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Abstract 
Energy-efficient processor design is becoming more 

and more important with technology scaling and with high 
performance requirements. Supply-voltage scaling is an 
efficient way to reduce energy by lowering the operating 
voltage and the clock frequency of processor 
simultaneously. We propose a variable supply-voltage 
scaling (VSV) technique based on the following key 
observation: upon an L2 miss, the pipeline performs some 
independent computations but almost always ends up 
stalling and waiting for data, despite out-of-order issue 
and other latency-hiding techniques. Therefore, during an 
L2 miss we scale down the supply voltage of certain 
sections of the processor in order to reduce power 
dissipation while it carries on the independent 
computations at a lower speed. However, operating at a 
lower speed may degrade performance, if there are 
sufficient independent computations to overlap with the L2 
miss. Similarly, returning to high speed may degrade 
power savings, if there are multiple outstanding misses 
and insufficient independent computations to overlap with 
them. To avoid these problems, we introduce two state 
machines that track parallelism on-the-fly, and we scale 
the supply voltage depending on the level of parallelism. 
We also consider circuit-level  complexity concerns which  
limit VSV to two supply voltages, stability and signal-
propagation speed issues which limit how fast VSV may 
transition between the voltages, and energy overhead 
factors which disallow supply-voltage scaling of large 
RAM structures such as caches and register file. Our 
simulations show  that VSV achieves an average of 20.7% 
total processor power reduction with 2.0% performance 
degradation in an 8-way, out-of-order-issue processor that 
implements deterministic clock gating and software 
prefetching, for those SPEC2K benchmarks that have high 
L2 miss rates. Averaging across all the benchmarks, VSV 
reduces total processor power by 7.0% with 0.9% 
performance degradation.  
1. Introduction 

Power dissipation is becoming a limiting factor in 
high-performance processor design as technology scales 
and device integration level increases. Supply-voltage 
scaling is emerging as an effective technique for reducing 
both dynamic power and leakage power. Dynamic power 
is proportional to 2

DDload VCf ⋅⋅ , where f is the system clock 

frequency, Cload is the effective load capacitance, and VDD 
is the supply voltage. Scaling the supply voltage requires a 
commensurate reduction in clock frequency because signal 
propagation delays increase when the supply voltage is 
scaled down. The maximum clock frequency at which a 
transistor can operate is proportional to

DD

TDD

V
VV α)( − , where 

VT is the transistor threshold voltage, and α is strongly 
dependant on the mobility degradation of electrons in 
transistors (with typical value between 1 and 2).  Therefore, 
supply-voltage scaling can reduce dynamic power in the 
order of VDD

2 and VDD
3. Although supply-voltage scaling 

also reduces leakage power in the order of VDD
3

 and VDD
4 

[17], we will focus only on dynamic power in this paper. 
We consider a specific flavor of supply-voltage 

scaling, called variable supply-voltage scaling (VSV), 
where we vary the supply voltage while a program 
executes. To ensure VSV’s effectiveness, we consider 
several circuit-level overhead issues: First, we choose two 
convenient, discrete supply voltages after considering the 
trade-offs between power saving and design complexity. 
Second, even with two supply voltages, transitioning from 
one to the other takes time. Because of circuit stability 
issues discussed in Section 3.2, this transition cannot be 
done fast and needs to be of the order of at least a few 
clock cycles (e.g., 12 cycles for 0.18µm technology and 
1GHz clock).  

Because lowering the VDD requires reducing the clock 
frequency, we consider microarchitectural issues to ensure 
that VSV achieves power reduction without inordinate 
performance degradation. A fundamental observation is 
that if the clock speed is reduced whenever the processor 
is executing non-critical code, then it is conceivable that 
performance will not be degraded. Fortunately, it is simple 
to use cache misses as triggers to flag non-critical 
processing: Upon a cache miss, the processor executes 
only the few instructions that are independent of the miss 
and often ends up stalling, despite out-of-order issue and 
other latency-hiding techniques. Therefore, we propose to 
lower the VDD on cache misses. Those few independent 
instructions are executed slower at the lower VDD, but no 
significant performance loss would ensue as long as the 
instructions are completed before the miss returns. 
Because VDD-transition times are usually of the same order 
as L2-hit latencies (e.g., 12 cycles for the Alpha 21264), 
VDD should not be lowered for L1 misses that are L2 hits. 
Consequently, we propose to lower the VDD only on L2 
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misses, which are long enough (e.g., 100 cycles) to 
amortize the transition time overhead. Thus, we scale 
down the VDD of certain processor sections to achieve 
power reduction, but allow the processor to continue 
processing the instructions that are independent of the L2 
misses, albeit at a reduced speed.  

Depending upon the program’s degree of instruction-
level parallelism (ILP), the processor may find many 
independent instructions to overlap with L2 misses. If the 
VDD is lowered in such cases, significant performance loss 
would ensue. To avoid the loss, VSV employs a novel 
mechanism using state machines that estimate the degree 
of ILP by monitoring the instruction-issue rate. If soon 
after an L2 miss the issue rate is high (defined by some 
thresholds), VSV does not scale down the VDD. When one 
of many outstanding L2 misses returns and results in a 
high issue rate in low VDD, indicating that there are 
instructions independent of the outstanding misses, VSV 
switches back to high VDD.  

In CMOS, varying the VDD changes the amount of 
charge held in the internal nodes of circuits – both 
combinational logic and RAM structures. Because RAM 
structures contain numerous (of the order of tens or 
hundreds of thousands) cells, the energy overhead of 
changing the charge held in each of the cells needs to be 
amortized by the energy savings achieved by accessing the 
structures in low VDD. Because the number of cells 
accessed is a small fraction of the total number of cells in a 
structure, many low-VDD

 accesses are needed to make up 
for the energy overhead of one VDD

 transition. 
Unfortunately, accesses to these structures within a typical 
L2 miss latency are too few to achieve this amortization, 
as we show in Section 3.6. In combinational logic, 
however, this amortization is achieved because the number 
of nodes activated in one low-VDD operation is of the same 
magnitude as the number of nodes whose charge is 
changed in one VDD transition. Therefore, we scale the VDD 
of the pipeline and not of the register file and the caches. 
We use voltage level converters to handle the cases where 
the pipeline uses low VDD and the RAM structures use high 
VDD.  

