
Distance Associativity for High-Performance Energy-Efficient Non-Uniform Cache
Architectures

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University

e
y
A

ow
ce-
re-
the
.
’s
the
are

ta
tag
4].
ata
sults
all
ffset
e

ata
the
the

t
ven
effi-
ot
d

ays,
and

f
-
se-
an
nd

l
;

all

of
ple,

Procee
0-7695
{zchishti, mdpowell, vijay}@purdue.edu
Abstract

Wire delays continue to grow as the dominant component of
latency for large caches. A recent work proposed an adaptive,
non-uniform cache architecture (NUCA) to manage large, on-
chip caches. By exploiting the variation in access time across
widely-spaced subarrays, NUCA allows fast access to close
subarrays while retaining slow access to far subarrays. While
the idea of NUCA is attractive, NUCA does not employ design
choices commonly used in large caches, such as sequential tag-
data access for low power. Moreover, NUCA couples data
placement with tag placement foregoing the flexibility of data
placement and replacement that is possible in a non-uniform
access cache. Consequently, NUCA can place only a few blocks
within a given cache set in the fastest subarrays, and must
employ a high-bandwidth switched network to swap blocks
within the cache for high performance. In this paper, we pro-
pose theNon-uniform access withReplacementAndPlacement
usIng Distance associativity” cache, or NuRAPID, which
leverages sequential tag-data access to decouple data place-
ment from tag placement. Distance associativity, the placement
of data at a certain distance (and latency), is separated from set
associativity, the placement of tags within a set. This decou-
pling enables NuRAPID to place flexibly the vast majority of
frequently-accessed data in the fastest subarrays, with fewer
swaps than NUCA. Distance associativity fundamentally
changes the trade-offs made by NUCA’s best-performing
design, resulting in higher performance and substantially
lower cache energy. A one-ported, non-banked NuRAPID
cache improves performance by 3% on average and up to 15%
compared to a multi-banked NUCA with an infinite-bandwidth
switched network, while reducing L2 cache energy by 77%.

1 Introduction

CMOS scaling trends are leading to greater numbers of
smaller transistors in a single chip but a relative increase in
wire delays. The availability of transistors leads to large, on-
chip caches. While small, fast, L1 caches remain close to the
processor, L2 or L3 (i.e., lower level) caches use many SRAM
subarrays spread out throughout the chip and connected
through long wires. Increasing wire delays will continue to
grow as the dominant latency component for these caches. The
access time of conventional lower-level caches has been the
longest access time of all subarrays, but such uniform access
fails to exploit the difference in latencies among subarrays.

A recent work [7] proposed an adaptive, non-uniform cach
architecture (NUCA) to manage large on-chip caches. B
exploiting the variation in access time across subarrays, NUC
allows fast access to close subarrays while retaining sl
access to far subarrays. NUCA pioneered the concept of pla
ment based on the access time of the selected block. F
quently-accessed data is placed in subarrays closer to
processor while infrequently-accessed data is placed farther

While the idea of non-uniform access is attractive, NUCA
design choices have the following problems. To understand
problems, we make the key observation that large caches
implemented significantly differently than small caches.

(1) Tag search:While small caches probe the tag and da
arrays in parallel, large, lower-level caches often probe the
array first, and then access only the matching data way [3, 1
Because the tag array latency is much smaller than the d
array latency in large caches and because parallel access re
in considerably high energy [3, 9], the small increase in over
access time due to sequential tag-data access is more than o
by the large savings in energy. Although intended for larg
lower-level caches, NUCA does not use sequential tag-d
access; instead it either does a parallel (multicast) search of
ways (albeit sometimes a subset of the ways), or searches
ways sequentially, accessingbothtag and data, from the closes
to the farthest. Because the entire tag array is smaller than e
one data way, sequential tag-data access is more energy-
cient than sequential way search if the matching data is n
found in the first way (e.g., if the data is found in the secon
way, sequential way accesses two tag ways and two data w
while sequential tag-data accesses the entire tag array once
one data way).

NUCA’s tag layout adds to the energy inefficiencies o
searching for the matching block. NUCA’s tag array is distrib
uted throughout the cache along with the data array. Con
quently, searching for the matching block requires traversing
switched network, which consumes substantial energy a
internal bandwidth.

(2) Placement: Even the most flexible placement policy
proposed by NUCA is restrictive. NUCA (and conventiona
caches) artificiallycouplesdata placement with tag placement
the position in the tag arrayimplies the position in the data
array. This coupling means that NUCA can place only a sm
number of ways of each set in the fastestdistance-group(d-
group), which we define as a collection of data subarrays all
which are at the same latency from the processor. For exam
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

d-
be
ps
ta
es
ks

ce
y
-

ess

the

oli-
he

n-
ge

-

ssor
al

e
ncy
ps.
nd

e

es.
data

n 1.)
ks
as
s

ex-
he
n-
ce

nd
In
our
d
in

Procee
0-7695
in a 16-way set-associative NUCA cache, this number may be
two — i.e., two specific ways of each set may be in the fastest
d-group. As long as the frequently-accessed ways within a set
are fewer than this number, their access is fast. However, if a
“hot” set has more frequently-accessed ways, the accesses are
not all fast, even though the fastest d-group is large enough to
hold all the ways of the set. To mitigate this problem, NUCA
uses a policy of promoting frequently-accessed blocks from
slower to faster d-groups, by swapping the ways within a set.
These swaps are energy-hungry and also consume substantial
internal bandwidth.

(3) Data Array Layout: While [7] considered several d-
group sizes, the best design choice for NUCA was to divide the
cache into many, small d-groups (e.g., many 64-KB d-groups)
to provide a fine granularity of access times. In conventional
large caches, the bits of individual cache blocks are spread over
many subarrays for area efficiency, and hard- and soft-error tol-
erance. While [7] does not consider error tolerance, doing so
would require a NUCA cache block to be spread over only one
d-group to achieve the same latency for all the bits in the block.
Unfortunately, NUCA’s design choice of small d-groups would
constrain the spread to only a few small subarrays while con-
ventional caches spread the bits over a much larger space (e.g.,
the 135 subarrays making up the 3-MB L3 in Itanium II [14]).

(4) Bandwidth: To support parallel tag searches and fast
swaps, NUCA’s best design assumes a multi-banked cache and
a complicated, high-bandwidth switched network among the
subarrays of the cache ([7] considered a non-banked design
without the switched network, but found that design inferior).
While the bandwidth demand due to NUCA’s tag searches and
swaps is artificial, the real bandwidth demand from the CPU is
filtered by L1 caches and MSHRs. As such, the real demand for
lower-level cache bandwidth is usually low and does not justify
the complexity of multibanking and a switched network.

To address problem (1) we use a sequential tag-data access
with a centralized tag array which is placed close to the proces-
sor. To address problem (2), we make the key observation that
sequential tag-data access creates a new opportunity todecou-
pledata placement from tag placement. Because sequential tag-
data access probes the tag array first, the exact location in the
data array may be determined even if there is no implicit cou-
pling between tag and data locations. This decoupling enables
distance associativity,which allows a completely flexible
choice of d-groups for data placement, as opposed to NUCA’s
set-associativity-restricted placement. Hence, unlike NUCA, all
the ways of a hot set may be placed in the fastest d-group. To
allow the working set to migrate to the fastest d-group, we swap
data out of d-groups based ondistance replacementwithin the
d-group, although eviction from the cache is still based ondata
replacement within the set.

To address problem (3), we use a few, large d-groups instead
of NUCA’s many, small d-groups. Our large (e.g. 2-MB) d-
groups retain the area-efficiency and fault-tolerance advantages
of spreading cache blocks over many subarrays. Because of the
higher capacity of our large d-groups and our flexible place-
ment, the pressure on our fastest d-group is significantly lower.

Therefore, we do not need to swap blocks in and out of
groups as often as NUCA. Though our larger d-groups may
slower than NUCA’s smaller d-groups, the reduction in swa
more than offsets the longer latency. This reduction in da
movement combined with elimination of parallel tag search
reduces bandwidth demand, obviating NUCA’s multiple ban
and switched network mentioned in problem (4).

In solving these problems, this paper shows that distan
associativity fundamentallychanges the trade-offs made b
NUCA’s best-performing design, resulting in higher perfor
mance and substantially lower energy.

