
This research was sponsored in part by Semiconductor Research
Corporation, Intel, and IBM.

VSV: L2-Miss-Driven Variable Supply-Voltage Scaling for Low Power

Hai Li, Chen-Yong Cher, T. N. Vijaykumar, and Kaushik Roy
1285 EE Building, ECE Department, Purdue University

<hl, chenyong, vijay, kaushik>@ecn.purdue.edu

Abstract
Energy-efficient processor design is becoming more

and more important with technology scaling and with high
performance requirements. Supply-voltage scaling is an
efficient way to reduce energy by lowering the operating
voltage and the clock frequency of processor
simultaneously. We propose a variable supply-voltage
scaling (VSV) technique based on the following key
observation: upon an L2 miss, the pipeline performs some
independent computations but almost always ends up
stalling and waiting for data, despite out-of-order issue
and other latency-hiding techniques. Therefore, during an
L2 miss we scale down the supply voltage of certain
sections of the processor in order to reduce power
dissipation while it carries on the independent
computations at a lower speed. However, operating at a
lower speed may degrade performance, if there are
sufficient independent computations to overlap with the L2
miss. Similarly, returning to high speed may degrade
power savings, if there are multiple outstanding misses
and insufficient independent computations to overlap with
them. To avoid these problems, we introduce two state
machines that track parallelism on-the-fly, and we scale
the supply voltage depending on the level of parallelism.
We also consider circuit-level complexity concerns which
limit VSV to two supply voltages, stability and signal-
propagation speed issues which limit how fast VSV may
transition between the voltages, and energy overhead
factors which disallow supply-voltage scaling of large
RAM structures such as caches and register file. Our
simulations show that VSV achieves an average of 20.7%
total processor power reduction with 2.0% performance
degradation in an 8-way, out-of-order-issue processor that
implements deterministic clock gating and software
prefetching, for those SPEC2K benchmarks that have high
L2 miss rates. Averaging across all the benchmarks, VSV
reduces total processor power by 7.0% with 0.9%
performance degradation.
1. Introduction

Power dissipation is becoming a limiting factor in
high-performance processor design as technology scales
and device integration level increases. Supply-voltage
scaling is emerging as an effective technique for reducing
both dynamic power and leakage power. Dynamic power
is proportional to 2

DDload VCf ⋅⋅ , where f is the system clock

frequency, Cload is the effective load capacitance, and VDD
is the supply voltage. Scaling the supply voltage requires a
commensurate reduction in clock frequency because signal
propagation delays increase when the supply voltage is
scaled down. The maximum clock frequency at which a
transistor can operate is proportional to

DD

TDD

V
VV α)(− , where

VT is the transistor threshold voltage, and α is strongly
dependant on the mobility degradation of electrons in
transistors (with typical value between 1 and 2). Therefore,
supply-voltage scaling can reduce dynamic power in the
order of VDD

2 and VDD
3. Although supply-voltage scaling

also reduces leakage power in the order of VDD
3

 and VDD
4

[17], we will focus only on dynamic power in this paper.
We consider a specific flavor of supply-voltage

scaling, called variable supply-voltage scaling (VSV),
where we vary the supply voltage while a program
executes. To ensure VSV’s effectiveness, we consider
several circuit-level overhead issues: First, we choose two
convenient, discrete supply voltages after considering the
trade-offs between power saving and design complexity.
Second, even with two supply voltages, transitioning from
one to the other takes time. Because of circuit stability
issues discussed in Section 3.2, this transition cannot be
done fast and needs to be of the order of at least a few
clock cycles (e.g., 12 cycles for 0.18µm technology and
1GHz clock).

Because lowering the VDD requires reducing the clock
frequency, we consider microarchitectural issues to ensure
that VSV achieves power reduction without inordinate
performance degradation. A fundamental observation is
that if the clock speed is reduced whenever the processor
is executing non-critical code, then it is conceivable that
performance will not be degraded. Fortunately, it is simple
to use cache misses as triggers to flag non-critical
processing: Upon a cache miss, the processor executes
only the few instructions that are independent of the miss
and often ends up stalling, despite out-of-order issue and
other latency-hiding techniques. Therefore, we propose to
lower the VDD on cache misses. Those few independent
instructions are executed slower at the lower VDD, but no
significant performance loss would ensue as long as the
instructions are completed before the miss returns.
Because VDD-transition times are usually of the same order
as L2-hit latencies (e.g., 12 cycles for the Alpha 21264),
VDD should not be lowered for L1 misses that are L2 hits.
Consequently, we propose to lower the VDD only on L2

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

misses, which are long enough (e.g., 100 cycles) to
amortize the transition time overhead. Thus, we scale
down the VDD of certain processor sections to achieve
power reduction, but allow the processor to continue
processing the instructions that are independent of the L2
misses, albeit at a reduced speed.

Depending upon the program’s degree of instruction-
level parallelism (ILP), the processor may find many
independent instructions to overlap with L2 misses. If the
VDD is lowered in such cases, significant performance loss
would ensue. To avoid the loss, VSV employs a novel
mechanism using state machines that estimate the degree
of ILP by monitoring the instruction-issue rate. If soon
after an L2 miss the issue rate is high (defined by some
thresholds), VSV does not scale down the VDD. When one
of many outstanding L2 misses returns and results in a
high issue rate in low VDD, indicating that there are
instructions independent of the outstanding misses, VSV
switches back to high VDD.

In CMOS, varying the VDD changes the amount of
charge held in the internal nodes of circuits – both
combinational logic and RAM structures. Because RAM
structures contain numerous (of the order of tens or
hundreds of thousands) cells, the energy overhead of
changing the charge held in each of the cells needs to be
amortized by the energy savings achieved by accessing the
structures in low VDD. Because the number of cells
accessed is a small fraction of the total number of cells in a
structure, many low-VDD

 accesses are needed to make up
for the energy overhead of one VDD

 transition.
Unfortunately, accesses to these structures within a typical
L2 miss latency are too few to achieve this amortization,
as we show in Section 3.6. In combinational logic,
however, this amortization is achieved because the number
of nodes activated in one low-VDD operation is of the same
magnitude as the number of nodes whose charge is
changed in one VDD transition. Therefore, we scale the VDD
of the pipeline and not of the register file and the caches.
We use voltage level converters to handle the cases where
the pipeline uses low VDD and the RAM structures use high
VDD.

While [18] explores supply-voltage scaling, the paper
states that it makes simplistic assumptions of varying the
VDD without any power or performance overhead. In
contrast, VSV makes the following contributions:
• At the circuit level, VSV takes into consideration the

design simplicity of two levels of VDD, the VDD-
transition time overhead, and the energy overhead of
scaling RAM structures’ supply voltages.

