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ABSTRACT
In this paper we study the energy efficiency of SMT and
CMP with multiclustering. Through a detailed design space
exploration, we show that clustering closes the energy effi-
ciency gap between SMT and CMP at equal performance
points. Specifically, we show that the energy efficiency of
CMP compared to SMT at a given performance decreases
from a maximum of 25% in a monolithic processor case to
6% when the processor resources are clustered. By care-
fully considering floorplans, we show that this is, in part,
enabled by the small energy consumption (less than 3%) of
the interconnection buses required for clustering, even with
SMT. As the gap narrows, we show that the efficiency of
SMT versus CMP depends on the contribution of leakage
energy: at lower leakage, the CMP tends to be better than
the SMT, while the SMT outperforms the CMP at higher
leakage levels. We demonstrate these results over a wide
range of performance and machine configurations.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Ar-
chitectures.

General Terms
Performance, Design, Experimentation.

Keywords
Energy efficiency, simultaneous multithreading, chip multi-
processing.

1. INTRODUCTION
Simultaneous multithreading (SMT) [1] and chip multi-

processing (CMP) [2] are two architectural approaches to
exploit thread-level parallelism using available on-chip re-
sources. SMT allows instructions from multiple threads
to share several critical processor resources, thus increas-
ing their utilization. The advantage of SMT is area-efficient
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throughput [3]. CMPs, on the other hand, improve sys-
tem throughput by replicating processor “cores” on a single
die. As both these paradigms are targeted toward multi-
threaded workloads, comparing their efficiency in terms of
performance, power, and thermal metrics has drawn the at-
tention of several researchers [4, 5, 6].

Unlike prior work, we explore the energy efficiency of SMT
and CMP in the context of clustered processors. We do
this for several reasons. First, many modern processors [7,
8] already employ some form of limited clustering. Addi-
tionally, Zyuban [9] demonstrated the energy efficiency of
clustered processors when on-chip resources are scaled for
increased throughput. As SMT could potentially require in-
creasing on-chip resources to extract more parallelism, clus-
tered processors are natural candidates to enable this with
limited impact on energy. Through a detailed design space
exploration, we make the following contributions in this
work:

• We show that multiclustering reduces the gap in en-
ergy efficiency between SMT and CMP for a given per-
formance. For the design space explored, we find that
a monolithic CMP consumes up to 25% less energy
than a monolithic SMT delivering similar performance.
However, this gap is reduced to 6% once the proces-
sors are clustered. By carefully considering floorplans,
we show that this is, in part, enabled by the small
energy consumption (less than 3%) of the interconnec-
tion buses required for inter-cluster communication.

• As the CMP tends to use more resources than the SMT
to deliver a certain level of performance, we show that
the energy efficiency of SMT versus CMP depends on
the leakage energy contribution. At 70nm, the CMP is
more energy-efficient than the SMT when the leakage
energy is low. As the leakage energy increases (which
is expected to be the case in future technologies), SMT
becomes more energy-efficient than the CMP. We show
these results using a conservative SMT model where
the front-end resources (branch predictor, instruction
cache etc.) are separate for each thread, similar to
a CMP. We believe that these results should hold for
more aggressive SMT models which also share these
front-end resources among threads.

Based on these results, we conclude that if leakage energy
cannot be kept under control in future processors, SMT al-
lows to extract more throughput for a given amount of re-
sources and amortize the leakage overhead across more num-
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ber of instructions. This makes SMT more energy-efficient
than the CMP at higher levels of leakage energy.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses prior work related to this research and high-
lights the main differences. We present the baseline proces-
sor model in Section 3 and also discuss performance and
energy metrics. Our delay and energy modeling for blocks
and wires is presented in Section 4. Section 5 presents our
simulation methodology, and experimental results are dis-
cussed in Section 6. We conclude the paper in Section 8
with some future directions.

2. PRIOR WORK
Several prior studies [5, 4, 3] have examined the energy ef-

ficiency of SMT and CMP under different workloads. Kaxi-
ras et al. [5] studies the problem for mobile workloads using
VLIW cores and show the SMT to be more efficient. Sasanka
et al. [4], on the other hand, explores the problem for mul-
timedia workloads, and conclude that CMP is better than
SMT. However, it is not clear how these results apply to
other classes of benchmarks. Recent work by Li et al. [3]
explores the energy efficiency of SMT for general-purpose
workloads and shows that it offers superior performance in
terms of the energy-delay-square metric. Li et al. [6] also
study the energy and thermal properties of SMT and CMP
in the context of a fixed die size and show the CMP to be
superior for CPU-bound benchmarks, and SMT to be better
on memory-bound benchmarks due to larger L2 cache.

