filter_HW) that
accelerates image filtering operations. Other SoC components are an
on-chip bus (AHB) [27], a memory controller, a DMA controller and
an interrupt controller. The SoC is implemented using a commercial,
90 nm standard cell library [28] and is operated at a frequency of 206
MHz and a voltage of 1 V.
Example 1: In this example, we compute the power consumption

of the SoC for a given workload, using a simulation-based system-
level power analysis tool [29]. We assume inter-die variations in Leff
with 3σ = 0.3µ and use conventional Monte-Carlo analysis
techniques to compute the power distribution. A box-and-whisker
plot of the power distribution for each component is shown in Figure
4(b). The lower and upper extremities of each box represent the 25th
and 75th percentiles of the power distribution. We notice that the
inter-quartile range (the box height) for the ARM processor core is
25% of its average power, while it is only 8% for the AHB,
suggesting that variations impact different components differently.
This can be explained as follows. While leakage power is highly
sensitive to channel length variations, dynamic power is relatively
immune. Hence, the extent to which variations impact power
consumption of a component depends upon the contribution of the
leakage power to total power. The contribution of leakage in turn
depends on how much time the component spends in different
power-states (active, sleep, deep-sleep, etc.) while processing the
given workload. In this study, the ARM core spends a lot of time in
the sleep power-state, in which its power consumption is almost
entirely due to leakage. On the other hand, the AHB is mostly active,
serving requests from either the ARM core or other masters. This
example shows that the impact of variations on power consumption

in SoC components depends on their workload characteristics. █
Example 2: In this example, we illustrate the impact of taking

thermal variations and spatially correlated intra-die variations into
account. We integrated our power analysis tool with floor-planning
[30] and thermal modeling [31] tools to accurately capture the inter-
dependences between die temperature and total power consumption.
We obtain the average power distributions of the SoC under three
scenarios: (a) considering inter-die variations only (D0), (b)
considering inter-die variations and thermal variations (D1), and (c)
considering inter-die and spatially correlated intra-die variations and
thermal variations (D2). We assume that the effective standard
deviation (√ (σ2

inter + σ2
intra)) in Leff in case (c) is same as the standard

deviation σinter used in cases (a) and (b). We compare the power
distributions for all three scenarios in Figure 5. Note that distribution
D1 has a high variance due to a long tail, which has been truncated in
Figure 5 for clear illustration. First, we note that including thermal

effects increases the mean and standard deviation of the power

distribution significantly. Secondly, we note that ignoring intra-die

spatial variations leads to a highly pessimistic estimate of the spread

(a) (b)

Figure 4 Power variations for an example SoC: (a) system-level block diagram; (b) inter-quartile
range of power variations for various system components

583

Database of

temperature traces

Phase 1: System
simulation & Power

analysis Dynamic

power and

power-state

traces

Iterative power estimation

and thermal analysis
Power-state based

leakage models

Phase 3: Monte Carlo analysis

Temperature-aware

leakage models

ARM DSP

Acc. DMA
Mem

I/F
Int.

Generate small

sample set

Parameter

distributionsLeff

Power distribution Power variability traces

Phase 2: Thermal analysis

Large sample set

Trace-based leakage

analysis

Power Time

P
o
w
e
r

Database of

temperature traces

Phase 1: System
simulation & Power

analysis Dynamic

power and

power-state

traces

Iterative power estimation

and thermal analysis
Power-state based

leakage models

Phase 3: Monte Carlo analysis

Temperature-aware

leakage models

ARM DSP

Acc. DMA
Mem

I/F
Int.

ARM DSP

Acc. DMA
Mem

I/F
Int.

Generate small

sample set

Parameter

distributionsLeff

Parameter

distributionsLeff

Power distribution Power variability traces

Phase 2: Thermal analysis

Large sample set

Trace-based leakage

analysis

Power Time

P
o
w
e
r

Time

P
o
w
e
r

Figure 6. Variation-aware system-level power analysis

of the power distribution. Including thermal effects and intra-die
spatial correlations changes the mean and standard deviation by
32.5% and 55%, respectively (D0 vs. D2 in Figure 5). █

The above examples demonstrate the importance of properly

incorporating the inter-dependencies between manufacturing-
induced variations, component workload characteristics, leakage
power, and temperature variations, during system-level power
analysis. Simple spreadsheet analysis based on the distribution of
process parameters and typical operating temperatures fails to
accurately capture these inter-dependencies and can lead to highly
inaccurate power distributions [35]. On the other hand, Monte Carlo
techniques that involve iterative system simulation with integrated
thermal analysis are too slow for use in architecture exploration [35].