• At the architecture level, VSV uses L2 misses and the
novel instruction-issue-rate monitoring mechanism as
triggers for VDD transitions.

We use Wattch [7] and the SPEC2K suite [8] to
simulate an 8-way, out-of-order-issue superscalar for our
experiments. Our main results are:
• Most modern processors use clock gating and software

prefetching. If the pipeline ends up stalling upon an L2

miss, the power of the unused circuits would be reduced
already by clock gating, reducing VSV’s opportunity.
However, VSV has at least two advantages over clock
gating: (1) clock gating cannot reduce power of used
circuits while VSV can, and (2) clock gating cannot
gate all unused circuits if the clock gate signal’s timing
is too tight [10]. Prefetching reduces cache misses,
directly limiting VSV’s opportunity. However,
prefetching does not completely eliminate L2 misses,
and processors do stall even when aggressive
prefetching is used. Consequently, VSV retains enough
opportunity.

• In a processor that uses clock gating [10] and software
prefetching, our simulations show 20.7% average
improvement in total processor power consumption
with 2.0% performance degradation for the benchmarks
with high L2 miss rates (> 4 misses per 1,000
instructions). The average processor power reduction is
7% over all the SPEC2K benchmarks.

• To stress-test VSV, we consider the recently-proposed
Time-Keeping prefetching [9]. We observe that VSV
achieves 12.1% average power saving and 2.1%
performance degradation for benchmarks with high L2
miss rates, even after employing Time-Keeping on top
of clock gating and software prefetching.

The remaining sections are organized as follows.
Section 2 presents the related work on voltage scaling.
Section 3 discusses the circuit-level issues of VSV.
Section 4 describes the implementation details at the
architectural level. Section 5 explains the experimental
methodology. Section 6 presents the results and shows the
impacts of prefetching. Section 7 concludes the paper.
2. Related Work

Many researchers have addressed OS-level or
compiler-level supply-voltage scaling techniques. Burd et.
al. [1] demonstrate a complete embedded system, called
the lpARM processor, which includes an ARM8 core with
16KB cache. Pouwelse et. al. [2] build a system with
Strong ARM processor whose speed can be varied along
with its input voltage. Hsu et. al. [3] propose a compiler-
directed performance model to determine an efficient CPU
slow-down factor for memory-bound loop computations.
These techniques have at least two common characteristics:
(1) these techniques operate at process-level granularity;
and (2) to change the clock speed automatically with VDD,
these techniques vary VDD to the PLL (Phase Locked
Loop), whose settling time is on the order of 10~100µs [20,
21]. Because the above characteristics result in large time
granularity, these techniques are usually implemented for
embedded processors that have lower requirements for
performance. VSV, on the other hand, targets high-
performance processors.

Recently, Magklis et. al. [19] propose a compiler-
based voltage- and frequency-scaling technique, which
targets multiple clock-domain processors. For each clock
domain of the processor, the VDD and the clock speed can

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

be changed separately. To determine the minimum VDD
and clock speed, the compiler inserts the reconfiguration
instructions into applications by using profile-driven
binary rewriting. In contrast, VSV is transparent to the
software and does not need profiling. Xie et. al. [16]
explores the opportunities and limits of compile-time
dynamic voltage scaling by deriving an analytical model.
3. Circuit-level issues

In this section, we discuss the circuit-level issues
related to varying VDD.
3.1. Choice of supply voltages

Ishibara et. al. [4] show that the two-supply voltages
is the most power-effective choice for variable supply-
voltage designs. Therefore, we use the two-supply voltages.
We refer to the two voltages as VDD

H and VDD
L.

We set VDD
H to 1.8V, which is the normal supply

voltage for the TSMC 0.18µm technology. VDD
L should be

chosen such that the corresponding clock speed is half of
that at VDD

H. This choice allows us to use a simple counter
as a frequency divider, as opposed to varying the clock’s
PLL to divide the frequency by a factor that is not an
integer. As mentioned before, changing the PLL is
unacceptably slow [20, 21] for our context.

HSPICE simulation in TSMC 0.18µm technology
shows that when VDD is equal to 1.1V, the maximum clock
speed is reduced to half of the clock speed corresponding
to VDD

H. To be conservative, we set VDD
L to be 1.2V.

3.2. Rate of change of supply voltages
Burd et. al. [11] demonstrate that static CMOS is

well-suited for continued operation during voltage
transitions, and that dynamic logic styles can also be used
as long as two conditions are satisfied: (a) VDD ramps
down by less than a diode drop VBE during an evaluation
phase of dynamic logic (eq.1); and (b) VDD ramps up by
less than VTP (the threshold voltage of PMOS transistors)
during the evaluation phase of dynamic logic (eq.2).

2/clk

BEDD V
dt

dV
τ
−

≥ (eq.1)

2/clk

TpDD V
dt

dV
τ

≤ (eq.2)

For the TSMC 0.18µm technology and a 1GHz clock,
the dVDD/dt limit is about 0.2V/ns. We use a more
conservative dVDD/dt rate of 0.05V/ns, for our experiments.
Hence, switching between VDD

H=1.8V and VDD
L=1.2V

costs 12 clock cycles.
3.3. Power-supply network

There are two options for the power-supply network:
(1) using a single network and supply different VDD’s at
different times, or (2) using two different networks.

Present-day embedded systems that implement
supply-voltage scaling use the first option. The supply
voltage is continuously adjusted using a dynamic DC-DC
converter. Unfortunately, the DC-DC converter requires a
long time for voltage ramping [1, 14]. Since VSV targets
high-performance processors running at GHz clock speeds,

the first option is not suitable for our purpose. Therefore,
we choose the second option and use a dual-power-supply
network to achieve fast VDD switching. This structure
includes two interwoven power-supply networks: one is
used for VDD

H, and the other for VDD
L. Between each pair

of connection points in a circuit module, a pair of PMOS
transistors with complementary control signals is inserted
to control voltage switching. Therefore, only one power-
supply network is selected at one time for a particular
module.

The additional supply lines in our dual-power-supply
network introduce overhead in terms of energy and area.
In Section 5.2, we calculate the energy overhead and show
that it is minimal. Previous work [15] shows that dual-VDD
design using dual-supply lines causes about 5% area
overhead.
3.4. Varying the clock speed

VSV raises three issues for the clock: (1) clock
distribution, in the presence of varying clock speed; (2)
clock power in the presence of varying VDD; and (3)
synchronization with off-chip circuitry. We consider each
of these issues in turn.

First, as technology scales down, it is difficult to send
a signal across the chip in a single cycle. Based on
Matzke’s estimation [12], the whole die is reachable
within 2 clock cycles for 0.18µm technology. Therefore,
we assume 4ns are needed for clock distribution – 2ns
used to transmit the control signal to the root of clock tree,
and 2ns for the clock to propagate through the clock tree.

