
Model-Guided Empirical Optimization for Multimedia Extension

Architectures: A Case Study

Chun Chen1, Jaewook Shin2, Shiva Kintali3, Jacqueline Chame1, and Mary Hall1

1University of Southern California 2Argonne National Laboratory

Information Sciences Institute MCS Division

Marina del Rey, CA 90292 Argonne, IL 60439

{chunchen,jchame,mhall}@isi.edu jaewook@mcs.anl.gov

3Georgia Institute of Technology∗

College of Computing

Atlanta, GA 30332

kintali@cc.gatech.edu

Abstract

Compiler technology for multimedia extensions must

effectively utilize not only the SIMD compute engines

but also the various levels of the memory hierarchy: su-
perword registers, multi-level caches and TLB. In this

paper, we describe a compiler that combines optimiza-
tion across all levels of the memory hierarchy with au-

tomatic generation of SIMD code for multimedia ex-

tensions. At the high-level, model-guided empirical op-
timization is used to transform code to optimize for all

levels of the memory hierarchy. This compiler inter-

acts with a backend compiler exploiting superword-level
parallelism that takes sequential code as input and pro-

duces SIMD code. This paper discusses how we have
combined these technologies into a single framework.

Through a case study with matrix multiply, we observe

performance results that outperform the hand-tuned In-
tel MKL library, and achieve performance that is within

4% of the ATLAS self-tuning library with architectural

defaults and more than 4X faster than the native Intel
compiler.

1 Introduction

Many modern microprocessors incorporate an ex-
panded instruction set specifically targeting the re-
quirements of multimedia applications, with a func-

∗This work is done while the author is at USC/ISI

tional unit that can operate on aggregate objects to
perform bit-level operations, or SIMD parallel opera-
tions on variable-sized fields in the object (e.g., 8, 16,
32 or 64-bit fields). If the aggregate objects are larger
than the size of a machine word, then they are called
superwords [15]. These SIMD compute engines are
quite powerful for exploiting the inherent parallelism
of multimedia applications, but accelerating the com-
putation just increases the demand for data, and the
computations often become memory bound [22]. To
fully exploit the potential of multimedia extensions,
the application code must effectively utilize not only
the SIMD compute engines but also the various levels
of the memory hierarchy: superword registers, multi-
level caches and TLB.

This paper examines the relationship between local-
ity optimizations and SIMD parallelization for multi-
media extensions. While there is much recent work in
both of these areas, a strategy which combines them
exposes many new challenges. Some of the goals are
complementary: for example, exploiting spatial reuse
of data in cache is consistent with identifying spatial
reuse for superword loads and stores. Nevertheless, it
is quite possible that optimizations for locality will sig-
nificantly interfere with SIMD parallelization, such as,
for example, selecting a loop unroll factor or tile size
that leads to high parallelization overhead. From a
compiler perspective, we can think of the set of opti-
mization decisions as a search space. The search space
for either locality optimization or SIMD parallelization

1-4244-0910-1/07/$20.00 ©2007 IEEE

for multimedia extensions is already quite complex, but
now we must consider the combined search space.

In this paper, we describe how two recent com-
piler technologies are brought together to simultane-
ously optimize for the SIMD compute engines and all
levels of the memory hierarchy, including the super-
word registers. We navigate the complex combined
search space by extending a concept called model-

guided empirical optimization developed for memory
hierarchies [6]. Model-guided empirical optimization
combines compiler models and heuristics with guided
empirical search to take advantage of their complemen-
tary strengths. The models and heuristics limit the
search to a small number of candidate implementa-
tions, and the empirical results provide the most ac-
curate information to the compiler to select among
candidates and tune optimization parameter values.
This approach is closely related to self-tuning libraries
that use custom code generators and empirical tech-
niques [33, 2, 10, 36], most notably the ATLAS self-
tuning BLAS library [33]. However, unlike these
library-specific code generators, we employ compiler
technology that could be applied to other similar ap-
plication code.