While sequential tag-data access and non-uniform acc
are not new, the novel contributions of this paper are:
• Our leverage of sequential tag-data access to introduce

concept of distance associativity.
• Our strategy of using a few, large d-groups.
• Our distance-placement and distance-replacement p

cies. Because our policies require fewer swaps, our cac
has 61% fewer d-group accesses than NUCA.

• Over 15 SPEC2K applications, our one-ported, no
banked cache improves performance by 3% on avera
and up to 15% over a multi-banked NUCA with an infi
nite-bandwidth switched network, while consuming 77%
less dynamic cache energy. Our cache reduces proce
energy-delay by 7% compared to both a convention
cache and NUCA.

In Section 2 we discuss NuRAPID caches. In Section 3, w
discuss layout of large caches into subarrays for area efficie
and fault tolerance and the floorplan concepts behind d-grou
Section 4 describes our experimental methodology a
Section 5 our results. In Section 6 we discuss related work. W
conclude in Section 7.

2 Distance Associativity

We propose the “Non-uniform access withReplacement
And Placement usIng Distance associativity” cache, or
NuRAPID. As shown in Figure 1, NuRAPID divides the data
arrays into several d-groups, with different access latenci
Upon a cache access, the tag array is accessed before the
array (sequential tag-data access as discussed in Sectio
The decoupling of placement in the two arrays allows bloc
within a set to be placed within the same d-group, such
blocks A and B in the figure, or different d-groups, such a
blocks C and D. Distance associativity is a data placement fl
ibility and should not be confused with tag placement and t
index-to-set mapping of set associativity. We maintain conve
tional set associativity in the tag array and manage distan
associativity separately.

We first discuss distance-associative (d-a) placement a
implementation. Then we explain replacement in NuRAPID.
our discussion of placement and replacement, we contrast
design to the dynamic-NUCA (D-NUCA, not to be confuse
with d-groups) scheme, the best-performing policy proposed
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

o a
a
et
d-
a-
cia-

ry
ta
n in
or

et-
, the
rd

tag
e
s a
a-
e

cia-
in

at
on-
of

ty
rns
r-
that

is-

es
ata
lace
are

its
also
et,
set
cy
tly-
ace-
ck
he
ent
to
fore

e

Procee
0-7695
[7]. We then discuss bandwidth and timing issues. Finally, we
discuss optimizations and implementation simplifications for
NuRAPID.

2.1 Distance-Associative Placement

The key to a successful memory system, whether a conven-
tional cache hierarchy, D-NUCA, or NuRAPID, is to place fre-
quently-accessed data where it may be accessed quickly. A
conventional cache hierarchy attempts to meet this goal by
placing recently accessed data in the fastest level (or all levels
when inclusion is maintained).

To meet this goal, D-NUCA “screens” cache blocks to
determine if they merit placement in the fastest d-group by ini-
tially placing a block in the slowest d-group and then moving it
to faster d-groups after additional accesses. (in D-NUCA terms,
a d-group consists of the ways within a bank-set having the
same latency.) This conservative screening process is necessary
because space in the fastest d-group is quite limited. Unfortu-
nately, this conservative initial placement policy is costly in
both performance and energy. D-NUCA’s placement policy
requires that initial accesses are slow, and the repeated promo-
tion operations for a block cause high-energy swaps.

It would seem that initially placing a block in the fastest d-
group (instead of the slowest) might alleviate both the perfor-
mance and energy problems for D-NUCA. However, this initial
placement policy would require demoting a frequently-
accessed block within the same set to a slower d-group upon
every cache miss. The tendency of individual sets to be “hot”
with many accesses to many ways over a short period makes
such a policy undesirable. In fact, [7] evaluates such an initial
placement policy and concludes that it is less effective. The set-
associativity-coupled placement in D-NUCA makes space in
the fastest d-group too valuable to “risk” on a block that may be
accessed only a few times.

NuRAPID, in contrast to D-NUCA, can place blocks from
any number of ways within a set in any d-group. Because of
this flexibility, NuRAPID can placeall new cache blocks in the

fastest d-group without demoting a member of the same set t
slower d-group. This policy makes the initial accesses to
block fast, and allows many blocks in a hot set (up to the s
associativity of the tag array), to be placed in the fastest
group. This change in the initial placement is one of the fund
mental changes in design choices afforded by distance asso
tivity, as mentioned in Section 1.

Distance associativity is implemented by introducing afor-
ward pointer, completely decoupling distance placement from
tag array placement. A forward pointer, which allows an ent
in the tag array to point to an arbitrary position within the da
subarrays, is added for each entry in the tag array as show
Figure 1. The figure shows a tag array with forward pointers f
blocks (e.g., block A has a forward pointer to d-group0 frame1).
A tag match occurs in the same way as in a conventional s
associative cache with sequential tag-data access. However
successful tag match now returns the hit signal and a forwa
pointer which is used to look up the data array. Because the
array outputs the forward pointer in parallel with the tag, th
only minimal impact on access speed is that the tag array i
little wider than usual. While the tag match is still set associ
tive (i.e., in an n-way cache, only n blocks within a set may b
present in the tag array), the data array is fully distance asso
tive in that any number of blocks within a set may be placed
a d-group.

2.2 Distance-Associative Replacement

We establish a novel replacement policy for NuRAPID th
complements the use of d-groups. Conventional caches are c
cerned only with data replacement, defined as the choice
which block to evict from the cache. Distance associativi
adds a new dimension, distance replacement, which conce
the replacement of a far block with a closer one. The key diffe
ence between data replacement and distance replacement is
data replacement involves evicting a block from the cache. D
tance replacementdoes not evict any block from the cache, but
instead swaps blocks within the cache. Conventional cach
couple replacement in the tag array to replacement in the d
array; it does not make sense in a conventional cache to rep
data in one way with data from another, because all ways
equivalent.

Because D-NUCA’s tag and data placement are coupled,
data replacement and distance replacement policies are
coupled. Both forms of replacement occur within a single s
and both are accomplished by swapping blocks in a cache
that are in d-groups of adjacent-latencies. We call this poli
bubble replacement because it is like a bubble sort; frequen
accessed blocks bubble toward the fastest set. For data repl
ment, bubble replacement means that D-NUCA evicts the blo
in the slowest way of the set. The evicted block may not be t
set’s LRU block. For distance replacement, bubble replacem
means that blocks must bubble all the way from the slowest
fastest set before having fast access time, and vice-versa be
eviction.

In contrast, NuRAPID uses a completely flexible distanc

d-
gr

ou
p

0

hi
gh

er
 la

te
ncy

Data Arrays
N-way Set-Associative

way-0 . . . way-(n-1)

...

...

...

...

Atag, grp0 frm1

A, set0 way0

B, set0 wayn-1

D, set3 wayn-1

C, set3 way0

Tag Array

Forward pointer
from tag to data

Reverse pointer
from data to tag

Btag, grp0 frmk

Dtag, grp1 frm1Ctag, grp2 frm0

FIGURE 1: NuRAPID cache.
d-

gr
ou

p
1

d-
gr

ou
p

2

0

1

..

k

0

1

..

k

0

1

..

k

0

1

2

3

set #

frame #

...

...

...
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

ow

in
a-
e
r-
t-
ly
ttle

e
ot
ent
y

om
he
f

e
a
n
e

rst
ps,

-
o-
s to
he
-
d
rt
t a
ete
hat

Procee
0-7695
replacement policy that is independent of data replacement. In
distance replacement, when a block needs to be placed in or
migrated to a d-group, another block currently in that d-group
is moved to a slower d-group,even if the concerned blocks are
not in the same set. Distance replacement has the advantage of
selecting the block to demote from among a large d-group (e.g.,
a d-group may be 2-MB) while D-NUCA’s choice is limited to
selecting from among the much smaller set (e.g., an 16-way or
32-way set). Of course, data replacement is still necessary in
NuRAPID (i.e., evicting data from the cache, not just a d-
group). However NuRAPID completely decouples distance
replacement from data replacement. Consequently, the specific
data replacement policy (e.g., LRU, random) may bedifferent
from the specific distance-replacement policy, as described in
Section 2.4.2.