Before a VDD
H to VDD

L transition, the clock speed is
reduced first, even though the processor continues
operating at VDD

H for 4 more nanoseconds to distribute the
slower clock. When ramping up from VDD

L to VDD
H, the

sequence is reversed: the VDD is ramped up first and then
the faster clock is distributed. If this ordering is reversed,
the processor will operate at full clock-speed but lower
VDD, causing functionality faults. In either case of ramp-up
or ramp-down, the processor works at half clock-speed
while the VDD is changing. To slightly optimize
performance, we overlap the distribution of the full-speed
clock itself with the last 2ns of VDD ramp-up.

Second, to avoid the PLL’s slow settling time, we
keep the PLL operating at VDD

H to generate full-speed
clock, which is sent to the root of the clock tree. When the
processor switches to VDD

L, we use the counter described
in Section 3.1 to reduce the clock speed. To enable
clock-power savings, the VDD of the clock tree itself varies
with the rest of the processor, although the PLL operates at
VDD

H. Lowering the VDD of the clock tree does not hurt
performance because at lower VDD the clock speed itself is
lower, leading to more slack in the clock period to
accommodate the slower tree.

Finally, because the chip and the external devices
already use different clocks and are naturally
asynchronous, synchronizers exist at the interface even in
a normal processor. Therefore, VSV will not introduce
extra synchronization circuitry at the interface.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

3.5. Varying the VDD of RAM structures
Although supply-voltage scaling is effective for power

reduction, we cannot implement it in all the sections of the
processor. Ramping VDD up and down involves charging
and discharging of internal capacitances, respectively,
which in turn introduces energy overhead. Supply-voltage
scaling is feasible for a circuit block only when this energy
overhead can be amortized by the power reduction
achieved during VDD

L operation.
For a RAM structure, during an access, only a small

fraction of the cells are accessed, and only this fraction
saves power when operating at VDD

L. However, in a VDD
transition, all the cells either charge or discharge.
Therefore, a large number of accesses at VDD

L are needed
to amortize the transition energy overhead.

The situation for combinational logic is different.
Because the entire logic circuit is activated for each
operation, the entire circuit (as opposed to the RAM’s
small fraction) achieves power saving while operating at
VDD

L. Consequently, even though a VDD transition charges
or discharges the entire circuit (like RAM), the power
saving achieved at VDD

L easily amortizes the transition
overhead.

For example, for a 64KB 2-way L1 cache, all the
SRAM cells are charged when VDD ramps from VDD

L to
VDD

H. The energy overhead of the transition is:
CLK

L
DD

H
DDioverhead TVVCKBytesE ⋅−⋅⋅⋅= 2)(864 (eq.3)

Here, Ci is the internal capacitance of a SRAM cell,
and TCLK is the cycle time of the clock.

In a two-way L1 cache access, 2 blocks are read – one
in each way of the accessed set. If the block size is 32
bytes, then 2 x 32 x 8 bits are read. Hence, the energy
savings during VDD

L operation for a cache access (only
dynamic power is considered) is:

CLK
L

DD
H

DDisaving TVVCBytesE ⋅−⋅⋅⋅⋅=)(8322
22 (eq.4)

2001000 ≈
+

−
⋅=

L
DD

H
DD

L
DD

H
DD

saving

overhead

VV
VV

E
E (eq.5)

To compensate Eoverhead, at least 200 accesses are
needed at VDD

L. Such number of accesses is highly
unlikely because the processor would be stalled upon an
L2 miss and only a few cache accesses would happen.

If we do a similar calculation for a combinational
logic circuit with internal capacitance Clogic:

2.0
)(

)(
22

log

2
log ≈

+
−

=
−⋅

−⋅
= L

DD
H

DD

L
DD

H
DD

L
DD

H
DDic

L
DD

H
DDic

saving

overhead

VV
VV

VVC

VVC
E

E (eq.6)

Hence, for combinational logic, the power saving of
one operation at VDD

L is much more than the energy
overhead of a VDD transition.

We see that supply-1voltage scaling should not be
implemented for large RAM structures, such as the register
file, I-cache, and D-cache. But for small RAM structures
and combinational logic circuits, the energy overhead can
be compensated.
3.6. Level conversion on the path from VDD

L to VDD
H

In the VSV processor, the register file and the L1
caches keep operating at VDD

H, irrespective of whether the
other sections of the pipeline are operating at VDD

H or VDD
L.

Level-converting latches are needed when driving VDD
H

blocks with VDD
L blocks (driving VDD

L blocks with VDD
H

blocks does not need converters). Hence, level-converting
latches are needed between the RAM structures and the
pipeline.

Because a level-converting latch has a longer delay
than a regular latch, simply replacing regular latches with
level-converting latches would increase cache and register
access time. Access time increases not only when driving
VDD

H RAM structures with VDD
L blocks, but also when

driving VDD
H RAM structures with VDD

H blocks, because
signals still go through level-converting latches, even
though no level conversion is needed.

Because the no-conversion path (i.e., when driving
VDD

H RAM structures with VDD
H blocks) is used when

operating at full clock-speed, the unnecessary delay due to
the level-converting latches is a problem. To mitigate the
delay, we place both regular and level-converting latches
on the path between the structures and the blocks. Using a
simple multiplexer, we choose the appropriate latch. Thus,
the level-converting latches are bypassed when no
conversion is necessary. To optimize the no-conversion
path further, we implement the multiplexer by using a
transmission gate that is placed at the output of the level-
converting latch, leaving the regular latch latency virtually
unchanged. Because transmission gates have only a small
RC delay, even the level-conversion path does not incur
much overhead due to the multiplexer.

However, the level-conversion path still incurs the
overhead of level conversion and the transmission gate.
We hide the latency by exploiting the following
observation: Although the RAM structures are clocked at
half clock-speed when the rest of the pipeline operates at
VDD

L, the structures still use VDD
H. Consequently, their

access times are still fast, creating a slack between the fast
structures and the longer clock cycle. VSV uses this slack
to absorb the level conversion latency.

Because the transmission gate selects only one set of
either regular or level-converting latches at any time, the
control signal for the transmission gates can be used to
clock-gate the unselected latches. Hence, only one set of
latches contributes to processor power.
4. Microarchitectural issues

Figure 1 depicts a processor that implements VSV.
The processor is divided into two sections. The sections
with large RAM structure (e.g. register file and I/D caches)
and PLL are shown in gray. We do not implement voltage
scaling in these areas because of either large power
overhead (Section 3.5) or an unaffordably long settling
time (Section 3.4). All the other sections shown in white
apply VSV, and use a dual-power-supply network. The
state machines (FSMs) monitor the issue rate to control
switching of VDD, as mentioned in the introduction.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

The VSV processor has two steady operation modes:
(a) In the high-power mode, the entire processor operates
at VDD

H and full clock-speed for the high-performance
requirement; (2) and in the low-power mode, the processor
runs at half clock-speed. To reduce power dissipation,
most sections of the pipeline, except those shown in gray
in Figure 1, operate at VDD

L.