While [18] explores supply-voltage scaling, the paper 
states that it makes simplistic assumptions of varying the 
VDD without any power or performance overhead.  In 
contrast, VSV makes the following contributions:   
• At the circuit level, VSV takes into consideration the 

design simplicity of two levels of VDD, the VDD-
transition time overhead, and the energy overhead of 
scaling RAM structures’ supply voltages. 

• At the architecture level, VSV uses L2 misses and the 
novel instruction-issue-rate monitoring mechanism as 
triggers for VDD transitions. 

We use Wattch [7] and the SPEC2K suite [8] to 
simulate an 8-way, out-of-order-issue superscalar for our 
experiments. Our main results are:  
•  Most modern processors use clock gating and software 

prefetching. If the pipeline ends up stalling upon an L2 

miss, the power of the unused circuits would be reduced 
already by clock gating, reducing VSV’s opportunity. 
However, VSV has at least two advantages over clock 
gating: (1) clock gating cannot reduce power of used 
circuits while VSV can, and (2) clock gating cannot 
gate all unused circuits if the clock gate signal’s timing 
is too tight [10]. Prefetching reduces cache misses, 
directly limiting VSV’s opportunity. However, 
prefetching does not completely eliminate L2 misses, 
and processors do stall even when aggressive 
prefetching is used. Consequently, VSV retains enough 
opportunity.  

• In a processor that uses clock gating [10] and software 
prefetching, our simulations show 20.7% average 
improvement in total processor power consumption 
with 2.0% performance degradation for the benchmarks 
with high L2 miss rates (> 4 misses per 1,000 
instructions). The average processor power reduction is 
7% over all the SPEC2K benchmarks. 

• To stress-test VSV, we consider the recently-proposed 
Time-Keeping prefetching [9]. We observe that VSV 
achieves 12.1% average power saving and 2.1% 
performance degradation for benchmarks with high L2 
miss rates, even after employing Time-Keeping on top 
of clock gating and software prefetching.  

The remaining sections are organized as follows. 
Section 2 presents the related work on voltage scaling. 
Section 3 discusses the circuit-level issues of VSV. 
Section 4 describes the implementation details at the 
architectural level. Section 5 explains the experimental 
methodology. Section 6 presents the results and shows the 
impacts of prefetching. Section 7 concludes the paper. 
2. Related Work 

Many researchers have addressed OS-level or 
compiler-level supply-voltage scaling techniques. Burd et. 
al. [1] demonstrate a complete embedded system, called 
the lpARM processor, which includes an ARM8 core with 
16KB cache. Pouwelse et. al. [2] build a system with 
Strong ARM processor whose speed can be varied along 
with its input voltage. Hsu et. al. [3] propose a compiler-
directed performance model to determine an efficient CPU 
slow-down factor for memory-bound loop computations. 
These techniques have at least two common characteristics: 
(1) these techniques operate at process-level granularity; 
and (2) to change the clock speed automatically with VDD, 
these techniques vary VDD to the PLL (Phase Locked 
Loop), whose settling time is on the order of 10~100µs [20, 
21]. Because the above characteristics result in large time 
granularity, these techniques are usually implemented for 
embedded processors that have lower requirements for 
performance. VSV, on the other hand, targets high-
performance processors.   

Recently, Magklis et. al. [19] propose a compiler-
based voltage- and frequency-scaling technique, which 
targets multiple clock-domain processors. For each clock 
domain of the processor, the VDD and the clock speed can 
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be changed separately. To determine the minimum VDD 
and clock speed, the compiler inserts the reconfiguration 
instructions into applications by using profile-driven 
binary rewriting. In contrast, VSV is transparent to the 
software and does not need profiling. Xie et. al. [16] 
explores the opportunities and limits of compile-time 
dynamic voltage scaling by deriving an analytical model.  
3. Circuit-level issues 

In this section, we discuss the circuit-level issues 
related to varying VDD.  
3.1. Choice of supply voltages 

Ishibara et. al. [4] show that the two-supply voltages 
is the most power-effective choice for variable supply-
voltage designs. Therefore, we use the two-supply voltages. 
We refer to the two voltages as VDD

H and VDD
L.  

We set VDD
H to 1.8V, which is the normal supply 

voltage for the TSMC 0.18µm technology. VDD
L should be 

chosen such that the corresponding clock speed is half of 
that at VDD

H. This choice allows us to use a simple counter 
as a frequency divider, as opposed to varying the clock’s 
PLL to divide the frequency by a factor that is not an 
integer. As mentioned before, changing the PLL is 
unacceptably slow [20, 21] for our context.  

HSPICE simulation in TSMC 0.18µm technology 
shows that when VDD is equal to 1.1V, the maximum clock 
speed is reduced to half of the clock speed corresponding 
to VDD

H. To be conservative, we set VDD
L to be 1.2V. 

3.2. Rate of change of supply voltages 
Burd et. al. [11] demonstrate that static CMOS is 

well-suited for continued operation during voltage 
transitions, and that dynamic logic styles can also be used 
as long as two conditions are satisfied: (a) VDD ramps 
down by less than a diode drop VBE during an evaluation 
phase of dynamic logic (eq.1); and (b) VDD ramps up by 
less than VTP (the threshold voltage of PMOS transistors) 
during the evaluation phase of dynamic logic (eq.2). 

 
2/clk

BEDD V
dt

dV
τ
−

≥     (eq.1) 

 
2/clk

TpDD V
dt

dV
τ

≤     (eq.2) 

For the TSMC 0.18µm technology and a 1GHz clock, 
the dVDD/dt limit is about 0.2V/ns. We use a more 
conservative dVDD/dt rate of 0.05V/ns, for our experiments. 
Hence, switching between VDD

H=1.8V and VDD
L=1.2V 

costs 12 clock cycles. 
3.3. Power-supply network  

There are two options for the power-supply network: 
(1) using a single network and supply different VDD’s at 
different times, or (2) using two different networks.  

