
Toward a Unified Standard for Worst-Case Execution Time
Annotations in Real-Time Java

Trevor Harmon and Raymond Klefstad

University of California, Irvine
Dept. of Electrical Engineering and Computer Science

Irvine, California 92697-2625 USA
{tharmon, klefstad}@uci.edu

Abstract

As real-time systems become more prevalent, there
is a need to guarantee that these increasingly complex
systems perform as designed. One technique involves a
static analysis to place an upper bound on worst-case
execution time (WCET). This temporal analysis can-
not be made automatic and normally requires source
annotations to assist a WCET analysis tool.

At the same time, there is a growing interest in using
Java for real-time systems. Several WCET analysis
prototypes for Java have been created, and more are
under development. Each relies on a competing and
incompatible convention for annotations, resulting in
portability problems and duplication of effort.

We propose that Java’s own annotation mechanism
should be used to address such issues. These built-
in annotations provide a common platform for WCET
analysis, improving portability and reducing the effort
necessary to create these vital tools. We examine the
features that make Java’s annotation standard attrac-
tive for WCET analysis, then discuss its current fail-
ings and make recommendations for future improve-
ments.

1. Introduction

Knowing the worst-case execution time, or WCET,
of tasks can provide great confidence and predictability
in real-time systems. Unfortunately, WCET analysis is
often neglected or merely “guesstimated.” Although
WCET research is improving, and commercial tools
have helped, WCET analysis remains limited and ad

1-4244-0910-1/07/$20.00 c©2007 IEEE.

hoc. Even when an analysis is performed, it may not
provide a guarantee (leading to poor confidence), or
the results may be overly pessimistic (leading to un-
derutilized resources).

To understand why the worst-case execution time is
so important, consider the major real-time scheduling
algorithms. All of these algorithms require knowledge
of the WCET. To be specific:
Rate-monotonic This algorithm assumes that no task
has a WCET longer than its deadline. Further-
more, its feasibility analysis requires WCET as input:
U =

∑n

i=1
Ci
Ti
≤ n

(
n
√

2− 1
)
, where U is processor uti-

lization, n is the number of processes, Ti is the release
period, and Ci is the WCET.

Earliest Deadline First (EDF) This scheduler does
not require WCET knowledge at run-time. However, EDF
is unstable (one late job causes many other jobs to be late),
so a guarantee against overloading is vital. The only way
to make this guarantee is to perform an acceptance test:
U =

∑n

i=1
Ci
Ti
≤ 1, where the variables have the same

meanings as above. Again, note that WCET is part of the
equation.

Least Slack Time (LST) The slack (also called “lax-
ity”) of a real-time task is defined as d− t− c, where d is
the deadline, t is the current time, and c is time required
to complete the remaining portion of the job. Determining
c requires knowledge of the WCET.

Time-triggered Also known as clock-driven or time-
driven, this approach depends on a static schedule com-
puted prior to execution. The static schedule dictates an
exact moment in time for each task’s release. In such a
scheme, task n cannot be scheduled until task n− 1 com-
pletes; otherwise, two tasks could be released at the same
time. Preventing this failure requires knowledge of each
task’s WCET.

Note that all of the above algorithms depend on
WCET. Thus, even if the underlying operating system
implements a solid, carefully crafted real-time schedul-

N
u

m
b

e
r

o
f

m
e

as
u

re
m

e
n

ts

Execution time

Unmeasured
execution
times

True WCET

Measured
WCET

Measurement distribution

Figure 1. This histogram of execution time
for a fictional real-time task illustrates the
weakness of measurement when dealing with
worst-case execution time.

ing algorithm, making any guarantee about the pre-
dictable behavior of a task is impossible unless its
WCET is known. And, as Figure 1 shows, an upper
bound on the WCET cannot be obtained through mea-
surement; a static analysis must be performed.

2. The Challenge of WCET Analysis

The essential question, then, is why more influential
research has not been produced despite two decades of
work in WCET.1 One explanation comes from Kirner
and Puschner [9], who argue that industrial-strength
WCET tools are simply too difficult to implement.

2.1. Implementation Difficulties

One of the factors behind this implementation diffi-
culty is the modern CPU. Architectural advancements
in RISC processor design, such as very long pipelines
and complex multi-level caches, have focused on mak-
ing the average case as fast as possible. Unfortunately,
the shrinking of this average has not come without cost:
While the average may be small, its standard devi-
ation has grown large, resulting in large (and overly
pessimistic) worst-case execution times.