None of the aforementioned studies has considered SMT
and CMP evaluation with clustering, which we consider in
this work. Our methodology resembles the work by Sasanka
et al. [4] in the sense that we also compare the SMT and
CMP at equal performance points, ignoring the impact on
area (which we think will manifest itself in the form of en-
ergy).

3. PROCESSOR MODEL AND METRICS
Our baseline SMT model with two clusters and two thread

contexts is shown in Figure 1, and the corresponding proces-
sor parameters are listed in Table 1. While prior research [1]
has looked at sharing front-end resources among threads,
we assume that each thread has its own branch predictor
and instruction cache. Thus, only the back-end execution
resources such as issue queue entries, physical register file,
functional units, and data cache are all shared by the threads
similar to [10]. We use the Advanced RMBS steering heuris-
tic [11] to steer instructions to different clusters. However,
determining the number of ready instructions [11] in each is-
sue window is not a straightforward task in the presence of
wire latencies. Therefore, we use the number of instructions
dispatched to each cluster as a measure of load imbalance.
We use the ICOUNT [12] thread selection policy to prioritize
fetching instructions from different threads.

In our clustered model, we assume that the physical reg-
ister file is split among the clusters. Thus, copy instructions
are required to transfer register data between clusters. We
use a single-issue, six-entry copy instruction queue at each
cluster for this purpose. Similarly, each cluster is provided
with a small set of buffers to receive register data from other
clusters. Register values are communicated on demand so
that energy consumption due to data transfer between clus-
ters can be minimized.
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Figure 1: Baseline clustered SMT processor with
two thread contexts and two clusters.

Another important aspect of clustered processors is the
first-level data cache design. While different strategies [9,
13, 14] have been studied from a performance standpoint, we
have limited our study to a model where the cache banks are
replicated at each cluster, primarily because of the following
reasons: (1) while providing better performance than other
distributed cache models, this enables load instructions to
be steered to any cluster and eliminates the need for address
prediction and misprediction recovery issues [9]; and (2) it
makes energy modeling simpler.

Fetch 4K entry 4-way associative BBTB
32KB g-share

I-cache 32KB, 2-way
Decode Width 4

Issue Width 4
Issue Window 16

ROB 256 entries per thread
LSQ 128 entries

Register File 80 INT and 80 FP
Functional Units 4 INT, 2 FP

D-cache Replicated 32KB, 4-way, 32 bytes/block
1RW port per cluster
1 cycle latency for access

Unified L2 2MB, 8-way, 64 bytes/block
12 cycle latency
Shared bus to DL1

Main memory 180 cycles for first chunk

Table 1: Baseline processor parameters used in this
study.

For the purpose of correct memory disambiguation, store
instructions are allocated entries in the LSQs of all the clus-
ters, similar to Zyuban’s [9] proposal. However, only one
copy of the store instruction is allowed to execute. Store
addresses and data are broadcast to all clusters so that mem-
ory disambiguation can be done at each cluster locally. This
also allows to maintain cache coherency.

Our inter-cluster communication model consists of two
separate buses: a 72-bit wide (64-bit data and 8-bit control)
register data communication bus and a 32-bit wide memory
address communication bus. We use a ring topology to inter-
connect the clusters, and the latency of each link on the ring
depends on the floorplan. To avoid bus arbitration issues,
we assume that there are as many buses as the number of
clusters so that each cluster is able to freely broadcast data
at any time.