We illustrate our distance replacement by means of an
example in Figure 2. The cache has 3 d-groups, and d-group 0
is the fastest. A cache miss has occurred, and block-A is to be
placed in the cache. First, space must be created in the tag array
within the set for block A; therefore a block from A’s set, say
block Z, is evicted from the cache using conventional data
replacement. This data replacement creates an empty frame
somewhere within one of the d-groups; in our example it hap-
pens to be d-group 1.

According to our placement policy (Section 2.1), the new
block A is to be placed in d-group 0. Therefore, unless there is
an empty frame within d-group 0, an existing block in d-group
0 must be replaced. Our distance replacement chooses a block
within d-group 0, which may or may not be in the same set as
block A. In the example, block B, a member of another set, is
chosen for demotion to d-group 1.

Our policy chooses block B for distance replacement, but to
demote B to d-group 1, we must update the forward pointer for
block B to point to its new location. To do so, we must find the
tag entry for block B. In a conventional cache, the data array
does not provide an explicit pointer to the tag array because the
two are coupled and the mapping is implied.

To provide the location of the tag entry in the decoupled
NuRAPID, we introduce areverse pointerwithin the frame that

locates the tag entry for each block. Figure 1 and Figure 2 sh
the reverse pointer for a block X as “seti wayj”. Each data frame
contains a reverse pointer that can point to any location with
the tag array, just as the forward pointer can point to any loc
tion within the data array. In Figure 2, we use B’s revers
pointer to locate the tag entry for block B and update B’s fo
ward pointer. Much like the forward pointer, the data array ou
puts the reverse pointer in parallel with the data, the on
minimal impact on access speed is that the data array is a li
wider than usual.

The demotion is complete when block B is moved into th
empty frame (vacated by block Z) in d-group 1. If there had n
been an empty frame in d-group 1, then distance replacem
would have created space for block B within d-group 1 b
demoting another block to d-group 2. However,at no time does
distance replacement evict a block from the cache. Upon a
cache miss, conventional data replacement evicts a block fr
the cache, creating an empty frame within some d-group. If t
empty frame is in d-group 0, which will occur if all members o
a set are in d-group 0, the new block simply occupies that fram
with no demotions necessary. If the evicted block was in
slower d-group, demotions occur d-group by d-group until a
empty frame is filled by a demoted block. Once an empty fram
is filled, no additional demotions are necessary. In the wo
case, where the block is evicted from the slowest of n d-grou
n-1 demotions will be required.

2.3 Distance-Associative Bandwidth and Timing

The reduction in swaps for NuRAPID compared to D
NUCA significantly reduces bandwidth requirements. To pr
vide high bandwidth and allow many tag searches and swap
occur simultaneously, D-NUCA needs a multi-banked cac
with full-fledged switched network among d-groups ([7] con
siders designs without multibanking and network, and foun
them to be inferior). In contrast, NuRAPID uses only one po
and is not banked, permitting only one operation to occur a
time. For example, any outstanding swaps must compl
before a new access is initiated. In Section 5.4 we show t

FIGURE 2: NuRAPID replacement. (left) Before
placing block A. (right) After placing block A.

hi
gh

er
 la

te
ncy

Data ArraysN-way Set-Associative

way-0 . . .

...

...

Tag Array

Ztag, grp1frm2

B, set1 way0

Z, set0 way1

Selected for demotion

Selected for data replacement

set #

frame #

0

1

2

0

1

2

0

1

2

(2) Z is evicted from cache by

(1) A is to be initially placed in

0

1

set 0.

conventional data replacement.

(3) B is selected to demote to
by distance replacement . B’s
B’s forward pointer updated.

(4) A is placed in set 0 and distance-
group 0.

d-
gr

ou
p

0
d-

gr
ou

p
1

d-
gr

ou
p

2

way-1

Btag, grp0 frm1

hi
gh

er
 la

te
ncy

Data ArraysN-way Set-Associative

way-0 . . .

...

...

Tag Array

Atag, grp0 frm1

A, set0 way1

B, set1 way0

set #

frame #

0

1

2

0

1

2

0

1

2

0

1

d-
gr

ou
p

0
d-

gr
ou

p
1

d-
gr

ou
p

2

way-1

Btag, grp1 frm2
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

ter
in
bi-

it
te

ead
51-
ad.)
nd
the
ill
zes.
ally
in
rict
he
s of

ge
ive,
of
d-
s-

pti-
am-
5
4].
ng

Procee
0-7695
because of greatly-reduced swaps and elimination of parallel
tag searches, NuRAPID’s performance is not hindered by the
reduced bandwidth. Thus, distance associativity fundamentally
changes the trade-offs by removing the artificial high-band-
width needs of D-NUCA, as mentioned in Section 1.

2.4 Optimizations and Simplifications

In this section, we discuss optimizations and simplifications
for NuRAPID. These techniques reduce energy and hardware
complexity and improve NuRAPID performance.

2.4.1 Distance Placement and Distance Replacement
The distance placement and distance replacement policies

discussed in Section 2.1 and Section 2.2 assume that blocks are
initially placed into the fastest d-group and then demoted by
distance replacement. Blocks were notpromotedfrom a slow to
fast d-group. We call this ademotion-onlypolicy.

Disallowing promotions may be undesirable because a fre-
quently-accessed block may become stuck in a slow d-group.
To prevent this problem, we propose two optimizations that add
promotions to the basic distance replacement policy described
in Section 2.2. In anext-fastestpromotion-policy, when a cache
block in any d-group other than the fastest is accessed, we pro-
mote it to the next-fastest d-group (correspondingly demoting
the LRU-block in the faster d-group). While the next-fastest
policy may seem similar to bubble replacement within cache
sets in D-NUCA, it is key to note that our promotions and
demotions occur within large d-groups, not cache sets. An
alternative is thefastestpromotion policy. In this policy, when a
cache block in any d-group other than the fastest is accessed,
we promote it to the fastest d-group (correspondingly applying
distance replacement if demoting other blocks). In addition to
the demotion-only policy, we evaluate both promotion policies
in Section 5.2.

2.4.2 Data- and Distance-Replacement Policies
For data replacement, we use conventional LRU to select an

individual block from a set for eviction from the cache. Dis-
tance replacement must be handled differently because d-
groups are large and contain many cache blocks (e.g., 16384
cache blocks in a 2-MB d-group). Tracking true-LRU among
thousands of cache blocks is not comparable to tracking LRU
among a handful of ways in a cache as in data replacement.
While using LRU as the selection policy for distance replace-
ment is desirable for performance, its implementation may be
too complex. The size of LRU hardware is of O(n2) in the num-
ber of elements being tracked [12].

Approximate-LRU can reduce the complexity but still may
be undesirable for large d-groups. Random replacement pro-
vides a simpler alternative but risks accidental demotion of fre-
quently-accessed blocks. Promotion policies such as next-
fastest and fastest, discussed in the previous subsection, com-
pensate for these errors by re-promoting those blocks. In
Section 5.3.1 we show that using random replacement over true
LRU for distance replacement has minimal impact on the per-
formance of NuRAPID.

2.4.3 Restricting Distance Associativity
Section 2.1 and Section 2.2 assume that the forward poin

in the tag array may point to any arbitrary cache block with
any d-group, and that the reverse pointer may point to any ar
trary tag-array-entry. This complete flexibility may result in
undesirably large forward and reverse pointers.

For example, in an 8-MB cache with 128B blocks, 16-b
forward and reverse pointers would be required for comple
flexibility. This amounts to 256-KB of pointers. While only a
3% overhead compared to the total cache size, such overh
may be undesirable in some situations. (For reference, the
bit tag entries for this 64-bit-address cache are a 5% overhe

There are two considerations for the size of the forward a
reverse pointers. The first is that as block sizes increase,
size of the pointers (in addition to the size of the tag array) w
decrease. Large caches are trending toward larger block si
The second is that the pointer overhead can be substanti
reduced by placing small restrictions on data placement with
d-groups. If our example cache has 4 d-groups, and we rest
placement of each block to 256 frames within each d-group, t
pointer size is reduced to 10 bits. Because of the advantage
NuRaPID, we believe the pointer overhead is acceptable.