Hardware is not the only difficulty, of course. The
software platform is another reason for the lack of
good tools for WCET analysis. Today, most real-time
systems are developed in C and, to a lesser extent,

1Kligerman’s and Stoyenko’s 1986 paper [10] is generally con-
sidered the first publication to address the problem of WCET.

Ada. Because the compilers for these languages vary,
there is no common intermediate representation (IR)
for WCET analysis tools to target. GCC’s Register
Transfer Language, for example, is incompatible with
the Intel compiler’s IR. Furthermore, these IRs may
change across compiler versions, they may suffer from
limited documentation (if any), and they are subject
to change with each new compiler version.

The changing nature of IR magnifies the difficulty
of building WCET analysis tools. Because there is no
clean, consistent separation between high-level source
code and low-level machine code, tools must be able to
perform a complete top-to-bottom analysis. This in-
cludes parsing source code, constructing a control flow
graph, mapping the basic blocks to machine code, an-
alyzing each basic block according to a model of the
target processor, and so on.

To make this process tractable, most tools offer lit-
tle flexibility, usually locking themselves to a particu-
lar hardware architecture. It is also common to ignore
high-level source code altogether, operating at the ma-
chine code level. Mapping this machine code analysis
back to the high-level source code, which is necessary
to act on the information provided by the tool, is typ-
ically cumbersome and unintuitive. The aiT tool,2 for
instance, displays its analysis in assembly language,
leaving the programmer to mentally map the jumble
of mnemonics and hexademical numbers back to the
source code language of choice.

This situation has led developers, as well as re-
searchers in the WCET field, to seek a better platform
on which to build real-time systems and tools.

2.2. Java as a Catalyst

As a platform with no temporal guarantees and un-
derspecified threading semantics, Java seems an un-
likely choice for real-time systems development. Yet
there are a number of reasons why an increasing num-
ber of researchers are looking to Java for real-time en-
vironments:
Bytecode Java’s bytecode provides an inherent modular-
ization of static analysis tasks, as illustrated in Figure
2. For example, high-level WCET tools for Java can ig-
nore any timing aspects below the bytecode level. Sepa-
rate low-level tools, perhaps written by other vendors, can
then complete the analysis once the target architecture is
known. This sort of modularization helps solve the soft-
ware complexity problem raised in Section 2.1. Bytecode
also acts as a common, well-specified intermediate repre-
sentation that does not vary with different compiler ver-
sions and vendors (unlike the situation with C and Ada).

2http://www.absint.com/ait/

High-level analysis

Processor
timing
model

Java source
code with

annotations

Final WCET value

Compilation

Control flow graph
construction

Derivation of loop
bounds

Low-level analysis

Cache analysis

Collapse of basic blocks

Collapse of the CFG

Bytecode level and above
Below bytecode level

Begin WCET analysis

Figure 2. This sketch of the WCET analysis
process shows the clean separation between
high- and low-level analysis that Java byte-
code provides.

Java processors Java processors, whose native instruc-
tion set is Java bytecode, help solve the hardware com-
plexity problem raised in Section 2.1. These chips elim-
inate the operating system and virtual machine, making
WCET analysis far simpler. In addition, research has pro-
duced a Java processor, called JOP, with a short four-stage
pipeline and a predictable instruction cache designed for
real-time systems [15]. Such chips are easy targets for
tight WCET analysis.

Productivity Real-time systems are becoming increas-
ingly complex and widespread. To keep up with the grow-
ing demand for these sophisticated systems, developers
need to become more productive, and Java is recognized
as a more productive language than C [11].

3. WCET Annotations

While Java provides simplicity, WCET analysis is
still far from trivial. The root of the problem has been
known since 1936 when Alan Turing proved that, given
an arbitrary program, a decision as to whether the pro-
gram finishes or will run forever does not exist [16]. The
consequence for WCET analysis is that no tool can ex-
amine an arbitrary real-time Java program and derive

1 public static void main(String [] args) {
2 int max = Integer.parseInt(args [0]);
3 ...
4 }
5

6 private static void sort(double [] a) {
7 // @WCET loopMax =9
8 for (int i = 0; i < max -1; i++) {
9 // @WCET loopMax =9

10 for (int j = 0; j < max -1-i; j++) {
11 if (a[j+1] < a[j]) {
12 double tmp = a[j];
13 a[j] = a[j+1];
14 a[j+1] = tmp;
15 }
16 }
17 }
18 }

Figure 3. WCET tools require knowledge
about the constraints under which a program
will run. Here, the developer “knows” the in-
put size will never be larger than 10 and has
inserted WCET annotations accordingly.

its WCET bounds. As shown in Figure 3, the WCET
may depend on knowledge that only exists at run-time,
stifling any attempt at static analysis.

