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ABSTRACT
Disk power management is becoming increasingly important in
high-end server and cluster type of environments that execute data-
intensive applications. While hardware-only approaches (e.g., low-
power modes supported by current disks) are successful to a cer-
tain extent, one also needs to consider the software side to achieve
further energy savings. This paper first demonstrates that conven-
tional data locality oriented code transformations are not sufficient
for minimizing disk power consumption. The reason is that these
optimizations do not take into account how disk-resident array data
are laid out on the disk system, and consequently, fail to increase
idle periods of disks, which is the primary metric using which disk
power can be reduced. Instead, we propose a disk layout aware
application optimization strategy that uses both code restructuring
and data layout optimization. Our experimental evaluation with
several benchmark codes reveal that the proposed strategy is very
successful in reducing disk energy consumption without perform-
ing much worse than a pure data locality oriented scheme, as far
as execution cycles are concerned. The experiments also show that
the benefits coming from our approach increase with the increased
number of disks; i.e., it scales very well.

Categories and Subject Descriptors
D.3.m [Software]: Programming Languages—Miscellaneous

General Terms
Languages
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disk, code optimization, data optimization, compiler

1. INTRODUCTION
Optimizing compiler technology used code and data structuring

in the past for reducing execution cycles, reducing memory space
requirements, and reducing energy consumption in several system
components which include processor data-path, cache memory, and
main memory. Recent trends in high-performance computing indi-
cates that disk power is becoming an increasing concern, mainly
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because many scientific applications executing on such systems
are extremely data intensive and frequently access/manipulate disk-
resident data sets. While code and data structuring are known to be
effective in the past in other parts of the system, their impact on disk
system, especially from the perspective of energy consumption, has
not been explored by the previous research. The main goal of this
paper is to study the impact of code and data optimization on disk
system energy. We exclusively focus on scientific applications with
regular data access patterns, and try to increase disk inter-access
times. The rationale behind is that the increased disk idleness en-
ables more effective exploitation of available power-saving capa-
bilities supported by the underlying disk hardware.

We first focus on loop based code optimization that employs a
suite of loop transformations (originally proposed in the context of
enhancing data locality and improving loop iteration level paral-
lelism). Our experimental results show that, while pure data local-
ity oriented loop optimizations are effective for some benchmarks,
the energy savings achieved by them are not very large. This is
mainly because optimizing solely for data locality fails to increase
disk idle periods since it does not take into account how disk-
resident arrays are laid out on the disk system. Consequently, we
make a case for modified code optimizations for increasing energy
savings. Our results with the disk-based versions of six randomly-
selected, array-based benchmark codes from the Spec2000 suite
show that the savings with the modified optimizer are much bet-
ter than those obtained using a pure data locality optimizer. We
then focus on data space and propose a data reorganization scheme
(data-to-disk mapping) oriented towards reducing disk energy con-
sumption. An important characteristic of this scheme is that it clus-
ters simultaneously used data in a small number of disks, thereby
increasing disk idleness and effective use of available low-power
capabilities supported by the architecture. Another characteristic
of this layout optimizer is that it is used in conjunction with the
code transformation framework presented. Our experimental eval-
uation with the benchmark codes in our suite indicates that combin-
ing code and data transformations under a unified optimizer gener-
ates better results than the code optimization alone, as far as disk
energy savings are concerned. Overall, our results suggest that, for
the best energy savings, any code optimizer should consider the
layout of data on the disk system.

The rest of this paper is organized as follows. Section 2 explains
the underlying hardware support assumed in this paper for disk
power management. Section 3 introduces our experimental plat-
form and presents experimental evidence that show, while a sig-
nificant fraction of disk energy in scientific applications is spent
during idle periods, most of these idle periods are very short to take
advantage of. Section 4 discusses our proposed loop transforma-
tion framework. Section 5 discusses our data layout optimization.
Section 6 presents an experimental evaluation of the proposed code
and data optimizations. Section 7 concludes the paper with a sum-
mary of its major observations.
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Figure 1: Disk states and transitions assumed in this work.