3 Layout

In this section, we discuss the data-array layout of lar
caches, whether conventional, NUCA, or distance associat
into many subarrays, and explain why using a small number
large d-groups for data is also desirable from a layout stan
point. (The tag array is small and is not relevant to this discu
sion.)

3.1Conventional Data Array Floorplan and Circuitry

Large caches are made up of many SRAM subarrays to o
mize for access time, area, and energy consumption. For ex
ple, the 3-MB L3 cache in the Itanium II consists of 13
subarrays that are laid out approximately in an L shape [1
The block address is divided into a row address, determini

FIGURE 3: (a) NUCA
distance-group
layout. (b) Example
floorplan for
NuRAPID.

. . .

. . .

. . .

(processor core)

(a)

16

8
4 16-KB

 subarrays
processor

d-
gr

ou
p

d-group
3

64KB

d-
gr

ou
p

d-group
1

2MB

128 16-KB

(b)

subarrays

core 2
3

dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

le
ers
rge
y
).
k
ently,
the
is-
t be
se
the

far
ta

ups
le

s
L-
e
tiv-
s-
re

he
d-
ar-
and
be
of
ig-

of

A.
er

ys-
y,
a
-
s.
se

-
is

in

Procee
0-7695
which rows of which subarrays contain the block, and a column
address, determining which columns of that row contain the
block. When the cache is accessed, portions of the block are
read from many subarrays. Because the columns of each block
are spread among several subarrays, column muxes are
required to reassemble the output into a complete block.

There are several reasons for spreading individual blocks
among several subarrays. First, if each subarray row were to
contain bits from only one block, then the address row decoders
would be required to pinpoint the exact location of the block
within a specific row of a specific subarray before choosing a
subarray, and the output of the subarrays would be wires that
contain no selection logic. From a circuit standpoint, such large
decoders or muxes are undesirable. For example, it is prefera-
ble to have a 5-to-1 decoder and 2, 2-to-1 muxes over a single
10-to-1 decoder. Placing the contents of several blocks in each
subarray row distributes the task of identifying a block’s loca-
tion between the address row decoders and the output column
muxes.

Second, distributing blocks among subarrays facilitates use
of spare subarrays to compensate for defects caused by hard
errors. Spare subarrays are often included in a design to protect
against hard errors. The L3 cache in the Itanium II contains 2
spare subarrays out of a total of 135 [14]. During chip testing,
defective subarrays are identified and permanently unmapped
from the cache using on-die fuses. If the selection logic is
spread between the address row decoders and the output col-
umn muxes as discussed above, row decoders may point to both
defective and non-defective subarrays. The correct data is stati-
cally selected (with permanent fuses) usingonly the column
muxes, avoiding interference with the more complex address
row decoders. This configuration also allows many blocks (that
share common row addresses) to share a small number of spare
subarrays.

Third, distributing blocks among subarrays helps reduce the
chance of data corruption due to soft errors caused by alpha
particle strikes. Large caches often contain extra subarrays for
error-correcting-code (ECC). If error-corrected data is physi-
cally spread among several subarrays, it is less likely that an
alpha particle strike will corrupt more bits than are protected by
ECC.

3.2 NUCA Data Arrays

Unfortunately the best-performing NUCA is not amenab
to these large cache design considerations. While [7] consid
several d-group sizes, the best-performing NUCA uses a la
number of small d-groups. For example, the 8-MB, 16-wa
NUCA has 128, 64-KB d-groups, as shown in Figure 3(a
Each of the d-groups is limited to a small number of bloc
addresses, has its own tag, and must be accessed independ
meaning blocks cannot be distributed in subarrays across
small d-groups. This restriction violates the considerations d
cussed in Section 3.1. For example, a spare subarray canno
shared across blocks in different d-groups in NUCA, becau
1) the d-groups do not share common row addresses, and 2)
d-groups may have different access latencies.

3.3 NuRAPID Cache Data Arrays

To exploit the variation in access time between close and
subarrays while retaining the advantages of distributing da
among several subarrays, NuRAPID uses a few large d-gro
(in contrast to NUCA’s numerous small d-groups). An examp
floorplan for an 8-MB, 8-way, NuRAPID with 4 d-groups is
shown in Figure 3(b). Each d-group in NuRAPID contain
many more subarrays than those in NUCA. We use a typical
shaped floorplan for NuRAPID with the processor core in th
unoccupied corner. It should be noted that distance associa
ity is not tied to one specific floorplan; many floorplans are po
sible but all will have many subarrays and substantial wi
delays to reach distant subarrays.

While the advantages from Section 3.1 are retained, t
large d-groups will have longer latencies than the smaller
groups in NUCA. However, the access latency of distant sub
rays is dominated by the long wires between the subarrays
the core. Therefore, many similarly-distant subarrays may
combined into one d-group which shares a large number
block addresses, column muxes, and data blocks, without s
nificantly compromising access time.

Because d-groups in NuRAPID are larger than those
NUCA, latency of the fastest d-group in NuRAPID will of
course be longer than that of the fastest d-group in NUC
However, we show in Section 5.4 that the impact of the long
latency is more than offset by the reduction in swaps.

4 Methodology

Table 1 shows the base configuration for the simulated s
tems. We perform all our simulations for 70 nm technolog
with a clock frequency of 5 GHz. Our base configuration has
1-MB, 8-way L2 cache with 11-cycle latency, and an 8-MB, 8
way L3 cache, with 43-cycle latency. Both have 128-B block
We use the same configuration for L2 and L3 in our base ca
as used by [7] in their comparison with multi-level cache.

For NUCA evaluation, we assume an 8-MB, 16-way D
NUCA L2 cache with 8 d-groups per set. This configuration
the same as the one mentioned as the optimal configuration

Table 1: System parameters.
Issue width 8

RUU 64 entries

LSQ Size 32 entries

L1 i-cache 64K, 2-way, 32 byte blocks, 3 cycle
hit, 1 port, pipelined

L1 d-cache 64K 2-way, 32 byte blocks, 3 cycle
hit, 1 port, pipelined, 8 MSHRs

Memory latency 130 cycles + 4 cycles per 8 bytes

Branch predictor 2-level, hybrid, 8K entries

Mispredict penalty 9 cycles
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

e
t
tis-
ess
We
p-

g
nt
rk
er
e
e
ti-

For
rgy

ur
per
in
t-
3-

that
a-
-

il-

d-
for
at

L3
t in
-
e

the
r-

Procee
0-7695
[7]. We model contention for d-group access (i.e., bank conten-
tion in [7] terminology) and allow an infinite-bandwidth chan-
nel (switched network) for D-NUCA in our simulations.

We allow swaps and cache accesses to proceed simulta-
neously regardless of channel contention, giving a bandwidth
advantage to D-NUCA. D-NUCA uses a smart-search array,
which caches partial tag bits. We allow infinite bandwidth for
the smart-search array. We model the smart-search array in D-
NUCA by caching 7 bits from each tag, as recommended by
[7]. We use the least significant tag bits to decrease the proba-
bility of false hits in the smart-search array. We obtain latencies
for each D-NUCA d-group and smart-search array from [7].

We assume an 8-MB, 8-way NuRAPID L2 cache with 4 d-
groups. We assume an L-shaped floorplan for NuRAPID, as
shown in Figure 3(b). We assume a one-ported NuRAPID
which allows only one access to occur at a time, so that any
outstanding swaps amongst d-groups must complete before a
new access is initiated. We modify Cacti [11] to derive the
access times and wire delays for each d-group in NuRAPID.
Because Cacti is not generally used for monolithic large caches
(e.g., greater than 4 MB), we make the following modifications:
1) Treat each of our d-groups (one to four MB) as independent
(although tagless) caches and optimize for size and access time;
2) Account for the wire delay to reach each d-group based on
the distance to route around any closer d-groups using the RC
wire-delay models in Cacti; and 3) Optimize our unified tag
array for access time.