V.2. Variation-aware Power Analysis Methodology

We have developed a methodology to accurately and efficiently
estimate the total power distribution under variations [35]. The key
attribute of our methodology is that speedup is achieved by
performing both system simulation based power analysis and thermal
analysis outside the Monte Carlo loop without compromising

significantly on accuracy. To achieve this, we use a three-phase
approach as shown in Figure 6.
• In Phase 1, system simulation is performed just once to capture

necessary information in the form of component-level dynamic
power and power-state traces.

• In Phase 2, a small number (Nc) of chip instances are generated
and a corresponding database of temperature traces is obtained as
follows. For each instance, the power-state traces are used to

compute component-level leakage traces using leakage models
described in [35]. These leakage traces are combined with
dynamic power traces to perform thermal analysis. Leakage and
thermal analysis are performed iteratively until convergence. This
compute-intensive iterative analysis is limited to a small number
(Nc) of chip instances.

• In Phase 3, Monte-Carlo analysis is performed wherein a large
number of random chip samples are generated. For each sample,
we find the chip instance analyzed in Phase 2 that is “closest” to it,
and its leakage power is obtained using the corresponding pre-
computed temperature trace in the database. The rationale behind
this approximation is that temperature does not vary significantly
for small variations in power and hence, this “quantization” does
not impact accuracy of the overall power distribution significantly.

We estimated the power distribution for the image processing SoC
shown in Figure 4 for a workload trace of 500ms and Nc=10. The
power distribution obtained using the above methodology (µ =52.3
mW, σ = 35.3 mW) closely matches the one obtained using direct
Monte Carlo simulations (µ = 52.7 mW, σ = 36.4 mW). Furthermore,
mean error is less than 0.5% for each sample point. The error can be
further reduced by increasing Nc. In addition, the proposed
methodology achieves speedups of 3-4 orders of magnitude over an
optimized implementation of direct Monte Carlo simulation [35].

VI. VARIATION-AWARE POWER MANAGEMENT
Power management is one of the most widely used power

reduction techniques at the system level. In [36], we addressed the
problem of designing effective power management schemes in the
presence of manufacturing-induced variations. We consider both
shutdown-based and slowdown-based power management techniques.
We demonstrate that conventional power management schemes,
designed using nominal power characteristics, can result in
substantial power wastage, and propose techniques and that can lead
to significant improvements in the energy distribution.

VI.1. Overview
We propose design-specific and chip-specific approaches to

designing variation-aware power management schemes. In the
design-specific approach, a set of values for parameters that control
the power management scheme is obtained at design time, and fixed
across all fabricated instances of the chip. The difference from
conventional power management schemes is that these parameter
values are computed with an objective to optimize the resulting
power or energy distribution across all chip instances. In the chip-
specific approach, parameters values are determined for each chip
instance based on its individual characteristics. To realize this, each
chip needs to sense its power characteristics after fabrication and
configure the power management parameters accordingly.
Metrics of optimization: Under process variations, the

effectiveness of a power management scheme must be evaluated in
the context of an energy distribution rather than a deterministic value.
The distribution mean may not always provide a meaningful measure.
For example, in Figure 7(a), the distribution corresponding to the
solid line has a lower mean compared to the one corresponding to the
dashed line. However, the dashed distribution might be more
desirable since it results in a larger number of chips meeting a certain
energy constraint (energy yield). To better capture these effects,
metrics that consider higher moments of the energy distribution, such
as µ+σ, may be used. Another example is the Nth percentile of the
energy distribution. In Figure 7(b), we see that the dashed
cumulative distribution (CDF) is more desirable since it has a lower
value of the given percentile, and hence, corresponds to a larger
number of chips with better energy characteristics.

VI.2. Shutdown-based Power Management
In shutdown-based dynamic power management (DPM), a power

manageable component (PMC) is put into low power states during

Figure 5 Impact of temperature variations and spatially correlated

intra-die variations on the average power distribution

584

 (a) (b)

Figure 7. Metrics for power management policy evaluation

periods of inactivity. These transitions are governed by power
management policies, such as timeout-based, history-based and
stochastic policies [32]. We have developed variation-aware policies
in the context of two power management policy frameworks, namely
an ideal Oracle-based framework and a timeout-based framework.

A Power Manageable Component (PMC) can be in the Active state
or in one of n low-power states (S1, S2 ... Sn). The power dissipation
in state Sj is denoted by PSj. It consists of the dynamic power
dissipation PD,Sj and the leakage power dissipation PL,Sj. Transition
between Active and Sj is associated with a power overhead denoted
by Ptr,Sj and a delay overhead denoted by Ttr,Sj.

