
Partial Dynamic Reconfiguration in a
Multi-FPGA Clustered Architecture Based on Linux

Vincenzo Rana1, Marco Santambrogio1, Donatella Sciuto1,
Boris Kettelhoit2, Markus Koester2, Mario Porrmann2, and Ulrich Rückert2

1Politecnico di Milano 2University of Paderborn
Dipartimento di Elettronica e Informazione Heinz Nixdorf Institute

Via Ponzio 34/5, 20133 Milano, Italy Fuerstenallee 11, 33102 Paderborn, Germany
vincenzo.rana@microlab-mi.net {kettelhoit,koester}@hni.upb.de
{santambr,sciuto}@elet.polimi.it {porrmann,rueckert}@hni.upb.de

Abstract

Dynamically reconfigurable hardware allows for im-
plementing systems that can be adapted at run-time ac-
cording to the needs of the user. This paper presents an
architecture that is composed of multiple FPGAs that
are connected to an embedded processor. Thus, the ar-
chitecture is referred to as a Multi-FPGA Clustered Ar-
chitecture (MFCA). All FPGAs can be partially and
dynamically reconfigured to integrate user-defined IP-
Cores into the system at run-time. For the resource
management and communication management we have
implemented a Linux Operating System on the embed-
ded processor that can be used to control the reconfigu-
ration of the FPGAs by means of simple function calls.
Furthermore, the Linux OS completely hides the physi-
cal infrastructure of the MFCA from user applications,
offering a consistent interface to utilize partial recon-
figuration. 1

1. Introduction

Nowadays, most commonly used reconfigurable de-
vices are Field Programmable Gate Arrays (FPGAs),
employed both as components of more complex systems
(playing the role of co-processors), and as System-on-
Programmable-Chips (SoPCs), integrating all system

1This work was partly supported by the Collaborative Re-
search Center 614 – Self-Optimizing Concepts and Structures
in Mechanical Engineering – University of Paderborn, and was
published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

components. FPGAs consist of arrays of configurable
logic blocks (CLBs). Each CLB is connected to lo-
cal and global routing resources, which are used to ex-
change data between the CLBs and with external de-
vices. Classically, FPGAs are used to implement static
circuits that are not changed at runtime. Their ability
to be reconfigured is commonly used to upgrade the
functionality of the system by changing the configu-
ration data, e.g., due to changed specifications. Some
FPGAs offer even more flexibility by allowing to recon-
figure some CLBs independently while all other CLBs
continue processing. This is called partial reconfigu-
ration and enables the implementation of dynamically
reconfigurable system architectures.

Due to these capabilities, FPGAs can be used to
create flexible hardware/software platforms that can
be adapted after fabrication, allowing the development
of complex SoPCs. Modern FPGAs can also contain a
general-purpose processor, which can be both a physi-
cal CPU embedded in the FPGA fabric, or a soft core,
mapped to a part of the FPGA. The CPUs can be used
to implement system functionalities in software (SW),
e.g., for controlling the hardware (HW) components.
The SW part of a reconfigurable system can be either
a standalone code, dealing directly with HW at a low
level, or a complete operating system, including multi-
processing and resource scheduling. A standalone code
is usually an application which uses SW libraries ex-
porting functions to interface with HW components.
This approach can be reasonable for small systems, in-
volving few components and configurations. As soon
as the complexity of the system increases, it becomes
more difficult to develop a complete application dealing
with all those aspects. The use of an operating system

allows more flexibility, since it is possible to implement
the SW part as one or multiple userspace processes,
including inter-process communication and scheduling
techniques. HW is managed by the OS, allowing the
userspace processes to access system peripherals at a
higher level of abstraction. However, the operating sys-
tem needs to be enhanced to support dynamic exchange
of reconfigurable hardware components.

The proposed work aims at introducing a complete
methodology that allows a simple implementation of
an FPGA system specification, exploiting an operat-
ing system that is extended to support partial and dy-
namic reconfiguration. In order to meet the software
requirements of complex systems, the solution is based
on a standard Linux OS which simplifies the handling
of reconfiguration through the use of /dev and /proc
device files. This allows software processes to exploit a
rich set of features by simply using the developed Linux
modules.