We extend Wattch [1] and SimpleScalar [2] running th
Alpha ISA to simulate an out-of-order processor with differen
cache organizations and obtain performance and energy sta
tics. Because Wattch assumes a conventional uniform-acc
cache, we cannot use the Wattch energy model for caches.
modify Cacti as described above to derive the energy consum
tion for D-NUCA, NuRAPID, and conventional caches, takin
into account the wire energy to route cache blocks from dista
locations. For D-NUCA, we assume that the switched netwo
switches consume zero energy. For NuRAPID, we consid
both access timeand energy overhead of forward and revers
pointers, and include this overhead in our calculations. W
replace the Wattch energy model for all caches with our Cac
derived model. We show representative numbers in Table 2.
all other processor components, we use the Wattch ene
model.

Table 3 summarizes the SPEC2K applications used in o
simulations and shows their base IPC. Because this pa
focuses on lower-level caches, we are primarily interested
applications with substantial lower-level cache activity. We ca
egorize the applications into two classes as shown in Table
high load, and low load - based on the frequency of L2
accesses. We show results for a subset of the applications
focuses on high load. Out of the remaining SPEC2K applic
tions, 3 are high-load and 8 are low-load. Their behavior is sim
ilar to that of the applications shown.

For each application, we use ref inputs, fast-forward 5 b
lion instructions, and run for 5 billion instructions. During the
fast-forward phase, we warm-up both L1 and L2 caches.

5 Results

In Section 5.1, we show that the latencies for larger
groups in NuRAPID are higher than the average latencies
smaller d-groups in D-NUCA. Section 5.2 demonstrates th
NuRAPID outperforms set-associative placement or an L2/
hierarchy and that distance-replacement optimizations resul
a considerable improvement over NuRAPID with demotion
only policy. In Section 5.3, we show that random distanc
replacement performs almost as well as true-LRU and that
variation in number of d-groups in NuRAPID has both perfo

Table 2: Example cache energies in nJ.

Operation Energy

Tag + access: closest of 4, 2-MB d-groups 0.42

Tag + access: farthest of 4, 2-MB d-groups (includes routing) 3.3

Tag + access: closest of 8, 1-MB d-groups 0.40

Tag + access: farthest of 8, 1-MB d-groups (includes routing) 4.6

Tag + access: closest 64-KB NUCA d-group 0.18

Tag + access: other 64-KB NUCA d-groups (includes routing)0.18-4.0

Access 7-bit-per-entry, 16-way NUCA smart-search array 0.19

Tag + access: 2 ports of low-latency 64-KB 2-way L1 cache 0.57

Table 3: SPEC2K applications and L2 accesses
per thousand instructions.

Benchmark/Type IPC Accesses Benchmark/Type IPC Accesses

High Load

applu/FP 0.9 42 lucas/FP 0.5 37

apsi/FP 1.3 18 mcf/Int 0.2 188

art/FP 0.4 107 mgrid/FP 1.1 23

equake/FP 0.7 39 parser/Int 1.1 15

galgel/FP 0.9 28 perl/Int 1.0 28

gcc/Int 1.3 28 twolf/Int 1.0 25

Low Load

bzip2 1.7 9 wupwise/FP 2.0 10

mesa 1.9 3

Table 4: Cache latencies in cycles.

Capacity 2d-groups
NuRAPID

4 d-groups
NuRAPID

8 d-groups
NuRAPID

D-NUCA
(average)*

1st MB (fastest) 19 14 12 4-9 (7)

2nd MB 19 14 19 9-12 (11)

3rd MB 19 18 20 12-15 (14)

4th MB 19 18 31 15-18 (17)

5th MB 43 36 32 18-21 (20)

6th MB 43 36 32 21-24 (23)

7th MB 43 44 48 24-27 (26)

8th MB (slowest) 43 44 49 27-31 (29)

*Because D-NUCA’s 64-KB d-groups are smaller than 1 MB, we
report the latency range and average latency for each MB.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

A
cess.
to

es-
e
ill

he
ID

t
ia-
ce-

tive
r d-

d-
r-
ion
ay
he,
d-

f a
e

ses
e-

ce-
,
the
w

ive
e-

d-
our
of
r the
the
f
-

es to
.

ce-

ce
d-
e
ce
he

d-
nly,

Procee
0-7695
mance and energy implications. Section 5.4 shows that
NuRAPID outperforms D-NUCA in most applications and
consumes less energy than both D-NUCA and the L2/L3 hier-
archy.

5.1 Cache Latencies

In this section, we compare latencies of NuRAPID and D-
NUCA. For an 8-MB NuRAPID, we show configurations of 2,
4, and 8 d-groups. We expect configurations with a few large d-
groups to have longer latencies than those with many, small d-
groups.

Table 4 shows cache latencies for the various configurations.
The nth row shows the access latency of the nth fastest (and
closest) megabyte. The first three columns show d-group con-
figurations for NuRAPID. For example, the third and fourth
row of the 4-d-group column have the same latency because the
third and fourth row are in the same 2-MB d-group. The laten-
cies for NuRAPID are derived from Cacti [11] cache latencies
for various capacities and also include 8 cycles for the 8-way
tag latency. (Recall from Section 1 that NuRAPID uses sequen-
tial tag-data access.)

As expected, the larger d-groups have longer access laten-
cies than smaller ones. For example the fastest 1-MB d-group
in the 8-d-group configuration has a latency of only 12 cycles,
compared to a latency of 19 cycles for the fastest d-group in the
2-d-group configuration.

Two other behaviors are worth noting. First, as the number
of d-groups increases, the latency of the slowest megabyte
increases even as the latency of faster megabytes decreases.
This behavior occurs because small, far d-groups are placed in
remote locations on the floorplan. The second behavior is that
when there are many d-groups, some have similar latency
because they fit into the floorplan at about the same distance.

The fourth column in Table 4 shows latencies for the 8-MB,
16-way, D-NUCA which is divided into 128, 64-KB d-groups.
Because each megabyte in D-NUCA contains many d-groups,
we report both the range of latencies and average latency for
each megabyte to facilitate comparison to our d-groups. When
reporting latencies for D-NUCA, we report the latencies for
each megabyte regardless of set mapping (i.e., the first mega-
byte contains different numbers of ways in different sets).

D-NUCA’s latencies for fast and slow d-groups are lower

than our d-group latencies for three reasons. First, D-NUC
uses parallel tag-data access, not sequential tag-data ac
Second, D-NUCA has small d-groups that allow fast access
the closest d-groups. Third, D-NUCA assumes a more aggr
sive, rectangular floorplan than the L-shaped floorplan w
assume for our d-groups. However, in the next sections we w
show that in spite of longer latencies for large d-groups, t
placement and distance replacement policies in NuRAP
allow it to outperform D-NUCA.

5.2 Placement and Replacement Policy Exploration

5.2.1 Set-Associative vs. Distance-Associative Placemen
In this section, we compare the performance of set-assoc

tive cache placement to decoupled, distance-associative pla
ment in a non-uniform cache. We expect distance-associa
placement to have a greater fraction of accesses to faste
groups than set-associative placement.

Our comparison uses an 8-MB 8-way cache with 4 2-MB
groups. (Although 8-way with 8 d-groups is simpler to unde
stand, we use 4 d-groups because it is the primary configurat
used throughout the results.) Because this design is an 8-w
cache with 4 d-groups, in the set-associative-placement cac
each cache block can map to either of 2 frames within each
group. For distance-associative placement, the location o
cache block can be anywhere within any d-group. While th
set-associative cache uses LRU replacement, NuRAPID u
LRU for data replacement and random for distance replac
ment. To isolate the effects of set-associative and d-a pla
ment,both caches initially place blocks in the fastest d-group
demote replaced blocks to the next slower d-group, and use
next-fastest promotion policy. (In the next subsection, we sho
the next-fastest promotion policy is best.) This set-associat
cache is similar to D-NUCA’s best design with bubble replac
ment but with initial placement in the fastest d-group.

Figure 4 shows the fraction of cache accesses to each
group and the fraction of cache misses. The x-axis shows
applications with the average on the right. The black portion
each stacked bar represents the misses in the L2 cache. Fo
set-associative cache, an average of 74% of accesses hit in
first d-group. In contrast, the flexible placement policy o
NuRAPID results in 86% of accesses hitting in the first d
group. The set-associative cache also makes 8% of access
the last 2 d-groups, substantially more than NuRAPID’s 2%
This experiment illustrates the benefits of decoupled distan
associative placement.

