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Abstract

This paper describes several methods for improving the
scalability of memory disambiguation hardware for future
high ILP processors. As the number of in-flight instructions
grows with issue width and pipeline depth, the load/store
queues (LSQ) threaten to become a bottleneck in both power
and latency. By employing lightweight approximate hash-
ing in hardware with structures called Bloom filters many
improvements to the LSQ are possible.

We propose two types of filtering schemes using Bloom
filters: search filtering, which uses hashing to reduce both
the number of lookups to the LSQ and the number of en-
tries that must be searched, and state filtering, in which the
number of entries kept in the LSQs is reduced by coupling
address predictors and Bloom filters, permitting smaller
queues. We evaluate these techniques for LSQs indexed by
both instruction age and the instruction’s effective address,
and for both centralized and physically partitioned LSQs.
We show that search filtering avoids up to 98% of the as-
sociative LSQ searches, providing significant power sav-
ings and keeping LSQ searches to under one high-frequency
clock cycle. We also show that with state filtering, the load
queue can be eliminated altogether with only minor re-
ductions in performance for small instruction window ma-
chines.

1. Introduction

Computer architects have been improving the per-
formance of processors by implementing deeper
pipelines [28], wider issue, and with larger out-of-order is-
sue windows. These trends produce machines in which
more than one hundred instructions may be in-flight [16].
Recently, several researchers have proposed techniques

for scaling issue windows to sizes of hundreds or thou-
sands of instructions [8, 19, 22]. In all these actual and
proposed machines, hardware must perform dynamic mem-
ory disambiguation to guarantee that a memory ordering
violation does not occur.

For any system capable of out-of-order memory issue,
the memory ordering requirements are threefold. First, the
hardware must check each issued load to determine if an
earlier (program order) in-flight store was issued to the
same physical address, and if so, use the value produced by
the store. Second, each issued store must check to see if a
later (program order) load to the same physical address was
previously issued, and if so, take corrective action. Third,
the hardware should ensure that loads and stores reach the
memory system in the order specified by the memory con-
sistency model. In many processors, the hardware that im-
plements the above requirements is called the load/store
queue (LSQ).

One disadvantage with current LSQ implementations is
that the detection of memory ordering violations requires
frequent searches of considerable state. In a naive LSQ im-
plementation, every in-flight memory instruction is stored
in the LSQ. Thus, as the number of instructions in-flight in-
creases, so does the number of entries that must be searched
in the LSQ to guarantee correct memory ordering. Both the
access latency and the power requirements of LSQ searches
scale super-linearly with increases in the amount of state
as the LSQ is typically implemented using a CAM struc-
ture [2]. As we show in the next section, simply reducing the
size of traditional LSQ designs for future machines causes
an unacceptable drop in performance, whereas not doing so
incurs unacceptable LSQ access latencies and power con-
sumption. These traditional structures thus have the poten-
tial to be a significant bottleneck for future systems.

The technique evaluated in this paper to mitigate these
LSQ scalability limits is approximate hardware hashing.
We implement low-overhead hash tables with Bloom fil-
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ters [3], a structure in which a load or a store address is
hashed to a single bit. If the bit is already set, there is a
likely, but not a certain address match with another load or
store. If the bit is unset there cannot be an address match
with another load or store. We use Bloom filters to evalu-
ate the following LSQ improvements:

� Search filtering: Each load and store indexes into a lo-
cation in the Bloom filter (BF) upon execution. If the
indexed bit is set in the BF, a possible match has oc-
curred, and the LSQ must be searched. If the indexed
bit is clear, the bit is then set in the BF, but the LSQ
need not be searched. However, all memory operations
must still be allocated in the LSQ. This scheme reduces
LSQ searches by 73-98% depending on the machine
configuration.

� Partitioned search filtering: Multiple BFs each guard
a different bank of a banked LSQ. When a load or
store is executed, all the BFs are indexed in paral-
lel. LSQ searches occur only in the banks where the
indexed bit in the BF is set. This policy enables a
banked CAM structure which reduces both the number
of LSQ searches and the number of banks that must be
searched. This scheme reduces the number of entries
that must be searched by 86%.

� Load state filtering: A predictor examines each load
upon execution and predicts if a store to the same ad-
dress is likely to be encountered during the lifetime of
the load. If so, the load is stored in the memory or-
dering queues. If the prediction is otherwise, the load
address is hashed in a load BF and is not kept in any
memory ordering queues. When stores execute, they
check the load BF, and if a match occurs, a dependence
violation may have occurred and the machine must
perform recovery. With this scheme, the load queue
can be completely eliminated, at a cost of 3% in per-
formance for small instruction window machines. For
large window machines, however, our results show that
the currently used BF’s hash functions cause too many
unnecessary flushes and are not an effective solution.

With these schemes, we show that the area required
for LSQs can be reduced marginally and, more impor-
tantly, that the power and latency for maintaining sequen-
tial memory semantics can be significantly reduced. This, in
turn alleviates a significant scalability bottleneck to higher-
performance architectures requiring large LSQs.

The rest of the paper is organized as follows: Section 2
surveys related work and shows that techniques proposed to
date will cause unacceptable performance losses in future,
large-window systems. Section 3 describes and reports the
performance of the search filtering techniques. Section 4,
describes load state filtering. Conclusions and a discussion
of future work are provided in Section 5.