Table 1: Default simulation parameters.
Parameter Value Parameter Value

Processor Speed 1.5 GHz Number of Disks 8
Disk Model IBM Ultrastar 36Z15 Interface SCSI

Storage Capacity 18 GB RPM 15,000
Average seek time 3.4 msec Average rotation time 2 msec

Internal transfer rate 55 MB/sec Power (active) 13.5 W
Power (idle) 10.2 W Power (standby) 2.5 W

Parameter Value
Cache Memory 64KB, 4-way, 128 byte line size

Energy (spin down: idle → standby) 13 J
Time (spin down: idle → standby) 1.5 sec
Energy (spin up: standby → active) 135 J
Time (spin up: standby → active) 10.9 sec

2. DISK POWER MANAGEMENT
Many disks offer several power modes and an idle disk can be

transitioned to one of these modes to save power. In a low-power
mode, the disk normally stops spinning. Prior studies such as [7,
3, 2] investigated this approach extensively in the context of laptop
environments where the primary goal is to save battery power. It
needs to be noted that, a disk placed in the low-power mode needs
to be spinned up before servicing the next request. Since switching
to a low-power mode involves spinning down the disk and servic-
ing the next request involves spinning up the disk, in order for this
scheme to be successful, the disk idle periods should be sufficiently
large. Otherwise, it does not make sense to switch the disk to the
low-power mode. Consequently, detecting idle periods and predict-
ing their durations accurately is critical in this approach. This typ-
ically involves some kind of history-based mechanism that records
the length and pattern of the idle periods seen up to a specific point
during execution.

Figure 1 gives the potential states for a server-class disk that is
capable of power management. Each node represents a state (oper-
ating mode) and the arrows between the states correspond to state
transitions. Attached to each arrow in this figure is the activity
that triggers the transition represented by that arrow. The power
consumption at each state as well as power/latency values incurred
during transitions are also shown in the figure. The values shown
in this figure are taken from the data sheet of the IBM Ultrastar
36ZX [6], a server hard disk. In this paper, for all experiments,
we assume the model and the values given in Figure 1. Our main
goal is to evaluate the potential (disk energy) benefits that could
be brought by code and data optimizations. All the different ver-
sions of a given application code in our experiments use the same
model/values in Figure 1.

3. EXPERIMENTAL PLATFORM AND DISK
ENERGY CONSUMPTION

To perform our experiments, we wrote a trace generator and de-
veloped a disk power simulator. Our trace simulator creates a trace
file which is subsequently fed to the simulator. Each entry in the
trace includes a time stamp, type of activity (read/write), amount
of data read/written, and duration of activity. The cycle estimates
for the loop nests were obtained from the actual execution of the
programs on a SUN Blade1000 machine (UltraSPARC-III architec-
ture operating at 750 MHz with Solaris 2.9) and these estimates are
used in all our simulations. In addition to the I/O trace file, the disk
simulator needs the disk layout information for each array, which
includes the number of disks and stripe size. Using disk layout pa-
rameters and traces, the simulator determines, for each request, the
disks that need to be accessed and the duration of access for each

Table 2: Six SPEC 2000 benchmarks used in this study.
Benchmark Brief Data Energy Execution

Name Description Size (MB) Cnsmp (J) Time (ms)
177.mesa 3D Graphics Library 181.4 16322.7 21018.0
178.galgel Computational Fluid Dynamics 216.6 24055.5 29101.2
183.equake Seismic Wave Propagation 337.4 30486.7 36049.5
188.ammp Computational Chemistry 195.5 20872.4 27006.2
191.fma3d Finite Element Crash Simulation 298.1 27306.2 33156.9
301.apsi Meteorology: Pollutant Distribution 354.1 42388.2 47751.1

Figure 2: Disk energy breakdown for the original codes.

disk. The default simulation parameters used in our experiments
are given in Table 1.

The code modifications necessary for the schemes tested in this
paper are implemented using the SUIF compiler [5]. While these
modifications increase the compilation times by about 50% on the
average (across all benchmark codes used), our belief is that this
increase is within tolerable limits, in particular when one considers
the large energy savings achieved.