5.2.2 Distance Replacement Policy Exploration
In this section, we evaluate the performance of the distan

replacement policies explained in Section 2.4.1. We use 4
groups of 2-MB each for NuRAPID. We use random distanc
replacement for each 2-MB d-group. We expect the distan
replacement optimizations to improve performance over t
demotion-only policy.

Figure 5 shows the distribution of accesses to different
groups as a percentage of total L2 accesses for demotion-o

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 to

ta
l

L2
 a

cc
es

se
s

a: Set-Associative-placement b: Distance-Associative placement
caceh hits in d-group1 cache hits in d-group 2
cache hits in d-group 3 and d-group 4 cache misses

a b
mcfart

eq
ua

ke
ga

lge
l

luc
as

mgri
d

pa
rse

r
pe

rl

ap
plu ap
si

tw
olfgc
c

bz
ip2

mes
a

wup
wise

Ave
rag

e

FIGURE 4: Distribution of group accesses for set -
associative and distance-associative placement.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

e-
of

ce-
r-
ent

p
54%

ted.
m
In

t-

nce

pol-
For
m

4,
-off
he

d-

Procee
0-7695
next-fastest and fastest. The miss rates for NuRAPID remain
the same for the three policies because, as mentioned in
Section 2.2, distance replacement does not cause evictions.

Next-fastest and fastest result in more L2 hits to the nearest
d-groups compared to demotion-only. On average, demotion-
only, next-fastest and fastest result in 50%, 84% and 86%
accesses to the first d-group respectively. Because demotion-
only does not allow the demoted blocks to be promoted upon
future accesses, frequently-accessed blocks often become stuck
in slower d-groups, thus decreasing the percentage of accesses
to faster d-groups. Next-fastest and fastest solve this problem.

Figure 6 compares the performance of different policies
with the baseline L2/L3 hierarchy. We also show the perfor-
mance for an ideal case where every hit in NuRAPID hits in the
first d-group, resulting in a constant 14-cycle hit latency. The y-
axis shows the performance for demotion-only, next-fastest,
fastest, and the ideal case relative to the base case performance.

The demotion-only policy performs slightly worse than the
base case, while the next-fastest and fastest policies outperform
the base case and perform almost as well as the ideal case. As
shown in Figure 5, the percentage of accesses hitting in slower
d-groups for both next-fastest and fastest is small, so perfor-
mance near the ideal case is expected. On average, demotion-
only performs 0.3% worse as compared to the base case, and
the performance improvements for the next-fastest, fastest, and
ideal relative to the base case are 5.9%, 5.6%, and 7.9% respec-
tively. On average, next-fastest and fastest perform within 98%
and 97% of the ideal case performance respectively.

The next-fastest and fastest policies show more performance
improvements for high-load applications than for low-load
applications. Both next-fastest and fastest show maximum
improvements for the high-load applicationart. The distance
replacement optimizations distribute the large working set in
art in faster d-groups, resulting in 43% improvement for next-
fastest and 42% improvement for fastest. On average, next-fast-
est shows performance improvements of 6.9% and 1.7%, while
fastest shows performance improvements of 6.6% and 1.3% for
the high-load and low-load applications respectively. Low-load
applications provide less opportunity for a high-performance
L2 cache, lessening the effect of distance associativity on over-
all performace.

Because the next-fastest policy performs better than the fast-
est policy, we choose next-fastest as our optimal distance
replacement policy and do not show fastest any more.

5.3 Design Sensitivity

In this section, we discuss the impact of distance replac
ment policies and the number of d-groups on performance
NuRAPID.

5.3.1 LRU approximation
We compare the performance of random distance repla

ment with true LRU. We do not show any graph here. The pe
formance gap between LRU and random distance replacem
is significant only for demotion-only. A 4-d-group NuRAPID,
using demotion-only and perfect-LRU has 64% first-grou
accesses on average. Random distance replacement has
first d-group accesses on average. A random policy increases
the chances of a frequently-accessed block being demo
Because demotion-only does not promote the blocks fro
slower to faster d-groups, demoted blocks become stuck.
contrast, random performs nearly as well as true-LRU for nex
fastest. On average, for next-fastest, random distance replace-
ment has 84% accesses in the first d-group. and LRU dista
replacement has 87% accesses in the first d-group. By giving
demoted blocks a chance to be promoted, the next-fastest
icy compensates for errors in random distance replacement.
the remainder of the paper, all NuRAPID results use rando
distance replacement and next-fastest promotion policy.

5.3.2 Number of distance-groups
In this section, we compare results for NuRAPID using 2,

and 8 d-groups. We expect to see a performance trade
between the larger capacity of large, slow d-groups and t
lower latency of small, fast d-groups.

Figure 7 shows the distribution of accesses to different

FIGURE 5: Distribution of group accesses for NuRAPID policies.

a: Demotion-Only b: Next-Fastest c: Fastest

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 to

ta
l

mcfart galgel gcc lucas mgrid parser perlapsi bzip2twolf mesa wupwise Averagea b c

Group-1 accesses Group-2 accesses Group-3 accesses Group-4 accesses Cache misses

L2
 a

cc
es

se
s

equake
applu

FIGURE 6: Performance of NuRAPID policies.

Demotion-Only Next-Fastest Fastest Ideal

R
el

at
iv

e
Pe

rfo
rm

an
ce

mcfart
eq

ua
ke

ga
lge

l
gc

c
luc

as

mgri
d

pa
rse

r
pe

rl

ap
plu ap
si

bz
ip2tw
olf

mes
a

wup
wise

Ave
rag

e

Ave
rag

e

High-Load Low-Load

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ave
rag

e
Ove

ral
l

dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

arch.
ses
h
ore
nite
we
s
n-

up
e
A,
e
ID

-
nt
e’s
he
l-
y
ess.
tail
P-
n
the
p

Procee
0-7695
groups for 2-d-group, 4-d-group, and 8-d-group NuRAPIDs.
The white portion of the stacked bars represent first-group
accesses, the striped portion represents accesses to remaining
d-groups and black-portion represents misses. The bar for 4-d-
groups is the same as for next-fastest in Figure 5.

On average, the 2, 4, and 8-d-group NuRAPIDs have 90%,
85% and 77% accesses to the first d-group respectively. As the
capacity of individual d-groups decreases, the percentage of
accesses to the fastest d-group also decreases. (Note that miss
rates are the same in all three cases because total cache capacity
is the same.) A substantial decrease in accesses to the fastest d-
group occurs between 4 and 8 d-groups because many of our
applications’ working sets do not fit in the 1-MB d-groups of
the 8-d-group NuRAPID. In contrast, the decrease in accesses
to the fastest d-group is smaller between 4 and 2 d-groups.

Figure 8 shows the performance of 2, 4, and 8-d-group
NuRAPIDs relative to the base case. The 4-d-group perfor-
mance numbers are the same as the ones shown in Figure 6 for
the next-fastest policy. The 2-d-group NuRAPID shows only
marginal improvement over the base case, whereas the 4- and
8-d-group NuRAPIDs significantly outperform the base case.
On average, the 2-d-group, 4-d-group and 8-d-group NuRAP-
IDs perform 0.5%, 5.9% and 6.1% better than the base case
respectively. The small increase in fastest-d-group accesses for
the 2-d-group NuRAPID over the 4-d-group NuRAPID does
not offset the increased latency of the large, 4-MB d-groups.

The 8-d-group results show that the higher latency of the
small d-groups does not offset their reduced capacity. Because
the 8-d-group NuRAPID has small, 1-MB d-groups, it incurs
2.2 times more swaps due to promotion compared to the 4-d-
group NuRAPID, while performing only 0.2% better than the
4-d-group NuRAPID. As we will see in the next section, the
additional swaps substantially increase the energy of the 8-d-
group NuRAPID.

5.4 Comparison with D-NUCA

In this section, we compare the performance and energy of
NuRAPID and D-NUCA. For D-NUCA energy and perfor-
mance, we use the ss-energy and ss-performance policies,
respectively, which were identified by [7] asseparatelyoptimal
while we have asingledesign for NuRAPID. Both of these pol-
icies use the smart search array mentioned in Section 4. Recall
that by default, D-NUCA searches for a cache block ineveryd-
group. Ss-energy accesses the smart search array while only
searching closest relevant d-group; if additional d-group

accesses are needed, the partial tag matches narrow the se
Ss-performance uses the smart-search array to identify mis
early but still searches all d-groups. If no partial-tag-matc
occurs in the smart-search array, a miss can be initiated bef
accesses to the d-group tag arrays return. Recall also the infi
switched-network and smart-search bandwidth advantage
give to D-NUCA (discussed in Section 4) and that D-NUCA i
multibanked. In contrast, NuRAPID is one-ported and no
banked (Section 2.3).