The SIMD code for multimedia instructions is gen-
erated automatically using a compiler that exploits
superword-level parallelism [15, 14, 25, 26, 27]. As
compared to the more common vectorization-based ap-
proach for multimedia architectures [9, 23, 20, 1, 29],
which identifies loop-level parallelism, SLP takes ad-
vantage of the short vector length on multimedia ex-
tensions and makes use of a simpler, more robust set
of analysis and code generation strategies. It relies on
unrolling loops to expose parallelism within the loop
body. Then, the SLP compiler recognizes isomorphic
scalar operations and packs their operands into super-
word operations.

In this paper, we show how we can extend Chen
et al.’s algorithm for model-guided empirical optimiza-
tion originally designed for memory hierarchy to target
multimedia extensions. In this approach, we treat the
superword registers as another level in the memory hi-
erarchy. The desire to exploit SLP in the innermost
loop affects the strategies the compiler uses to decide
on loop order and unrolling. In addition, superword
memory operations are most efficient if they are prop-
erly aligned to the beginning of a superword, so align-
ment analysis constrains the tile sizes and unroll fac-
tors [16]. Nevertheless, the core algorithm by Chen et
al. has been retargeted to a new class of architectures
without requiring substantive changes, demonstrating
the strength of the model-guided empirical optimiza-
tion approach.

In addition to describing this compiler technology,
the paper demonstrates performance results for a case
study, matrix multiply. Demonstrating performance
on matrix multiply is a crucial first step in this area,
as it is a very important and well-studied application.
Nevertheless, performance of native compilers on ma-
trix multiply still falls far below hand-tuned BLAS ver-
sions. There is a wealth of recent work on self-tuning
matrix multiply using ATLAS [33], and model-based
or hybrid models and empirical search to derive pa-
rameters for the ATLAS kernel implementation [37].
Thus, it is a significant contribution of this work that
our compiler-based approach yields performance that
outperforms the hand-coded Intel MKL library, and
achieves results within 4% of the ATLAS self-tuning
library on an Intel Pentium M.

The remainder of the paper is organized as follows.
The next section presents an overview of the approach
and of the compiler implementations used in the ex-
periment. In Section 3, we describe how model-guided
empirical optimization and the SLP compiler must be
extended when combined into a single system. Sec-
tion 4 describes the code for matrix multiply generated
by the compilers and used in the experiment. Section 5
presents the results for matrix multiply on the Intel
Pentium M with SSE-3 extensions. Sections 6 and 7
present related work and conclude the paper.

2 Overview

The goal of this paper is to describe a high-level
compiler-based approach for taking sequential array-
based codes and simultaneously optimizing for the
SIMD multimedia units of modern microprocessors and
the cache hierarchy. While the paper focuses on a sin-
gle case study, matrix multiply, it is based on a general
strategy that will be applied to other more complex
codes, and relies on a set of compiler tools that were
used in the experiment in Section 5. In this section,
we present an overview of this approach, which is or-
ganized into two main phases, as shown in Figure 1.

In the first phase the compiler generates a set of
parameterized code variants based on static analysis
and models. The compiler uses dependence analysis to
determine the legality of code transformations, local-
ity analysis to evaluate data reuse and select specific
locality optimizations, register reuse analysis to esti-
mate register pressure, etc. The models include regis-
ter, cache and TLB models and also incorporate vari-
ous heuristics for those optimizations.

The code transformations considered in our frame-
work are well-known memory hierarchy optimization
techniques: loop permutation is used to select a par-

ticular loop order; unroll-and-jam, which fuses the in-
ner loop bodies resulting from unrolling outer loops,
exposes a large number of instructions that can be
scheduled to exploit instruction-level parallelism and
register optimizations; loop tiling and copy optimiza-
tion are used to manage locality in cache. The output
of the first phase is a set of parameterized code vari-
ants, with optimization parameters such tile size, un-
roll factor and prefetch distance left as variables whose
values are derived in the second phase. In addition,
constraints on the parameter values are provided to
guide and prune the search.

The second phase is a guided empirical search that
performs a series of experiments to derive the best pa-
rameter values for each code variant. In addition, code
transformations that depend on parameter values are
applied during this phase.