2. Conventional Load/Store Queues

Traditional methods of constructing LSQs have been ef-
fective for current-generation processors with limited num-
ber of instructions in flight. However, these traditional
methods face several challenges when applied to high ILP
machines of the future with large instruction windows. In
this section we describe the range of organizations of mem-
ory disambiguation hardware and then show experimentally
why solutions proposed to date are poor matches for future
high-ILP architectures.

2.1. Historical Memory Ordering Hardware

Initially, simple sequential machines executed one in-
struction at a time and did not require hardware for en-
forcing the correct ordering of loads and stores. With the
advent of speculative, out-of-order issue architectures, the
buffering and ordering of in-flight memory operations be-
came necessary and commonplace. However, the functions
embodied in modern LSQ structures are the result of a se-
ries of innovations much older as described below.

Store Buffers: In early processors without caches, stores
were long-latency operations. Store buffers were imple-
mented to enable the overlap of computation with the com-
pletion of the stores. Early examples were the stunt box
in the CDC 6600 [30] and the store data buffers in the
IBM 360/91 [4]. More modern architectures separated the
functionality of the store buffers into pre-completion and
post-commit buffers. The pre-completion buffers, now com-
monly called store queues, hold speculatively issued stores
that have not yet committed. Post-commit buffers are a
memory system optimization that increases write band-
width through write aggregation. Both types of buffers,
however, must ensure that store forwarding occurs; when
later load to the same address (henceforth called matching)
are issued, they receive the value of the store and not a stale
value from the memory system. Both types of store buffers
must also ensure that two stores to the same address (match-
ing stores) are written to memory in program order.

Load Buffers: Load buffers were initially proposed to
temporarily hold loads while older stores were complet-
ing, enabling later non-memory operations to proceed [24].
Later, more aggressive out-of-order processors–such as
IBM’s Power4 [29] and Alpha 21264 [1]–permitted loads to
access the data cache speculatively, even with older stores
waiting to issue. The load queues then became a structure
used for detecting dependence violations, and would initi-
ate a pipeline flush if one of the older stores turned out to
match (have the same address as) the speculative load. We
define a memory operation that has the same address as at
least one other in-flight memory operation of opposite type
in the window as a matching address. Processors such as
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the Alpha 21264 [27] and Power4 also used the load queue
to enforce the memory consistency model, preventing two
matching loads from issuing out of order in case a remote
store was issued between them.

As window sizes increased, the probability that matching
memory operations would be in-flight increased, as did the
chance that they would issue in the incorrect order, result-
ing in frequent pipeline flushes. Memory dependence pre-
dictors [6, 21, 15] were developed to address this problem,
allowing loads that were unlikely to match older stores to is-
sue speculatively, but deferring loads that had often matched
in-flight stores in the past.

2.2. LSQ Organization Strategies
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Figure 1. A simplified LSQ datapath

We show a simplified datapath for an LSQ1 in Fig-
ure 1. The queues are divided into CAM and RAM arrays.
Memory addresses are kept in the CAMs. The RAM array
holds store data, load instruction targets, and other meta-
information for optimizations. A memory instruction upon
execution must perform two operations: search and entry.
To search the LSQ, the operation searches the CAM ar-
ray for matching addresses. Matching operations are emit-
ted to the ordering logic, which determines whether a vi-
olation has occurred, or whether a value needs to be for-
warded. There are two policies for entering instructions into
the LSQ, which are described below.

2.2.1. Age-indexed LSQs The majority of LSQ designs
have been age indexed, in which memory operations are
physically ordered by age. They are entered into a specific
row in the CAM and the RAM structures based on an age
tag that is typically assigned at the decode or map stage
and is associated with every instruction. In addition to de-
termining into which slot a memory operation should be en-
tered, the age tags are used to determine dependence vi-
olations and forwarding of store data as well as flushing
the correct operations when a branch is found to be mis-
predicted. Since age-indexed LSQs act as circular buffers,
they must be logically centralized and also fully associative,
since every memory operation may have to search all other
operations in the LSQ. Although fully associative structures

1 Typically, separate structures are built for the load and store queues
but to simplify the explanation we illustrate a single queue.

are expensive in terms of latency and power, age indexing
permits simpler circuitry for allocating entries, determin-
ing conflicts, committing stores in program order, and quick
partial flushes triggered by mis-speculations.

Related Work: Dynamically scheduled processors, such
as those described by Intel [5], IBM [10], AMD [18] and
Sun [23], use age-indexed LSQs. An LSQ slot is reserved
for each memory instruction at decode time, which it fills
upon issue. To reduce the occurrence of pipeline stalls due
to full LSQs, the queue sizes are designed to hold a signifi-
cant fraction of all in-flight instructions (two-thirds to four-
fifths). For example, to support the 80-entry re-order buffer
in the Alpha 21264, the load and store buffers can hold 32
entries each. Similarly, on the Intel Pentium 4, the maxi-
mum number of in-flight instructions is 128, the load buffer
size is 48, and the store buffer size is 32.