A shutdown-based policy can be specified using parameters that
decide when to transition to a low-power state. In the Oracle-based
framework, the length of the idle period, Tidle, is known a priori.
Hence, the optimal low-power state can be determined as soon as an
idle period is encountered. The policy parameter is the minimum idle
period length, or threshold (Tth,Sj), above which it is beneficial to
transition to Sj. The threshold time for a low-power state Sj+1 can be
computed using simple breakeven analysis as follows:

1

111

1

,,,,

,

)()(

+

++=

+

−

−−−

=

jj

jjjjjj

j

SS

StrsStrStrSStr

Sth
PP

TPPTPP
T (1)

For a timeout-based framework, the system waits in each state for a
pre-specified timeout (Tto,Sj) to expire before it transitions to the next
low power state Sj. In this case, the parameters are the timeout values.
Impact of variations: Let us consider the ARM946 processor

core presented in the previous section. When an idle period is
encountered, it can either transition to a Sleep state or a Deep-sleep
state. The core is assumed to be clock-gated in the Sleep state, and
hence its power consumption is dominated by leakage power (PL,S).
In the Deep-sleep state it is voltage gated, and hence has negligible
power consumption. Let us denote the threshold values computed
without considering variations (using mean characteristics) as Tth,S
and Tth,DS. Now for a chip instance ‘i’ with leakage power greater
than the mean leakage power (Pi

L > µ[PL]), the optimal threshold
time to Deep-sleep Ti

th,DS, computed using Equation 1 and its own
power characteristics is smaller than Tth,DS. Intuitively, higher
leakage makes it beneficial to pay the transition penalty and exploit
the Deep-sleep state even for certain idle periods that are smaller
than the conventionally chosen threshold Tth,DS. Therefore, for
instance ‘i’, if the threshold is set to Tth,DS, it will be forced to
transition to Sleep for all idle periods Tidle Є [Ti

th,DS, Tth,DS), even
though it is more beneficial to transition to Deep-sleep. Similarly, for
an instance with leakage characteristics such that Pi

L < µ[PL], the
optimal threshold value is higher than that computed using the mean.
Hence, conventional power management policies can perform quite
sub-optimally for some chip instances. The extent of sub-optimality
depends upon the extent to which the power characteristics are
impacted by variations, and the idle period distribution in the
workload. Next, we present brief descriptions of the variation-aware
design-specific and chip-specific power management approaches.
VI.2.1 Design-specific approach

We wish to calculate the policy parameters (Tth,Sj or Tto,Sj) such
that a metric of the total energy distribution Met[ETOT] is optimized.
For the Oracle-based framework, we have shown that if Met is linear
in the energy dissipation in different power states, then the optimum

parameter set can be obtained using a modified break-even analysis
as follows:

][][

])[][(])[][(

1

111

1

,,,,

,

+

++=

+

−

−−−

=

jj

jjjjjj

j

SS

StrsStrStrSStr

Sth
PMetPMet

TPMetPMetTPMetPMet
T

 (2)
Furthermore, it can be shown that the metrics (µ+σ) and the Nth

percentile of the total energy distribution satisfy the linearity
property [36]. For the timeout-based framework, closed-form
analytical computation of the optimal Tto parameter is not possible.
Hence, we have developed various search based methods [36] to
compute the optimal timeout parameter values.
VI.2.2 Chip-specific approach

In the chip-specific approach, the power management policy
parameters of each fabricated instance of the SoC are configured
according to its specific leakage characteristics. Each chip needs to
be calibrated in order to determine its leakage characteristics.
Leakage calibration requires the use of on-chip measurement
circuitry [33]. In [36], we have proposed three calibration methods,
namely full calibration, approximate calibration and random
calibration. These methods tradeoff calibration effort for the
optimality of the power management policy parameters derived.

We evaluated the benefits of variation-aware power management

using a cycle-level power model of an ARM946 processor core, over
a wide range of workloads. The proposed approaches result in
significant improvements in metrics such as µ+σ and Nth percentile
compared to conventional variation-agnostic policies. For example,
improvements in µ+σ of up to 59% for the Oracle-based framework
and up to 43% for the timeout-based framework are obtained.

VI.3. Slowdown-based Power Management

In slowdown-based power management or dynamic voltage
scaling (DVS), slack in the workload is exploited to allow execution
at the lowest possible frequency level such that the performance
targets are met. This allows the supply voltage to be scaled down in
order to reduce energy consumption. In conventional DVS schemes,
a small number of discrete voltage-frequency pairs (FL-VL) are
determined at design-time based on the IC’s frequency-voltage (F-V)
characteristics at nominal or worst-case process corners. We denote
them as FL = {FL1...FLK} and VL = {VL1...VLK}. Furthermore, the
pairing of voltage and frequency levels is also fixed at design time,
i.e., operating frequency Fk is associated with voltage level Vk for all
chip instances. We refer to this as a fixed discrete DVS scheme.
Impact of variations: In order to demonstrate the sub-optimality of
conventional fixed discrete DVS under variations, we consider an
ARM946 processor core implemented in 90nm technology [28] at an
operating frequency of Freq =133.3 Mhz. Using nominal F-V
characteristics, we computed that a minimum voltage level of 0.82V
is required to meet this frequency target. However, in the presence of
variations, each chip instance has different F-V characteristics (see
Figure 9) and hence the required voltage levels are different. For
example, Instance1 requires supply voltage of 0.96V to operate at
133MHz, whereas Instance2 can operate correctly at even 0.72V.