Figure 1 Structure diagram of VSV

4.1. High-power mode
In the high-power mode, the processor operates at

VDD
H and full clock-speed. This is the default mode of

operation.
4.2. High-to-low power mode transition

VSV uses L2 cache misses to flag the absence of ILP.
However, depending on the degree of ILP, the processor
may find independent instructions to overlap with L2
misses. If the processor switches to the low-power mode
in such high-ILP cases, significant performance
degradation will ensue, as mentioned in the introduction.
To avoid the performance loss, VSV employs down-FSM
to monitor the instruction-issue rate, and works with the
L2 miss signal, to guide switching to the low-power mode.

Down-FSM works as follows: when an L2 miss signal
reaches the processor (after L2 hit latency), the FSM starts
recording the instruction-issue rate for the small period
(e.g., 10 cycles) that ensues. During this period, if the
number of consecutive cycles in which no instruction is
issued is above a threshold (e.g., 1-5 cycles), the transition
to the low-power mode starts. The processor can begin
transitioning as soon as the threshold is satisfied, without
having to wait until the end of the monitoring period.

For maximum power savings and minimum
performance loss, down-FSM should signal a high-to-low
transition when and only when the long-term ILP after an
L2 miss is low. The “when” part is needed to avoid a loss
of power-saving opportunity, and the “only when” part is
needed to avoid a loss of performance.

Two phenomena in modern processors – out-of-order
issue and short-term parallelism of instructions near a
missing load – can mislead down-FSM to violate the
“when” part by mistakenly identifying ILP to be high
when it is actually low. We observe that the absence of
ILP during the monitoring period often signifies the
absence of long-term ILP. Because the monitoring starts
only after an L2 miss is detected, any independent

instruction due to this out-of-order issue and short-term
parallelism has mostly already been issued from the time
the missing load was issued to the time when the L2 miss
was detected. Therefore, down-FSM is accurate in
identifying the absence of ILP, despite the out-of-order
issue and short-term parallelism.

Satisfying the “only when” part is straightforward
because if the long-term ILP is high, then it often turns out
that the ILP in the monitoring period is also high.

L2 cache misses caused by prefetches (software or
hardware) do not cause long pipeline stalls. Therefore,
VSV does not switch to the low-power mode during these
misses.

Figure 2 illustrates the timeline of events in a high-to-
low power mode transition, including the time taken for
signal distribution (Section 3.4). The numbers in Figure 2
indicate latency in unit of nanosecond.

Figure 2 Timeline: High-to-low power mode transition
4.3. Low-power mode

In the low-power mode, the pipeline operates at VDD
L

and half clock-speed. Because caches and register file
operate at VDD

H even when the pipeline is in the low-power
mode (Section 3.5), there is a choice of clocking these
structures either at full or half clock-speed. Although
clocking these structures at full clock-speed improves
performance, this choice causes many difficulties.

This choice will result in two different clock speeds in
operation at the same time – the pipeline operating at half
clock-speed and the structures at full clock-speed. If this
mismatch in clock speeds always were to exist, then
accounting for the mismatch would amount to halving the
structures’ latencies, and there would be no major
difficulties. However, when the pipeline goes back to
operating at full clock-speed, these structures will continue
to operate at full clock-speed, and the mismatch will
disappear. Consequently, the latency of the structures
counted in number of clock cycles of the pipeline varies
with the power mode of the pipeline.

This variation raises four issues. First, modern
pipelines exploit the deterministic cache hit (or register
access) latency predetermined at design time for back-to-
back scheduling of the instructions dependent on loads.
Such scheduling is critical for high performance due to the
frequent occurrence of loads. To exploit the full clock-
speed of the cache, the scheduler would need to be
modified to do back-to-back scheduling for two different

Down-FSM asks: Low ILP?

Ctrl signal distribution
Clock-tree propagation

High-power mode
L2 miss detected

Reach VDD
L

VDD transition

≤10

4

12

Time (ns)

Low ILP? Yes.

Low-power mode

Reduce clock-speed

VBAT
H VBAT

L

Regular Power-Supply
Network

Dual-Power-Supply
Network

Fixed VDD
I/D cache, Regfile
L2 cache

PLL

Variable VDD
Front/Back-end, Execution
units, etc.

Freq.
Divider

 fCLK control VDD control

Variable fCLK L2 miss signal

FSMs

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

sets of latencies – one assuming X full-speed-clock cycles
and the other assuming X/2 half-speed-clock cycles.

Second, the scheduler allocates resources, such as
register write-ports, assuming a predetermined latency
from the time when the instruction issues to the time when
the instruction writes back. Such predetermined scheduling
avoids extra-handshake overheads in common cases of
load hits and stall-free execution. If the latency of the
structures varies with the pipeline’s power mode, the
predetermined resource schedules would not work. For
example, when the scheduler issues a load instruction, the
resource scheduler reserves a register-write port for the
cycle X, to write the returned value from the cache into the
register file. However, because of the mismatch in speeds,
the data cache returns the data earlier than the reserved
time in the cycle X/2. The earlier arrival of the data would
cause unexpected register-write port conflicts with the load
that has scheduled the register-write port for that cycle.
The scheduler would need to be changed to handle two
different sets of schedules. Changes due to the first two
issues may add complexity to the already intricate
scheduler implementation.

Third, we assumed in Section 3.6 that the level-
converter latencies can be hidden under the slack of the
fast raw latency of the structures at VDD

H and the half-
clock-speed cycle. This assumption is violated if the
structures are clocked at full speed.

Finally, to handle the situation in which the pipeline is
operating at the half clock-speed and the structures are
operating at the full clock-speed, we may need extra hand-
shaking between the pipeline and the structures, which
typically causes extra delay [21]. Because the hand-
shaking circuitry is physically inserted on the cache hit
critical path, designs which run in different clock-speeds
may result in longer cache hit latency, even when the
cache and the pipeline are running at the same speed in the
high power-mode.

Therefore, we do not pursue the choice of using two
different clock speeds. Instead, we let register file and L1
caches operate at the half clock-speed even though they
are operating at VDD

H (Section 3.1). By clocking the L1
cache and the register file at the same half clock-speed as
the pipeline, L1 cache hit latency and register access
latency will remain the same in terms of number of clock
cycles of the pipeline, irrespective of the power mode.
Thus, VSV avoids scheduler changes and other
complications by sacrificing the opportunity to have
shorter cache hit latency in the low-power mode.