Ponomarev et al. [26] proposed an age-indexed but seg-
mented LSQ, in which a fully associative LSQ is broken
into banks through which requests are pipelined, access-
ing one bank per cycle. This strategy ultimately saves little
power or latency, since all entries must be searched in the
common case of no match, and an operation must wait until
a number of cycles equal to the number of banks has elapsed
to determine that there were no conflicts. This scheme lends
itself to efficient pipelining of LSQ searches for faster clock
rates, but not necessarily higher performance.
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Figure 2. Address-indexed LSQ datapath

2.2.2. Address-indexed LSQs To reduce the state that
must be searched for matches, partitioning of LSQs is de-
sirable. Address-indexed LSQs logically break the central-
ized, fully associative LSQ into a set-associative structure.
As shown in Figure 2, a portion of an memory instruction’s
address chooses the LSQ set, and then only the entries in
that set are searched for a match. While this does reduce the
number of entries that are searched, address-indexed orga-
nizations suffer from two major drawbacks. First, address-
partitioned LSQs can have frequent overflows (since set
conflicts are possible), resulting in more flushes than an age-
indexed LSQ. Second, ordering and partial flushing become
more difficult in an address-indexed LSQ because instruc-
tions to be flushed may exist in different sets. For the same
reason, in-order commit of stores to memory is also more
expensive.

To mitigate the conflict problem, sets can be made larger,
in which case the latency, power, and partitioning advan-
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tages diminish. Alternatively, the sets can be made more
numerous, in which case the LSQ may requiring more area
than a pure centralized design and the average utilization of
the entries will be low. Thus, even though address-indexed
LSQs can support sets residing in separate banks with lo-
calized ordering logic (enabling de-centralized LSQs), they
incur both performance and complexity penalties.

Related Work: A number of proposed or implemented de-
signs have used address-indexed LSQs to facilitate parti-
tioning. The Itanium-1 microarchitecture uses a violation
detection table called an ALAT [17], which is a 32-entry,
2-way set associative structure. Because conflicts can over-
flow a set in an address-partitioned LSQ, more entries can
reduce the probability of conflicts; the ALAT can hold 32
entries, even though a maximum of 20 memory instructions
can be in-flight. The Itanium-2 microarchitecture [20] im-
plements a 32 entry fully associative structure reducing the
probability of conflicts even more.

Both the IA-64 [13] compiler and the Memory Conflict
Buffer paper [12] emphasize static disambiguation analysis
to store only instructions whose addresses either have a true
dependence or cannot be statically disambiguated, thus re-
ducing the size of the hardware ALAT or MCB structures.
An IA-64 study on dependence analysis [31], however, con-
cedes that relying completely on static analysis is ineffec-
tive for programs that cannot tolerate the compile-time anal-
ysis cost (e.g. JITs) or non-native binaries for which source
access is not available, and that static analysis is much less
effective for many pointer-intensive codes. Static analysis
can play a role but cannot address LSQ scaling issues com-
prehensively.

Finally, the MultiScalar processor proposed an address-
indexed disambiguation table called the Address Resolution
Buffer (ARB) [11]. When an ARB entry overflows (an ARB
set has too many memory addresses), the MultiScalar stages
are squashed and the processor rolls back. The MultiScalar
compiler writers focused strongly on minimizing the prob-
ability of conflict in the ARB, trying to reduce the number
of subsequent squashes.

2.3. Conventional LSQ Scalability

All of the previous schemes present one of two undesir-
able choices: (1) high power consumption and latency due
to a large, fully associative, age-indexed scheme, or (2) in-
creased stalls and/or rollbacks due to LSQ overflows with
an address-indexed scheme. In this section, we analyze the
scalability of age-indexed and address-indexed schemes to
large windows, and find that neither approach provides suf-
ficient scalability.

Experimental Infrastructure: We simulate a future large-
window, 16-wide issue out-of-order processor with a 512-
entry reorder buffer, using the sim-alpha simulator [7]. Ta-

ble 1 summarizes the microarchitectural features of the tar-
get machine. To explore a range of in-flight instruction pres-
sures on the LSQs, we simulate two 512-entry window con-
figurations. The first, called low-ILP (LILP), is an Alpha
21264 microarchitecture scaled to the parameters shown in
Table 1. The second, called High-ILP (HILP) is intended
to emulate a more aggressive microarchitecture–assuming
that other emerging bottlenecks are solved–to better stress
the LSQs in our experiments. In particular, the HILP config-
uration assumes perfect (oracle) load-store dependence pre-
diction and branch prediction.

Metrics: We simulated both configurations while vary-
ing the sizes and organizations of both age-indexed and
address-indexed LSQ organizations, to determine the per-
formance degradations caused by queues smaller than the
instruction window. In these experiments, we optimistically
assume that the LSQ structures can be accessed in one cy-
cle, to isolate the performance effects of LSQ structural haz-
ards. In addition to performance, the two other pertinent
metrics we measure are the total number of LSQ entries re-
quired (which translates to area requirement) and the total
number of entries associatively searched upon each LSQ ac-
cess (which translates to LSQ energy consumption).

Age-indexed LSQ scalability: For, age-indexed struc-
tures, we measured the performance for load and store
queues each with 64, 128 and 256 entries. The microarchi-
tecture handles a full queue by throttling the map stage un-
til LSQ entries are committed and available later for map-
ping.

Table 2 shows the performance of the age-indexed
schemes, for the three sizes of LSQs. Almost no benchmark
in either the LILP or HILP configuration had more than 128
loads or stores in flight at any time, thus the performance
benefits of increasing the queue sizes from 128 to 256 en-
tries each is negligible. Halving the queue sizes to 64 entries
each causes a large 20% performance drop for HILP, but a
mere 5% performance drop for LILP. This indicates that if
future architectures are unable to fill their in-flight instruc-
tion windows, then centralized LSQs substantially smaller
than the instruction window size can be used with negligi-
ble performance losses. However, larger performance losses
will result if the processor is able to keep its window rel-
atively full. Performance losses will also result from hav-
ing centralized LSQs, since future distributed microarchi-
tectures will be unable to access a centralized structure effi-
ciently.