Present-day embedded systems that implement 
supply-voltage scaling use the first option. The supply 
voltage is continuously adjusted using a dynamic DC-DC 
converter. Unfortunately, the DC-DC converter requires a 
long time for voltage ramping [1, 14]. Since VSV targets 
high-performance processors running at GHz clock speeds, 

the first option is not suitable for our purpose. Therefore, 
we choose the second option and use a dual-power-supply 
network to achieve fast VDD switching. This structure 
includes two interwoven power-supply networks: one is 
used for VDD

H, and the other for VDD
L. Between each pair 

of connection points in a circuit module, a pair of PMOS 
transistors with complementary control signals is inserted 
to control voltage switching. Therefore, only one power-
supply network is selected at one time for a particular 
module. 

The additional supply lines in our dual-power-supply 
network introduce overhead in terms of energy and area. 
In Section 5.2, we calculate the energy overhead and show 
that it is minimal. Previous work [15] shows that dual-VDD 
design using dual-supply lines causes about 5% area 
overhead. 
3.4. Varying the clock speed 

VSV raises three issues for the clock: (1) clock 
distribution, in the presence of varying clock speed; (2) 
clock power in the presence of varying VDD; and (3) 
synchronization with off-chip circuitry. We consider each 
of these issues in turn. 

First, as technology scales down, it is difficult to send 
a signal across the chip in a single cycle. Based on 
Matzke’s estimation [12], the whole die is reachable 
within 2 clock cycles for 0.18µm technology.  Therefore, 
we assume 4ns are needed for clock distribution – 2ns 
used to transmit the control signal to the root of clock tree, 
and 2ns for the clock to propagate through the clock tree. 

Before a VDD
H to VDD

L transition, the clock speed is 
reduced first, even though the processor continues 
operating at VDD

H for 4 more nanoseconds to distribute the 
slower clock. When ramping up from VDD

L to VDD
H, the 

sequence is reversed: the VDD is ramped up first and then 
the faster clock is distributed. If this ordering is reversed, 
the processor will operate at full clock-speed but lower 
VDD, causing functionality faults. In either case of ramp-up 
or ramp-down, the processor works at half clock-speed 
while the VDD is changing. To slightly optimize 
performance, we overlap the distribution of the full-speed 
clock itself with the last 2ns of VDD ramp-up.  

Second, to avoid the PLL’s slow settling time, we 
keep the PLL operating at VDD

H to generate full-speed 
clock, which is sent to the root of the clock tree. When the 
processor switches to VDD

L, we use the counter described 
in Section 3.1 to reduce the   clock speed.  To enable 
clock-power savings, the VDD of the clock tree itself varies 
with the rest of the processor, although the PLL operates at 
VDD

H. Lowering the VDD of the clock tree does not hurt 
performance because at lower VDD the clock speed itself is 
lower, leading to more slack in the clock period to 
accommodate the slower tree. 

Finally, because the chip and the external devices 
already use different clocks and are naturally 
asynchronous, synchronizers exist at the interface even in 
a normal processor. Therefore, VSV will not introduce 
extra synchronization circuitry at the interface.  
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3.5. Varying the VDD of RAM structures 
Although supply-voltage scaling is effective for power 

reduction, we cannot implement it in all the sections of the 
processor. Ramping VDD up and down involves charging 
and discharging of internal capacitances, respectively, 
which in turn introduces energy overhead. Supply-voltage 
scaling is feasible for a circuit block only when this energy 
overhead can be amortized by the power reduction 
achieved during VDD

L operation. 
For a RAM structure, during an access, only a small 

fraction of the cells are accessed, and only this fraction 
saves power when operating at VDD

L. However, in a VDD 
transition, all the cells either charge or discharge. 
Therefore, a large number of accesses at VDD

L are needed 
to amortize the transition energy overhead.  

The situation for combinational logic is different. 
Because the entire logic circuit is activated for each 
operation, the entire circuit (as opposed to the RAM’s 
small fraction) achieves power saving while operating at 
VDD

L. Consequently, even though a VDD transition charges 
or discharges the entire circuit (like RAM), the power 
saving achieved at VDD

L easily amortizes the transition 
overhead.  

For example, for a 64KB 2-way L1 cache, all the 
SRAM cells are charged when VDD ramps from VDD

L to 
VDD

H. The energy overhead of the transition is: 
CLK

L
DD

H
DDioverhead TVVCKBytesE ⋅−⋅⋅⋅= 2)(864   (eq.3) 

Here, Ci is the internal capacitance of a SRAM cell, 
and TCLK is the cycle time of the clock. 

In a two-way L1 cache access, 2 blocks are read – one 
in each way of the accessed set. If the block size is 32 
bytes, then 2 x 32 x 8 bits are read. Hence, the energy 
savings during VDD

L operation for a cache access (only 
dynamic power is considered) is: 

CLK
L

DD
H

DDisaving TVVCBytesE ⋅−⋅⋅⋅⋅= )(8322
22  (eq.4) 

2001000 ≈
+

−
⋅=

L
DD

H
DD

L
DD

H
DD

saving

overhead

VV
VV

E
E    (eq.5) 

To compensate Eoverhead, at least 200 accesses are 
needed at VDD

L. Such number of accesses is highly 
unlikely because the processor would be stalled upon an 
L2 miss and only a few cache accesses would happen.  

If we do a similar calculation for a combinational 
logic circuit with internal capacitance Clogic: 

2.0
)(

)(
22

log

2
log ≈

+
−

=
−⋅

−⋅
= L

DD
H

DD

L
DD

H
DD

L
DD

H
DDic

L
DD

H
DDic

saving

overhead

VV
VV

VVC

VVC
E

E  (eq.6) 

Hence, for combinational logic, the power saving of 
one operation at VDD

L is much more than the energy 
overhead of a VDD transition. 