Table 2 gives the benchmark codes used in this study. These
benchmark codes (all of which are array based) are selected ran-
domly from the Spec 2000 floating-point benchmark suite. In or-
der to test our approach, we made the data arrays used by these
benchmarks disk resident. Specifically, each array is stored in a file,
which in turn is stored on the disk system. Since simulating disk
activity is extremely slow, in our simulations we skipped the first
250 million instructions and simulated the next 1 billion instruc-
tions from each benchmark. The second column of Table 2 gives
a brief description of each benchmark. The third column shows
the amount of disk-resident data manipulated by each benchmark.
The last two columns give the disk energy consumption and exe-
cution cycles for the original benchmarks with disk-resident data
sets when no disk power management is employed. All the en-
ergy/performance improvements presented in the rest of this paper
are normalized with respect to the values shown in the last two
columns of Table 2.

Figure 2 gives the breakdown of disk energy consumption be-
tween idle periods and active periods when no power management
strategy is employed. One can observe from this bar-chart that a
significant fraction of total disk power, about 87.62% on the aver-
age to be specific, is spent in idle periods. While, looking at these
results in Figure 2, one might think that the disks in the system
have long idle periods, our experiments also showed that the disk
idle periods are not large. In fact, most of the idle periods are very
small. Therefore, we can conclude that the idle periods constitute a
large portion of overall disk power due to numerous very small idle
periods, rather than a few large idle periods.

Unfortunately, these results are not very good from an energy
management angle since conventional (hardware based) disk power
management techniques work best with long idle periods. There are
two ways of getting around this problem. Firstly, one can develop
new power optimization schemes that can take advantage of these
small idle periods. Studies such as [1] and [4] pursue this option.
The second option is to modify default code structure and/or disk
layout of arrays so that idle periods become longer. This is the
option explored in this paper.
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Figure 3: Percentage energy savings with different schemes.

Figure 4: Percentage increase in original execution cycles with
different schemes.

At this point, one may think that conventional data locality ori-
ented code optimizations can help increase idle periods for disks.
To check whether this is indeed the case, we performed another
set of experiments, this time each benchmark is optimized using a
data locality optimizer whose main target is to maximize data lo-
cality. The specific optimizer used for obtaining the restructured
codes is based on the idea of exploiting as much data reuse as pos-
sible within the innermost loop positions. Note that this is benefi-
cial from both cache and page level data locality perspectives. The
optimizer first captures data reuse information and represents it in
form of a data reuse matrix. It then applies a series of transforma-
tions to bring the data reuse matrix into an optimized form, which
means ensuring that data reuses occur in the innermost loop itera-
tions. After this step, the approach uses loop fusion [10] and loop
tiling [10] to further improve temporal data reuse. The details of
this code restructuring scheme are not very important as far as the
focus of this paper is concerned. But, we need to mention that it
represents state-of-the-art in data locality optimization.

When we compare the energy savings achieved by the hardware-
only approach (i.e., an approach that uses past history to spin down
a disk when predicted idleness is sufficiently large) and this locality-
aware restructuring based scheme (see the first two bars for each
benchmark in Figure 3), we do not see much improvements. Specif-
ically, the average energy savings achieved by the two versions are
3.03% and 5.46%. The bar-chart in Figure 4 gives the percentage
increases in the original execution cycles. We see that the results
with the restructuring based scheme (the second bar for each bench-
mark) are slightly better than the results with the hardware-only
scheme (the first bar for each benchmark) as a result of optimized
data locality. Overall, these results indicate that restructuring an
application code just based on data locality (i.e., without paying at-
tention to how the array data is laid out on the disk system) is not
very effective from the energy saving angle.

4. CODE OPTIMIZATION FOR DISK POWER
REDUCTION

In this section, we present our code restructuring approach to
disk power optimization. We focus on three optimizations (loop fu-

sion/fission, loop tiling, and linear optimizations), and also discuss
how they can be combined under a unified optimizer that targets at
disk power management.