Address-indexed LSQ scalability: For the address-
indexed structures, we vary the size from 128 entries to-
tal per load and store queue to 512 entries each. We simu-
lated the queues partitioned into multiple sets, ranging from
4 to 32 partitions. The number of ways in each set ranged
from 8 to 256, which is equivalent to the number of entries
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Parameter Configuration
Buffer Sizes 512-entry int, 512-entry fp issue window,

512-entry reorder buffer, separate load
and store queues, 16-wide issue, 16-wide
commit.

Instruction Supply 32 entry RAS, partitioned IL1 (64KB, 8
r/w ports, 2-cycle hit), 32 entry IL1 TLB,
perfect and 2-level branch prediction, 16
wide fetch, fetches across branches, mul-
tiple branch prediction.

Data Supply Partitioned DL1 (64KB, 8 r/w ports, 3-
cycle hit), 64 MSHRs, 8 targets, 2MB L2,
8-cycle hit, 60-cycle main memory, 32-
entry TLBs, oracle memory dependence
prediction for HILP and store-wait pre-
diction with a 2048-entry table for LILP.

Functional units 512 registers (int and fp), 16 int/fp units,
8 ld/st units, pipelined functional units.

Simulation Single Sim-point regions of 100M for 19
SPECCPU 2000 benchmarks. The other
benchmarks in the suite are incompatible
with our experimental infrastructure.

Table 1. Simulation parameters for an 512-entry
ROB machine

LQ/SQ Size Configuration
(Entries) HILP (IPC) LILP (IPC)

64/64 1.88 0.57
128/128 2.36 0.60
256/256 2.38 0.60

Table 2. Age-indexed LSQ performance for the
LILP and HILP configurations

searched associatively upon each access.
Since age-indexed schemes are fully associative, there is

only the possibility of a capacity overflow, and not a con-
flict. In address-indexed LSQ organizations, it is possible
for all in-flight instructions with unknown addresses to is-
sue and then map to the same set, causing an LSQ partition
overflow even though other partitions might still have unoc-
cupied entries.

We modeled two strategies for handling set overflows.
The first is a preventive stalling policy in which the map
stage stalls when the number of unresolved loads or stores
in flight is sufficient to fill a partition completely. For exam-
ple, if each load queue partition can hold � loads, and the
fullest partition contains � � � loads, then the map stage
must stall as soon as three additional unresolved loads are
put into flight. As loads resolve to other banks, more can
be permitted to pass the map stage. The second policy is a

flushing policy that causes a pipeline flush whenever one of
the partitions (sets) overflows.

LQ/SQ Organization Policy for Structural Hazards
Stalling (IPC) Flushing (IPC)

LQ/SQ Size: 128/128

32 sets, 8 ways 0.45 1.97
16 sets, 16 ways 0.72 1.95
8 sets, 32 ways 1.00 1.91
4 sets, 64 ways 1.31 2.23

LQ/SQ Size: 256/256

32 sets, 16 ways 0.71 1.92
16 sets, 32 ways 1.02 1.90
8 sets, 64 ways 1.34 2.27
4 sets, 128 ways 1.78 2.35

LQ/SQ Size: 512/512

32 sets, 32 ways 1.01 1.88
16 sets, 64 ways 1.34 2.27
8 sets, 128 ways 1.80 2.33
4 sets, 256 ways 2.28 2.35

Table 3. Address-indexed LSQ performance for
the HILP configuration with two structural hazard
policies

Table 3 shows the performance across the address-
indexed LSQ configurations. The stalling policy performs
uniformly worse than the flushing policy across all configu-
rations. The number of unresolved in-flight memory opera-
tions is commonly greater than the number of free spaces in
the fullest partition, and pipeline flushes due to actual over-
flows are far less frequent.

Even though pipeline flushing upon overflow works bet-
ter, 20% drops are common for all but the largest queues
or those with the highest number of compares per access
(on the order of 64), giving them the same problem faced
by the age-indexed approaches. As can be seen from the ta-
bles, the two organizations have different tradeoffs; from the
power point of view, lower associative address entry LSQs
are advantageous but have lower performance. Address en-
try LSQs with performance comparable to age entry LSQs
are twice the size and hence require more area.

2.4. LSQ Optimization Opportunities

Current-generation LSQs check all memory references
for forwarding or ordering violations, since they are unable
to diffentiate memory operations that are likely to require
special handling from others that do not. Only a fraction of
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Figure 3. Percentage of matching memory in-
structions

memory operations match others in the LSQs, however, so
treating all memory operations as worst case is unnecessar-
ily pessimistic.

Figures 3(a) and 3(b) show the fraction of matching in-
flight memory references for varying window sizes with
the LILP and HILP configurations respectively. The frac-
tion of matching addresses is extremely small for a window
comparable to current processors. With an Alpha 21264-
like window of 80 instructions with a realistic front end,
fewer than 1% of memory instructions match. For the LILP
configuration, a 512-instruction window sees 3% matching
memory instructions. This rate remains essentially flat un-
til the 4096-instruction window, at which point the match-
ing instructions spike to nearly 8%. The HILP configura-
tion, which has a much higher effective utilization of the is-
sue window, has matching instructions exceeding 22% for a
512-entry window, which slowly grow to roughly 26% for
an 8192-entry window.