The Multi-FPGA Clustered Architecture that is
presented in this paper also allows to adapt the amount
of available reconfigurable resources to the needs of the
designer since it allows an easy integration of additional
FPGAs into the system. Our scalable rapid proto-
typing platform RAPTOR2000 (www.raptor2000.de),
which allows the integration of several FPGAs, is used
to implement the MFCA. Furthermore, the MFCA can
be considered as a basic component of a reconfigurable
supercomputer consisting of a distributed network of
MFCAs.

This paper is organized as follows: Section 2 gives
an overview of existing operating system support for
dynamically reconfigurable hardware while Section 3
presents the proposed Multi-FPGA Clustered Archi-
tecture. In this Section both software and hardware
architectures of the proposed solution are described as
well as a prototype implementation of the approach.
In Section 4, an analysis of the hardware requirements
and performance is given. Finally, Section 5 presents
the conclusions of this paper.

2 Support for dynamic reconfiguration
in operating systems

The need for a run-time infrastructure in operating
systems to manage and exploit reconfigurable logic is
discussed in [9]. The paper proposes an approach for
the design of an operating system for reconfigurable
systems, called OS4RS. This OS must provide a set of
services for reconfigurable devices similar to what a tra-
ditional OS does for multiprocessor systems, e.g., mul-
titasking, concurrency, and inter-task communication.
The OS4RS, which runs on a standard general purpose

processor, has not been implemented from scratch, but
it is constructed based on the RTAI system, [5]. The
main reason for this choice are source code availability,
large number of supported devices and modular archi-
tecture.

The reconfiguration capabilities of FPGAs can be
used not only to map computational tasks in HW, but
also to dynamically swap peripherals in form of recon-
figurable hardware components. [1] presents a Linux-
based platform with support for dynamic reconfigura-
tion based on a modular architecture for reconfigurable
SoCs, called Egret. [11] presents different examples
to manage the reconfiguration using the ICAP (Inter-
nal Configuration Access Port) interface via standard
UNIX commands. The Linux device interface, which
presents devices as files located under the /dev direc-
tory, makes it possible to send bitstreams to the driver
using commands such as cat and redirecting the out-
put to the device. Furthermore, it is possible to modify
the bitstream on-the-fly by pipes between commands.
Another possible application is a remote configuration
download from a bitstream server.

An operating system designed to run on a single
FPGA architecture able to support dynamic reconfig-
uration is proposed in the BORPH project, [10]. This
solution is an extended Linux OS kernel for reconfig-
urable computing that handles FPGA resources as if
they were CPUs.

As indicated by the examples given above, a lot of
work has been done to add reconfiguration support to
standard operating systems, both in the field of driver
support for dynamic reconfiguration HW and in the
development of drivers for reconfigurable IP-Cores. A
complete approach that allows exploitation of the dy-
namically configured devices from the operating system
is presented in [4]. This work defines the basis of the
MFCA approach proposed in this paper, as shown in
Section 3.

3 Reconfigurable multi-FPGA cluster

Our approach is based on single-FPGA solutions,
as proposed in [3] and [6], which implement a sys-
tem on a single FPGA that is able to perform partial
self-reconfiguration. In a multi-FPGA reconfigurable
scenario these concepts can be extended to satisfy the
needs of the proposed multi-FPGA system. Therefore,
a hardware abstraction layer has to be implemented
that hides all implementation details to the applica-
tion. This includes, e.g., the distribution of the re-
sources among several FPGAs and the communication
infrastructure.

3.1 The proposed solution

Dynamic partial reconfiguration of the FPGA can
be performed by a dedicated HW embedded in the
FPGA or by external entities, using a configuration in-
terface (such as JTAG). In both cases a device driver
is needed to allow interfacing between the operating
system and the reconfiguration controller, in order to
allow userspace processes to request reconfiguration.

The standard way the Linux kernel provides such
access is through device nodes, which appear in the
filesystem as normal files that can be opened, read,
and written. The reconfiguration manager driver fol-
lows the same method, providing the necessary system
calls and registering a specific device node. The driver
completely hides the characteristics of the underlying
HW offering transparency at application level from the
actually used reconfiguration mechanism. The recon-
figuration controller driver, shown in Figure 1, follows
the kernel modules philosophy to implement mecha-
nisms and not policies. This means that the driver
just provides the system calls to make the device us-
able from userspace, and does not deal with process
privileges in resource access. This kind of policy is in
fact typically managed at a higher level in the kernel
hierarchy, for example using standard UNIX permis-
sions for the device node.