4.1 Loop Fusion and Fission
Combining two loops into a single loop is called loop fusion.

It is typically used to bring array references to the same elements
close together [10]. Consider the code fragment on the left side of
the example below written using a C-like notation, which consists
of two separate loops (nested within an outer loop) that access the
same array (X1).

for(j = 0; j < Lj ; j + +)
{
for(i = 0; i < Li; i + +)
X1[i] = i ∗ i + s1;

for(i = 0; i < Li; i + +)
s2 = s2 + X1[i] ∗ X1[i];

}

⇒

for(j = 0; j < Lj ; j + +)
for(i = 0; i < Li; i + +)
{
X1[i] = i ∗ i + s1;
s2 = s2 + X1[i] ∗ X2[i];
}

If the loop limit is sufficiently large that array X1 does not fit
in cache, this code will stream the array from memory through the
cache twice (once for each loop). If this fragment is transformed
into the form shown on the right hand side, the array needs to be
streamed through the cache only once since its contribution to the
second assignment can be calculated, while the cache line hold-
ing X1[i] is still cache resident from its use in the first assignment
statement. This simple example illustrates that loop fusion can im-
prove cache-level data locality by bringing accesses to the same
array closer. A similar argument can be made for page-level data
locality as well.

From the viewpoint of disk power however, one needs to be care-
ful in applying this transformation. In the above example, depend-
ing on the loop bound Li, the idleness experienced by each disk
would be small. Therefore, fusing the two i loops can increase
disk idleness and thus beneficial from the disk energy perspective
as well. However, if the loop nests to be fused contain extra ar-
rays (i.e., arrays that are not targeted by fusion), these arrays might
lead to accesses to a large number of disks (some of which would
not be accessed had we not fused the loops). Therefore, in a paral-
lel disk architecture, loop fusion should be applied with care. One
criterion in applying this optimization is to check whether fusing
loops would lead to activation of more disks than individual nests
demand. Loop fission (also known as loop distribution [10]) is the
reverse of loop fusion, and places the statements in a given loop
into separate loops, each with its own iteration space. One can
expect this transformation to be useful from the disk energy view-
point, in particular, in cases where it separates the references to
different arrays, thereby minimizing the number of disks that need
to be activated for a given loop.

It is important to note the conflicting objectives of minimizing
data locality and optimizing disk energy consumption when these
transformations are employed. In general, when one wants to op-
timize data data locality, loop fusion is preferable whereas loop
distribution is generally used to enhance iteration-level parallelism
by placing the sinks and sources of data dependences into separate
loops. As far as disk energy minimization is concerned, however,
loop fission is, in general, preferable as it has the capability of iso-
lating accesses to small set of disks. As an example, let us consider
the following transformation:

for(i = 0; i < Li; i + +)
{
s1 = X1[i] + s2 ∗ X2[i];
s3 = s3 + X3[i] ∗ X4[i];
}

⇒
for(i = 0; i < Li; i + +)
s1 = X1[i] + s2 ∗ X2[i];

for(i = 0; i < Li; i + +)
s3 = s3 + X3[i] ∗ X4[i];

This transformation separates accesses to arrays X1 and X2 from
accesses to arrays X3 and X4. Consequently, if the first two arrays
are stored in a different set of disks than the last two arrays, this
transformation can increase disk idleness, thereby leading to a more
effective low-power management of the disk system.

Based on the discussion above, we propose the following strat-
egy for applying loop fusion and fission in a parallel disk envi-
ronment. If there is no cache/main memory related data locality
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concern, then we do not apply loop fusion; we apply loop fission
in such a way that the arrays that share the same set of disks reside
within the same loop after fission. If there is a data locality concern,
we do not modify our loop fissioning strategy except that we do not
separate statements that contain references to the same array (in an
attempt to preserve data locality). Our fusioning/fissioning strategy
tries to strike a balance between two objectives (optimizing for disk
power versus optimizing for data locality in cache/memory). When
applying loop fusion in a cache-based environment, we take cache
considerations into account but never fuse two loops if doing so
increases the number of disks accessed in a single iteration. For ex-
ample, suppose that there are three one-dimensional fussable loops
in the code, each with one statement within it: s1+ = X1[i]+X2[i]
in the first loop; s2+ = X1[i + 1] ∗ X2[i − 1] in the second loop;
and s3+ = X3[i] − X2[i] in the third loop (i is the loop index).
Also, assume that each array is stored in a separate disk. In this
case, while a pure cache locality-oriented approach would fuse all
three loops (in conjunction with array padding), our disk power
conscious approach would fuse only the first two loops. As in the
case of loop fission, this loop fusion scheme also tries to find a bal-
ance between conflicting objectives. To sum up, in a data locality
sensitive environment, we use cache/memory constraints to restrict
loop fission and disk constraints (e.g., minimizing the number of
active disks) to restrict loop fusion.