Metrics
Several metrics [15] have been proposed to evaluate the per-
formance of multi-threaded workloads. We measure the per-
formance of SMT and CMP using the weighted IPC metric
proposed by Snavely et al. [15]. The speedup of a N -thread
workload is calculated as

SMT speedup=
1

N

X IPCSMT (i)

IPCnon−SMT (i)
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BPRED_0 ROB_0

Cluster
Scheduler

ICACHE_1

ICACHE_0

BPRED_1 ROB_1
Cluster_2Cluster_3

Cluster_0 Cluster_1

L2 CACHE

BPRED_0 ROB_0

ICACHE_1

ICACHE_0

BPRED_1 ROB_1

Cluster_0 Cluster_1

L2 CACHE

Cluster_0 Cluster_1

Cluster Scheduler_0

Cluster Scheduler_1

(a) SMT (b) CMP

Figure 2: Floorplans for a four-cluster SMT (a), and a corresponding two-core CMP (b). Each core on the
CMP has two clusters, and a separate cluster scheduling logic.

where IPCSMT (i) is the IPC of the i’th thread during the
SMT execution and IPCnon−SMT (i) is its IPC during a sin-
gle thread execution. We choose this metric because it con-
siders how each individual thread performs under SMT rel-
ative to its non-SMT performance. All our speedups are
calculated relative to the IPC of each benchmark on the
baseline, non-clustered, non-SMT machine.

In contrast, we use the total energy consumed during each
run for the energy metric. We use the energy-delay product
as a metric for comparing different architectures. This can
be expressed as follows:

E ×D =
Energy

Instruction
× Cycles

Instruction
=

Energy/Cycle

IPC2

One possible way to visualize the solutions based on the
E × D metric is to plot them on an energy-per-cycle vs.
IPC graph. Due to the quadratic dependency on IPC, points
with equal energy-delay product appear as parabolas on this
graph. Thus, solution points on this graph which lie on
lower equal energy-delay product curves represent configu-
rations with a lower energy-delay product – i.e., better de-
sign points. For a better understanding of these curves, we
point the reader to [9].

4. DELAY AND ENERGY MODELING
We model the delay and energy of the major components

of the processor based on CACTI [16] and Wattch [17] re-
spectively. However, unlike Wattch, we model a separate
ROB, issue window, and a physical register file. We assume
aggressive clock gating [17] for all the architecture configu-
rations that we study. As it is not possible in practice to
achieve 100% clock gating, we assume that only 90% of the
circuit power can be turned off with clock gating, as in typ-
ical industrial circuits [17]. We model leakage energy as a
fraction of the total unconstrained dynamic energy, similar
to the work by Li et al. [3].

The main interconnection buses that may contribute to
the energy in a clustered processor over a monolithic proces-
sor are (a) the instruction dispatch bus, (b) the register data
communication bus, and (c) the memory address communi-
cation bus. In order to estimate the contribution of energy
by these buses, we need to estimate the lengths of the wires
which can only be obtained from a floorplan. Since search-
ing all possible layouts is an expensive operation, we assume
a similar floorplan for all configurations with a given number

of clusters and estimate the interconnect lengths in each case
based on this floorplan. A sample layout for a four-cluster
SMT and the corresponding CMP is shown in Figure 2.

For the purpose of floorplanning, many of the block areas
were estimated using CACTI [16], while the functional unit
areas were estimated based on the data used by Palacharla et
al. [18]. For the architecture configurations that we explored
in this study, the total interconnection bus length across a
specific cluster was between 210µm and 1800µm. We calcu-
late the latency of these buses based on interconnect perfor-
mance estimation models by Cong and Pan [19], which con-
siders different interconnect optimization techniques such as
wire sizing and buffering. The latency is obtained as the
minimum number of cycles required to cover the wire delay,
and the energy is calculated based on the wire and buffer
parasitics.

5. SIMULATION METHODOLOGY
The performance simulator used in this study is based on

the SimpleScalar 3.0 toolset [20]. The simulator models an
out-of-order clustered processor such as Alpha 21264 [8] and
runs Alpha AXP ISA executing only user-level instructions.
The simulation is event driven, including execution down
any speculative path until the detection of a fault, TLB
miss, or branch misprediction. We assume a 70nm process
technology for all experiment in this study, and fix the target
clock frequency at 4GHz, which is representative of next-
generation superscalar processors. Since we explore changes
in several architectural parameters, we assume the blocks
and wires can be pipelined to any depth, as required at the
target frequency.