WCET bounds may be undecidable in general, but
real-time systems are hardly the arbitrary programs de-
scribed by Turing. In a real-time environment, the de-
veloper is normally able to (and, in many cases, must)
exercise careful control over input parameters and pro-
gram complexity. As a result, certain assumptions can
be provided to a WCET analysis tool that make its job
tractable. These assumptions usually take the form of
annotations.

For example, turning again to Figure 3, we see that
the developer knows something about the run-time en-
vironment and is able to make an assumption: The
maximum array size (that is, the args[0] parameter)
for any execution of this program will never be larger
than 10. The developer was thus able to annotate the
source code on lines 7 and 9 with the maximum possi-
ble iteration of each loop. By propagating this special
knowledge from developer to analysis tool, annotations
provide much tighter WCET bounds than would oth-
erwise be possible.

3.1. Prior Work in WCET Annotations
for Java

Given that WCET annotations have been used for
many years in real-time C and Ada programs, one
might expect a standard, or at least a de facto conven-
tion, to materialize. In reality, a number of competing
and incompatible styles of annotation have been devel-

oped for real-time Java. This section provides a brief
survey of those styles. It includes only the research lit-
erature and does not count commercial tools and other
annotation styles that may be found “in the wild.”

The earliest work in WCET annotations for Java
comes from Bernat, who proposed a portable WCET
analysis tool [1]. In this case, portable refers to lan-
guage portability: The tool was designed for analyzing
Java, C, Ada, and any other language that could be
translated to Java bytecode. To achieve such porta-
bility, source code must invoke methods in a prede-
fined class whenever a WCET annotation is required.
(See Table 1 for an example.) Compared to traditional
annotations, this style mingles non-functional meta-
data (that is, the WCET information) with the nor-
mal source code statements, making programs more
difficult to read.

The XRTJ project [8] implemented WCET annota-
tions in a more traditional way. All annotations ap-
pear as comments with the characters //@ for single
lines and /*@ . . . @*/ for multiple lines [6]. The XRTJ
compiler parses these lines and writes them to an XAC
(Extensible Annotation Class) file, an XML-like text
file that is paired with its class in a real-time Java pro-
gram. The XRTJ analyzer then reads each XAC file
to determine loop bounds, timing modes, and other
details necessary to derive the WCET. Hu later ex-
tended the XAC format to capture dynamic dispatch
(i.e., polymorphism) semantics [5].

In more recent work, Schoeberl and Pedersen imple-
mented a WCET analyzer for JOP [14]. This tool in-
troduced yet another syntax for annotations. Although
it still used the same //@ start marker, the syntax of
the annotations differed from the XRTJ project, mak-
ing the tools incompatible with each other.

Finally, it should be noted that neither of the stan-
dards for real-time Java, RTSJ [2] nor RTCE [3],3 pro-
vides any mechanism whatsoever for annotations, de-
spite the importance of WCET as outlined in Section
1.

3.2. A Lack of Standards

Clearly, no single convention for WCET annotations
has taken hold, resulting in a contradiction of Java’s
mantra of “write once, run anywhere.” Real-time Java
programs designed for one WCET analysis tool must
be rewritten for other tools. The lack of a single anno-
tation standard also makes the tools themselves more
difficult to implement. Even if they all understood //@
as a starting token for an annotation, a number of un-
resolved issues remain:

3RTCE is now defunct, supplanted by the RTSJ.

• What is the syntax for the string following //@?

• After an annotation is parsed, where is the informa-
tion stored and how do lower-level tools retrieve it?

• Is there a formal specification to ensure compatibil-
ity? Who ratifies it and who maintains it?

4. A Standard for Java Annotations

In the non-real-time Java domain, a similar situa-
tion had already taken place. The Java Modeling Lan-
guage (JML), the ESC/Java4 static checker, XDoclet,
and various other software offered custom, incompat-
ible annotation systems for Java source code. In ad-
dition, Java’s frameworks for server software develop-
ment, such as Enterprise JavaBeans, had become in-
creasingly complex due to an explosion of metadata.