We see that supply-1voltage scaling should not be 
implemented for large RAM structures, such as the register 
file, I-cache, and D-cache. But for small RAM structures 
and combinational logic circuits, the energy overhead can 
be compensated. 
3.6. Level conversion on the path from VDD

L to VDD
H 

In the VSV processor, the register file and the L1 
caches keep operating at VDD

H, irrespective of whether the 
other sections of the pipeline are operating at VDD

H or VDD
L. 

Level-converting latches are needed when driving VDD
H 

blocks with VDD
L blocks (driving VDD

L blocks with VDD
H 

blocks does not need converters). Hence, level-converting 
latches are needed between the RAM structures and the 
pipeline.  

Because a level-converting latch has a longer delay 
than a regular latch, simply replacing regular latches with 
level-converting latches would increase cache and register 
access time. Access time increases not only when driving 
VDD

H RAM structures with VDD
L blocks, but also when 

driving VDD
H RAM structures with VDD

H blocks, because 
signals still go through level-converting latches, even 
though no level conversion is needed. 

Because the no-conversion path (i.e., when driving 
VDD

H RAM structures with VDD
H blocks) is used when 

operating at full clock-speed, the unnecessary delay due to 
the level-converting latches is a problem. To mitigate the 
delay, we place both regular and level-converting latches 
on the path between the structures and the blocks. Using a 
simple multiplexer, we choose the appropriate latch. Thus, 
the level-converting latches are bypassed when no 
conversion is necessary. To optimize the no-conversion 
path further, we implement the multiplexer by using a 
transmission gate that is placed at the output of the level-
converting latch, leaving the regular latch latency virtually 
unchanged. Because transmission gates have only a small 
RC delay, even the level-conversion path does not incur 
much overhead due to the multiplexer.   

However, the level-conversion path still incurs the 
overhead of level conversion and the transmission gate. 
We hide the latency by exploiting the following 
observation: Although the RAM structures are clocked at 
half clock-speed when the rest of the pipeline operates at 
VDD

L, the structures still use VDD
H. Consequently, their   

access times are still fast, creating a slack between the fast 
structures and the longer clock cycle. VSV uses this slack 
to absorb the level conversion latency.  

Because the transmission gate selects only one set of 
either regular or level-converting latches at any time, the 
control signal for the transmission gates can be used to 
clock-gate the unselected latches. Hence, only one set of 
latches contributes to processor power.  
4. Microarchitectural issues  

Figure 1 depicts a processor that implements VSV. 
The processor is divided into two sections. The sections 
with large RAM structure (e.g. register file and I/D caches) 
and PLL are shown in gray. We do not implement voltage 
scaling in these areas because of either large power 
overhead (Section 3.5) or an unaffordably long settling 
time (Section 3.4). All the other sections shown in white 
apply VSV, and use a dual-power-supply network. The 
state machines (FSMs) monitor the issue rate to control 
switching of VDD, as mentioned in the introduction. 
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The VSV processor has two steady operation modes: 
(a) In the high-power mode, the entire processor operates 
at VDD

H and full clock-speed for the high-performance 
requirement; (2) and in the low-power mode, the processor 
runs at half clock-speed. To reduce power dissipation, 
most sections of the pipeline, except those shown in gray 
in Figure 1, operate at VDD

L. 

 
Figure 1 Structure diagram of VSV  

4.1. High-power mode  
In the high-power mode, the processor operates at 

VDD
H and full clock-speed.  This is the default mode of 

operation. 
4.2. High-to-low power mode transition 

VSV uses L2 cache misses to flag the absence of ILP.  
However, depending on the degree of ILP, the processor 
may find independent instructions to overlap with L2 
misses.  If the processor switches to the low-power mode 
in such high-ILP cases, significant performance 
degradation will ensue, as mentioned in the introduction.  
To avoid the performance loss, VSV employs down-FSM 
to monitor the instruction-issue rate, and works with the 
L2 miss signal, to guide switching to the low-power mode.   

Down-FSM works as follows: when an L2 miss signal 
reaches the processor (after L2 hit latency), the FSM starts 
recording the instruction-issue rate for the small period 
(e.g., 10 cycles) that ensues. During this period, if the 
number of consecutive cycles in which no instruction is 
issued is above a threshold (e.g., 1-5 cycles), the transition 
to the low-power mode starts.  The processor can begin 
transitioning as soon as the threshold is satisfied, without 
having to wait until the end of the monitoring period.  

For maximum power savings and minimum 
performance loss, down-FSM should signal a high-to-low 
transition when and only when the long-term ILP after an 
L2 miss is low.  The “when” part is needed to avoid a loss 
of power-saving opportunity, and the “only when” part is 
needed to avoid a loss of performance.   

Two phenomena in modern processors – out-of-order 
issue and short-term parallelism of instructions near a 
missing load – can mislead down-FSM to violate the 
“when” part by mistakenly identifying ILP to be high 
when it is actually low. We observe that the absence of 
ILP during the monitoring period often signifies the 
absence of long-term ILP. Because the monitoring starts 
only after an L2 miss is detected, any independent 

instruction due to this out-of-order issue and short-term 
parallelism has mostly already been issued from the time 
the missing load was issued to the time when the L2 miss 
was detected. Therefore, down-FSM is accurate in 
identifying the absence of ILP, despite the out-of-order 
issue and short-term parallelism. 

Satisfying the “only when” part is straightforward 
because if the long-term ILP is high, then it often turns out 
that the ILP in the monitoring period is also high. 

L2 cache misses caused by prefetches (software or 
hardware) do not cause long pipeline stalls. Therefore, 
VSV does not switch to the low-power mode during these 
misses. 

Figure 2 illustrates the timeline of events in a high-to-
low power mode transition, including the time taken for 
signal distribution (Section 3.4). The numbers in Figure 2 
indicate latency in unit of nanosecond. 

Figure 2 Timeline: High-to-low power mode transition 
4.3. Low-power mode 

In the low-power mode, the pipeline operates at VDD
L 

and half clock-speed. Because caches and register file 
operate at VDD

H even when the pipeline is in the low-power 
mode (Section 3.5), there is a choice of clocking these 
structures either at full or half clock-speed. Although 
clocking these structures at full clock-speed improves 
performance, this choice causes many difficulties.  