The SLP compiler we use in this paper was origi-
nally developed by Larsen and Amarasinghe [15], and
then extended by Shin et al. [26, 27, 25]. It takes
sequential code as input and generates code in a C-
based language extended with superword operations,
which is then compiled by a backend native compiler.
Shin [25, 26, 27] extended Larsen’s approach to handle
control flow and exploit locality in superword registers
by treating the superword register file as a compiler-
controlled cache. Both approaches are based on loop
unrolling to expose SLP at the innermost loops of a
nest and identifying isomorphic statements as opera-
tions that can be performed in parallel with a single su-
perword instruction. We see in Figure 1 that, beyond
identifying parallelism, SLP includes other optimiza-
tions to minimize the overhead of parallelization. Op-
timizations for managing superword registers include
superword replacement whereby superword loads and
stores can be replaced with temporaries that are stored
in registers and register packing, where packing of iso-
morphic instructions is performed in registers rather
than in cache. Additional SLP optimizations focus on
alignment and other loop optimizations that streamline
the inner loop body and maximize performance.

To achieve high performance, SLP optimizations
and locality optimizations must be performed collab-
oratively, as will be discussed in the next section.

3 Optimization Algorithm

Under our optimization framework for multimedia
extension architectures the first level of the memory
hierarchy is a superword register file. Optimizations
targeting the superword register level focus not only
on exploiting data reuse in these large register files,
but also on exposing SIMD parallelism that can be ex-

empirical search engine

analysis/models

application code architecture
specification

• select loop order

• cache and TLB optimizations

• unroll&jam loops with SLP and

spatial reuse

p
h

as
e

1

parameterized code variants + constraints on unbound parameters

code variants optimized for caches/TLB + unroll&jam to expose SLP

transformation modules

p
h

as
e

2

code variant generation

• on unrolled code:

• pack isomorphic operations

• align operands

• register optimizations: superword replacement, register packing

• low-level optimizations

performance monitoring

execution environment
optimized code + representative input data set

Figure 1. Code variant generation with SLP

ploited with superword operations.
Our approach for model-guided empirical optimiza-

tion for multimedia extension architectures is based on
Chen’s [6] algorithm for optimizing for multiple levels
of the memory hierarchy of conventional architectures,
where the register level is a scalar register file. We use
the same analysis, models and transformations as for
the cache(s) and TLB levels of the memory hierarchy.
For the register level, the algorithm is adapted to target
the superword register files of multimedia extensions.
This is accomplished by:

• Adding knowledge of superword register files and
SIMD functional units to the models and analyses;

• Applying transformations to expose SLP in the
innermost loops;

• Using Shin’s SLP compiler to exploit the exposed
parallelism and perform other optimizations tar-
geting the superword register level.

Figure 1 shows a high-level representation of our ap-
proach. The code variant generation phase is adapted
from our previous algorithm for the cache and TLB
levels. For the register level it focuses on exposing par-
allelism to the SLP compiler, by selecting loop orders
where spatial reuse and superword-level parallelism are
carried by the inner loop(s), and unrolling the inner
loop(s) .

3.1 Previous algorithm for code variant
generation

The code variant generation algorithm in [6] sys-
tematically applies individual transformations based

on analysis and models. During this process the al-
gorithm generates code variants with unbound param-
eters, based on the characteristics of transformations.
Along with each code variant, it also generates a set
of constraints for the optimization parameters. These
constraints are later used to guide and prune the em-
pirical search of parameter values.

The algorithm derives code variants as follows: se-
lects a loop order for each variant, the loops to which
unroll-and-jam should be applied, the loops that should
be tiled, and the data structures for which to consider
copying. The order of memory hierarchy levels (from
registers as the lowest level to main memory as the
highest) defines the order in which locality optimiza-
tions are evaluated. For each memory hierarchy level,
a number of variants may be derived, and each such
variant is processed when evaluating optimizations for
the next level. Some variants provided as input to a
level may be pruned as a result of consideration of the
impact of choices from lower levels of the memory hi-
erarchy. Each level also associates with each variant
constraints (C (level)) on parameter values (P(loop))
that will be used in the next phase, the model-guided
empirical search.