To solve both problems, the Java community pro-
posed a standard framework for annotations. The basic
idea was to encapsulate common code patterns into sin-
gle statements—annotations—embedded directly into
the source code. Rather than manage source code and
metadata separately, taking pains to keep them in sync,
annotations could be attached directly to the program-
ming constructs they describe. This is a much more
powerful and convenient approach. For example, an-
notations allow the canonical getter/setter methods:

private int sensorReading;

public int getSensorReading () {
return sensorReading;

}

public void setSensorReading(int sensorReading) {
this.sensorReading = sensorReading;

}

to be condensed to:
@property int sensorReading;

Note that, unlike the approaches described in Sec-
tion 3, these annotations are not comments. Instead,
they are first-class objects in the Java language, re-
quiring special compiler support. They can have pa-
rameters and must conform to type-checking rules, for
example. Such a substantial change to the language
demanded formal review under the Java Community
Process (JCP): a public, cooperative system for adopt-
ing new technologies as official Java specifications.

The proposed annotation framework was submit-
ted to the JCP as JSR-1755 and met final approval in
September 2004. That same month, Sun released Java

4http://en.wikipedia.org/wiki/ESC/Java
5JCP proposals begin life as a numbered Java Specification

Request, or JSR. All JSRs mentioned in this paper can be down-
loaded from http://jcp.org/.

Table 1. A sample of WCET annotation styles in real-time Java
Tool Examples Comments

WCETAn [1] WCETAn.Scope S = new WCETAn.Scope();
WCETAn.Loopcount(20);
WCETAn.Define_Path(l);

Implemented as method calls instead of comments for source
language portability.

Sk̊anerost [13] /*$ path-bound 10 */
/*$ time-bound 25ms */
/*$ loop-bound 100 */

Departs from the near-universal convention of using @ as the start
token in annotations, opting for $ instead.

XAC [6] //@ Loopcount(100)
//@ Mode(Quick_Mode)
//@ UseWCET(AirTempSen.AccessSensor(V))

Traditional comment-based annotations. Has been extended to
handle polymorphic method calls.

WCA [14] //@WCA loop=10 Currently supports loop bound constants only.

5, Standard Edition, which included support for JSR-
175 annotations. A new edition of the Java Language
Specification [4] was published the following year to for-
malize these annotations and ensure that tools and li-
braries using them would remain compatible with each
other. Today, annotations are a standard, well-defined
part of the Java platform.

4.1. Storing Java Annotations

One of the advantages of Java annotations,6 and a
key difference versus existing WCET annotation frame-
works, is that the annotation data is stored directly
in class files.7 Embedding annotations within classes
simplifies code management because a separate file for-
mat for metadata need not be maintained. Also, exist-
ing mechanisms for storing, distributing, and deploying
class files can readily be used for annotation data. For
instance, a build script that packages a class library
into a JAR file (Java ARchive) will automatically pack-
age annotations, as well.

The annotation standard achieves this simplicity by
building upon an existing Java mechanism for bundling
metadata with class files. Known as class file at-
tributes, this mechanism has been part of the Java vir-
tual machine specification since its inception. It defines
an area at the end of the class file for storing any kind
of structured data, such as the line number table, the
source file name, and even the Java bytecode itself.8

Java compilers and other code generators are per-
mitted to emit class files containing new attributes,

6From this point forward, “Java annotations” refers to the
JSR-175 standard.

7We are not the first to propose embedding WCET annota-
tions in class files. In [7], Hu briefly remarked that XAC anno-
tations [6] could be stored there.

8For a complete description of class file attributes, refer to
Section 4.7 of the Java Virtual Machine Specification.

and Java virtual machine implementations are prohib-
ited from refusing to load class files simply because of
the presence of some new attribute. Thus, class file at-
tributes are extensible and may support new attributes
at any time without sacrificing backward compatibility.

The JSR-175 specification takes advantage of this
extensibility by using it to store annotations. It re-
serves their names to avoid conflicting with other at-
tributes, and it formalizes their structure so that third-
party tools know how to access them.