For this study we use 12 SPEC2000 benchmarks, six in-
teger (gzip, vpr, twolf, bzip2, perl and eon) and six
floating point (wupwise, art, sixtrack, mesa, ammp and
lucas) programs. We chose these benchmarks based on
their IPC (high and low), their response to scaling back-end
resources in the processor (compute-intensive or not) and
their memory requirements (large or small footprints). We
then create 12 pairs of two-thread workloads such that each
benchmark appears the same number of times in the entire
workload. The IPC numbers presented here are averages
over all the benchmarks. We use the SimPoint toolset [21]
to get representative simulation points, and simulate each
two-thread workload for 200 million instructions for every
architecture configuration.
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Before we compare the energy efficiency of SMT and CMP
at a certain level of performance, it is necessary to find the
energy-efficient processor configurations for the SMT and
CMP separately. Toward this end, we follow a methodol-
ogy similar to that of Zyuban [9]. Basically, we perform
several simulations for each multi-thread workload by vary-
ing important processor parameters, and plot the results on
a energy-per-cycle vs. IPC graph. The lower convex hull
(LCH) of these points provides a set of non-dominated solu-
tions – i.e., the lowest energy solution for a particular level
of performance. We can then directly compare these LCH
curves for different architectures to understand their energy
efficiency. A similar approach was also followed by Sasanka
et al. [4].

While there are several parameters that affect the per-
formance and energy of a given architecture, we primarily
concentrate on the efficiency of back-end resource sharing
enabled by SMT. Hence, we choose to generate a variety of
architectural configurations by varying only the following:
issue window, number of entries in the physical register file,
number of clusters, and the number of functional units and
memory ports to the cache. The range of values explored
for these parameters is shown in Table 2.

Issue Width 4, 6 and 8
Number of clusters 1, 2, and 4
Issue Window 8 to 128
Physical RF 72 to 256
L1 memory ports 1 and 2

Table 2: Parameters that were varied to generate
the energy-efficient configurations for a given archi-
tecture.

6. RESULTS
In Figure 3 and Figure 4 we show the family of energy-

efficient architecture configurations for four different archi-
tectures (monolithic SMT, monolithic CMP, clustered SMT,
and clustered CMP) and three different issue widths (four,
six, and eight). Note that a four wide CMP implies two
cores each with an issue width of two. These curves were
obtained by simulating approximately 700 configurations for
the monolithic case, and 350 for each clustered architecture.
For these experiments, we assume a fixed L2 cache size of
2MB, and only change the core parameters as mentioned in
Table 2. We also set the leakage energy to be 10% of the
unconstrained dynamic energy, as in [3].

Comparing the monolithic SMT and CMP architectures
in Figure 3, the CMP appears more energy efficient than the
SMT over a wide range of performances. The efficiency of
CMP increases with the issue width, and the CMP can save
up to 25% energy compared to the SMT at an issue width
of eight. While Li et al. [6] shows the SMT to be superior
to CMP for memory-bound benchmarks, the study used a
smaller L2 cache for the CMP compared to the SMT. As
we use the same L2 cache size for all our configurations, we
find the CMP to be more efficient for the range of IPCs we
explored.

However, for a fixed amount of resources, the SMT de-
livers a higher performance than the CMP. This can be
seen by comparing the leftmost and rightmost points on
the corresponding SMT and CMP curves, which have al-
most identical resources. At all issue widths, the maximum
throughput achieved by the SMT machine is higher than

that obtained by an equivalent width CMP. This underlines
the effective dynamic resource sharing enabled by SMT. The
increased throughput for the SMT comes with an increase
in the energy consumption due to the higher utilization. For
instance, the maximum performance for the eight-issue SMT
is around 9.5% more than the maximum performance of the
eight-issue CMP with identical resources, but this improve-
ment almost doubles the consumed energy.

Comparing Figure 3 and Figure 4, we can see that clus-
tering can reduce the energy consumption by up to 50%
at a given performance. We can also see that the energy
savings increase as the issue width of the machine increases:
the maximum energy reduction is around 25% for the 4-wide
machine, 40% for the 6-wide, and almost 50% for the 8-wide.
A similar result for single thread workloads was shown by
Zyuban [9].
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One reason for this energy benefit is that the intercon-
nect energy overhead due to clustering is very minimal in
all the architectural configurations we explored, even with
SMT. The wires, together with the copy instruction queue
and the data buffers, contributed to less than 3% of the
overall energy of these configurations. Notice that this is
even true when the number of clusters is four, which has
more interconnect energy associated with the buses. After
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careful examination, we found that the wires that span a
cluster in our experiments were only between 210µm and
1800µm. However, at 70nm technology, a wire has to be
nearly 2600µm to see a benefit from buffer insertion [19]. As
the wirelengths in our study could be accommodated within
the target frequency without any buffering, this significantly
reduced the energy contribution from the interconnects.