Unlike the L1 cache, the hit latency of which is
closely tied to the pipeline, the L2 cache is more loosely
tied to the pipeline. In the case of the L2 cache, because
the latency is longer and accesses are infrequent, there is
no need for such a tight interface. Consequently, there is
an asynchronous interface between the L2 cache and the
pipeline. Recall that L2 cache always operates at VDD

H, so
its raw latency does not change. The L2 latency is X cycles
when the processor is in the high-power mode and X/2

cycles when the processor is in the low-power mode. This
change in cycle latency for the response from the L2 cache
does not impact correctness and is automatically taken
care of because of the asynchronous interface between the
L2 cache and the processor.
4.4. Low-to-high power mode transition

When in the low-power mode, VSV uses the L2 cache
miss returns to guide switching back to the high-power
mode. If there is only one outstanding L2 miss, VSV
switches back to the high-power mode when the miss is
returned. However, the decision of switching back is more
complicated when there are multiple outstanding misses.

A returned L2 miss causes its dependent instructions
to become ready for issue. On one hand, if the processor
switches back to the high-power mode when there are only
a few ready instructions, the processor will soon stall again
due to other outstanding L2 misses, and waste the
opportunity to save more power. On the other hand, if the
processor does not switch back to the high-power mode
when there are many ready instructions, the performance
of the processor will be degraded.

To identify both of these cases, VSV employs another
FSM, called up-FSM, which monitors the instruction-issue
rate, and works with the returning L2 miss, to guide
switching back to the high-power mode.

Up-FSM works as follows: when an L2 miss data
returns to the processor, the FSM starts to record the
instruction-issue rate for the small period (e.g., 10 half-
clock-speed cycles) that ensues. During this period, if the
number of cycles in which at least one instruction is issued
is above a threshold (e.g., 1-5 half-clock-speed cycles), the
transition to the high-power mode starts. Similar to the
high-to-low transition, the processor can begin
transitioning to the high-power mode as soon as the
threshold is satisfied, without having to wait until the end
of the monitoring period.

For maximum power saving and minimum
performance loss, up-FSM should signal a low-to-high
transition when and only when ILP is high after an L2
miss returns. The “when” part is needed to avoid a loss of
performance, and the “only when” part is needed to avoid
a loss of power saving opportunity. In fact, both “when”
and “only when” are straight-forward for the low-to-high
transition, and up-FSM does not often get confused.

Figure 3 Time line: Low-to-high power mode transition
Figure 3 illustrates the timeline of events in a low-to-

high transition, including the time taken for signal
distribution (Section 3.4). The numbers in Figure 3

Time (ns)

Up-FSM asks: High ILP?
L2 miss return

≤20

2
12

High ILP? Yes.
Ctrl signal distribution

Low-power mode

High-power mode

2

Increase clock-speed
and reach VDD

H

VDD transition
Clock-tree propagation

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

indicate latency in units of nanoseconds. Because the
processor operates in half clock-speed when in the low-
power mode, the maximum monitoring period is 20ns for
the low-to-high transition.
5. Experimental Methodology

We used a modified version of Wattch [7] to simulate
an 8-issue, out-of-order processor for evaluating VSV. To
simulate accurately the timing effects of cache misses on
VSV, we incorporated a memory bus model and MSHR
(Miss Status History Register) into the simulator. To avoid
underestimating the effect of the time to detect an L2 miss,
we conservatively assume that the latency to detect an L2
miss is as long as the L2 cache hit latency. We warm up
caches during fast-forward period, so VSV will not benefit
from cold misses that do not occur in the stationary phase
of program executions. Because most modern processors
today use clock-gating [5] and software prefetching, we
include these two techniques in all simulations.

Table 1: Baseline processor configuration

Processor
8-way issue, 128 RUU, 64 LSQ, 8 integer ALUs, 2
integer mul/div units, 4 FP ALUs, 4 FP mul/div units,
uses clock gating (DCG) and s/w prefetching

Branch
prediction

8K/8K/8K hybrid predictor; 32-entry RAS, 8192-entry 4-
way BTB, 8 cycle misprediction penalty

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-cycle L2,
both LRU

MSHR IL1 - 32, DL1 – 32, L2 - 64
Memory Infinite capacity, 100 cycle latency
Memory
bus

32-byte wide, pipelined, split transaction, 4-cycle
occupancy

We used pre-compiled, Alpha-SPEC2K binaries in [8],
which are compiled with SPEC peak setting, including
software prefetching. We used ref inputs in all simulations.
We fast-forwarded two billion instructions, and then
simulated one billion instructions. Table 1 lists the
baseline configurations for all simulations.
5.1. Simulation of Hardware Prefetching Technique

Hardware prefetching techniques can effectively
reduce cache misses to improve performance, on top of
software prefetching. Because VSV exploits cache misses,
we wanted to verify if VSV can still achieve power
reduction in the presence of hardware prefetching.

In Section 6.4, we implemented the state-of-the-art,
hardware-based Time-Keeping prefetching [9] in Wattch.
Time-Keeping prefetching works as follows: If an L1
cache block is predicted dead, the predictor issues a
prefetch request to lower memory hierarchy. The returned
data block is placed in both L2 cache and a prefetch buffer
close to L1, as described in [9]. The prefetch buffer is a
128-entry, fully associative cache that uses FIFO
replacement policy, and has two-cycle access latency. The
decay counters have a 16-cycle resolution. The 16KB
address predictor uses nine bits from L1 tags and one bit
from L1 indexes, to form signatures into the predictor.
Because our baseline processor has a set-associative L1
data cache, we used per-set history traces for the address
predictor, as recommended in [9].
5.2. Power Calculation

We estimated the overall processor power for 0.18µm
technology by modifying the Wattch power equations to
capture the effect of variable VDD. All our results show
only dynamic power. Leakage power is not included in our
simulations, because leakage power is small for 0.18µm
technology.

We monitored the dynamic change in VDD and
frequency in each section of the processor. Depending on
the VDD at a particular cycle, the simulator adds the correct
value of dissipated power to the system power. During the
ramp-up/down of supply, for each of the cycles, we took
the average value of the supply voltage at the beginning
and end of the cycle as the effective supply voltage
contributing to processor power. As described in section
3.2, we assumed that the ramping period is 12 cycles.

We modeled our dual-power-supply network as a
distributed RLC network by replacing each segment of the
power grids with a lumped resistance-inductance-
capacitance (RLC) element [13]. By using HSPICE, we
simulated a dual-power-supply network for Alpha 21264
processor. To be consistent with 0.18µm technology, we
shrank the layout of Alpha 21264 processor [6]. Our
experiments showed that the dual-power-supply network
structure can switch between VDD

H=1.8V and VDD
L=1.2V

in 12ns (12 cycles fCLK=1GHz) with 66nJ energy
dissipation during ramping. We accounted for this energy
overhead in our calculations.