This choice will result in two different clock speeds in 
operation at the same time – the pipeline operating at half 
clock-speed and the structures at full clock-speed. If this 
mismatch in clock speeds always were to exist, then 
accounting for the mismatch would amount to halving the 
structures’ latencies, and there would be no major 
difficulties. However, when the pipeline goes back to 
operating at full clock-speed, these structures will continue 
to operate at full clock-speed, and the mismatch will 
disappear. Consequently, the latency of the structures 
counted in number of clock cycles of the pipeline varies 
with the power mode of the pipeline. 

This variation raises four issues. First, modern 
pipelines exploit the deterministic cache hit (or register 
access) latency predetermined at design time for back-to-
back scheduling of the instructions dependent on loads.  
Such scheduling is critical for high performance due to the 
frequent occurrence of loads. To exploit the full clock-
speed of the cache, the scheduler would need to be 
modified to do back-to-back scheduling for two different 
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sets of latencies – one assuming X full-speed-clock cycles 
and the other assuming X/2 half-speed-clock cycles.  

Second, the scheduler allocates resources, such as 
register write-ports, assuming a predetermined latency 
from the time when the instruction issues to the time when 
the instruction writes back. Such predetermined scheduling 
avoids extra-handshake overheads in common cases of 
load hits and stall-free execution.  If the latency of the 
structures varies with the pipeline’s power mode, the 
predetermined resource schedules would not work. For 
example, when the scheduler issues a load instruction, the 
resource scheduler reserves a register-write port for the 
cycle X, to write the returned value from the cache into the 
register file. However, because of the mismatch in speeds, 
the data cache returns the data earlier than the reserved 
time in the cycle X/2. The earlier arrival of the data would 
cause unexpected register-write port conflicts with the load 
that has scheduled the register-write port for that cycle.  
The scheduler would need to be changed to handle two 
different sets of schedules. Changes due to the first two 
issues may add complexity to the already intricate 
scheduler implementation.  

Third, we assumed in Section 3.6 that the level-
converter latencies can be hidden under the slack of the 
fast raw latency of the structures at VDD

H and the half-
clock-speed cycle. This assumption is violated if the 
structures are clocked at full speed.   

Finally, to handle the situation in which the pipeline is 
operating at the half clock-speed and the structures are 
operating at the full clock-speed, we may need extra hand-
shaking between the pipeline and the structures, which 
typically causes extra delay [21]. Because the hand-
shaking circuitry is physically inserted on the cache hit 
critical path, designs which run in different clock-speeds 
may result in longer cache hit latency, even when the 
cache and the pipeline are running at the same speed in the 
high power-mode. 

Therefore, we do not pursue the choice of using two 
different clock speeds. Instead, we let register file and L1 
caches operate at the half clock-speed even though they 
are operating at VDD

H (Section 3.1).  By clocking the L1 
cache and the register file at the same half clock-speed as 
the pipeline, L1 cache hit latency and register access 
latency will remain the same in terms of number of clock 
cycles of the pipeline, irrespective of the power mode. 
Thus, VSV avoids scheduler changes and other 
complications by sacrificing the opportunity to have 
shorter cache hit latency in the low-power mode. 

Unlike the L1 cache, the hit latency of which is 
closely tied to the pipeline, the L2 cache is more loosely 
tied to the pipeline. In the case of the L2 cache, because 
the latency is longer and accesses are infrequent, there is 
no need for such a tight interface.  Consequently, there is 
an asynchronous interface between the L2 cache and the 
pipeline.  Recall that L2 cache always operates at VDD

H, so 
its raw latency does not change. The L2 latency is X cycles 
when the processor is in the high-power mode and X/2 

cycles when the processor is in the low-power mode.  This 
change in cycle latency for the response from the L2 cache 
does not impact correctness and is automatically taken 
care of because of the asynchronous interface between the 
L2 cache and the processor. 
4.4. Low-to-high power mode transition 

When in the low-power mode, VSV uses the L2 cache 
miss returns to guide switching back to the high-power 
mode.  If there is only one outstanding L2 miss, VSV 
switches back to the high-power mode when the miss is 
returned.  However, the decision of switching back is more 
complicated when there are multiple outstanding misses.   

A returned L2 miss causes its dependent instructions 
to become ready for issue.  On one hand, if the processor 
switches back to the high-power mode when there are only 
a few ready instructions, the processor will soon stall again 
due to other outstanding L2 misses, and waste the 
opportunity to save more power.  On the other hand, if the 
processor does not switch back to the high-power mode 
when there are many ready instructions, the performance 
of the processor will be degraded.  

To identify both of these cases, VSV employs another 
FSM, called up-FSM, which monitors the instruction-issue 
rate, and works with the returning L2 miss, to guide 
switching back to the high-power mode. 

Up-FSM works as follows: when an L2 miss data 
returns to the processor, the FSM starts to record the 
instruction-issue rate for the small period (e.g., 10 half-
clock-speed cycles) that ensues.  During this period, if the 
number of cycles in which at least one instruction is issued 
is above a threshold (e.g., 1-5 half-clock-speed cycles), the 
transition to the high-power mode starts.  Similar to the 
high-to-low transition, the processor can begin 
transitioning to the high-power mode as soon as the 
threshold is satisfied, without having to wait until the end 
of the monitoring period. 

For maximum power saving and minimum 
performance loss, up-FSM should signal a low-to-high 
transition when and only when ILP is high after an L2 
miss returns.  The “when” part is needed to avoid a loss of 
performance, and the “only when” part is needed to avoid 
a loss of power saving opportunity. In fact, both “when” 
and “only when” are straight-forward for the low-to-high 
transition, and up-FSM does not often get confused. 