4.2 Loop Tiling
A widely-used technique for improving data locality is loop tiling

[10]. In tiling, data structures that are too big to fit in the cache (or
the highest level of memory under consideration) are broken up
into smaller pieces that will fit in the cache. Consider the follow-
ing matrix-multiply example (left hand side below). If the arrays
accessed in this nest do not fit in the cache, the cache performance
might be poor.

for(i = 0; i < Li; i + +)
for(j = 0; j < Lj ; j + +)
for(k = 0; k < Lk; k + +)
X3[i][j]+ = X1[i][k] ∗ X2[k][j];

⇒

for(ii = 0; ii < Li; ii = ii + T )
for(jj = 0; jj < Lj ; jj = jj + T )
for(i = ii; i < ii + T ; i + +)
for(j = jj; j < jj + T ; j + +)
for(k = 0; k < Lk; k + +)
X3[i][j]+ = X1[i][k] ∗ X2[k][j];

If this nest is tiled (blocked) as shown on the right hand side (as-
suming that the tile size, T , divides loop bounds Li and Lj evenly),
a square-block of array X3 is computed by taking the product of a
row-block of X1 with a column-block of X2. This product con-
sists of a series of sub-matrix multiplies. If these three blocks, one
from each matrix, all fit in cache simultaneously, their elements
only need to be read in from memory once for each sub-matrix
multiply. Thus, the array X1 will now only need to be touched
once for each column-block of X3, and X2 will only need to be
touched once for each row-block of X1. As a result, the memory
traffic will be reduced by the size of the blocks.

While this transformation enhances temporal locality across mul-
tiple loop levels, it also modifies the array access pattern dramat-
ically. For instance, after the transformation, at a given time, a
column-block of array X2 is active. We observe that depending on
the tile size parameter, a majority of these elements are not con-
secutive in data space (assuming a row-major array layout). Con-
sequently, all the disks that hold these elements need to be active
during a given short period of time.

Our disk power-aware tiling strategy works as follows. It first
determines the loops that carry some form of data reuse since ap-
plying tiling to a loop which does not carry any reuse does not pro-
mote data reuse but only increases loop overhead. We achieve this
using the reuse-oriented tiling strategy proposed by Xue and Huang
[11]. Then, among these loops (with data reuse), it selects a subset
such that the resulting access pattern does not generate a data tile
(i.e., data footprint) on the array space which is orthogonal to the
storage direction of the array. This is because, under the assump-
tion that elements of a given array are stored consecutively in the
data space (from the first element to the last element), a data tile or-
thogonal to the storage direction (of the array) leads to a maximum

Array Allocation Poor Data Locality: Good Data Locality:
on Disks [j][i] [i][j]

d0 d1 d2 d3 Cacheless Cache Cacheless Cache
X1, X2, X3 , X4 × × × × linear × ×

X1, X2 X3 , X4 × × fission fission + fission ×
linear

X1, X2 , X3 X4 × × × linear × ×
X1 X2 X3 X4 fission fission + fission ×

linear

Figure 5: Selection of different loop optimizations based on ac-
cess pattern and array allocation. Symbol × in the first four
columns indicate that no array is mapped to the correspond-
ing disk. Symbol × in the last four columns indicate that no
optimization. d0, d1, d2, and d3 are the disks.

number of disk activation. For example, in a two-dimensional row-
major array case, the disk power aware tiling strategy never selects
an iteration space tile shape if it leads to a column-block data tile
on the array space. If possible, it works with only row-block and
square tiles. In the ideal case, one would want to work with only
row-block data tiles (for such an array); but, in many cases, due to
data dependences and array access patterns, it may not be possi-
ble to obtain only row-block tiles. Still, our experiments show that
many nested loops can be tiled using only row-block and square
tiles. To achieve this, when necessary, linear loop optimizations
such as loop permutation can be used prior to tiling. To sum up,
our tiling strategy first determines the loops with data reuse, then
filters out the ones with orthogonal footprints (with respect to the
storage order), and after that, tiles the resulting nest. Our current
implementation also tries all permutations of outer nests to obtain
row-block and square tiles (i.e., eliminate column-block tiles).