Two results are notable in Figure 3(b). First, while the
matching rates are close to two orders of magnitude greater

than current architectures, three-quarters of the addresses in
these enormous windows are not matching, indicating the
potential for a four-fold reduction in the LSQ size. Second,
the growth in matching instructions from 1K to 8K instruc-
tion windows is small, hinting that there may be room for
further instruction window growth before the matching rate
increases appreciably. Of course if the window is infinite,
the matching rate will approach 100%.

Many of these matching instructions, however, are arti-
facts of the compilation and may be good candidates for re-
moval. A significant fraction (approximately 50%) of the
matching instructions are stack and global references. It is
likely that more intelligent stack allocation and improved
register allocation to remove spills and fills can eliminate
many of the matching stack references.

3. Search Filtering

This section describes techniques to avoid searches for
memory instructions that do not match, then reduce the
LSQ power consumption and latency for instructions that
do match. The first technique uses a Bloom filter predic-
tor (BFP) to eliminate unnecessary LSQ searches for oper-
ations that do not match other operations in the LSQ. We
then apply BFPs to separate LSQ partitions, reducing the
number of partitions that must be searched when the BFP
predicts that an LSQ search is necessary. Finally, we dis-
cuss other applications of BFPs to future partitioned pri-
mary memory systems.

3.1. BFP Design for Filtering LSQ Searches

address
Memory

LSQ search 
decision

M
at

ch
?

LSQ

predictor Hash 
Load & Store

ST

LD

function tables

Figure 4. BFP Search Filtering: Only memory in-
structions predicted to match must search the
LSQ; all others are filtered.

The Bloom Filter Predictor (BFP) used for filtering
LSQ searches maintains an approximate and heavily en-
coded hardware record–as proposed by Bloom [3]–of the
addresses of all in-flight memory instructions (Figure 4).
Instead of storing complete addresses and employing as-
sociative searches like an LSQ, a BFP hashes each ad-
dress to some location. In one possible implementation,
each hash bucket is a single bit, which an memory in-
struction sets when it is loaded into the BFP and clears
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when it is removed. Every in-flight memory address that
has been loaded into the LSQ is encoded into the BFP. If a
new hashed address finds a zero, it means that the address
matches no other instruction in the LSQ, so the LSQ does
not need to be searched. The instruction sets the bit to 1 and
writes it back. If a 1 is found by an address hashing into the
BFP, it means either that the instruction matches another in
the LSQ or a hash collision (a false positive) has occurred.
In either case, the LSQ must be searched. The BFP is fast
because it is simply a RAM array with a small amount of
state for each hash bucket. Bloom filters were used by Pier
et al. [25] used for for early detection of cache misses.

The BFP evaluated in this section uses two Bloom fil-
ters: one for load addresses and other for store addresses,
each of which has its own hash function and � locations.
An issuing memory instruction computes its hash and then
accesses the predictor of the opposite type (e.g. loads ac-
cess the store table and vice versa). To detect multiproces-
sor read ordering violations, another Bloom filter with inval-
idation addresses is also checked by loads. Since our evalu-
ation infrastructure is uniprocessor based the details of the
invalidation Bloom filter are omitted.

3.1.1. Deallocating BFP Entries A bit set by a particular
instruction should be unset when the instruction retires, lest
the BFP gradually fill up and become useless. But if mul-
tiple addresses collide, unsetting the bits when one of the
instructions retires will lead to incorrect execution, since
a subsequent instruction to the same address might avoid
searching the LSQ even though a match was already in
flight. There are several solutions to this problem.

Counters: One solution uses up/down counters in each
hash location instead of single bits. The counters track the
number of instructions hashing into a particular location.
Upon instruction execution the counter at the indexed lo-
cation is incremented by one and upon commit the counter
is decremented by one. The counters can either be made
sufficiently large so as not to overflow, or they can take
some other corrective action using one of the techniques de-
scribed below when they overflow. The use of counter based
Bloom filters was previously proposed by Fan et al. [9].

Flash clear: An alternative approach to using up/down
counters, is to clear all of the bits in the predictor on branch
mispredictions. A pipeline flush guarantees that no mem-
ory instructions are in flight and hence it is safe to reset all
the bits. The flash clearing method has the advantage of re-
quiring less area and complexity than the counters, but has
the disadvantage of increasing the false positive rate.

Hybrid solution: A third approach that mixes the previous
two involves freezing a counter when it overflows, so that
all addresses that hash to that set perform LSQ searches,
and then initiating a pipeline flush (or waiting for a mispre-
diction) when the number of frozen hash buckets in the BFP

grows too large. Our results have shown that 3-bit coun-
ters are sufficient for most table locations, for both load and
store BFPs. The maximum number of collisions, across any
benchmark with a 512-entry window, was 41. 6-bit coun-
ters should therefore be able to avoid overflows, but smaller
2- or 3-bit counters would likely be more efficient with this
hybrid scheme.

3.1.2. Hash Functions To maximize the benefits of
search filtering, the number of false positives must be min-
imized. The number of false positives depends on the qual-
ity of the hash function, the method used for unsetting the
bits, and the size of the BFP tables. The BFP table must
be sized larger than the number of in-flight memory opera-
tions, since the probability of a false positive is proportional
to the fraction of set bits in the table.