Figure 1. The Reconfiguration Controller work-
ing model

Partial reconfiguration data is usually provided by
the HW platform development tools in the form of a
bitstream file. It is called partial bitstream, since it only
contains data for the FPGA areas that are affected
by the partial reconfiguration. The bitstream format
can be processed directly by the reconfiguration inter-
face of the FPGA. Partial bitstreams must currently
be created offline, since any modification to the HW
requires a new synthesis, which cannot be executed at
run-time. Exceptions are basic parameter variations
in the partial bitstreams. In [11] the authors present
a methodology that uses bitstream manipulations at
run-time to modify parameters of the component that
is loaded. Furthermore, bitstream manipulation can be
utilized to relocate modules, as described in the next
Subsection.

The main advantage of using the proposed device
driver is that the application can simply access the
controller to perform partial reconfiguration, i.e., a
userspace process only needs to open the device for
writing the partial bitstream. This method makes it
possible to implement new applications managing the
reconfiguration process and adjust existing ones with
very little modifications.

3.2 Multi-FPGA Clustered Architecture

The proposed solution can also be applied to a multi-
FPGA scenario where the reconfigurable resources are
distributed on several interconnected FPGAs. The
main challenge in such a scenario is to hide system
characteristics and additional efforts (e.g., the setup of
the communication) from the user application without
any performance losses.

Dynamically reconfigurable systems usually consist
of a static and a dynamic part. The static part includes
all system components that do not change at run-time
while the dynamic part comprises the reconfigurable
resources for dynamic components. The description of
the functionality of the dynamic components is called
an Intellectual Property Core (IP-Core). This can be
a behavioral description (e.g., in a hardware descrip-
tion language, HDL) as well as a structural description
(HDL, netlist). The implementation of an IP-Core for
a given system architecture is called a dynamic module.
Dynamic Modules can be loaded into the system and
can then be used as dynamic components. In general,
it is possible to have multiple instances of one dynamic
module loaded into the system at a time, each of which
being a separate dynamic system component. It is also
possible to have several dynamic modules implemented
from one IP-core specification, differing, e.g., in shape
or performance.

For an efficient use of the dynamic part the system
architecture as well as the dynamic modules have to
be designed with respect to the reconfigurable system
approach. In this context the main issues are the place-
ment approach, which is used to assign a dynamic mod-
ule to the reconfigurable resources at run-time, and the
communication infrastructure, which is used to inter-
connect the dynamic and static components. Figure
2 shows two different placement approaches and ac-
cording communication infrastructures. Both are one-
dimensional placement approaches, i.e. the dynamic
modules can only be placed along a vertical line. Figure
2 b) shows a Fixed Tiles approach, where the reconfig-
urable resources are divided into disjunct areas (tiles)
of predefined size. The size of the dynamic modules is
limited to the size of the tiles whereas small modules

lead to a remarkable waste of resources. The com-
munication infrastructure is connecting the tiles and
thus the dynamic components at predefined positions.
Figure 2 a) shows a Free 1D approach. Here, all mod-
ules have a fixed height while their width is adapted to
their actual size. This leads to a much more efficient
use of the reconfigurable resources since small mod-
ules only occupy few resources. The size of big mod-
ules is restricted only by the size of the whole dynamic
part of the system, rather than by the size of a tile.
This approach requires a more sophisticated commu-
nication infrastructure with the ability to be accessed
at many positions in order not to restrict the possible
module locations. Besides the above mentioned place-
ment approaches there are other approaches like the
2D-placement approach as discussed [6]. However, an
implementation of the 2D-placement approach cannot
be efficiently realized with Virtex-II FPGAs, since the
device only supports a column-wise partial reconfigu-
ration.

Figure 2. Two placement approaches

All placement approaches have in common that they
require a run-time environment that is able to place
and remove dynamic components on demand. On the
one hand all reconfiguration issues have to be consid-
ered, e.g., searching for a free position to place the
instance of a dynamic module. On the other hand the
communication between the dynamic components and
the application has to be established at run-time. In
the following we will introduce an example implementa-
tion of such a run-time environment on our dynamically
reconfigurable prototyping platform RAPTOR2000.