4.3 Linear Loop Transformation
Linear loop transformations that aim at improving data local-

ity generally try to achieve either of two objectives for each array
reference: optimizing temporal locality in the innermost loop or
optimizing spatial locality in the innermost loop. Optimizing tem-
poral locality in the innermost loops allows the back-end compiler
to place the reference in question into a register (provided that no
aliasing occurs). This eliminates accesses to the data space, thereby
increasing the disk idle times and creating more opportunities for
the employment of low-power operating modes. Optimizing spa-
tial locality (unit stride accesses) is beneficial from the disk power
reduction angle as well since it allows all the accesses to a given
disk to be completed before moving to another disk (provided that
the array elements are stored sequentially).

It needs to be emphasized however that there are cases where
linear transformations might be desirable from one objective’s an-
gle but not desirable from the other’s angle. Consider the following
nested loop which accesses a two-dimensional row-major array:

for(i = 0; i < Li; i + +)
for(j = 0; j < Lj ; j + +)
X1[j][i] = X1[j][i] ∗ X1[j][i]− 1;

Since the column-wise access pattern exhibited by the inner loop
here is not suitable from the data locality perspective, a solution is
to interchange the order of the loops. Such an optimization makes
the accesses in the inner loop consecutive in memory, and con-
sequently improves data locality. Assuming now that array X1

spans multiple disks, the loop interchange here is beneficial from
the disk energy perspective as well. This is because, after the inter-
change, the array is accessed sequentially; that is, all array accesses
to a disk are completed before moving to the next disk. However,
if we assume that the entire array fits into a single disk, then an
energy-oriented optimization strategy would not need to perform
any transformation since no transformation would have an effect
on the inter-access time of the disk in question. However, from a
data locality point of view, it is still desirable to apply loop inter-
change.

Our disk power-conscious linear loop transformation strategy
works as follows. If there is no data locality concern, the compiler
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Disk-Conscious-Fusion(N )
INPUT: N = N1, N2, · · · , Ns,

candidate nests for fusion
ALGORITHM:
build M = {M1, · · · , Mt} where:
Mi = {mi} is compatible nest set,
and depth(Mi+1) ≤ depth(Mi);

build DAG H with dependence edges and weights;
for each Mi = {m1, · · · , mp} {
for k1 = m1 to mp {
for k2 = m2 to k1 {
if (no cache memory) continue;
if ((there exists locality between k1 and k2)
and (Disks(Arrays(k1)) == Disks(Arrays(k2)))
and (it is legal to fuse k1 and k2))
fuse k1 and k2 and update H;

}
}
}
Figure 6: Disk-conscious loop fusion
algorithm.

Disk-Conscious-Fission(N )
INPUT: N = N1, N2, · · · , Ns,

candicate nests for fission
ALGORITHM:
for each Ni = {n1, · · · , nk},

where nj s are individual loops in Ni {
let p1, · · · , pl be the statements in Ni;
for each nj ∈ Ni, j = 1, k {
if (no cache memory) {
distribute nj over nj+1, · · · , nk, p1, · · · , pl
such that:
if (Disks(Arrays(pk)) == Disks(Arrays(pj ))) then
pk and pj stay in the same loop after distribution;

} else {
apply classical (performance-oriented) loop distribution
algorithm such that:
if (Disks(Arrays(pk)) == Disks(Arrays(pj ))) then
pk and pj stay in the same loop after distribution;

}
}
}
Figure 7: Disk-conscious loop fission
(loop distribution) algorithm.

Disk-Conscious-Optimization(N )
INPUT: N = N1, N2, · · · , Ns,

nests in the procedure
ALGORITHM:
Disk-Conscious-Fission(N );
Disk-Conscious-Fusion(N );
for each Ni = {n1, · · · , nk},

where njs are individual loops in Ni {
best-cost = ∞;
best-permutation = none;
determine permutations of n1, · · · , nk
with the best locality;

let P1, · · · , Pf be such permutations;
for each Pi, i = 1, f {
current-cost = find the number of disks accessed
by the arrays with no locality;

if (current-cost < best-cost) {
best-cost = current-cost;
best-permutation = Pi;
}
}

determine the set Si, the loops with reuse in Pi;
if (there is a cache in the system)
tile each loop sj ∈ Si if its data footprint is not
orthogonal to storage direction;

}
Figure 8: Disk-conscious energy opti-
mization algorithm.