There are two aspects that determine the efficacy of a
hash function: (1) the delay through the hash function and
(2) the probability of a collision in the hash table. Since the
hash function is serialized with the BFP and then the LSQ
search (if it is needed), we explored only two hash functions
that were fast to compute, with zero or one level of logic, re-
spectively. The first hash function,��, uses lower order bits
of the address to index into the hash table, incurring zero de-
lay for hash function computation. The second hash func-
tion, ��, uses profiled heuristics to generate an index us-
ing the bits in the physical address that were most random
on a per-benchmark basis. �� incurs a delay of one gate
level of logic (a 2-input XOR gate). To determine �� for
each benchmark, we populated a matrix by XORing each
pair of bits of the address and adding the result to the ap-
propriate position in the matrix. We then chose the bits that
generated the most even number of zeros and ones, assum-
ing that they were the most random.

3.1.3. BFP Results Table 4 presents a sensitivity analysis
of the BFP false positives for a range of parameters, includ-
ing varied predictor sizes ranging from one to four times the
size of each load and store queue, the two hash functions��

and ��, flash and counter clearing, and the three microar-
chitectural configurations used: the Alpha 21264, LILP, and
HILP. The flash clearing results are not applicable to HILP
because they rely on branch mispredictions, and HILP as-
sumes a perfect predictor. As a lower bound, we include the
expected number of false positives that would result, given
the number of memory instructions in flight for each bench-
mark, assuming uniform hash functions2. The rate of false
positives is averaged across the 19 benchmarks we used
from the SPECCPU2000 suite.

2 Using probabilistic analysis the number of load (store) false posi-
tives assuming a uniform hash function can be estimated as:

�
�
�� �

��� ��� �

�
���, where �� is the number of store (load) searches oc-

curring when there are � unique address in-flight loads(stores) and �

is the load (store) BFP size.
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Configuration Alpha 21264 LILP HILP
BFP Size 32 64 128 128 256 512 128 256 512

Hash Type Clearing Method
�� Counter 5.7 2.6 1.6 8.4 2.8 2.0 15.0 8.8 4.3
�� Counter 3.9 2.3 1.4 5.7 3.3 2.0 10.1 6.1 4.2
�� Flash 59.9 53.3 49.2 30.2 28.6 25.9 n/a
�� Flash 54.0 49.7 42.2 27.2 23.9 20.4 n/a
Expected False Positives 2.8 1.6 1.0 5.7 3.2 1.7 9.6 5.3 2.8

Table 4. Percentage of False Positives for Various ILP Configurations and BFP Sizes

As expected, the table shows that the number of false
positives decreases as the size of the BFP tables increase
simply because of the reduced probability of conflicts. Flash
clearing increases the number of false positives significantly
over count clearing. However, the count clearing works
quite effectively, especially using the �� hash function,
showing less than a 2% false positive increase over the prob-
abilistic lower bound. This result indicates that moderately
sized BFPs are able to differentiate between the majority of
matching addresses and those that have no match in flight.
Furthermore, the lookup delay of all table sizes presented
herein is less than one 8FO4 clock cycle at a 90nm tech-
nology. The power required to access the predictor tables
is negligible compared to the associative lookup as the pre-
dictor tables are comparatively small, direct mapped RAM
structures.

3.2. Partitioned BFP Search Filtering
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Figure 5. Partitioned Search Filtering: Each LSQ
bank has a BFP associated with it (see far left)

The previous section described the use of BFPs to pre-
vent most non-matching addresses from expensive LSQ
searches. In this section, we describe a BFP organization
that extends the prior scheme to reduce the cost of matching

address searches appreciably. A distributed BFP (or DBFP),
shown in Figure 5, is coupled with a physically partitioned
but logically centralized (in terms of ordering logic) LSQ.
One DBFP bank is coupled with each LSQ bank, and each
DBFP bank contains only the hashed state of those mem-
ory operations in its LSQ bank. Depending on the imple-
mentation of the LSQs and the partitioning strategy, some
extra logic may be required to achieve correct memory op-
eration ordering across the partitions.

Memory instructions are stored in the LSQ just as in pre-
vious sections, but an operation is hashed into the BFP bank
associated with the physical LSQ bank into which it is en-
tered instead of a larger centralized BFP as in the previ-
ous section. Before being hashed into the BFP bank, how-
ever, the address’ hash is computed and used to lookup in
all DBFP banks, which are accessed in parallel. Any bank
that incurs a BFP “hit” (the counter is non-zero) indicates
that its LSQ bank must be associatively searched. All banks
finding address matches raise their match lines and the cor-
rect ordering of the operation is then computed by the or-
dering logic.

Depending on the LSQ implementation, the banking of
the LSQ may have latency advantages over a more physi-
cally centralized structure. However, the power savings will
be significant in a large-window machine if only a subset of
the banks must be searched consistently. Figure 6 presents a
cumulative distribution function of the number of banks that
are searched on each BFP hit for both the HILP and LILP
configurations, varying the number of LSQ banks from 4
to 16. The cumulative DBFP size was held at 512 entries
for the different banking schemes. The results show that a
DBFP can reduce the number of entries searched on a BFP
hit appreciably; For the LILP configuration, 60% to 80% of
the accesses result in the searching of only one bank. For the
HILP configuration, 80% of the searches use four or fewer
banks.