Figure 8. Benefits of variation-aware power management

585

Figure 9 Impact of variations on slowdown based power

management techniques

This indicates that setting the voltage to 0.82V for all chips is highly
sub-optimal. For the workload under consideration, it can cause
Instance1 to exhibit timing errors (since the chip operates slower
than Freq) and Instance2 to dissipate more energy than required.

VI.3.1 Variation-aware DVS

We propose a variation-aware DVS scheme called variable discrete

DVS, which is based on two key ideas:
• At design time, voltage levels are determined while taking

variations into account. For a given frequency Fk, the required
voltage Vreq is a random variable whose distribution depends on
the impact of variations. Therefore, determining the set of voltage
levels based on this distribution, instead of nominal or worst case
characteristics, will improve the overall energy distribution.

• At runtime, the voltage level for a given frequency level is
selected based on the F-V characteristics of each chip instance.
For a given Fk, each chip instance ‘i’ has a different optimum
voltage of operation, Vi

req, based on its F-V characteristics.
However, since only a limited set of voltage levels are available,
in the proposed scheme, the operating voltage for instance ‘i’ is
selected as Vi

k = min(VL > Vi
req). This involves decoupling the

fixed pairing between frequency and voltage levels.
 We applied the variable discrete DVS technique to an ARM946
processor core with 5 frequency levels. Our results indicate that (i)
matching the voltage levels with frequency levels uniquely for each
chip results in significant improvements over fixed discrete DVS (up
to 118% in energy yield), and (ii) variation-aware selection of
voltage levels yields an additional 30% improvement.
 In summary, we have demonstrated that variation-aware power
management can significantly improve the energy distribution of an
IC in the presence of variations.

VII. CONCLUSIONS
Process variations have emerged as a critical challenge in the

design of ICs in nanoscale technologies, and in the extreme case may
prevent us from realizing the benefits of scaling. Effectively
addressing this challenge requires that variations should be
considered from the early stages of the design cycle. In this paper,
we presented various approaches for coping with variations through
system-level design, which complement lower-level techniques and
show great promise in enabling cost-effective design of variation-
tolerant ICs.
Acknowledgment: This work was supported in part by the Focus
Center Research Program (GSRC) and the Semiconductor Research
Corporation.

References
[1] International Technology Roadmap for Semiconductors,
http://public.itrs.net/reports.html.
[2] S. Borkar et al., “Parameter variations and impact on circuits and micro-
architecture,” Design Automation Conf., pp. 338-342, June 2003.
[3] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, vol. 25, no.
6, pp. 10-16, Nov. 2005.