tries to optimize spatial and temporal locality aggressively. Specif-
ically, it uses the loop transformation framework presented in [8].
However, it does not apply a transformation if the transformation
will not reduce the number of active disks at a time or cluster array
accesses (e.g., when the array fits in a single disk). If data locality
is a concern, it tries to optimize locality taking cache/main mem-
ory characteristics into account, and take disk power into account
only when it needs to distinguish between references with no data
locality. As an example, suppose that a nested loop that manipu-
lates three arrays (X1, X2, and X3) can be optimized for locality in
two alternate ways (using linear loop transformations). In the first
alternative, arrays X1 and X2 have unit stride accesses, whereas
array X3 has no data locality. In the second alternative, arrays X1

and X3 have unit stride accesses but array X2 has no data locality.
Then, our strategy calculates how many different disks are accessed
due to array X3 in the first alternative and due to array X2 in the
second alternative. It selects the alternative that accesses the mini-
mum number of disks.

4.4 Putting It All Together
So far we have considered our code optimizations in isolation.

When we consider the interaction between these optimizations, the
problem becomes much harder. In particular, it should be noted that
the two objective functions, namely, improving data locality and
reducing disk energy consumption can demand different combina-
tions of transformations. To demonstrate this point, we consider the
following nested loop which accesses four different disk-resident
arrays:

for(i = 1; i < L; i + +)
for(j = 1; j < L; j + +)
{
X1[i][j] = X2[i][j] + 1;
X3[i][j] = X4[i][j]− 1;

}

Let us assume that arrays X1 and X2 are stored in one disk, and
arrays X3 and X4 reside in another disk. A pure data locality ori-
ented optimization scheme would normally not perform any trans-
formation on this loop, since all the references exhibit high spatial
locality and the loop body is not large enough to justify loop distri-
bution (due to instruction cache locality concerns). A disk power
oriented strategy, on the other hand, would apply loop distribution
to isolate the accesses to individual disks so as to maximize the idle
periods for each disk. Now, let us assume that all the subscript ex-
pressions in the last example above are [j][i] instead of [i][j] (under
the same array placement scheme). In this case, a locality-oriented

optimization strategy would apply loop interchange to obtain unit
stride accesses in the inner loop position. A strategy that targets at
disk energy would, however, still use loop distribution. If optimiz-
ing both disk energy and data locality is important in this example,
then it would be best to apply both loop interchange and loop dis-
tribution. In this last scenario, if all the arrays reside on the same
disk, data locality optimization would demand a loop interchange,
whereas disk optimization would require no transformation. This
example demonstrates that the selection of loop transformations to
apply depends strongly on the data locality characteristics of the
code as well as the array allocation in the disk system (i.e., array-
to-disk mapping). Figure 5 gives the optimizations to be applied
(considering only loop fission and linear loop transformation) for
the example above, assuming a disk system with 4 disks. The first
four columns in this figure give the array allocation on the disk
system. The fifth and sixth columns cover the case when array sub-
script expressions (for all arrays) are of the form [j][i]; i.e., they ex-
hibit poor data locality, whereas the seventh and eight columns cor-
respond to the case with subscript expressions [i][j] (that is, good
data locality). For each case (good or poor locality), we consider a
cacheless system and a system with a data cache. From this table,
we clearly see that both array allocation (placement) on the disk
system and locality play a role in determining the optimization(s)
to be applied.

An important issue then is to combine our loop-based transfor-
mations in such a fashion that both the disk energy and the data
locality are optimized. Our heuristic strategy to this problem op-
erates as follows. We first apply loop fission to isolate as many
nested loops as possible. This will enable the compiler to spin down
as many disks as possible. After that, we apply disk power con-
scious version of loop fusion to take advantage of cache memory
(if there is one in the system). Then, we consider each of the re-
sulting loop nests one-by-one, and optimize them using disk power
conscious versions of loop permutation (linear transformation) and
loop tiling. Figure 8 shows the overall compiler algorithm. This
algorithm calls the algorithms Disk-Conscious-Fusion(.) and Disk-
Conscious-Fission(.), given in Figures 6 and 7, respectively. The
algorithm in Figure 6 is a greedy heuristic based on the depth of
compatibility, similar to the performance-oriented loop fusioning
strategy presented in [9]. It builds a DAG from candidate loops,
where edges are dependences between the loops and the weight
of each edge is the potential gain due to loop fusion. The nests
are partitioned into sets of compatibility at the deepest loop lev-
els possible. Note that the approach first fuses the nests with the
deepest compatibility and locality. Then, the DAG is updated and
the fusion is applied at the next level until all compatible sets are
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Figure 9: Two different data allocations on the disk system.