3.3 The RAPTOR2000 system

Establishing a hardware/software implementation
for dynamic reconfiguration of multiple FPGAs re-
quires a platform that offers high bandwidth and low
latency communication between the FPGAs a well as
low reconfiguration times. The RAPTOR2000 system
(www.raptor2000.de) has been developed at the Uni-
versity of Paderborn exactly for this application sce-
nario. The system consists of a motherboard and up

to six application specific extension modules (ASMs).
Basically, the motherboard provides the communica-
tion infrastructure between the modules and links the
RAPTOR2000 system via the PCI bus to a host com-
puter.

For the implementation of partially reconfigurable
FPGA designs, various FPGA ASMs have been de-
veloped, integrating Xilinx Spartan FPGAs, Virtex(-
E) FPGAs, Virtex-II FPGAs (up to XC2V8000),
and Virtex-II Pro FPGAs (XC2VP20), respectively.
Virtex-4 and Virtex-5 ASMs are currently under de-
velopment. Additionally, up to 512 MByte SDRAM,
SRAM and debugging interfaces are available on these
ASMs. Various additional ASMs have been devel-
oped, e.g., providing network interfaces (Ethernet,
USB, FireWire, etc.) and analog and digital I/Os.
A graphical user interface can be used to configure
RAPTOR2000 and all modules attached to it from
a host PC. By means of this GUI, the board can be
configured (e.g., clock frequency of the modules and
address ranges), designs can be downloaded to the
FPGAs on the ASMs, and data can be read from or
written to the ASMs (i.e., to the FPGAs, and to the
memory of the modules). In addition to the GUI a
software library has been developed, which enables ac-
cess to RAPTOR2000 from C programs on the host
computer (or remotely) under Windows and Linux.

Various facilities for an efficient communica-
tion between the ASMs have been integrated into
RAPTOR2000. Every ASM is connected to a Local
Bus for internal communication with other ASMs and
for external communication with the host processor or
with other PCI bus devices. An additional Broadcast
Bus can be used for simultaneous communication be-
tween the ASMs. Additionally, a dual port SRAM can
be accessed by all ASMs via the Broadcast Bus (e.g.,
utilized as a buffer for fast direct memory accesses to
the main memory of the host system). Direct com-
munication between adjacent ASMs is realized by 128
signals that can be variably used, depending on the
actual implementation. Due to the used high-speed
connectors a data transfer rate of up to 10 GBit/s can
be achieved between neighboring ASMs.

Especially when dealing with dynamic reconfigura-
tion, a crucial aspect concerning FPGA designs is the
configuration of the devices. For an efficient utiliza-
tion of dynamic reconfiguration it is essential to min-
imize the reconfiguration time. Therefore, the recon-
figuration interfaces have been implemented in hard-
ware on two CPLDs on the RAPTOR2000 mother-
board. Reconfiguration of an ASM can be started
by the host computer, by another PCI bus device or
by another ASM. Thus, it is possible that an FPGA

Figure 3. Multi-FPGA environment on RAPTOR2000

autonomously reconfigures itself by configuration data
that is located anywhere in the system, thus enabling
self-reconfiguration. Due to the hardware implementa-
tion of the reconfiguration interfaces on RAPTOR2000,
Xilinx FPGAs can be reconfigured with the maxi-
mum configuration speed the devices permit, support-
ing complete reconfiguration as well as partial recon-
figuration.

3.4 Reconfigurable hardware architecture

For a prototypical implementation of the proposed
MFCA reconfigurable system, the architecture shown
in Figure 3 has been developed. It consists of a Xilinx
Virtex-2Pro FPGA and two Xilinx Virtex-II FPGAs.
The Virtex-2Pro FPGA, which is used to run our
SW solution (the OS), is constituted by an embed-
ded PowerPC 405 and all the static hardware compo-
nents, such as a memory controller, general purpose in-
puts/outputs, and the reconfiguration manager (VCM,
Virtex Configuration Manager), which uses the Se-
lectMap interface of the FPGA. The Virtex-II FPGAs
represent the reconfigurable resources used to dynam-
ically load hardware modules into the system. These
resources are used according to a 1D-placement with
a granularity of four CLB (configurable logic block)
columns. This means that the dynamic modules always
use the full height of the FPGA, while their width is a
multiple of four CLB columns [6].