For each level of the memory hierarchy, from regis-
ters to the last cache level (and also considering TLB),
the algorithm identifies a set of array references and a
loop carrying temporal reuse for the references to that
level. The goal is to keep the reused data in that mem-
ory hierarchy level in between iterations of the loop
carrying the reuse. To achieve that, references asso-
ciated with the register level should have a smaller
reuse distance than references selected to be kept at
higher levels, and loops carrying reuse for the register
level should be innermost with respect to loops carry-
ing reuse for references associated with the L1 cache,
and so on.

3.2 SLP code variant generation

Figure 1 shows the code variant generation phase
extended to expose parallelism to the SLP compiler.
The loop order, loops to be unrolled or tiled and data
structures to be copied are determined before applying
SLP optimizations, creating intermediate code variants
where SLP, if any, is exposed. These intermediate code
variants are then used as input to Shin’s SLP compiler,
which generates the final code variants. Figure 3(a)
shows an intermediate code variant before SLP op-
timizations and Figure 3(b) shows the corresponding
code variant after the SLP code generation step.

As discussed in [25], SLP is most profitable when the
words in a superword operand are in contiguous mem-

Algorithm DeriveVariants

foreach memory hierarchy level ∈ REGISTER, L1, L2, ...

use models to:
if (level == REGISTER) {

Select data structure D and loop L such that:
D has maximum spatial reuse, carried by L, and
L carries SLP with D as an SLP operand.

Permute L to the innermost position and unroll L.
Determine constraints based on D and superword-register
footprint analysis.
Mark D as considered.

}
else {

Select data structure D with maximum reuse from reuse
analysis (if possible, one that has not been considered).
Permute the relevant loops and apply tiling according to
newly selected reuse dimension.
Generate copy variant if copying is beneficial.
Determine constraints based on D and cache/TLB
footprint analysis.
Mark D as considered.

}

Figure 2. Deriving code variants

ory locations and can be loaded with a single memory
operation (otherwise the individual words have to be
packed into a superword, creating parallelization over-
head). Therefore a loop that carries both SLP and
spatial reuse for the operands is a better candidate for
superword-level parallelization than a loop carrying the
same amount of parallelism but no spatial reuse. The
code variant generation algorithm shown in Figure 2
incorporates knowledge of SLP optimizations in the
analysis and models, and uses this knowledge to select
loop orders and unroll factors that expose superword-
level parallelism to the SLP compiler. While for scalar
registers the models focus on the amount of reuse of
each data structure and loop, for superword registers
the models also consider the amount of parallelism and
parallelization overhead, and spatial reuse. This may
result in a different loop order for the most profitable
code variants where loops carrying both SLP and spa-
tial reuse are moved to the innermost levels.

Once the code variant generation algorithm deter-
mines which loops to unroll for SLP, the decision pro-
cess for caches and TLB is performed. The intermedi-
ate code variants are then processed by the SLP com-
piler.

4 Code Example

Applying the algorithm in the previous section, this
section describes a code example used in the experi-
ments in the next section. In this paper, we focus on
matrix multiply, as it is a well-known and heavily used

computational kernel for which high-performance solu-
tions exist across a range of architectures. Here is the
standard matrix multiply algorithm.

DO K = 1,N

DO J = 1,N

DO I = 1,N

C[I,J] = C[I,J]+A[I,K]*B[K,J]

We present one variant of matrix multiply in Fig-
ure 3, the one that is used for sufficiently large problem
sizes that fill up the cache hierarchy. This code vari-
ant is chosen to make effective use of the Intel Pentium
architectures with SSE extensions:

• the small superword register file (just 8 registers)

• the deep instruction pipelines

• the relatively high cost of register-to-register
transfers

In Figure 3, we present two source-level versions of
the code which serve as the output of different com-
piler layers: the locality optimization framework and
the SLP compiler. In Figure 3(a), the high level com-
piler produces a transformed version of the standard
matrix multiply code, but with no multimedia exten-
sion instructions. Figure 3(b) presents the output of
the SLP compiler, where madd operations are imple-
mented as two Intel SSE instructions and sum opera-
tions as Intel floating-point instructions.