3.3. LSQ/BFP Organizations for Partitioned
Cache Architectures

In high-ILP wider issue machines, as the number of
simultaneously executing memory instructions increases,
both the LSQs and the BFPs will need to be highly mul-
tiported. This section discusses organizations that still use a
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Figure 6. Partitioned State Filtering for Banked LSQs and BFPs

logically centralized, age-indexed LSQ, but exploits BFPs
to facilitate a disambiguation hardware organization that
matches the bandwidth of the primary memory system.

The port requirements on the BFPs can be trivially re-
duced by banking them, using part of the memory address
as an index, to select one of the BFP banks, that will hold
only memory instructions mapped to its bank. Banking the
BFPs lends itself naturally to a partitioned primary memory
system where the L1 data caches (L1D) are also address in-
terleaved, as shown in Figure 7a. In this organization, a por-
tion of the DBFP guarding each physical LSQ bank is as-
sociated with each L1D bank. Upon an access to the L1D
cache, its DBFP banks generate a bitmask which indicates
the LSQ banks that need to be searched. If the memory op-
eration hits in none of the DBFP banks (the common case),
then the LSQ search can be avoided.

1: Logic to determine cache
    bank to access

2: LSQ port arbitration logic

1

2
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Unit
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L1D

L1D

1
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Figure 7. Replication of BFPs and LSQs to match
L1D bandwidth

Even with distributed replicated BFPs, each memory in-
struction must still be sent and allocated in the LSQ. As

long as simultaneously executing memory instructions must
are targeted into different banks of the LSQ, no contention
occurs. However, if the LSQ is to support parallel multi-
banked accesses, extra circuitry must deal with buffering
and collisions, increasing complexity. One simple solution
to the problem is to replicate the banked LSQs as well. As
with the DBFPs each replicated LSQ can be coupled with
the statically address interleaved DL1 banks (Figure 7b),
thus permitting all operations to complete locally at each
partition. This scheme will also facilitate high bandwidth,
low latency commit of stores to the L1D (assuming weak
ordering is provided). Thus, replicated LSQs provide a
complexity-effective solution but increase the area require-
ments significantly. In the next section we turn to schemes
to reduce LSQ area, with the long-term goal being to reduce
area sufficiently that completely replicated or distributed so-
lutions become feasible.

4. Load State Filtering

Increasing instruction window sizes lead to a corre-
sponding increase in the number of in-flight memory in-
structions, making it progressively less power- and area-
efficient to enforce sequential memory semantics. A fu-
ture processor with an 8K instruction window would need
to hold, on average, between two and three thousand in-
flight memory operations. Any two in-flight memory in-
structions to the same address (matching instructions) must
be buffered for detection of ordering violations and for-
warding of store values. However, as previously shown in
Figure 3, a small fraction of the addresses in flight are typ-
ically matching. An ideal LSQ organization would buffer
only in-flight matching instructions, permitting reductions
in the LSQ area, latency, and power. Buffering fewer opera-
tions in the LSQ facilitates efficient implementation of par-
titioned, address-indexed schemes that are a better match
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for future communication-dominated technologies.
In-flight store addresses and values must be buffered re-

gardless of their interleaving with loads, since their val-
ues must only be written back to the memory system upon
commit. The schemes presented in this section therefore at-
tempt to reduce only the number of loads contained in the
LSQs, by attempting to buffer only matching loads. Future
work may use techniques such as the Speculative Version-
ing Cache (SVC) [14] to reduce the LSQs further by buffer-
ing only stores that are matching, placing non-matching
stores in an SVC-like structure.

Figure 8 shows one possible scheme to reduce the loads
that must be saved in the LSQ. An address match predictor
(AMP) predicts whether a load is likely to match a store. If
a load is predicted not to match, it is hashed into a struc-
ture called an exclusive Bloom filter (EBF), which contains
an approximate hardware hash of all in-flight loads not con-
tained in the load queue. If the load is predicted to match, it
is placed into the load queue, which may be guarded by an
inclusive Bloom filter for efficient accessing, as described
in the previous section. Issued stores check the load queues
as usual, but they also search the EBF. A store hashing to a
set bit in the EBF indicates either a false positive hit, or a
possible memory ordering violation due to incorrect hash-
ing into the EBF by the AMP. Since the two cannot be dif-
ferentiated, the processor must take corrective action, pos-
sibly culminating in a pipeline flush.

In this paper, we report only one simple, preliminary de-
sign, in which the load queue is completely eliminated and
all loads are hashed into the EBF. If a load is issued be-
fore an older program-order store to the same address, ev-

ery instruction past the store must be flushed when the store
finds the hashed load in the EBF. This scheme thus guar-
antees correct execution without requiring any memory dis-
ambiguation hardware, but is likely to incur severe perfor-
mance penalties due to flushes caused by dependence vio-
lations, which will grow as the window size is increased.
That claim is buttressed by the results in Table 5, which
show that for the Alpha-like configuration, the performance
loss is a mere 3%, but for the HILP configuration, the av-
erage performance penalty is 34%. That large performance
loss is due to flushes caused by three factors: false posi-
tives (EBF hash collisions of non-matching addresses), true
dependence violations, and a matching load followed by a
store issued in both program and temporal order (i.e. a flush
caused on a artificial WAR hazard). Since the EBF occupies
two-thirds the area of the original load queue, this particu-
lar solution saves too little area at too great a performance
loss to be a viable solution for future high-ILP processors.