Interestingly, the energy efficiency of SMT and CMP is
only marginally different with multiclustering, as shown in
Figure 4. While Figure 4 and Figure 3 show that clustering
helps to reduce energy for both the SMT and CMP, the
static partitioning of CMP means that it is already clustered
at a coarser granularity, and this limits the gain for the CMP
from multi-clustering. Thus, at issue widths of four and six,
we find the SMT and CMP to be similar in terms of their
efficiency, while at a width eight, the CMP is more efficient
by up to 6%. Correspondingly, we see the gap between SMT
and CMP efficiency reduced from a maximum of 25% to 6%
once the processor resources are clustered. As the trend is
similar over a wide range of IPCs, we believe that this result
will hold even for wider machine widths and more threads.

7. IMPACT OF LEAKAGE ON ENERGY EF-
FICIENCY

As mentioned earlier, we observed that the CMP typi-
cally requires more resources (hence area) than the SMT
to achieve the same level of performance. For instance, in
Figure 4, an IPC of just over 1.0 can be achieved in the
case of CMP with a eight-wide machine, whereas a machine
width of six is sufficient for the SMT case. However, we
find that the CMP consumes less energy than the SMT in
Figure 4. This is possible because the dynamic energy is the
dominant component of the total energy under our leakage
assumptions, and hence the increased resource utilization of
SMT makes it less energy efficient. Intuitively, the increased
area of the CMP will affect its energy efficiency only when
the leakage energy due to these extra transistors increases.
As leakage energy is expected to grow to more than 50% of
the total energy [22], we show the sensitivity of the energy
efficiencies of SMT and CMP to the leakage energy. These
results are shown in Figure 5, where we increase the leakage
from 10% to 40% of the unconstrained dynamic energy (for
reference, leakage power contributes to almost 40% of the
power consumption of a Pentium 4 [22] processor).

In general, it can be observed from Figure 5 that the
curves for the CMP tend to move up slightly faster than
the corresponding SMT curves as the leakage energy contri-
bution increases. This makes the CMP become less energy
efficient at performance points where it was more efficient
than the SMT at lower leakage. Even in the case of a 10%
leakage factor, we see that the SMT consumes marginally
lower energy than the CMP for a four-wide machine around
an IPC of 0.57. Though both machines have a width of four,
each core on the CMP uses significantly more entries in the
issue window and physical register file in each core to de-
liver the same performance at a narrow width of two. The
leakage contribution due to these larger structures make the
CMP less efficient, even for a 10% leakage contribution. As
the leakage increases to 30%, we find that the SMT con-
sumes approximately 10% lesser energy than the CMP for
this performance point.

Thus, when the contribution of leakage energy increases,

we find and increase in the range of IPC values within which
the SMT becomes more efficient than the CMP. This trend
can be observed at every issue width in the curves in Fig-
ure 5. While the CMP is better by, at most, 6% in terms
of energy for a leakage of 10%, the SMT becomes more ef-
ficient by up to 10% at a 40% leakage contribution. No-
tice that these results are obtained on a conservative SMT
model where we assume that each thread has a dedicated
front-end much like a CMP. For more aggressive SMT mod-
els where the front-end is shared among multiple threads,
we think that the SMT can save more than 10% energy at
higher leakage levels compared to a CMP for the same level
of performance.

These results show that if leakage energy cannot be con-
trolled effectively and it contributes significantly to the to-
tal energy consumption, it is useful to use SMT to exploit
thread-level parallelism to increase the throughput and amor-
tize the leakage cost over a larger number of instructions.

8. CONCLUSION
We demonstrate several interesting results through this

work. First, we show that multiclustering helps to reduce
the gap in the energy efficiency of SMT and CMP at equal
performance points. For the sample design space explored,
we show that while the CMP is up to 25% more energy effi-
cient than the SMT for monolithic cores, clustering reduces
the CMP efficiency to just 6%. We find that this is, in part,
enabled by the limited energy consumption (less than 3%)
of the interconnection buses required for cluster communi-
cation. Finally, we show that the energy efficiency of SMT
and CMP depends on leakage – CMP is more efficient with
dominant dynamic energy, while SMT tends to become ef-
ficient with increasing leakage energy. Thus, we conclude
that when leakage energy is significant, it is useful to ex-
tract more throughput using SMT so that the leakage cost
can be amortized over a larger number of instructions.
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