Each Virtex-II FPGA includes a Wishbone Bus the
hardware modules are dynamically connected to. The
bus-bridges that are used to connect the modules to
the processor system include the Medium Access Con-

trol (MAC) for the communication with the modules.
These MACs differ considerably from those used in
standard on-chip bus systems, since they have to deal
with a changing number of communication partici-
pants. Thus, they provide the ability to allocate ad-
dress space for each loaded module at run-time. This
allows for a very flexible use of the available bandwidth
as well as for multiple instantiations of modules (e.g.,
two identical ALU -modules loaded for different tasks).

The reconfiguration manager is the hardware inter-
face to the configuration ports of the FPGAs. A spe-
cial feature of this component is its direct memory ac-
cess (DMA) to the local SDRAM memory. This en-
ables dynamic reconfiguration at the maximum con-
figuration speed of the FPGA devices. Currently, we
are able to download bitstreams from a given position
within the memory to any selected FPGA within the
RAPTOR2000 system at 50 MB/s (see Chapter 4).

Our implementation of the reconfiguration manager
offers additional features that enable a very efficient
and versatile realization of dynamically reconfigurable
systems. It comprises methods for the relocation of
dynamic modules by bitstream manipulation and en-
ables context saving and restoring. The placement of
dynamic modules is an online problem, i.e., the final
position of a module is not known before run-time and
especially not during the implementation process (syn-
thesis, place and route). Typically, this would require
IP-Core implementations for any possible position in
the FPGA. For the large number of possible positions
in our Free 1D approach, this leads to a high imple-
mentation time and effort as well as high memory re-

quirements. To overcome these drawbacks, we have
implemented the REPLICA2Pro (Relocation per on-
line Configuration Alteration in Virtex-2/-Pro) filter,
which is capable of performing task relocations by ma-
nipulating the bitstream of a dynamic module during
the regular allocation process without any extra time
overhead [7]. REPLICA2Pro is implemented in hard-
ware as an integral part of our reconfiguration man-
ager.

In the proposed Free 1D approach dynamically load-
ing and erasing modules will inevitably result in a frag-
mentation of the available resources, i.e., the contigu-
ous regions of unused FPGA resources are split into
small fragments over time. It has been shown that the
implementation of appropriate defragmentation algo-
rithms is a promising approach to increase the utiliza-
tion of the FPGA [2, 8]. In order to enable defrag-
mentation an enhanced mechanism for task relocation
has been integrated into the reconfiguration manager,
including methods for saving and restoring the state
information of the relocated task [8].

3.5 Software architecture

The software solution proposed in [4] has been
adapted to exploit the features of the RAPTOR2000
system, introducing the VCM kernel module and the
MAC kernel module, as shown in Figure 4.

Figure 4. Device driver hierarchy

The VCM hardware component is used as configu-
ration controller instead of the internal configuration
access port (ICAP). Consequently, the ICAP device
driver has been replaced by the VCM device driver in
our new software architecture. The DMA properties
of the VCM drastically reduce the involvement of the
processor (and of the OS) in a configuration process
compared to the programmed I/O that is used for the
ICAP interface. In fact, a reconfiguration can be initi-
ated by making three IOCTL calls only, which set the
VCM device registers:

• the first IOCTL call sets the base address register
of the VCM with the base address of the bitstream
in the memory;

• the second call sets the size register of the VCM
with the numbers of bytes of the bitstream;

• the last IOCTL call sets the control register of
the VCM. It defines whether a partial or complete
reconfiguration shall be performed and selects the
target FPGA.

In addition, the MAC device driver has been added
to the software architecture to allow a dynamic ad-
dress allocation of the module on the Wishbone Buses.
The address space allocation for each module is per-
formed directly after a module is loaded. Therefore,
the MAC device driver accesses the hardware MACs
that are located within the Wishbone bridges (see Fig-
ure 3). An address space allocation consists of three
simple IOCTL calls:

• the first IOCTL writes the base address of the
newly loaded module to the base address register
of the selected MAC ;

• the second call writes the address range of the new
module to the range register of the MAC ;

• finally, the last IOCTL call assigns the newly
loaded module to a physical communication port
by transmitting the position of the module to the
hardware MAC.