Figure 3 Time line: Low-to-high power mode transition 
Figure 3 illustrates the timeline of events in a low-to-

high transition, including the time taken for signal 
distribution (Section 3.4). The numbers in Figure 3 
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indicate latency in units of nanoseconds. Because the 
processor operates in half clock-speed when in the low-
power mode, the maximum monitoring period is 20ns for 
the low-to-high transition. 
5. Experimental Methodology 

We used a modified version of Wattch [7] to simulate 
an 8-issue, out-of-order processor for evaluating VSV. To 
simulate accurately the timing effects of cache misses on 
VSV, we incorporated a memory bus model and MSHR 
(Miss Status History Register) into the simulator. To avoid 
underestimating the effect of the time to detect an L2 miss, 
we conservatively assume that the latency to detect an L2 
miss is as long as the L2 cache hit latency.  We warm up 
caches during fast-forward period, so VSV will not benefit 
from cold misses that do not occur in the stationary phase 
of program executions. Because most modern processors 
today use clock-gating [5] and software prefetching, we 
include these two techniques in all simulations.   

Table 1: Baseline processor configuration 

Processor 
8-way issue, 128 RUU, 64 LSQ, 8 integer ALUs, 2 
integer mul/div units, 4 FP ALUs, 4 FP mul/div units, 
uses clock gating (DCG) and s/w prefetching 

Branch 
prediction 

8K/8K/8K hybrid predictor; 32-entry RAS, 8192-entry 4-
way BTB, 8 cycle misprediction penalty 

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-cycle L2, 
both LRU 

MSHR IL1 - 32, DL1 – 32, L2 - 64 
Memory Infinite capacity, 100 cycle latency 
Memory 
bus 

32-byte wide, pipelined, split transaction, 4-cycle 
occupancy 

We used pre-compiled, Alpha-SPEC2K binaries in [8], 
which are compiled with SPEC peak setting, including 
software prefetching.  We used ref inputs in all simulations.  
We fast-forwarded two billion instructions, and then 
simulated one billion instructions. Table 1 lists the 
baseline configurations for all simulations. 
5.1. Simulation of Hardware Prefetching Technique 

Hardware prefetching techniques can effectively 
reduce cache misses to improve performance, on top of 
software prefetching. Because VSV exploits cache misses, 
we wanted to verify if VSV can still achieve power 
reduction in the presence of hardware prefetching. 

In Section 6.4, we implemented the state-of-the-art, 
hardware-based Time-Keeping prefetching [9] in Wattch.  
Time-Keeping prefetching works as follows: If an L1 
cache block is predicted dead, the predictor issues a 
prefetch request to lower memory hierarchy.  The returned 
data block is placed in both L2 cache and a prefetch buffer 
close to L1, as described in [9]. The prefetch buffer is a 
128-entry, fully associative cache that uses FIFO 
replacement policy, and has two-cycle access latency.  The 
decay counters have a 16-cycle resolution. The 16KB 
address predictor uses nine bits from L1 tags and one bit 
from L1 indexes, to form signatures into the predictor. 
Because our baseline processor has a set-associative L1 
data cache, we used per-set history traces for the address 
predictor, as recommended in [9].  
5.2. Power Calculation 

We estimated the overall processor power for 0.18µm 
technology by modifying the Wattch power equations to 
capture the effect of variable VDD. All our results show 
only dynamic power. Leakage power is not included in our 
simulations, because leakage power is small for 0.18µm 
technology.  

We monitored the dynamic change in VDD and 
frequency in each section of the processor. Depending on 
the VDD at a particular cycle, the simulator adds the correct 
value of dissipated power to the system power. During the 
ramp-up/down of supply, for each of the cycles, we took 
the average value of the supply voltage at the beginning 
and end of the cycle as the effective supply voltage 
contributing to processor power. As described in section 
3.2, we assumed that the ramping period is 12 cycles. 

We modeled our dual-power-supply network as a 
distributed RLC network by replacing each segment of the 
power grids with a lumped resistance-inductance-
capacitance (RLC) element [13]. By using HSPICE, we 
simulated a dual-power-supply network for Alpha 21264 
processor. To be consistent with 0.18µm technology, we 
shrank the layout of Alpha 21264 processor [6]. Our 
experiments showed that the dual-power-supply network 
structure can switch between VDD

H=1.8V and VDD
L=1.2V 

in 12ns (12 cycles fCLK=1GHz) with 66nJ energy 
dissipation during ramping. We accounted for this energy 
overhead in our calculations. 

For the latches on the path from VDD
L to VDD

H, the 
simulator adds the power of the regular latches in high-
power mode, or the power of the level-converting latches 
in low-power mode (Section 3.6). 

Because clock gating is widely used in commercial 
processor [5], we built baseline processor on deterministic 
clock gating [10], which clock gates the functional units, 
pipeline latches, D-cache wordline decoders and result bus 
drivers. Hence, for each of these circuits, if it is clock-
gated in a particular cycle, it does not contribute to the 
overall power.  On the other hand, if the circuit is not 
clock-gated, the simulator adds its dynamic power 
corresponding to the variable VDD.  

For the processor with timekeeping-based prefetching 
technique, we also included the power consumption 
caused by prefetching buffer in total power calculation. 
5.3. L2 miss-rate 

Table 2 shows instructions per full-speed-clock cycle 
(IPC) of SPEC2K benchmarks for the baseline processor, 
and L2 miss-rate, measured in number of L2 demand 
misses per 1,000 instructions (we call this number MR), 
for both baseline and Time-Keeping prefetching. 
6. Results 

We show the Wattch simulation results in this section. 
First, we present the effectiveness of VSV on the basis of 
power savings and performance degradations in Section 6.1. 
Next, we describe the effects of monitoring thresholds for 
high-to-low transition in Section 6.2 and for low-to-high 
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transition in Section 6.3. Finally, we show VSV’s impact in 
the presence of Time-Keeping prefetching in section 6.4.  
6.1. Effectiveness of VSV 

In Figure 4 (top), we plot VSV’s performance 
degradation for the SPEC2K benchmarks. The Y-axis 
corresponds to VSV’s performance loss computed as a 
percentage of the execution time in the base processor 
running at full clock-speed. In Figure 4 (bottom), we plot 
the total CPU power savings (including the caches). The 
Y-axis represents power savings computed as a percentage 
of total power of the base processors. In both graphs, the 
X-axis shows benchmarks sorted by decreasing MR (L2 
misses per 1,000 instructions). All runs include 
deterministic clock gating (DCG) and software prefetching. 
In the figures white bars show VSV without the FSMs and 
black bars show VSV with the FSMs. When operating 
without the FSMs, the processor goes to low-power mode 
whenever an L2 cache miss is detected, and goes to high-
power mode whenever an L2 cache miss returns. 