The code transformations in Figure 3 are described
in Section 2. In locality optimization, the temporary
array for array A has its indices exchanged to expose
the opportunities of superword parallelism for the SLP
compiler. It also does scalar replacement for array C
accesses in the innermost loop K. Next in SLP com-
piler, it exploits the commutativity and associativity
of the updates to scalars T1 to T4, indicating it is safe
to reorder the updates. We refer to this optimization
as a reduction optimization, recognizing its similarity
to this standard optimization performed in paralleliz-
ing compilers [18]. Because it is safe to reorder updates
to temporary variables T’s, we expand updates of them
into small 4-element temporary arrays T1, ..., T4 in
the loop and summarize those updates back into ar-
ray C after the loop. This optimization is also used by
ATLAS to avoid dependencies between computations
on array C. As is shown in Figure 3(b), this optimiza-
tion allows the compiler to perform four independent
superword computations, resulting in sufficient inde-
pendent parallel work to keep the superword floating
point pipelines busy, while using the superword regis-
ters very sparingly.

In this example, heavy use of loop unrolling enables
instruction scheduling in the backend compiler to in-
crease available parallelism and hide pipeline stalls.
While not shown here, selecting the tile size (TI, TJ,
TK) is another set of decisions that must be made.

5 Experimental Validation

In this section, we present performance results for
the variant of Matrix Multiply shown in Figure 3(b),
generated by our compilers. This variant is best suited
for large matrix sizes to hide the overhead of copy op-
timization, and so we focus on performance measure-
ments on matrix sizes larger than the L2 cache; locality
optimization for such large matrices is essential to ob-
taining good performance. The code in Figures 3(a)
and (b) and the resulting binary for the Intel Pentium
M were produced by running the code through first
the ECO compiler, then the SLP compiler, and finally
the native compiler respectively. The generated code
passed through the compilers without manual changes,
beginning with the simple 4-line matrix multiply of Sec-
tion 4. The search for parameter values was performed
manually, for the most part by running multiple ver-
sions of the code on the Pentium M. The ECO compiler
can automatically perform this search, as was done by
Chen et al. [6], and is in the process of being automated
for the combined compiler.

The machine parameters for our Pentium M are
shown in Table 1. The performance results are shown
in Figure 2. The final executable is compiled with Intel
icc with flags -O3 -msse2 -march=pentium4. The na-
tive compiler used is the Intel ifort with the same flags.
We find that the code generated by the Intel compiler
is more efficient than that of gcc 4.0, due to a better
selection of SSE instructions. We also compare our Ma-
trix Multiply performance with the auto-tuning library
ATLAS 3.7.14 and Intel’s hand-tuned performance li-
brary MKL 8.0.2. For the results shown, we select the
matrix size 3200× 3200, which is large enough to ben-
efit from L2 and TLB tiling.

The native compiler yields much slower performance
than the other versions (more than four times slower),
in spite of generating SSE2 instructions in the inner
loop. Our performance is better than the hand-coded
MKL library by 2%. The best results are obtained by
ATLAS. Nevertheless, our compiler-generated code is
within 4% of ATLAS using architectural defaults.

Now we consider the search space for unroll factors
and tile sizes. Unroll factors are constrained by the
SLP compiler to be a multiple of the superword size,
and by the capacity of the superword register file, so
there are very few choices for unroll factors. In our Ma-

new P[TK,TJ]
new Q[TK,TI]

DO KK = 1,N,TK
DO II = 1,N,TI

Q[1:TK,1:TI] = A[II:II+TI-1,KK:KK+TK-1]

DO JJ = 1,N,TJ
P[1:TK,1:TJ] = B[KK:KK+TK-1,JJ:JJ+TJ-1]

DO I = II,min(II+TI-1,N)
DO J = JJ,min(JJ+TJ-1,N),4

T1 = C[I,J]