With these kernel modules it is possible to integrate
IP-Cores into the system at run-time if the according
bitstreams are located in local memory. The configu-
ration can be performed with IOCTL calls to the VCM
(/dev/vcm) while the correct address space for a new
module is set by making a few number of IOCTL calls

Figure 5. Software implementation hierarchy

to the MAC (/dev/mac) device. When the reconfigu-
ration is finished the driver for the configured module
can be loaded by following the standard flow described
in [4]. The main advantage of the proposed solution is
that all the details of the reconfiguration process are
hidden to the software application due to a layered ap-
proach that is used to implement the software architec-
ture. This is achieved by a systematic abstraction from
hardware implementation details to very high level sys-
tem calls and easy-to-use device drivers, as shown in
Figure 5.

With this approach, software applications only need
to know the name of the desired module to make a
module request function call to the Library. According
to this, the Library handles the corresponding IOCTL
calls to perform the whole reconfiguration process by
using the previously introduced kernel modules. In
particular, in order to handle a module request, the
Library

• downloads the right bitstream to free resources on
an FPGA;

• assigns free address space to the new module;

• loads the correct device driver to manage the re-
quested module;

• creates a device in /dev with the major number of
the device driver.

The only value returned to the application is the de-
vice name that allows access and use of the new mod-
ule. The same concept is used when an application
does not need a module any more. In this case, the
application makes a module release function call to the
Library with the name of the according module, after
which the Library marks the selected module as inac-
tive. Inactive modules are deleted from the FPGAs
when the system runs out of available reconfigurable
resources. Otherwise, they stay in the system until
a software application makes a corresponding module
request. This caching technique can significantly de-
crease the average configuration time.

4 Experimental Results

The performance of the proposed system architec-
ture is affected mainly by the configuration time in-
troduced by the partial reconfiguration of the FPGA
(hardware latency) and by the overhead caused by the
operating system (software latency).

The hardware latency is in turn composed of three
parts. First, a constant time that is required to initi-

Table 1. Hardware Reconfiguration Latency

Columns Latency
4 1469.88 µs
8 2920.12 µs

12 4370.36 µs

ate the DMA transfer of the partial configuration bit-
streams from the SDRAM to the configuration inter-
face (VCM). Second, the time required to initialize the
configuration interface of the FPGA and to flush the
configuration buffer at the end of the configuration.
The third part is the time needed to download the bit-
stream to the FPGA. While the data transfer time and
the initialization time introduce a constant overhead,
the configuration time depends on the size of the re-
quested module.

The static time is composed of 158 clock cy-
cles before reconfiguration and 824 clock cycles for
buffer flushing after reconfiguration. In the worst
case the number of clock cycles needed to reconfigure
one CLB column of the used Xilinx Virtex-II FPGA
(XC2V4000) is 18,128. If no data compression is used
for the partial bitstreams, the worst case time to re-
configure a hardware module in the proposed MFCA
system architecture (TCFG) can be approximated by:

TCFG(N) = (158 + N · 18128 + 824) · 20 ns (1)

where N is the number of reconfigured CLB columns.
The reconfiguration clock period used in our proto-
typical implementation is 20 ns. Table 1 shows the
reconfiguration time introduced by the hardware for
typical module sizes if only CLB columns are used.
The download time changes insignificantly if embed-
ded multipliers or uninitialized BlockRAMs are used.
If the BlockRAM content shall also be written dur-
ing reconfiguration, an additional 1054.72 µs apply per
BlockRAM column. The modules used for elaboration
vary in complexity and range from very simple designs
to complex arithmetic units (e.g., a floating point unit).
The software latency is shown in table 2. The presented
results were measured by means of a hardware timer,
physically implemented on the FPGA. The times were
verified by a standard software timer running on the
embedded PowerPC. The first task that has to be exe-
cuted is the setup of the device driver, which loads the
correct driver and initializes all necessary devices for a
specific module. This takes quite a long time – approxi-
mately 650 ms on average – but it is executed only once
for each IP-Core. Module loading takes about 3450 µs,
while reading and writing from and to a configured
module takes around 3.6 µs to read 4 bytes and 2.7 µs

to write 4 bytes.
Furthermore, additional FPGA resources are re-

quired to implement the Virtex Configuration Manager
(VCM) introduced in Section 3.4. Our implementation
of the VCM uses 1726 slices (18.6%) and 6 BlockRAMs
(6.8%) of the Xilinx Virtex-2Pro FPGA (XC2VP20).
The high area requirement is caused mainly by the
integrated readback functionality, which will be used
in future implementations to extract internal states of
loaded modules as required, e.g., for defragmentation.
The other components of our implementation are also
required in a static system architecture and the addi-
tional resources that are required for partial reconfigu-
ration (e.g., the extended bus bridge described in Sec-
tion 3.4) can be neglected since the resource overhead
in these components is smaller than 1%.