 
We make three observations. First, VSV is effective in 

saving power, without (white bars) or with the FSMs 
(black bars).  VSV saves average power by 33% without 
the FSMs and by 21% with the FSMs, for the benchmarks 
that have high MR. These benchmarks are in the left 
section of the graphs.  In ammp, mcf, art and applu, VSV 
with FSMs saves 46%, 38%, 21% and 15% powers, with 
only 1%, 4%, 3% and 2% performance degradations, 

respectively.  Averaging across all SPEC2K benchmarks, 
VSV achieves 7% power saving with 1% performance 
degradation.  

Second, the FSMs are effective in avoiding 
performance degradation, by not switching to low-power 
mode when ILP is high after an L2 miss.  Some programs 
that have high ILP, such as applu, swim and mgrid, save 
33%, 21% and 19% powers without the FSMs, albeit 
suffering performance degradations as high as 22%, 17% 
and 18%.  With the FSMs, these programs give up much 
of their power savings, down to 15%, 8% and 1%, but now 
with small degradations of 2%, 3% and 0%, respectively. 
On average, benchmarks that have MR higher than 4 
suffer 12% degradation without the FSMs, but only 2% 
with the FSMs.  

VSV can still degrade performance despite using the 
FSMs. Performance degradations are caused by: 1) the 
down-FSM signals processor to enter low-power mode, 
despite high ILP after an L2 miss, 2) the monitoring period 
for low-to-high transition operates with reduced clock-
speed, thus delaying critical path instructions. Despite 
these possible mishaps, all programs suffer less than 3% 
performance degradation, except mcf which suffers 4%. 
VSV effectively saves power for many programs with only 
1% performance degradation.  

Finally, for the benchmarks in the middle section of 
the graphs, VSV with FSMs achieves power savings 
between 1.1% and 8.9%, all at less than 2% performance 
degradations (e.g., perlbmk achieves 8.9% reduction in 
power with 0.8% performance degradation). VSV neither 
saves power nor degrades performance for programs that 
have low MR (right sections of the graphs), because they 
seldom operate in low-power mode.  

Because our interest in VSV is for saving power with 
minimal performance degradation, we will describe the 
results only with the FSMs for the remainder of the paper. 
6.2. Effects of thresholds for high-to-low transition 

To see the effectiveness of issue-rate monitoring for 
high-to-low transitions of power modes, we varied the 
monitoring threshold as 0, 1, 3 and 5 cycle in Figure 5, and 
kept the monitoring period at 10 cycles.  Recall that for 
high-to-low transitions  a monitoring threshold of 3 means 
that down-FSM looks for 3 consecutive cycles where no 
instructions is issued in each cycle, and that the monitoring 
period of 10 cycles means that down-FSM looks for the 
threshold to occur within 10 cycles. Here, the cycles are in 
units of full-speed-clock cycle.  For low-to-high transitions, 
we use up-FSM that has 3-half-speed-clock-cycle 
threshold and 10-half-speed-clock-cycle monitoring period 
in all runs, because they help down-FSM achieve best 
results. For clarity, we show only the subset of 
benchmarks whose MR is more than 4.  

From Figure 5, we see that low thresholds give VSV 
more opportunity to save power; but also cause more 
performance degradation, and vice versa for high threshold.  

The bar Threshold 0 corresponds to a processor that 
does not use down-FSM for high-to-low transition.  VSV 
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Figure 4 VSV Results: with and without the FSMs

Table 2: Baseline SPEC2K benchmark statistics 
 IPC MR  IPC MR 

 Base Base TK  Base Base TK 
ammp 0.59 11.0 0.5 gzip 2.31 0.1 0.1 
applu 2.32 10.1 4.1 lucas 1.34 10.2 4.2 
apsi 2.51 1.4 0.7 mcf 0.29 67.4 48.2 
art 1.36 10.3 11.7 mesa 3.64 0.3 0.2 
bzip2 2.38 0.5 0.4 mgrid 4.17 1.5 0.8 
crafty 2.68 0.0 0.0 parser 1.68 0.6 0.7 
eon 3.13 0.0 0.0 perlbmk 1.41 1.3 0.6 
equake 4.51 0.0 0.0 sixtrack 3.64 0.0 0.0 
facerec 3.02 4.7 2.3 swim 3.81 5.8 1.4 
fma3d 4.35 0.0 0.0 twolf 1.42 0.0 0.0 
galgel 2.21 0.0 0.0 vortex 2.31 0.2 0.2 
gap 3.00 0.5 0.3 vpr 1.25 2.0 2.1 
gcc 2.27 0.1 0.1 wupwise 4.58 0.5 0.4 
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with a threshold of 0 causes performance degradation as 
high as 13% for swim and 10% for applu. When increasing 
the threshold from 1 to 3, lucas, swim, applu and facerec 
significantly reduce performance degradations, but also 
save much less power.  Mcf and art significantly reduce 
performance degradations, but still achieve roughly the 
same power savings as threshold one.  With a threshold of 
5, all of these benchmarks incur similar performance 
degradations as with the threshold of 3, but with less 
power savings.  To sum up, a threshold of 3 is the best-
performing, because it incurs performance degradation less 
than 5%, but saves more powers than threshold 5. 