[4] J. Tschanz, S. Narendra, R. Nair, and V. De, “Effectiveness of adaptive
supply voltage and body bias for reducing impact of parameter variations in
low power and high performance microprocessors,” IEEE J. Solid-State
Circuits, vol. 38, no. 5, pp. 826-829, May 2003.
[5] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution
on a multi-core multithreaded Itanium-family processor,” IEEE Int. Solid-
State Circuits Conf., pp. 292-293, Feb. 2005.
[6] D. Ernst et al.,, “Razor: Circuit-level correction of timing errors for low-
power operation,” IEEE Micro, vol. 24, no. 6, pp. 10-20, March 2005.
[7] C.H. Kim, K. Roy, S. Hsu, R. Krishnamurthy, and S. Borkar, “A process
variation compensating technique with an on-die leakage current sensor for
nanometer scale dynamic circuits,” IEEE Trans. VLSI Systems, vol. 14, no. 6,
pp. 646-649, June 2006.
[8] C. Visweswariah et al., “First-order incremental block-based statistical
timing analysis,” Design Automation Conf., pp. 331-336, June 2004.
[9] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” Proc. Int. Conf.
Computer-Aided Design, pp. 621-625, Nov. 2003.
[10] A. Agarwal, V. Zolotov, and D.T. Blaauw, “Statistical timing analysis
using bounds and selective enumeration,” IEEE Trans. Computer-Aided
Design, vol. 22, no. 9, pp. 1243-1260, Sept. 2003.
[11] E. T. A. F. Jacobs and M.R.C.M. Berkelaar, “Gate sizing using a
statistical delay model,” Design, Automation, and Test Europe, pp. 283-291,
March 2000.
[12] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov, “Circuit
optimization using statistical static timing analysis,” Design Automation
Conf., pp. 321-324, June 2005.
[13] D. Marculescu and E. Talpes, “Energy awareness and uncertainty in
microarchitecture-level design,” IEEE Micro, vol. 25, no. 5, pp. 64–76, Sep.
2005.
[14] D. Marculescu and S. Garg, “System-level process-driven variability
analysis for single and multiple voltage-frequency island systems,” Int. Conf.
Computer-Aided Design, pp. 541–546, Nov. 2006.
[15] N. Azizi, M. M. Khellah, V. De, and F. N. Najm, “Variations-aware
low-power design with voltage scaling,” Design Automation Conf., pp. 529–
534, June 2005.
[16] J. Donald and M. Martonosi, “Power efficiency for variation-tolerant
multicore processors,” Int. Symp. Low-Power Electronics and Design, pp.
304–309, Oct. 2006.
[17] D. Sylvester, D. Blaauw, E. Karl, “ElastIC: An adaptive self-healing
architecture for unpredictable silicon,” IEEE Design & Test, vol. 23, no.6,
pp.484-490, Nov. 2006.
[18] N. R. Shanbhag, “Reliable and energy-efficient digital signal
processing,” Design Automation Conf., pp. 830-835, June 2002.
[19] K. Roy, S. Mukhopdhayay, and H. Mahmoodi, “Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS
circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003.
[20] S. Ghosh et al., “CRISTA: A new paradigm for low-power and robust
circuit synthesis under parameter variations using critical path isolation,”
IEEE Trans. Computer-Aided Design, vol. 26, no. 11, pp. 1947-1956, Nov.
2007.
[21] S. Ghosh. K. Kim, P. Batra, and K. Roy, “Process-tolerant low-power
adaptive pipeline under scaled-Vdd,” Custom Integrated Circuits Conf., pp.
733-736, Sep. 2007.
[22] P. Ndai et al., “Trifecta: A non-speculative scheme to exploit common,
data-dependent subcritical paths,” IEEE Trans. VLSI Systems (to appear).
[23] N.Banerjee et al., “Process-variation tolerant low power DCT
architecture,” Design, Automation, and Test Europe, pp. 630-635, Apr. 2007.
[24] G. Karakonstantis, N. Banerjee, and K. Roy, “Design methodology to
trade off power, output quality and error resiliency: Application to color
interpolation filtering,” Int. Conf. Computer-Aided Design, pp. 199-204, Nov.
2007.
[25] N. Banerjee, J. Choi, and K. Roy, “A process variation aware low
power synthesis methodology for fixed-point FIR filters,” Int. Symp. Low
Power Electronics and Design, pp. 147-152, Aug. 2007.
[26] ARM946ES core,
http://www.arm.com/products/CPUs/ARM946ES.html.
[27] “AMBA 2.0 Specification” http://www.arm.com/armtech/AMBA.
[28] “Cell Based IC CB-90 L/M/H Type Features/Basic Specification,” NEC
Electronics Corp. http://www.necel.com/cbic/en/cb90/cb90.html.
[29] N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar, “Power
monitors: A framework for system-level power estimation using
heterogeneous power models,” Int. Conf. VLSI Design, pp.579-585, Jan. 2005.
[30] “UC Santa Cruz Floor-planning Tool.”
http://www.cse.ucsc.edu/research/surf/GSRC/progress.html.
[31] “HotSpot 3.0 Temperature Modeling Tool.”
http://lava.cs.virginia.edu/HotSpot.
[32] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans. VLSI
Systems, vol. 8, no. 3, pp. 299–316, June 2000.
[33] C. Kim, K. Roy, S. Shu, K. R. Krishnamurthy, and S. Borkar, “On-die
CMOS leakage current sensor for measuring process variation in sub-90nm
generations,” VLSI Circuits Symp., pp. 250–251, June 2004.
[34] A. Gersho and R. M. Gray, “Vector Quantization and Signal
Compression”, Kluwer Academic Publishers, 1992.
[35] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, "Considering
process variations during system-level power analysis," Int. Symp. Low
Power Electronics and Design, pp. 342-345, Oct. 2006.
[36] S. Chandra, K. Lahiri, A. Raghunathan, S. Dey, “Variation-tolerant
dynamic power management at the system-level,” IEEE Trans. VLSI Systems
(to appear).