5.4.1 Performance
Figure 9 shows the performance comparison of 4-d-gro

and 8-d-group NuRAPIDs with D-NUCA’s ss-performanc
policy. The black bars represent the performance of D-NUC
4-d-group NuRAPID, and 8-d-group NuRAPID relative to th
base case. The 4-d-group NuRAPID and 8-d-group NuRAP
numbers are the same as those in Figure 8.

The 4-d-group and 8-d-group NuRAPIDs outperform D
NUCA for most applications because the flexible placeme
policy, reduced swaps, and elimination of ss-performanc
parallel tag searches offset the longer latencies of t
NuRAPID d-groups. The large bandwidth provided by the mu
tiple banks and switched network of D-NUCA is consumed b
both frequent swaps and parallel tag searches on each acc
(We discuss swaps, which also relate to energy, in more de
in the next subsection.) The 4-d-group and 8-d-group NuRA
IDs outperform D-NUCA by 2.9% and 3.0% respectively o
average and up to 15%. The performance improvement over
base case for D-NUCA, 4-d-group NuRAPID, and 8-d-grou
NuRAPID are 2.9%, 5.9% and 6.0% respectively.

FIGURE 7: Distribution of d-group accesses for NuRAPIDs with 2,4 and 8 d-groups.
mcfart equake galgel gcc lucas mgrid parser perlapplu apsi bzip2twolf mesa wupwise Average

Fr
ac

tio
n

of
 to

ta
l

a b c

a: 2-d-group NuRAPID b: 4-d-group NuRAPID c: 8-d-group NuRAPID
D-group-1 accesses Cache hits in d-group-2 and beyond Cache misses

 L
2

ac
ce

ss
es

0.0
0.2
0.4
0.6
0.8
1.0

2 d-group 4 d-group 8 d-group

R
el

at
iv

e
Pe

rfo
rm

an
ce

FIGURE 8: Performance of 2, 4, and 8-d-group
NuRAPIDs.

mcfart
eq

ua
ke

ga
lge

l gc
c

luc
as

mgri
d

pa
rse

r
pe

rl

ap
plu ap
si

bz
ip2tw
olf

mes
a

wup
wise

Ave
rag

e

High-Load Low-Load

Ave
rag

e

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ave
rag

e
Ove

ral
l

dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

che
ver-
rgy
ses
or
gies
d-
arch
ro-
ect
A
CA’s
y d-

n
cess.
e
he

lly
D-
es
rs
ce-

p-
ive

st
iss

d
ID

d-
e
The

ed
D-
the

w

Procee
0-7695
For high-load applications, NuRAPID’s advantage is
greater. The 4-d-group and 8-d-group NuRAPIDs outperform
the base case by 6.9% and 7.1%, and D-NUCA by 3.1% and
3.3%. Low-load applications, with fewer L2 accesses, do not
benefit as much. An exception iswupwise,which has little data
reuse, preventing promotions (and fast accesses) in D-NUCA.
For wupwisethe d-a placement policy allows the 4-d-group
NuRAPID to outperform D-NUCA by 6.1%.

D-NUCA outperforms NuRAPID in four applications,
applu, twolf, perl, and bzip2 by 1.0%,2.9%, 2.7% and 2.9%
respectively. Applu, twolf and perl, despite being high-load
applications, have small working sets, resulting in more fre-
quent fast accesses for D-NUCA.

In [7] D-NUCA outperforms the base case by 9% for 70nm
technology compared to our value of 2.9%. However, for most
applications those results were based on simulations running
only 200 million instructions which do not fill the 8-MB cache.
We run 5 billion instructions for all applications to simulate
cache activity more accurately. (We also ran simulations for the
same number of instructions as [7] and obtained results similar
to theirs.)

5.4.2 Energy
Figure 10 compares cache energy for the ss-energy D-

NUCA and the 4- and 8-d-group NuRAPIDs. Below the bars,

we show the average number of d-groups touched per ca
access. The bars represent cache energy (including the o
heads discussed in Section 4) relative to the combined ene
of the base L2 and L3 caches. We show both d-group acces
and energy as their relationship is not straightforward. (F
example, close and far d-groups have different access ener
due to wires as shown in Table 2, and in D-NUCA some
group accesses do not return a block because a smart-se
incorrectly targeted a d-group.) However, d-group accesses p
vide a guide to discussing energy comparisons. We exp
NuRAPID to consume substantially less energy than D-NUC
because of reduced d-group accesses and because D-NU
placement policy causes many accesses to far, high-energ
groups.

D-NUCA, 4-d-group, and 8-d-group NuRAPIDs have a
average of 3.1, 1.2, and 1.5 d-group accesses per cache ac
The large difference between D-NUCA and NuRAPID is du
to reduced swaps required under the d-a placement policy. T
large reduction in d-group accesses for NuRAPID dramatica
reduces bandwidth requirements, obviating the need for
NUCA’s switched network. The smaller reduction in access
between the 4-d-group and 8-d-group NuRAPIDs occu
because of reduced swaps. This reduction is due not to pla
ment policy but rather to the 4-d-group NuRAPID’s better ca
ture of the working-set, as described in Section 5.3.2. Relat
to D-NUCA, the 4-d-group NuRAPID performs particularly
well for applications shown in Section 5.2 to have the va
majority of accesses to the fastest d-group and high L2 m
rates, such aslucas, mgrid,and wupwise.For these applica-
tions, D-NUCA’s initial placement causes many swaps an
accesses to slow d-groups. In contrast, the 4-d-group NuRAP
initially places blocks in the fastest d-group, incurring few
swaps and accesses to slow d-groups.

When our energy models are applied, D-NUCA, the 4-
group NuRAPID, and the 8-d-group NuRAPID have relativ
cache energies of 4.4, 0.96, and 1.81 compared to the base.
4-d-group NuRAPID is clearly best. The many swaps requir
to move blocks to the closest d-group greatly penalize
NUCA. To a lesser extent, swaps discussed earlier penalize
8-d-group NuRAPID, preventing net energy savings.

Finally, considering both energy and performance we sho
overall processorenergy-delay in the full-height bars of

a: D-NUCA b: 4-d-group NuRAPID c: 8-d-group NuRAPID

R
el

at
iv

e
Pe

rfo
rm

an
ce

FIGURE 9: Performance and energy-delay
comparison of NuRAPID and D-NUCA.

R
el

at
iv

e
C

PU
 E

ne
rg

y
de

la
y

mcfart
eq

ua
ke

ga
lge

l gc
c

luc
as

mgri
d

pa
rse

r
pe

rl

ap
plu ap

si

bz
ip2tw
olf

mes
a

wup
wise

Av
era

ge

Av
era

ge

Av
era

ge
Ove

ral
l

High-Load Low-Load

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Relative Performance (scale on left)

0.6

2.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

abc

Relative energy delay (scale on right)

D-NUCA 4-d-group NuRAPID 8-d-group NuRAPID

FIGURE 10: Cache energy comparison of NuRAPID and D-NUCA.