T2 = C[I,J+1]
T3 = C[I,J+2]

T4 = C[I,J+3]
DO K = KK,min(KK+TK-1,N)

T1 = T1+Q[K-KK+1,I-II+1]*P[K-KK+1,J-JJ+1]
T2 = T2+Q[K-KK+1,I-II+1]*P[K-KK+1,J-JJ+2]
T3 = T3+Q[K-KK+1,I-II+1]*P[K-KK+1,J-JJ+3]

T4 = T4+Q[K-KK+1,I-II+1]*P[K-KK+1,J-JJ+4]
C[I,J] = T1

C[I,J+1] = T2
C[I,J+2] = T3

C[I,J+3] = T4

(a) Transformed code for locality

new P[TK,TJ]
new Q[TK,TI]

DO KK = 1,N,TK
DO II = 1,N,TI

Q[1:TK,1:TI] = A[II:II+TI-1,KK:KK+TK-1]

DO JJ = 1,N,TJ
P[1:TK,1:TJ] = B[KK:KK+TK-1,JJ:JJ+TJ-1]

DO I = II,min(II+TI-1,N)
DO J = JJ,min(JJ+TJ-1,N),4

T1[1:4] = {C[I,J], 0, 0, 0}

T2[1:4] = {C[I,J+1], 0, 0, 0}
T3[1:4] = {C[I,J+2], 0, 0, 0}

T4[1:4] = {C[I,J+3], 0, 0, 0}
DO K = KK,min(KK+TK-1,N),4

T1[1:4] = madd(T1[1:4],Q[K-KK+1:K-KK+4,I-II+1]*P[K-KK+1:K-KK+4,J-JJ+1])
T2[1:4] = madd(T2[1:4],Q[K-KK+1:K-KK+4,I-II+1]*P[K-KK+1:K-KK+4,J-JJ+2])
T3[1:4] = madd(T3[1:4],Q[K-KK+1:K-KK+4,I-II+1]*P[K-KK+1:K-KK+4,J-JJ+3])

T4[1:4] = madd(T4[1:4],Q[K-KK+1:K-KK+4,I-II+1]*P[K-KK+1:K-KK+4,J-JJ+4])
C[I,J] = sum(T1[1:4])

C[I,J+1] = sum(T2[1:4])
C[I,J+2] = sum(T3[1:4])

C[I,J+3] = sum(T4[1:4])

(b) Output of SLP compiler with reduction transformation

Figure 3. Matrix multiply for limited capacity SLP register files.

trix Multiply example, unrolling loop J by four achieves
the best performance during the search. In addition,
the SLP compiler unrolls loop K by four and the back-
end compiler further unrolls loop K to hide data depen-
dence latencies, since software pipelining is not prof-
itable in this Intel architecture.

The next step is the search for tile sizes, where TI

and TK are tiling parameters targeting locality in the
L2 cache while TJ and TK target the L1 cache. The
search is based on deciding how much cache capacity
should be utilized at each level, and what is the best
tile shape. We use heuristics to determine the starting
points of the search. In general, for a n-way associa-
tive cache, n > 1, the tiling parameters should be con-
strained such that n-1 or less sets are occupied by data
with temporal reuse at this loop level, while the remain-
ing sets are left to data accesses which do not need to
be kept in this cache level for the loop in consideration.
For direct-mapped caches the space occupied by data
with temporal reuse is significantly smaller than the
cache size, to reduce conflict misses. In our Pentium
M, the best performance results obtained by the search
correspond to TI = 256,TJ = 8,and TK = 512, which
translates to temporary array Q occupying half of the
L2 cache and temporary array P half of the L1 cache.

6 Related Work

There has been an extensive amount of research in
memory hierarchy optimizations for both cache and
registers, dating back over a decade [3, 34, 31, 24, 11, 5].
Historically, models of registers and cache misses were
used to determine profitability of locality transforma-

tions (e.g., [3, 4, 31]). Recent research proposes precise,
although more complex, models of cache misses [11, 5].