For the latches on the path from VDD
L to VDD

H, the
simulator adds the power of the regular latches in high-
power mode, or the power of the level-converting latches
in low-power mode (Section 3.6).

Because clock gating is widely used in commercial
processor [5], we built baseline processor on deterministic
clock gating [10], which clock gates the functional units,
pipeline latches, D-cache wordline decoders and result bus
drivers. Hence, for each of these circuits, if it is clock-
gated in a particular cycle, it does not contribute to the
overall power. On the other hand, if the circuit is not
clock-gated, the simulator adds its dynamic power
corresponding to the variable VDD.

For the processor with timekeeping-based prefetching
technique, we also included the power consumption
caused by prefetching buffer in total power calculation.
5.3. L2 miss-rate

Table 2 shows instructions per full-speed-clock cycle
(IPC) of SPEC2K benchmarks for the baseline processor,
and L2 miss-rate, measured in number of L2 demand
misses per 1,000 instructions (we call this number MR),
for both baseline and Time-Keeping prefetching.
6. Results

We show the Wattch simulation results in this section.
First, we present the effectiveness of VSV on the basis of
power savings and performance degradations in Section 6.1.
Next, we describe the effects of monitoring thresholds for
high-to-low transition in Section 6.2 and for low-to-high

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

transition in Section 6.3. Finally, we show VSV’s impact in
the presence of Time-Keeping prefetching in section 6.4.
6.1. Effectiveness of VSV

In Figure 4 (top), we plot VSV’s performance
degradation for the SPEC2K benchmarks. The Y-axis
corresponds to VSV’s performance loss computed as a
percentage of the execution time in the base processor
running at full clock-speed. In Figure 4 (bottom), we plot
the total CPU power savings (including the caches). The
Y-axis represents power savings computed as a percentage
of total power of the base processors. In both graphs, the
X-axis shows benchmarks sorted by decreasing MR (L2
misses per 1,000 instructions). All runs include
deterministic clock gating (DCG) and software prefetching.
In the figures white bars show VSV without the FSMs and
black bars show VSV with the FSMs. When operating
without the FSMs, the processor goes to low-power mode
whenever an L2 cache miss is detected, and goes to high-
power mode whenever an L2 cache miss returns.

We make three observations. First, VSV is effective in

saving power, without (white bars) or with the FSMs
(black bars). VSV saves average power by 33% without
the FSMs and by 21% with the FSMs, for the benchmarks
that have high MR. These benchmarks are in the left
section of the graphs. In ammp, mcf, art and applu, VSV
with FSMs saves 46%, 38%, 21% and 15% powers, with
only 1%, 4%, 3% and 2% performance degradations,

respectively. Averaging across all SPEC2K benchmarks,
VSV achieves 7% power saving with 1% performance
degradation.

Second, the FSMs are effective in avoiding
performance degradation, by not switching to low-power
mode when ILP is high after an L2 miss. Some programs
that have high ILP, such as applu, swim and mgrid, save
33%, 21% and 19% powers without the FSMs, albeit
suffering performance degradations as high as 22%, 17%
and 18%. With the FSMs, these programs give up much
of their power savings, down to 15%, 8% and 1%, but now
with small degradations of 2%, 3% and 0%, respectively.
On average, benchmarks that have MR higher than 4
suffer 12% degradation without the FSMs, but only 2%
with the FSMs.

VSV can still degrade performance despite using the
FSMs. Performance degradations are caused by: 1) the
down-FSM signals processor to enter low-power mode,
despite high ILP after an L2 miss, 2) the monitoring period
for low-to-high transition operates with reduced clock-
speed, thus delaying critical path instructions. Despite
these possible mishaps, all programs suffer less than 3%
performance degradation, except mcf which suffers 4%.
VSV effectively saves power for many programs with only
1% performance degradation.

Finally, for the benchmarks in the middle section of
the graphs, VSV with FSMs achieves power savings
between 1.1% and 8.9%, all at less than 2% performance
degradations (e.g., perlbmk achieves 8.9% reduction in
power with 0.8% performance degradation). VSV neither
saves power nor degrades performance for programs that
have low MR (right sections of the graphs), because they
seldom operate in low-power mode.

Because our interest in VSV is for saving power with
minimal performance degradation, we will describe the
results only with the FSMs for the remainder of the paper.
6.2. Effects of thresholds for high-to-low transition

To see the effectiveness of issue-rate monitoring for
high-to-low transitions of power modes, we varied the
monitoring threshold as 0, 1, 3 and 5 cycle in Figure 5, and
kept the monitoring period at 10 cycles. Recall that for
high-to-low transitions a monitoring threshold of 3 means
that down-FSM looks for 3 consecutive cycles where no
instructions is issued in each cycle, and that the monitoring
period of 10 cycles means that down-FSM looks for the
threshold to occur within 10 cycles. Here, the cycles are in
units of full-speed-clock cycle. For low-to-high transitions,
we use up-FSM that has 3-half-speed-clock-cycle
threshold and 10-half-speed-clock-cycle monitoring period
in all runs, because they help down-FSM achieve best
results. For clarity, we show only the subset of
benchmarks whose MR is more than 4.

From Figure 5, we see that low thresholds give VSV
more opportunity to save power; but also cause more
performance degradation, and vice versa for high threshold.

The bar Threshold 0 corresponds to a processor that
does not use down-FSM for high-to-low transition. VSV

-5
0
5

10
15
20
25

m
cf

am
m

p ar
t

lu
ca

s
ap

pl
u

sw
im

fa
ce

re
c

vp
r

m
gr

id
ap

si
pe

rlb
m

k
pa

rs
er

w
up

w
ise ga

p
bz

ip
2

m
es

a
vo

rte
x

gc
c

gz
ip

ga
lg

el
eq

ua
ke

cr
af

ty
eo

n
six

tra
ck

fm
a3

d
tw

ol
f

With FSMs Without FSMs

Pe
rf

or
m

an
ce

D

eg
ra

da
tio

n
(%

)

-10
0

10
20
30
40
50

m
cf

am
m

p ar
t

lu
ca

s
ap

pl
u

sw
im

fa
ce

re
c

vp
r

m
gr

id
ap

si
pe

rlb
m

k
pa

rs
er

w
up

w
ise ga

p
bz

ip
2

m
es

a
vo

rte
x

gc
c

gz
ip

ga
lg

el
eq

ua
ke

cr
af

ty
eo

n
six

tra
ck

fm
a3

d
tw

ol
f

C
PU

 P
ow

er

Sa
vi

ng
s (

%
)