considered. The algorithm in Figure 7, on the other hand, consid-
ers each loop nest one-by-one, and applies loop distribution while
being careful in not distorting data locality. In both the algorithms,
for a given loop l, Arrays(l) gives the set of arrays accessed by it
and Disks(Arrays(l)) gives the set of disks touched. After applying
loop fission and fusion, within the outer for-loop (in Figure 8), each
of the nests is optimized using loop permutation and tiling for disk
energy and data locality.

5. DATA OPTIMIZATION FOR DISK POWER
REDUCTION

While the disk layout-aware code structuring strategy presented
above increases disk idle times, one can do even better by selecting
the most appropriate disk layout for each array (following the code
structuring). What we mean by layout optimization in this section
is to determine the most appropriate set of disks to store a given
disk-resident array. Let us assume a code fragment with two loop
nests, one of the accessing arrays X1 and X2, whereas the second
one accessing arrays X3 and X4. If all the four arrays are striped
over all the disks in the system (see Figure 9(a)), this means all
the disks will be active in both the nests, thereby presenting very
little opportunity for power management. In comparison, if X1 and
X2 are stored in half of the disks and X3 and X4 are stored in the
remaining disks (see Figure 9(b)), only half of the disks will be
active at any given nest, meaning that the remaining disks can be
spun down. Our data layout optimization scheme is applied right
after code structuring (discussed earlier), and determines a suitable
set of disks for each array based on the principle shown in Figure 9.
We do not give the pseudo code of the formal algorithm due to
space concerns.

6. EXPERIMENTAL EVALUATION
We now present an experimental analysis of the code and data

layout optimization approach discussed in earlier sections. Let us
first look at the energy savings achieved by the two versions of our
approach. In the first one, we apply only code restructuring, and
in the second one, we apply both code and data restructuring. The
results are given in Figure 3 as the third and fourth bar for each
benchmark code. We see from these results that the energy sav-
ings achieved by these two versions are 13.38% and 22.18%, that
is, they are much better than those obtained by the hardware-only
approach and the pure data locality oriented code restructuring (the
first two bars in the same figure). Also, since the gap between the
two versions of our approach is not small, we can conclude that
considering data allocation (layout) on the disk system is impor-
tant for achieving high energy savings. The performance results of
these two versions (given as the last two bars for each benchmark
in Figure 4) reveal that, while they are not as good as the pure data
locality oriented scheme, they are not too far from it either.

One of the important parameters whose impact on the disk power
needs to be studied is the number of disks in the system. Recall
that our default configuration has 8 disks. Figure 10 gives the en-
ergy saving results with varying number of disks (x-axis), when
averaged over all six codes in our suite. Maybe the most important
trend that can be observed from these curves is that our approach
is able to take advantage of additional disks in the system (as far
as energy saving is concerned). In fact, we see that the gap be-

Figure 10: Impact of the number of disks.

tween our approach and the other two increases as we increase the
number of disks in the system. Considering that, in parallel to the
increase in dataset sizes and in data duplication due to reliability
reasons, the number of disks employed normally keeps increasing,
these results are promising.

7. CONCLUSIONS
As power consumption of disk systems of large-scale servers/clusters

is becoming an increasing concern (due to thermal issues and cool-
ing costs), we need both hardware and software solutions for ad-
dressing the problem. This paper proposes and evaluates a compiler-
guided optimization framework for reducing disk energy consump-
tion. An important characteristic of the proposed framework is that
it combines both code and data optimizations under a unified opti-
mizer. The experimental results with six applications show that this
approach saves much more energy than a pure hardware-oriented
scheme that does not employ any software optimization and a pure
data locality optimizer that does not take into account the layout
of array data on the disk system. The experimental results also in-
dicate that the proposed optimization framework scales well as we
increase the number of disks in the system.
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