6.3. Effects of thresholds for low-to-high transition 
To see the effectiveness of issue-rate monitoring for 

low-to-high transitions of power modes, we varied the 
corresponding threshold as 1, 3 and 5 cycles in Figure 6, 
and kept the corresponding monitoring period at 10 cycles. 
Recall that for low-to-high transitions a monitoring 
threshold of 3 means that up-FSM looks for 3 consecutive 
cycles where at least one instruction is issued in each cycle, 
and that the monitoring period of 10 cycles means that up-
FSM looks for the threshold to occur within 10 cycles. 
Here, the cycles are in units of half-speed-clock cycle. For 
high-to-low transition, we keep the up-FSM at 3-cycle 
threshold and 10-cycle monitoring period in all runs. 
Again, we show only the subset of benchmarks whose MR 
is more than 4. 

For comparison, we also show the results without 
monitoring, and instead use simple heuristics for making 
low-to-high transition whenever the first or the last 
outstanding L2 miss returns. To ease explanation, we call 
the former heuristic as First-R and the latter as Last-R.  
These simple heuristics trade-off performance and power:  
while Last-R saves more power than First-R, Last-R also 
causes more performance degradation than First-R.  

From Figure 6, we see that increasing threshold value 
favors power saving while decreasing threshold favors 
performance. The results also show that the issue-rate 
monitoring is effective, because the monitoring achieves 
power saving close to Last-R’s, and performance close to 
First-R’s. 

Threshold 1 incurs small performance degradation 
similar to First-R, but saves more power than First-R.  A 
threshold of 3 achieves power savings closer to that of 

Last-R, with performance degradation only 1~2% more 
than that of First-R, except in swim. A threshold of 5 
behaves similar to Last-R both in performance and power, 
except in swim where the monitoring successfully reduces 
swim’s performance degradation, from 13% to 5%.   

6.4. Impact of Time-Keeping prefetching technique 
Time-Keeping Prefetching is an important, state-of-

the-art technique to reduce cache misses. Although the 
technique is not a standard feature on modern processors, 
we stress-test VSV with the technique in this section, 
because the technique may remove cache misses to the 
point where VSV has no opportunity. 

 
Our experiment shows that although Time-Keeping 

prefetching reduces L2 miss-rates for most benchmarks, it 
does not remove all L2 misses. VSV could still save power 
for a processor that implements aggressive prefetching. On 
average, the prefetching reduces MR from 4.9 to 3.0. 

In Figure 7, we show VSV’s performance 
degradations and power savings without (white bar) and 
with (black bar) Time-Keeping, respectively. VSV uses 
the same FSM configuration as in Section 6.1.  

Most benchmarks’ performance degradations and 
power savings remain largely unchanged when prefetching 
is employed, except that mcf’s degradation increases from 
4.4% to 5.9%, and that ammp’s power saving significantly 
reduces from 46% to 1%. Ammp’s savings reduce because 
prefetching removes 95% of its L2 misses. Most of high-
MR benchmarks roughly maintain their power savings, 
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Figure 7 Impact of Time-Keeping Prefetching on VSV 

Figure 5 Effects of thresholds on high-to-low transitions 

0 1 3 5 

0 
3 
6 
9 

12 
15 

0 
10 
20 
30 
40 
50 

mcf ammp art lucas applu swim facerec

Pe
rf

or
m

an
ce

 
D

eg
ra

da
tio

n 
(%

) 
C

PU
 P

ow
er

 
Sa

vi
ng

s (
%

) 

0 1 3 5 

Pe
rf

or
m

an
ce

 
D

eg
ra

da
tio

n 
(%

) 
C

PU
 P

ow
er

 
Sa

vi
ng

s (
%

) 

Figure 6 Effects of thresholds on low-to-high transitions
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because the prefetching does not significantly reduce the 
miss-rates for these benchmarks. 

In summary, VSV achieves 12.1% average power 
saving with Time-Keeping, compared to 20.7% without 
Time-Keeping, for the benchmarks that have MR higher 
than 4. The average performance degradations remain at 
2.1% with and without prefetching.  Averaging across all 
SPEC2K benchmarks, VSV achieves 4.1% reduction in 
power with 0.9% performance loss. Hence, VSV can save 
power with minimal degradation, even for an aggressive 
processor that implements the latest, state-of-the-art 
prefetching technique. 
7. Conclusions 

We proposed a novel variable supply-voltage scaling 
(VSV) technique to reduce processor power without undue 
impact on performance. We proposed scaling down the 
supply voltage of certain sections of the processor during 
an L2 miss while being able to carry on the independent 
computations at a lower speed. We introduced two novel 
finite state machines (FSMs), up-FSM and down-FSM, that 
track parallelism on-the-fly. Down-FSM avoids 
performance degradation by preventing supply-voltage 
from scaling down when there are sufficient independent 
computations to overlap with the L2 miss. Up-FSM avoids 
reduction in power savings by preventing supply-voltage 
from scaling up when there are multiple outstanding 
misses and insufficient independent computations to 
overlap with them.  

Circuit-level considerations impose many constraints 
on VSV.  First, circuit-level complexity limits VSV to two 
supply voltages. Second, circuit stability and signal-
propagation speed issues limit the rate of transition 
between the voltages and introduce a transition time 
overhead. Third, energy overhead factors disallow supply-
voltage scaling of large RAM structures such as caches 
and register file upon an L2 miss. 

For our simulations, we used the SPEC2K 
benchmarks executing on an eight-way, out-of-order-issue 
superscalar processor that implements clock gating and 
software prefetching. Our simulations showed that VSV 
with the FSMs reduces power by as much as 46% with 
performance degradation as small as 4% in the worst case. 
On average, VSV saves 7% in total processor power for all 
SPEC2K benchmarks, and 21% for benchmarks with high 
L2 miss rates (>4 misses per 1,000 instructions).  We 
showed that the FSMs are effective in avoiding 
performance degradation for programs with high ILP. The 
FSMs reduce VSV’s performance degradation from 12% 
to 2%, while limiting the drop in power savings from 33% 
to 21%.  

Finally, we showed that VSV is effective in saving 
power, even in a processor that implements the aggressive 
Time-Keeping prefetching. VSV achieves 4% reduction in 
power for all SPEC2K benchmarks, and 12% for the 
benchmarks with high L2 miss rates, when both the 
baseline and VSV implement Time-Keeping. 
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