586

Author Index

Abhyankar, Abhijit..................................... 373 Bolognino, Luca... 200

Abraham, Jacob A. 77 Bordoloi, Unmesh Dutta............................. 465

Afzali-Kusha, Ali....................... 175, 157, 151 Bozorgzadeh, Bardia.................................. 175

Agarwal, Ghasi... 17 Brewer, Forrest... 407

Aggarwal, Aneesh.............................. 535, 145 Carvajal, Ramon G. 26

Agrawal, Vishwani D. 459 Chakrabarti, Partha Pratim........................... 71

Aikyo, Takashi....................................... 85, 91 Chakraborty, Samarjit.......................... 465, 39

Aitken, Robert C. ... 8 Chandra, Nishant.. 247

Amano, Hideharu....................................... 381 Chandra, Saumya.. 581

Amrutur, Bharadwaj................................... 163 Chandra, Vikas... 41

Apostolacos, Spyros................................... 261 Chandrachoodan, Nitin............................... 267

Arora, Mohit... 353 Chatterjee, Abhijit.. 57

Ascheid, G. .. 281 Chattopadhyay, Santanu............................... 37

Association, India Semiconductor................ 19 Chen, Mingsong... 65

Avanthi, V. .. 347 Chen, Zhen... 221

Baghini, M. Shojaei.................................... 427 Chiu, Yi Tang... 321

Bailey, Stephen... 6 Choi, Gwan... 51

Bandhyopadhyay, Anirban......................... 253 Collaert, Nadine.. 253

Banerjee, Nilanjan...................................... 581 Corsonello, Pasquale.................................... 45

Banerjee, Pritha.. 125 Courtois, B. .. 561

Banga, Mainak.. 327 Czutro, Alejandro....................................... 227

Bare, Prakash.. 17 Dan, Surya Shankar.................................... 493

Baruah, Ratul Kumar.................................. 241 Daneshtalab, Masoud................................. 151

Basu, Shubhankar....................................... 433 Das, Angan... 445

Batterywala, Shabbir H. 137 Das, Tamal.. 181

Becker, Bernd... 227 Dasgupta, Pallab... 71

Bhanja, Sanjukta... 485 Dasgupta, Parthasarathi.............................. 387

Bhargava, Prashant..................................... 353 DasGupta, Sumit.. 5

Bhattacharya, Koustav................................ 453 Debnath, Goutam.. 33

Bhattacharya, Sambuddha.......................... 137 Delp, Gary.. 7

Bhattacharyya, A.B. 247 Desai, Kunal... 373

Bhattacharyya, T.K. 439 Dey, Sujit.. 581

Bhowmik, Prasenjit.................................... 569 Dixit, Abhisek.. 253

587

Author Index

Drechsler, Rolf... 189 Jagan, Lavanya... 97

Dueck, Gerhard W. 189 Jaiswal, Manish Kumar.............................. 267

Dumont, S. ... 561 Jayaseelan, Ramkumar............................... 541

Dutt, Nikil... 499 Jeong, Mun-Ho... 287

Dutta, Ramen.. 439 Jeyapaul, Reiley.. 413

Easwaran, Prakash...................................... 569 Joshi, Siddharth.. 341

Engelke, Piet... 227 Jurczak, Malgorzata.................................... 253

Erraguntla, Vasantha.................................. 301 Kamakoti, V. ... 97

Eyraud, S. .. 561 Kamali, Iman.. 157

Fang, Shan Chien....................................... 321 Kapur, Rajiv... 13

Fatima, Kaleem.. 393 Kataria, Nitin.. 407

Fujiwara, Hidehiro...................................... 295 Katkoori, Srinivas....................................... 419

Ganeshpure, Kunal..................................... 233 Kawaguchi, Hiroshi.................................... 295

Ghayal, Rupak.. 569 Kempf, T. .. 281

Ghosal, Prasun.. 387 Khawshe, Vijay.. 373

Ghosh, Priyankar.. 71 Koithyar, Arun.. 525

Ghosh, Swaroop... 581 Kommineni, Balaji..................................... 433

Gordon-Ross, Ann...................................... 547 Kondo, Masaaki.. 381

Goyal, Prateek.. 373 Konstantoulakis, George............................ 261

Große, Daniel... 189 Krishna, Vijay.. 373

Gunnam, Kiran K. 51 Krishnamurthy, Ram.................................. 301

H, Udayakumar.. 519 Krishnan, Vyas... 419

Han, Sang-Kyo... 287 Krishnapura, Nagendra......................... 367, 35

Hashida, Tasunori....................................... 381 Kulkarni, Shailesh...................................... 163

Hashizume, Masaki................................ 85, 91 Kumar, A. Mahesh..................................... 117

Hazra, Aritra... 71 Kumar, Anuj... 399

Hemani, Ahmed.. 200 Kumar, Vinay B.Y. 341

Henkel, Jörg.. 30 Kundu, Sandip.. 233

Hespanha, João... 407 Kurdahi, Fadi J. ... 499

Higami, Yoshinobu................................ 85, 91 Lanuzza, Marco.. 45

Hsiao, Michael S. 327 Leupers, R. .. 281

Iguchi, Yusuke.. 295 Lewis, Matthew.. 227

Imai, Masashi... 381 Lin, Kuan Jen... 321

588

Author Index

Lingasubramanian, Karthikeyan................. 485 Narayanan, H. 341, 206

Lopez-Martin, Antonio................................. 26 Narayanan, Vijaykrishnan............................ 30