MR>4.0 >0.4 ≥0.0

Figure 4 VSV Results: with and without the FSMs

Table 2: Baseline SPEC2K benchmark statistics
 IPC MR IPC MR

 Base Base TK Base Base TK
ammp 0.59 11.0 0.5 gzip 2.31 0.1 0.1
applu 2.32 10.1 4.1 lucas 1.34 10.2 4.2
apsi 2.51 1.4 0.7 mcf 0.29 67.4 48.2
art 1.36 10.3 11.7 mesa 3.64 0.3 0.2
bzip2 2.38 0.5 0.4 mgrid 4.17 1.5 0.8
crafty 2.68 0.0 0.0 parser 1.68 0.6 0.7
eon 3.13 0.0 0.0 perlbmk 1.41 1.3 0.6
equake 4.51 0.0 0.0 sixtrack 3.64 0.0 0.0
facerec 3.02 4.7 2.3 swim 3.81 5.8 1.4
fma3d 4.35 0.0 0.0 twolf 1.42 0.0 0.0
galgel 2.21 0.0 0.0 vortex 2.31 0.2 0.2
gap 3.00 0.5 0.3 vpr 1.25 2.0 2.1
gcc 2.27 0.1 0.1 wupwise 4.58 0.5 0.4

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

with a threshold of 0 causes performance degradation as
high as 13% for swim and 10% for applu. When increasing
the threshold from 1 to 3, lucas, swim, applu and facerec
significantly reduce performance degradations, but also
save much less power. Mcf and art significantly reduce
performance degradations, but still achieve roughly the
same power savings as threshold one. With a threshold of
5, all of these benchmarks incur similar performance
degradations as with the threshold of 3, but with less
power savings. To sum up, a threshold of 3 is the best-
performing, because it incurs performance degradation less
than 5%, but saves more powers than threshold 5.

6.3. Effects of thresholds for low-to-high transition
To see the effectiveness of issue-rate monitoring for

low-to-high transitions of power modes, we varied the
corresponding threshold as 1, 3 and 5 cycles in Figure 6,
and kept the corresponding monitoring period at 10 cycles.
Recall that for low-to-high transitions a monitoring
threshold of 3 means that up-FSM looks for 3 consecutive
cycles where at least one instruction is issued in each cycle,
and that the monitoring period of 10 cycles means that up-
FSM looks for the threshold to occur within 10 cycles.
Here, the cycles are in units of half-speed-clock cycle. For
high-to-low transition, we keep the up-FSM at 3-cycle
threshold and 10-cycle monitoring period in all runs.
Again, we show only the subset of benchmarks whose MR
is more than 4.

For comparison, we also show the results without
monitoring, and instead use simple heuristics for making
low-to-high transition whenever the first or the last
outstanding L2 miss returns. To ease explanation, we call
the former heuristic as First-R and the latter as Last-R.
These simple heuristics trade-off performance and power:
while Last-R saves more power than First-R, Last-R also
causes more performance degradation than First-R.

From Figure 6, we see that increasing threshold value
favors power saving while decreasing threshold favors
performance. The results also show that the issue-rate
monitoring is effective, because the monitoring achieves
power saving close to Last-R’s, and performance close to
First-R’s.

Threshold 1 incurs small performance degradation
similar to First-R, but saves more power than First-R. A
threshold of 3 achieves power savings closer to that of

Last-R, with performance degradation only 1~2% more
than that of First-R, except in swim. A threshold of 5
behaves similar to Last-R both in performance and power,
except in swim where the monitoring successfully reduces
swim’s performance degradation, from 13% to 5%.

6.4. Impact of Time-Keeping prefetching technique
Time-Keeping Prefetching is an important, state-of-

the-art technique to reduce cache misses. Although the
technique is not a standard feature on modern processors,
we stress-test VSV with the technique in this section,
because the technique may remove cache misses to the
point where VSV has no opportunity.

Our experiment shows that although Time-Keeping

prefetching reduces L2 miss-rates for most benchmarks, it
does not remove all L2 misses. VSV could still save power
for a processor that implements aggressive prefetching. On
average, the prefetching reduces MR from 4.9 to 3.0.

In Figure 7, we show VSV’s performance
degradations and power savings without (white bar) and
with (black bar) Time-Keeping, respectively. VSV uses
the same FSM configuration as in Section 6.1.

Most benchmarks’ performance degradations and
power savings remain largely unchanged when prefetching
is employed, except that mcf’s degradation increases from
4.4% to 5.9%, and that ammp’s power saving significantly
reduces from 46% to 1%. Ammp’s savings reduce because
prefetching removes 95% of its L2 misses. Most of high-
MR benchmarks roughly maintain their power savings,

-2

0

2

4

6
m

cf
am

m
p ar
t

lu
ca

s
ap

pl
u

sw
im

fa
ce

re
c

vp
r

m
gr

id
ap

si
pe

rlb
m

k
pa

rs
er

w
up

w
ise ga

p
bz

ip
2

m
es

a
vo

rte
x

gc
c

gz
ip

ga
lg

el
eq

ua
ke

cr
af

ty
eo

n
six

tra
ck

fm
a3

d
tw

ol
f

With Prefetch Without Prefetch

-10
0

10
20
30
40
50

m
cf

am
m

p ar
t

lu
ca

s
ap

pl
u

sw
im

fa
ce

re
c

vp
r

m
gr

id
ap

si
pe

rlb
m

k
pa

rs
er

w
up

w
ise ga

p
bz

ip
2

m
es

a
vo

rte
x

gc
c

gz
ip

ga
lg

el
eq

ua
ke

cr
af

ty
eo

n
six

tra
ck

fm
a3

d
tw

ol
f

Pe
rf

or
m

an
ce

D

eg
ra

da
tio

n
(%

)
C

PU
 P

ow
er

Sa

vi
ng

s (
%

)

MR>4.0 >0.4 ≥0.0

Figure 7 Impact of Time-Keeping Prefetching on VSV

Figure 5 Effects of thresholds on high-to-low transitions

0 1 3 5

0
3
6
9

12
15

0
10
20
30
40
50

mcf ammp art lucas applu swim facerec

Pe
rf

or
m

an
ce

D

eg
ra

da
tio

n
(%

)
C

PU
 P

ow
er

Sa

vi
ng

s (
%

)

0 1 3 5

Pe
rf

or
m

an
ce

D

eg
ra

da
tio

n
(%

)
C

PU
 P

ow
er

Sa

vi
ng

s (
%

)

Figure 6 Effects of thresholds on low-to-high transitions

First-R 1 3 5 Last-R

0
3
6
9

12
15

0
10
20
30
40
50

mcf ammp art lucas applu swim facerec

F135L

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

because the prefetching does not significantly reduce the
miss-rates for these benchmarks.