4.2. Creating Java Annotations

Of course, programmers need not write to these at-
tributes directly. The Java compiler generates them
automatically when compiling Java source code con-
taining annotations. For example, Java 5 includes a few
built-in annotation types such as SuppressWarnings:
@SuppressWarnings ({"deprecation"})
public void myMethod () { ... }

Compiling this code results in a class file with a
RuntimeInvisibleAnnotations attribute pointing to
the SuppressWarnings annotation type. As expected,
compilers will not print deprecation warnings for the
annotated method. Furthermore, the “invisible” speci-
fier tells virtual machines not to load the attribute into
memory because it is useful only at compile time.

Custom annotations can be created easily, as well.
Imagine a real-time control system that must respond
to a sensor change and actuate a motor within 50 mil-
liseconds. This requirement could be encoded as an
annotation, perhaps called MaxAllowableWCET, and at-
tached directly to the very method that handles the re-
sponse. WCET tools analyzing the method could then
print a warning if the calculated WCET exceeds the
specified WCET.

Creating this sort of annotation requires defining an
annotation type that resembles a traditional Java in-

for (Method m :
Class.forName(args [0]). getMethods ())

{
if (m.getName (). startsWith(args [0])) {

if (!m.isAnnotationPresent(
MaxAllowableWCET.class)) {

System.out.println(
"Error: A WCET annotation is missing");

}
}

}

Figure 4. This example code uses Java’s Re-
flection API to verify that all methods are an-
notated with the MaxAllowableWCET type de-
scribed in Section 4.2.

terface:

@Target(ElementType.METHOD)
public @interface MaxAllowableWCET {

double seconds ();
}

Here, the seconds method declares a parameter for
the annotation type, while the Target annotation (ac-
tually a meta-annotation, since it annotates an an-
notation) tells the compiler that this annotation type
should be used only on method declarations.

After compiling the annotation type, using it is a
simple matter:

@MaxAllowableWCET(seconds =0.05)
public void actuateMotor () { ... }

4.3. Reading Java Annotations

Tools such as WCET analyzers need to read the
annotations programmers have written, and Java pro-
vides a facility for this. Java 5 includes a new package,
java.lang.annotation, and an expanded Reflection
API to access annotations. Figure 4 shows a simple
example of how MaxAllowableWCET annotations can be
detected using this API. (For the example to work, the
MaxAllowableWCET annotation type must have a reten-
tion policy of RUNTIME so that it is visible to the virtual
machine. See Table 2 for a list of retention policies.)

In addition to this built-in mechanism, a number of
third-party frameworks have been developed that can
assist in reading and manipulating Java annotations:
Annogen, ASM,9, and Javassist, to name a few. All of
these work with the same Java annotation standard,
so unlike the current situation with WCET analysis,
annotations created by one tool can be accessed by
another.

9http://asm.objectweb.org/

Table 2. Java annotation retention policies
Policy Description

SOURCE The annotation is not stored in the class file; it is
simply discarded at compile-time.

CLASS The annotation is stored in the class file but is
not loaded into memory.

RUNTIME The annotation is stored in the class file and
loaded into memory at run-time so that it is
visible to Java’s Reflection API.

4.4. Weaknesses of Java Annotations

While standardization, portability, and validation
are the greatest strengths in Java’s annotation facility,
it also has some serious drawbacks. Chief among them
is a restriction on where annotations can be placed in
the source code: They can act only as declaration mod-
ifiers. They cannot annotate method calls, loops, and
other program elements. For example, the following
code is illegal:
@LoopBound(max =10)
while (! bufferEmpty) { ... }

Another limitation is that Java’s Reflection API can
only read annotations that have been stored in class
files. Source code with annotations must first be com-
piled before the annotations can be read. A more se-
rious implication is that if an annotation type has a
SOURCE retention policy, it cannot be accessed at all
without third-party tools that are able to parse Java
source code.

The Java community has recognized these weak-
nesses and responded with a series of proposals sub-
mitted to the JCP. For example, JSR-269 provides a
standard API for interacting with annotation proces-
sors such as Annogen. It also provides an interface for
processing annotations in source files. The proposal
was approved and will be implemented in Java 6.

Another proposal, JSR-308, allows annotations to
be placed where types are used, not just where they
are declared. For instance:
myString = (@NonNull String) myObject;

The proposal has been approved and will likely be
implemented in Java 7.