Table 2. SW Solution Performances

Task Time Notes
Device driver setup 650 ms once each driver
Module loading 3450 µs each loading
Read 3.6 µs 4 bytes read
Write 2.7 µs 4 bytes write

5 Concluding Remarks

With the Multi-FPGA Clustered Architecture pre-
sented in this paper, an arbitrary number of FPGAs
can be attached to an on-chip processor system as dy-
namically and partially reconfigurable resources. All
available resources can be used to hold system compo-
nents that are loaded to and erased from the FPGA at
run-time. For the management of the reconfigurable re-
sources, an embedded Linux is implemented on an em-
bedded processor that hides all physical details of the
system from user applications. Loading and erasing dy-
namic components, the Linux offers a driver that mas-
sively eases the use of dynamic reconfiguration. Sim-
ilarly, drivers are provided for each loaded dynamic
system component, managing all communication is-
sues between applications and loaded components. The
MFCA is a scalable architecture whose amount of avail-
able resources can be adapted easily. The MFCA has
been implemented on the RAPTOR2000 prototyping
platform and has proven to be a promising architecture
for future work. The reconfiguration speed of currently
available FPGAs can be fully exploited. In following
studies we will analyze the potential of the presented
MFCA to be used as node in a reconfigurable super-
computer.

References

[1] N. W. Bergmann and J. Williams. The Egret
Platform For Reconfigurable System-On-Chip. In
Proceedings of the IEEE International Conference
on Field-Programmable Technology, pages 340–343.
IEEE, 2003.

[2] O. Diessel and H. A. ElGindy. Run-time compaction
of FPGA designs. In Field-Programmable Logic and
Applications, 7th International Workshop (FPL), vol-
ume 1304 of Lecture Notes in Computer Science, pages
131–140. Springer, 1997.

[3] A. Donato, F. Ferrandi, M. D. Santambrogio, and
D. Sciuto. Exploiting partial dynamic reconfiguration
for soc design of complex application on fpga plat-
forms. In IFIP VLSI-SOC 2005, 2005.

[4] A. Donato, F. Ferrandi, M. D. Santambrogio, and
D. Sciuto. Operating system support for dynami-
cally reconfigurable soc architectures. In IEEE-SOCC,
2005.

[5] L. Dozio and P. Mantegazza. Linux Real Time Appli-
cation Interface (RTAI) in low cost high performance
motion control. In Motion Control 2003, a confer-
ence of ANIPLA, Associazione Nazionale Italiana per
l’Automazione, 2003.

[6] H. Kalte, B. Kettelhoit, M. Koester, M. Porrmann,
and U. Rückert. A system approach for partially re-
configurable architectures. International Journal of
Embedded Systems, 1:274–290, 2005.

[7] H. Kalte and M. Porrmann. REPLICA2Pro: task re-
location by bitstream manipulation in Virtex-II/Pro
FPGAs. In Proceedings of the Third Conference on
Computing Frontiers, pages 403–412. ACM Press, May
2006.

[8] M. Koester, H. Kalte, and M. Porrmann. Relocation
and defragmentation for heterogeneous reconfigurable
systems. In Proceedings of ERSA ’06, pages 70–76,
Las Vegas, USA, June 27-30 2006. CSREA Press.

[9] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins. Designing an Operating System for a
Heterogeneous Reconfigurable SoC. In DAC ’04: Pro-
ceedings of the Design, Automation and Test in Europe
Conference and Exibition. ACM Press, 2004.

[10] H. K.-H. So and R. W. Brodersen. Improving usabil-
ity of FPGA-based reconfigurable computers through
operating system support. In Proc. of the Int. Conf.
on Field-Programmable Logic and Applications (FPL),
Madrid, Spain, Aug. 2006. IEEE Computer Society.

[11] J. Williams and N. Bergmann. Embedded Linux as
a platform for dynamically self-reconfiguring systems-
on-chip. In T. P. Plaks, editor, Proceedings of
the International Conference on Engineering of Re-
configurable Systems and Algorithms, pages 163–169.
CSREA Press, June 2004.