Lotfi-Kamran, Pejman................................ 157 Niranjini, R. ... 105

Lubyanitsky, Mike...................................... 195 Nisar, Muhammad Mudassar....................... 57

Lykakis, George... 261 Noguchi, Hiroki.. 295

M, Thrivikraman.. 373 Okumura, Shunsuke................................... 295

Mahapatra, Santanu............................ 493, 241 Paillotin, J-F... 561

Majhi, Ananta K. ... 97 Paily, Roy P. .. 505

Mandal, Chittaranjan.................................. 361 Pal, Ajit... 37

Mandal, Pradip... 181 Palwai, Rajkumar....................................... 373

Manikandan, J. .. 347 Pandit, Soumya... 361

Manojkumar, Leburu.................................. 367 Parameswaran, Sri.. 30

Marathe, Sandeep....................................... 413 Pasricha, Sudeep... 499

Margala, Martin.. 45 Patil, Mahesh B. .. 427

Martin, Grant.. 3 Patkar, Sachin B. 341, 206

Masuda, Hiroki... 381 Patra, Amit.. 361

Mathew, Jimson.. 307 Pavan, Shanthi.. 35

Mathew, Sanu... 301 Pedram, Masoud... 151

Mathur, Anmol... 28 Pendina, G. di... 561

Mathur, Mona... 272 Penolazzi, Sandro....................................... 200

Meliones, Apostolos................................... 261 Perri, Stefania... 45

Meyer, Kristin De....................................... 253 Pogiel, Artur... 275

Meyr, H. .. 281 Polian, Ilia.. 227

Mishra, Prabhat............................ 547, 335, 65 Pomeranz, Irith... 215

Mitikiri, Yujendra....................................... 111 Prabhu, Kashinath...................................... 373

Mitra, Tulika... 541 Pradhan, Almitra.. 131

Mohan, Arun.. 367 Pradhan, Dhiraj K. 307

Mohanty, Saraju P. 307, 531 Prasad, Shashank.. 399

Mukherjee, Nilanjan............................. 275, 23 Pundoor, Shrikrishna.................................. 525

Nakamura, Hiroshi..................................... 381 Purohit, Sohan.. 45

Nakata, Mitsutaka....................................... 381 Qin, Xiaoke.. 335

Namiki, Mitaro... 381 Ragel, Roshan... 30

Narasimhamurthy, K.C. 505 Raghavan, Leneesh..................................... 373

589

Author Index

Raghunathan, Anand.................................. 581 Sinkar, Abhishek A. 479

Rahaman, Hafizur....................................... 387 Sirsi, Sandeep... 535

Rahmani, Amir-Mohammad.............. 157, 151 Srinivas, M.B. .. 117

Rajagopalan, Subramanian......................... 137 Srinivasan, Suresh...................................... 301

Rajski, Janusz....................................... 275, 23 Suganya, K. ... 105

Raman, Suresh.. 195 Suri, Tameesh... 145

Ramasamy, S. .. 105 Sur-Kolay, Susmita............................ 125, 315

Ramirez-Angulo, J. 26 Takahashi, Hiroshi.................................. 85, 91

Ranganathan, Nagarajan..................... 511, 453 Takamatsu, Yuzo.................................... 85, 91

Rangnekar, Renu.. 373 Takeda, Seidai.. 381

Rao, Jagdish C. .. 525 Talwar, Basavaraj....................................... 163

Rao, Madhusudan....................................... 525 Techonline.. 20

Rao, Rameshwar... 393 Thadikaran, Paul... 33

Reddy, Sudhakar M. 215, 227 Thakker, Rajesh Amratlal........................... 427

Roy, Kaushik.. 581 Thapliyal, Himanshu.................................. 511

Roy, Sourav.. 553 Tiwary, Saurabh K....................................... 41

Safari, Saeed....................................... 157, 151 Torki, K. .. 561

Saha, Debasri.. 315 Touloupis, Emmanuel................................ 261

Saluja, Kewal K. .. 479 Trivedi, Yatin... 18

Samantam, Tuhina...................................... 387 Tsutsumi, Toshiyuki............................... 85, 91

Sangtani, Megha... 125 Tulabandhula, Theja................................... 111

Sankar, V. Siva... 206 Tummala, Venkat....................................... 117

Sansen, Willy.. 4 Tyszer, Jerzy... 275, 23

Santhanakrishnan, Raman............................ 18 Usami, Kimiyoshi....................................... 381

Seetharaman, G. .. 473 V, Arvind N.. 519

Seki, Naomi.. 381 Vasudevan, Shobha...................................... 77

Sherwood, Timothy.................................... 407 Veeramachanen, Sreehari........................... 117