5. Applying Java’s Annotation Stan-
dard to WCET

Compared to existing comment-based annotation
systems in WCET tools, which are proprietary and

sometimes implemented ad hoc, Java’s built-in anno-
tations offer an attractive alternative. In particular:
Standards-based Java’s annotation mechanism solves
the standards issues raised in Section 3.2.

Validation Unlike most comment-based systems, Java an-
notations are highly structured and type-safe. For in-
stance, the Java compiler can guarantee that an anno-
tation designed for methods is not accidentally used to
annotate other program constructs.

Convenience With WCET annotations implemented as
Java annotations, timing information and code can be
bundled in the same class file. This simplifies code man-
agement and distribution. For example, a class library for
real-time systems can include timing information in the
library itself. No extra files and no new file formats are
necessary.

Tool support Because Java’s annotation mechanism is
relatively mature and ships with every copy of the Java
run-time, it enjoys broad support from a variety of APIs
that make working with annotations easier. WCET anal-
ysis tools are therefore easier to implement since they can
be built upon these existing APIs.

Comment-based WCET annotations described in
the literature do not have such features. For this
reason, we propose that WCET analysis tools should
adopt Java’s annotation standard. Doing so would
likely shorten the development cycle of WCET anal-
ysis tools, leading to more prototypes and an overall
improvement in real-time research.

Unfortunately, Java’s standard is not yet a drop-in
replacement for existing annotation frameworks. One
of the issues is a concern for embedded systems. (Em-
bedded systems are not directly related to WCET anal-
ysis, but real-time systems are often embedded sys-
tems, too, so the domains overlap.) These systems
normally have stringent resource requirements, so the
Java class files deployed on them must be as small as
possible. However, Java annotations are stored in these
class files, taking up valuable memory even though the
annotation information is only required at design time.

One way to solve this problem is to change the reten-
tion policy of the annotation to SOURCE. This will pre-
vent the annotation from being stored in the class file,
but it will also destroy the benefit of bundling anno-
tation data with the code itself. A better workaround
is to leave the annotation at the default CLASS reten-
tion level but use a tool to strip the annotations from
the class files before deploying them to the embedded
device.

A more critical failing of Java’s annotation standard
cannot be mitigated so easily. Namely, the restriction
on where annotations can be placed is a major im-
pediment toward using standard Java annotations in
WCET tools. As a result, none of the existing WCET
annotation styles listed in Table 1 can be fully trans-

@LoopBound(max =10) int i;
for (i = 0; i < 10; i++) {

if (b) {
@LoopBound(max =4) int j;
for (j = 0; j < 4; j++)

val *= val;
}
else {

@LoopBound(max =7) int k;
for (k = 0; k < 7; k++)

val += val;
}

}

Figure 5. This altered program segment from
JOP’s test suite shows how WCET annota-
tions might be implemented according to the
Java standard.

lated to Java annotations.
In certain scenarios, however, an approximation is

possible. For example, Figure 5 shows a test method
from the JOP project [14] that we have re-written using
the following Java annotation type:
public @interface LoopBound {

int max ();
}

Note that instead of defining loop bounds next to
the loop constructs, Figure 5 defines them at the loop
variable declarations. Although we have verified that
JOP’s WCA tool can run successfully with these mod-
ifications, restricting loop bounds to variable declara-
tions is too limiting. It is also unintuitive and awkward.

We note that other researchers have encountered the
same obstacles in Java annotations while working in-
dependently on other problems. In fact, JSR-308 was
born as a result of these obstacles [12]. It loosened the
restrictions on where annotations may be placed. Un-
fortunately, the proposal did not relax them far enough
for the purpose of WCET annotations, which would re-
quire at a minimum placement of annotations directly
on loop constructs (if, while, and do/while).

6. Future Work

Although Java annotations are not currently suit-
able as WCET annotations, the standard is not far
from becoming a virtually ideal replacement. Two
changes are necessary for this to happen.

First, the standard should be modified so that anno-
tations can be placed on loops and basic blocks. JSR-
308 is already moving the standard in this direction.
Indeed, the original proposal [12] commented that such
a change would be useful for concurrency and atomic-
ity. (It did not mention WCET analysis.) In addition,

members of the Expert Group who voted for the pro-
posal agreed that relaxing the standard in this manner
would be beneficial. For instance, Intel Corporation
adding the following comment to its vote:

This note confirms our understanding that the scope of

the JSR includes providing for annotations on loops and

blocks if the Expert Group decides to include that after

evaluation. The JSR itself should be updated to make it

clear this is in the scope.