Two ideas that we are currently exploring eliminate
the artificial WAR hazard-induced flushes and the false
positive-induced flushes, respectively. The first idea stores
an instruction number in an EBF-parallel structure, permit-
ting a store that hits in the EBF to determine that the load
hashed there was actually older in program order, thus re-
quiring no corrective action. Identifying the exact conflict-
ing load will also help reduce the cost of flushes by flush-
ing only instructions after the conflicting load (including
the load itself), instead of all instructions after the match-
ing store, on a true dependence violation. The second idea
involves placing a checker at the commit stage, to find a
younger load that obtained an incorrect value which should
have come from an older store. When that store hits in the
EBF, it marks the checker to check all load instructions
from the current newest instruction (“Y”) in the ROB to
the instruction immediately following the store (“X”). This
check can be done in parallel for high performance, or in-
crementally as instructions are committed. When instruc-
tion Y commits, if no matching load has been found, the
hit in the EBF was a false positive, and no corrective action
need be taken. This scheme may require multiple store val-
ues in the checker to be scanning the ROB at once, and re-
quiring a centralized ROB, and so may not be a good match
for future, more distributed architectures.

5. Conclusions

Conventional approaches for scaling memory disam-
biguation hardware for future processors are problematic.
Fully associative load/store queues that can handle all in-
flight memory operations will be too slow and consume a
large amount of power as reorder buffers grow. On the other
hand, our analysis shows that smaller structures, that flush
or stall when they fill, will incur significant performance
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Benchmarks Performance drop(%)
Alpha HILP

164.gzip 0.0 35.5
171.swim 0.0 16.7
172.mgrid 0.0 46.2
173.applu 0.0 66.7
175.vpr 11.1 23.1
176.gcc 0.0 11.8
177.mesa 8.3 65.8
178.galgel 0.0 0.0
179.art 0.0 25.0
181.mcf 0.0 0.0
183.equake 0.0 30.5
188.ammp 0.0 25.0
189.lucas 0.0 25.0
197.parser 8.3 20.0
252.eon 25.0 58.1
253.perlbm 12.5 47.6
254.gap 0.0 73.1
256.bzip2 0.0 46.1
Average 3.3 34.2

Table 5. Percentage drop in performance for Al-
pha and HILP configuration with complete LDQ
elimination

penalties. For example, in a 512-entry window machine, re-
ducing the load and store queues (LSQs) from 128 to 64 en-
tries each results in a 21% performance loss.

Solving this challenge by moving from fully associative
to set associative, address-indexed LSQ partitions results in
a different set of problems. Structural hazards occur more
frequently unless each of the partitions themselves become
in-feasibly large. To reduce performance losses below 10%,
each of the partitions required 64 entries, resulting in a to-
tal LSQ size of twice the capacity of all in-flight instruc-
tions. For smaller set sizes, our results show that flushing
the pipeline on an actual overflow is better than stalling in-
struction fetch on a potential overflow. With this scheme,
8-way partitions show a best-case performance loss of 19%
due to flushing.

In this paper, we proposed a range of schemes that use
approximate hardware hashing with Bloom filters to im-
prove LSQ scalability. These schemes fall into two broad
categories: search filtering, reducing the number of expen-
sive associative LSQ searches, and state filtering, in which
some memory instructions are allocated into the LSQs and
others are encoded in the Bloom filters.

The search filtering results show that by placing a 4-
KB Bloom filter in front of an age-indexed, centralized
queue, 73% of all memory references can be prevented
from searching the LSQ, including the 95% of all references
that do not actually have a match in the LSQ. By banking
the age-indexed structure and shielding each bank with its

own Bloom filter, a small subset of banks are searched on
each memory access; for a 512-entry LSQ, only 20 entries
needed to be searched on average. We also proposed plac-
ing Bloom filters near partitioned cache banks, preventing
a slow, centralized LSQ lookup in the common case of no
conflict.

For state filtering, we coupled an address match predictor
with a Bloom filter to place only predicted dependent oper-
ations into the LSQs, encoding everything else in a Bloom
filter and intiating recovery when a memory operation finds
its hashed bit set in the Bloom filter. These schemes were in-
effective due to both false positives in the Bloom filter and
dependence mispredictions, resulting in performance drops
too large to justify a 37% reduction in LSQ area.

Future Directions: As instruction windows grow to thou-
sands of instructions, hardware memory disambiguation
faces severe challenges. First, the number of operations in
flight with the same address will grow. Second, communi-
cation delays will force increased architectural partitioning,
rendering a centralized LSQ impractical. It is possible that
the search filtering methods that can be effective upto 8K in-
struction windows may not be effective for larger window
sizes.

We foresee several promising directions. First, by im-
proving both dependence (“address match”) predictors and
Bloom filter hash functions, effective state filtering may
make distributed, small LSQ partitions coupled with cache
partitions feasible. Second, by encoding temporal infor-
mation into Bloom filters rollback on artificial WAR haz-
ards can be avoided. Third, software can help by parti-
tioning references into classes preventing false conflicts as
well, reducing in-flight address matches by renaming stack
frames, and perhaps even explicitly marking communicat-
ing store/load pairs.

Approximate hardware hashing with Bloom filters pro-
vides an exciting new space of solutions for scalable LSQs.
These structures may also find use in other high-power parts
of the microarchitecture, such as highly associative TLBs,
issue windows, downstream store queues, or other struc-
tures not yet invented.
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