In summary, VSV achieves 12.1% average power
saving with Time-Keeping, compared to 20.7% without
Time-Keeping, for the benchmarks that have MR higher
than 4. The average performance degradations remain at
2.1% with and without prefetching. Averaging across all
SPEC2K benchmarks, VSV achieves 4.1% reduction in
power with 0.9% performance loss. Hence, VSV can save
power with minimal degradation, even for an aggressive
processor that implements the latest, state-of-the-art
prefetching technique.
7. Conclusions

We proposed a novel variable supply-voltage scaling
(VSV) technique to reduce processor power without undue
impact on performance. We proposed scaling down the
supply voltage of certain sections of the processor during
an L2 miss while being able to carry on the independent
computations at a lower speed. We introduced two novel
finite state machines (FSMs), up-FSM and down-FSM, that
track parallelism on-the-fly. Down-FSM avoids
performance degradation by preventing supply-voltage
from scaling down when there are sufficient independent
computations to overlap with the L2 miss. Up-FSM avoids
reduction in power savings by preventing supply-voltage
from scaling up when there are multiple outstanding
misses and insufficient independent computations to
overlap with them.

Circuit-level considerations impose many constraints
on VSV. First, circuit-level complexity limits VSV to two
supply voltages. Second, circuit stability and signal-
propagation speed issues limit the rate of transition
between the voltages and introduce a transition time
overhead. Third, energy overhead factors disallow supply-
voltage scaling of large RAM structures such as caches
and register file upon an L2 miss.

For our simulations, we used the SPEC2K
benchmarks executing on an eight-way, out-of-order-issue
superscalar processor that implements clock gating and
software prefetching. Our simulations showed that VSV
with the FSMs reduces power by as much as 46% with
performance degradation as small as 4% in the worst case.
On average, VSV saves 7% in total processor power for all
SPEC2K benchmarks, and 21% for benchmarks with high
L2 miss rates (>4 misses per 1,000 instructions). We
showed that the FSMs are effective in avoiding
performance degradation for programs with high ILP. The
FSMs reduce VSV’s performance degradation from 12%
to 2%, while limiting the drop in power savings from 33%
to 21%.

Finally, we showed that VSV is effective in saving
power, even in a processor that implements the aggressive
Time-Keeping prefetching. VSV achieves 4% reduction in
power for all SPEC2K benchmarks, and 12% for the
benchmarks with high L2 miss rates, when both the
baseline and VSV implement Time-Keeping.

8. References
[1] T. Burd, et. al., “A dynamic voltage scaled microprocessor system”,

IEEE Journal of solid-state circuits, 35(11), pp.1571-1380.
[2] J. Pouwelse, et. al., “Dynamic voltage scaling on a low-power

microprocessor”, Mobile Computing Conference (MOBICOM),
pp.251-259, Jul. 2001.

[3] C. Hsu, et. al., “Compiler-directed dynamic frequency and voltage
scheduling”, workshop on Power-Aware Computer Systems
(PACS'00), pp.65-81, Cambridge, MA, Nov. 2000.

[4] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors”, Proc. of 1998 Int’l Symp.
on Low Power Electronics and Design, pp.197-202, Jul. 1998.

[5] M. Gowan, et. al., “Power considerations in the design of the Alpha
21264 microprocessor”, Proc. of 35th Design Automation
Conference (DAC), pp. 726 – 731, Jun. 1998.

[6] S. Manne, et al., “Alpha processors: A history of power issues and a
look to the future”, Workshop of Cool Chip, in Conjunction with the
32nd In’l Symp. on Microarchitecture, pp. 16-37, Nov. 1999.

[7] D. Brooks, et. al., “Wattch: A framework for architectural-level
power analysis and optimizations”, Proc. of 27th Int’l Symp. on
Computer Architecture (ISCA), pp.83-94, 2000

[8] C. Weaver, SPEC2K Alpha binaries. http://www.eecs.
umich.edu/~chriswea/benchmarks/spec2000.html

[9] Z. Hu, et. al., “Timekeeping in the Memory System: Predicting and
Optimizing Memory Behavior”, Proc. 29th In’l Symp. on Computer
Architecture (ISCA), pp. 209-220, 2002

[10] H. Li, et. al., “Deterministic clock gating for microprocessor power
reduction”, In Proc. of 9th Int’l Symp. on High Performance
Computer Architecture (HPCA), pp.113-122, Feb. 2003.

[11] T. Burd, and R. Brodersen, “Design issues for dynamic voltage
scaling”, Proc. 2000 Int’l Symp. on Low Power Electronics and
Design (ISLPED00), Jul. 2000, pp.9-14.

[12] D. Matzke. “Will physical scalability sabotage performance
gains?”, IEEE Computer, 30(9):37 – 39, Sep. 1997

[13] S. Zhao, K. Roy, and C-K. Koh, “Decoupling capacitance allocation
and its application to power-supply noise-aware floorplanning”,
IEEE Transation on Computer-Aided Design of Integrated Circuits
and Systems, 21(1), Jan. 2002, pp.81-92.

[14] A. Stratakos, “High-efficiency, low-voltage dc-dc conversion for
portable applications”, Ph.D. dissertation, UC-Berkely, CA, 1999.

[15] K.Usami, et al., "Design Methodology of Ultra Low-power MPEG4
Codec Core Exploiting Voltage Scaling Techniques", Proc. of 35th
Design Automation Conference, pages, pp. 483-488, Jun. 1998.

[16] Fen Xie, et. al.. "Compile-Time Dynamic Voltage Scaling Settings:
Opportunities and Limits", Programming Language Design and
Implementation (PLDI), June 2003.

[17] S. Tyagi et al., “A 130 nm generation logic technology featuring 70
nm transistors, dual Vt transistors and 6 layers of Cu interconnects,”
Digest of Technical Papers of International Electron Devices
Meeting, pp.567 -570, 2000.

[18] D. Marculescu, “On the use of microarchitecture-driven dynamic
voltge scaling”, Proc. of the Workshop on Complexity-Effective
Design, Jun. 2000.

[19] G. Magklis, et. al., “Profile-based dynamic voltage and frequency
scaling for a multiple clock domain microprocessor”, Proc. of 30th
Int’l Symp. on Computer Architecture (ISCA), pp.14-25, Jun. 2003.

[20] T. K. K. Kan, G. C. T. Leung, and H. C. Luong. “A 2-V 1.8-GHz
Fully Integrated CMOS Dual-Loop Frequency Synthesizer”, IEEE
Journal on Solid-State Circuits, 37(8):1012 – 1020, Aug. 2002.

[21] G. Semeraro et, al, “Energy Efficient Processor Design Using
Multiple Clock Domains with Dynamic Voltage and Frequency
Scaling”, Proc. of 8th Int’l Symp. on High Performance Computer
Architecture (HPCA), pp. 29-40, Feb. 2002.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