Shirai, Toshiaki.. 381 Vemuri, Ranga............................ 433, 131, 445

Shrivastava, Aviral..................................... 413 Venkataramani, B. 105, 347, 473

Singh, Jawar... 307 Venkatesan, Pravin Kumar......................... 373

Singh, Ratan Deep.. 97 Venkatraman, R. .. 525

Singh, Vivek... 9 Venkatraman, Ramakrishnan..................... 519

Singhee, Amith... 41 Venugopalachary, N. 473

590

Author Index

Vireen, V. .. 473 Wang, Ye.. 39

Vishweshwara, Ramamurthy...................... 519 Wille, Robert.. 189

Viswanath, Vinod... 77 Woo, SeongHoon....................................... 287

Vlagoulis, Vassilis...................................... 261 Xiang, Dong... 221

Vyas, Kapil... 373 Yamazaki, Koji....................................... 85, 91

Wadhwa, Sanjay Kumar............................. 171 Yao, Chunhua... 479

Wallentowitz, S. .. 281 Yati, Apoorva Kumar................................. 247

Wang, Fan.. 459 Yin, Boxue.. 221

Wang, Qi.. 28 Yoshimoto, Masahiko................................ 295

Wang, Weihuang.. 51 Yotsuyanagi, Hiroyuki........................... 85, 91

Wang, Weixun.. 547 You, Bum-Jae... 287

591

IEEE Computer Society
Conference Publications

Operations Committee ations Committee

CPOC Chair CPOC Chair
Chita R. Das Chita R. Das

Professor, Penn State University Professor, Penn State University

Board Members Board Members
Mike Hinchey, Director, Software Engineering Lab, NASA Goddard Mike Hinchey, Director, Software Engineering Lab, NASA Goddard

Paolo Montuschi, Professor, Politecnico di Torino Paolo Montuschi, Professor, Politecnico di Torino

Jeffrey Voas, Director, Systems Assurance Technologies, SAIC Jeffrey Voas, Director, Systems Assurance Technologies, SAIC

Suzanne A. Wagner, Manager, Conference Business Operations Suzanne A. Wagner, Manager, Conference Business Operations
Wenping Wang, Associate Professor, University of Hong Kong Wenping Wang, Associate Professor, University of Hong Kong

IEEE Computer Society Executive Staff IEEE Computer Society Executive Staff
Angela Burgess, Executive Director Angela Burgess, Executive Director

Alicia Stickley, Senior Manager, Publishing Services Alicia Stickley, Senior Manager, Publishing Services
Thomas Baldwin, Senior Manager, Meetings & Conferences Thomas Baldwin, Senior Manager, Meetings & Conferences

IEEE Computer Society Publications IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative
computer science and engineering texts. These books are available from most retail outlets. Visit the CS Store at
http://www.computer.org/portal/site/store/index.jsp for a list of products.

The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative
computer science and engineering texts. These books are available from most retail outlets. Visit the CS Store at
http://www.computer.org/portal/site/store/index.jsp for a list of products.

IEEE Computer Society Conference Publishing Services (CPS) IEEE Computer Society Conference Publishing Services (CPS)
The IEEE Computer Society produces conference publications for more than 250 acclaimed international
conferences each year in a variety of formats, including books, CD-ROMs, USB Drives, and on-line publications.
For information about the IEEE Computer Society’s Conference Publishing Services (CPS), please e-mail:
cps@computer.org or telephone +1-714-821-8380. Fax +1-714-761-1784. Additional information about Conference
Publishing Services (CPS) can be accessed from our web site at: http://www.computer.org/cps

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press Authored Book program to produce a
number of exciting new titles in areas of computer science and engineering with a special focus on software
engineering. IEEE Computer Society members continue to receive a 15% discount on these titles when purchased
through Wiley or at: http://wiley.com/ieeecs. To submit questions about the program or send proposals, please e-
mail jwilson@computer.org or telephone +1-714-816-2112. Additional information regarding the Computer
Society’s authored book program can also be accessed from our web site at:
http://www.computer.org/portal/pages/ieeecs/publications/books/about.html

Revised: 21 January 2008

CPS Online is our innovative online collaborative conference publishing system designed to speed the delivery of
price quotations and provide conferences with real-time access to all of a project's publication materials during
production, including the final papers. The CPS Online workspace gives a conference the opportunity to upload
files through any Web browser, check status and scheduling on their project, make changes to the Table of Contents
and Front Matter, approve editorial changes and proofs, and communicate with their CPS editor through discussion
forums, chat tools, commenting tools and e-mail.

The following is the URL link to the CPS Online Publishing Inquiry Form:
http://www.ieeeconfpublishing.org/cpir/inquiry/cps_inquiry.html

592