R
el

at
iv

e
L2

-c
ac

he
 e

ne
rg

y 7.4 8.1 9.9 8.4

mcfart
equake

galgel gcc
lucas

mgrid
parser perl

applu
apsi

bzip2
twolf

mesa
wupwise

Average
Average

Average

Overall

High-Load Low-Load

3.8
1.4

2.0 3.3
1.21.6 2.7

1.1
1.3 3.1

1.4
2.0 2.6

1.0
1.1 1.9

1.0
1.1 3.6

1.4
2.0 3.7

1.62.0 3.81.31.7 2.6
1.1

1.2 1.5 1.1
1.1

3.1
1.0

1.1 3.0
1.2

1.5 3.11.11.2 3.1
1.21.5 3.8

1.5
2.1 3.31.31.6 3.1

1.2
1.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

rgy
%
-

s
er.
R
-
F

re

0.
of

0-

e

-
l

n-

e

-

,
s-

ct-
i-

n.

ng,
ra-

p-

ed

Procee
0-7695
Figure 9. L2 energy is generally a small component of overall
processor energy (5%-10% or less), so we expect small
changes in processor energy. Compared to the base case pro-
cessor, D-NUCA, the 4-d-group NuRAPID, and the 8-d-group
NuRAPID have overall processor energy-delays of 1.0, 0.93,
and 0.94. The small performance advantage of D-NUCA is off-
set by its high energy. The 4-d-group NuRAPID, taking advan-
tage of d-a placement, large d-group capacity, and swap
reduction, lowers processor energy delay by 7% compared to
both the base case and D-NUCA.

6 Related Work

Other research has focused on uniform-access large cache
design, such as the software-managed cache in [5] or analyzed
depth of cache hierarchies to optimize performance [10]. Sev-
eral papers have examined large caches in production micro-
processors. The Itanium II uses a large, low-bandwidth L3
cache that is optimized for size and layout efficiency [14, 8].
Both the Itanium II L3 and Alpha 21164 L2 use sequential tag-
data access [14, 3]. NuRAPID adaptively places infrequently-
accessed data in slower d-groups. In addition adaptive place-
ment in [7], others have examined adaptive caches that avoid
caching low-locality blocks [4, 13] or adapt block size [6].

7 Conclusions

Large caches have design considerations different from
small caches. Unlike in small caches, subarrays in large caches
have variable access latency due to wire-delays. NUCA is the
first proposal to exploit the variation in access time across sub-
arrays, allowing fast access to close subarrays while retaining
slow access to far subarrays. We propose “Non-uniform access
with ReplacementAnd Placement usIng Distance associativ-
ity” caches (NuRAPID) which, like NUCA, divide the cache
into distance-groups (d-groups), each with its own latency.
Unlike the best-performing NUCA, NuRAPID (1) uses sequen-
tial tag-data access, a common large-cache technique for low
power; and (2) uses a few large d-groups to facilitate common
large-cache techniques for fault-tolerance and area efficiency.

The key novelty of NuRAPID is leveraging sequential tag-
data access to decouple tag and data placement. The decoupling
enables flexible data placement within the large d-groups. D-a
placement initially places all cache blocks in a fast d-group,
while our distance-replacement policy moves only rarely-
accessed blocks to slow d-groups. These policies allow the vast
majority of accesses to occur to the fastest d-group with infre-
quent data swaps between d-groups. Thus, distance associativ-
ity fundamentally changes the trade-offs made by NUCA’s
best-performing design, resulting in higher performance and
substantially lower energy.

Our simulations show that NuRAPID reduces the number of
d-group accesses compared to NUCA by 61%, obviating
NUCA’s multibanking and high-bandwidth switched network.
A one-ported, non-banked NuRAPID outperforms a multi-
banked NUCA with an infinite-bandwidth switched network by

3% on average and up to 15% while reducing L2 cache ene
by 77%. NuRAPID reduces processor energy-delay by 7
compared to NUCA. The growth of wire delays in future tech
nologies makes NuRAPID important for future processors.

Acknowledgements

We would like to thank Doug Burger and the anonymou
reviewers for their comments on an earlier draft of this pap
This research is supported in part by NSF under CAREE
award 9875960-CCR, NSF Instrumentation grant CCR
9986020, DARPA contract F33615-02-1-4003, and an NS
Graduate Research Fellowship.

References
[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for ar-

chitectural-level power analysis and optimizations. InProceedings of
the 27th Annual International Symposium on Computer Architectu,
pages 83–94, June 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.
Technical Report 1342, Computer Sciences Department, University
Wisconsin–Madison, June 1997.

[3] J. H. Edmondson et al. Internal organization of the Alpha 21164, a 30
MHz 64-bit quad-issue CMOS RISC microprocessor.Digital Techni-
cal Journal, 7(1), 1995.

[4] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with multipl
caching strategies tuned to different types of locality. InProceedings
of the 1995 International Conference on Supercomputing, pages 338–
347, July 1995.

[5] E. G. Hallnor and S. K. Reinhardt. A fully-associative software-man
aged cache design. InProceedings of the 27th Annual Internationa
Symposium on Computer Architecture, pages 107–116, June 2000.

[6] T. L. Johnson and W. W. Hwu. Run-time adaptive cache hierarchy ma
agement via reference analysis. In24th International Symposium on
Computer Architecture, pages 315–326, July 1997.

[7] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cach
structure for wire-delay dominated on-chip caches. InProceedings of
the Ninth International Conference on Architectural Support for Pro
gramming Languages and Operating Systems (ASPLOS X), pages
211–222, Oct. 2002.

[8]S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. Sullivan
and T. Grutkowski. The implementation of the Itanium 2 microproce
sor. IEEE Journal of Solid-State Circuits, 37(11):1448–1460, Nov.
2002.

[9] M. D. Powell, A. Agarwal, T. N. Vijaykumar, and B. Falsafi. Reducing
set-associative cache energy via way-prediction and selective dire
mapping. InProceedings of the 34th International Symposium on M
croarchitecture (MICRO 34), pages 54–65, Dec. 2001.

[10] S. A. Przybylski. Performance-directed memory hierarchy desig
Technical Report 366, Stanford University, Sept. 1988.

[11] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timi
power and area model. Technical report, Compaq Computer Corpo
tion, Aug. 2001.

[12] A. J. Smith. Cache memories.ACM Computing Surveys (CSUR),
14(3):473–530, 1982.

[13] G. Tyson, M. Farrens, J. Matthews, and A. Pleszkun. A modified a
proach to data cache management. InProceedings of the 28th Interna-
tional Symposium on Microarchitecture, pages 93–103, Dec. 1995.

[14] D. Weiss, J. J. Wuu, and V. Chin. The on-chip 3-mb subarray-bas
third-level cache on an Itanium microprocessor.IEEE Journal of Sol-
id-State Circuits, 37(11):1523–1529, Nov. 2002.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

	Abstract
	1 Introduction
	2 Distance Associativity
	FIGURE 1: NuRAPID cache.
	2.1 Distance-Associative Placement
	2.2 Distance-Associative Replacement
	FIGURE 2: NuRAPID replacement. (left) Before placing block A. (right) After placing block A.

	2.3 Distance-Associative Bandwidth and Timing
	2.4 Optimizations and Simplifications
	2.4.1 Distance Placement and Distance Replacement
	2.4.2 Data- and Distance-Replacement Policies
	2.4.3 Restricting Distance Associativity
	FIGURE 3: (a) NUCA distance-group layout. (b) Example floorplan for NuRAPID.

	3 Layout
	3.1 Conventional Data Array Floorplan and Circuitry
	Table 1: System parameters.

	3.2 NUCA Data Arrays
	3.3 NuRAPID Cache Data Arrays

	4 Methodology
	Table 2: Example cache energies in nJ.
	Table 3: SPEC2K applications and L2 accesses per thousand instructions.
	Table 4: Cache latencies in cycles.

	5 Results
	5.1 Cache Latencies
	FIGURE 4: Distribution of group accesses for set- associative and distance-associative placement.

	5.2 Placement and Replacement Policy Exploration
	5.2.1 Set-Associative vs. Distance-Associative Placement
	5.2.2 Distance Replacement Policy Exploration
	FIGURE 5: Distribution of group accesses for NuRAPID policies.

	5.3 Design Sensitivity
	FIGURE 6: Performance of NuRAPID policies.
	5.3.1 LRU approximation
	5.3.2 Number of distance-groups
	FIGURE 7: Distribution of d-group accesses for NuRAPIDs with 2,4 and 8 d-groups.

	5.4 Comparison with D-NUCA
	FIGURE 8: Performance of 2, 4, and 8-d-group NuRAPIDs.
	5.4.1 Performance
	FIGURE 9: Performance and energy-delay comparison of NuRAPID and D-NUCA.

	5.4.2 Energy
	FIGURE 10: Cache energy comparison of NuRAPID and D-NUCA.

	6 Related Work
	7 Conclusions

	Acknowledgements
	References