Second, type definitions and a naming convention
for WCET annotations must be established. Java
annotations would do little good if one tool recog-
nized @LoopBound while another tool expected, say,
@LoopMax. Establishing these conventions should be
straightforward. JSRs 181, 250, 303, and 305 have al-
ready walked this path for other domains; a proposal
for WCET annotations would merely follow in their
footsteps.

We intend to tackle the first issue by working with
the JSR-308 Expert Group to expand the proposal to
include loops and blocks, as Intel, Nortel, and others
have suggested. If the JSR-308 proposal cannot be al-
tered from its original form, we intend to submit a new
proposal through the Java Community Process. (Now
that Java is being released under an open-source li-
cense,10 this effort should be much easier. For instance,
we will be able create a reference implementation for
this proposal by modifying the official javac compiler.)

References

[1] G. Bernat, A. Burns, and A. Wellings. Portable worst-
case execution time analysis using Java byte code. In
Proceedings of the 12th Euromicro Conference on Real-
Time Systems (Euromicro-RTS 2000), pages 81–88,
Los Alamitos, CA, USA, June 2000. IEEE Computer
Society.

[2] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specifi-
cation for Java. Addison Wesley Longman, January
2000.

[3] J. Consortium. Real-time core extensions, September
2000.

[4] J. Gosling, B. Joy, G. L. S. Jr., and G. Bracha.
The Java Language Specification. The Java Series.
Addison-Wesley Professional, Boston, Massachusetts,
3 edition, June 2005.

[5] E. Y.-S. Hu, G. Bernat, and A. Wellings. Address-
ing dynamic dispatching issues in WCET analysis
for object-oriented hard real-time systems. In Pro-
ceedings of the Fifth IEEE International Symposium
on Object-oriented Real-time distributed Computing

10http://www.sun.com/software/opensource/java/

(ISORC 2002), pages 109–116, Los Alamitos, CA,
USA, April 2002. IEEE Computer Society.

[6] E. Y.-S. Hu, G. Bernat, and A. Wellings. A static
timing analysis environment using Java architecture
for safety critical real-time systems. In Proceedings of
the Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS
2002), pages 77–84, Los Alamitos, CA, USA, January
2002. IEEE Computer Society.

[7] E. Y.-S. Hu, A. Wellings, and G. Bernat. Gain time re-
claiming in high performance real-time Java systems.
In Proceedings of the Sixth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2003), pages 249–256, Los Alamitos,
CA, USA, May 2003. IEEE Computer Society.

[8] E. Y.-S. Hu, A. Wellings, and G. Bernat. XRTJ:
An extensible distributed high-integrity real-time Java
environment. In Proceedings of the Ninth Interna-
tional Conference on Real-Time and Embedded Com-
puting Systems and Applications (RTCSA 2003), vol-
ume 2968 of Lecture Notes in Computer Science, pages
208–228. Springer Berlin, February 2003.

[9] R. Kirner and P. Puschner. Discussion of misconcep-
tions about WCET analysis. In Proceedings of the
Third International Workshop on Worst-Case Execu-
tion Time Analysis (WCET 2003), pages 61–64, July
2003.

[10] E. Kligerman and A. D. Stoyenko. Real-time Eu-
clid: a language for reliable real-time systems. IEEE
Transactions on Software Engineering, 12(9):941–949,
September 1986.

[11] D. Lammers. REAL-TIME JAVA: Reliability quest
fuels RT Java projects. EE Times, March 2005.

[12] M. M. Papi and M. D. Ernst. Annotations on
Java types. http://jcp.org/en/jsr/detail?id=308,
November 2006.

[13] P. Persson and G. Hedin. An interactive environment
for real-time software development. In Proceedings of
the Technology of Object-Oriented Languages and Sys-
tems (TOOLS 2000), pages 57–68, Washington, DC,
USA, June 2000. IEEE Computer Society.

[14] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the Fourth Interna-
tional Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2006), October 2006.

[15] M. Schberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna Uni-
versity of Technology, Vienna, Austria, January 2005.

[16] A. M. Turing. On computable numbers, with an ap-
plication to the Entscheidungsproblem. In Proceedings
of the London Mathematical Society, volume 42 of 2,
pages 230–265. London Mathematical Society, Novem-
ber 1936.