Recently there has been some work on automatic
parallelization for multimedia extensions [7, 17]. Two
distinct approaches are used: SLP [15, 14, 26, 27] and
an adaptation of vectorization [9, 23, 20, 1, 29]. Our pa-
per builds on the SLP technology developed by Larsen
and Amarasinghe [15], which was extended by Shin,
Chame and Hall to support locality optimizations in
superword registers [26] and to exploit SLP in the pres-
ence of control flow [27].

There are several on-going research projects in em-
pirical optimization of scientific libraries, such as AT-
LAS [33] and PHiPAC [2], and domain-specific libraries
such as FFTW [10] and SPIRAL [36]. Both PHiPAC
and ATLAS generate high performance matrix-matrix
multiply by performing an empirical search for param-
eter values on the target machine. GotoBLAS [12]
achieves the best performance results for a variety
of architectures by combining a more elaborate ma-
trix decomposition than used by ATLAS with high-
performance hand-written Goto kernels. FFTW uses a
combination of static models and empirical techniques
to optimize FFTs. SPIRAL generates optimized digital
signal processing (DSP) libraries by searching a large
space of implementation choices and evaluating their
performance empirically.

Also related to our work are model-based optimiza-
tions and approaches that combine analytical models
and empirical search. [35, 19] use static models to
address the trade-offs between different optimization
goals for the multiple levels of the memory hierarchy.
[13] proposes combining static models and empirical
search in iterative compilation to reduce the search

Architecture Clock Rate Registers L1 cache L2 cache Hardware Prefetch?

Intel Pentium M 1.4GHz 8 128-bit SIMD 32KB 8-way data 1024KB 2-way unified Yes

Table 1. Architecture specifications

MM Version Automatically Generated Intel MKL ATLAS Intel ifort compiler
(3200x3200) TIxTJxTK=256x8x512

Performance 2.957GFLOPS 2.859GFLOPS 3.076GFLOPS 0.692GFLOPS

Table 2. Performance comparison on Intel Pentium M

space when considering two optimizations, loop tiling
and unrolling. Yotov et al. [37] showed that a local em-
pirical search around parameter values determined by
models can bring performance close to or better than
that of ATLAS while using less search time.

A variety of AI search techniques, such as simulated
annealing [21], hill climbing [8] and genetic algorithms
and machine learning [28, 32, 30] have shown promise
in improving optimization results; at the same time,
the cost of these searches can be prohibitive since they
incorporate little if any domain knowledge to limit the
search space. We anticipate the kind of domain knowl-
edge used in our approach could be effectively com-
bined with such heuristic search techniques.

7 Conclusion

In this paper, we describe a compiler that combines
optimization across all levels of the memory hierarchy
with automatic generation of SIMD code for multime-
dia extensions. We have demonstrated this approach
with an important case study, matrix multiply. Our
compiler-generated code outperforms the hand-tuned
Intel MKL library, and achieves performance within 4%
of the ATLAS self-tuning library with architectural de-
faults and roughly 4X faster than the native compiler.
The development of a compiler-based approach lays
an important foundation for producing highly-tuned
libraries such as ATLAS automatically and for more
general application code.

Acknowledgements. This research has been sup-
ported by the National Science Foundation under
awards ACI-0204040, CSR-0509517 and CSR-0615412,
by the US Department of Energy under the grant DE-
FC02-06ER25765, and by a gift from Intel Corporation.

References

[1] A. Bik, M. Girkar, P. Grey, and X. Tian. Auto-
matic intra-register vectorization for the intel architec-
ture. International Journal of Parallel Programming,
30(2):65–98, Apr. 2002.

[2] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel.
Optimizing matrix multiply using PHiPAC: a portable,
high-performance, ANSI C coding methodology. In
Proceedings of the 1997 ACM International Conference
on Supercomputing, June 1997.

[3] S. Carr and K. Kennedy. Improving the ratio of mem-
ory operations to floating-point operations in loops.
ACM Transactions on Programming Languages and
Systems, 16(6):1768–1810, Nov. 1994.

[4] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler
optimizations for improving data locality. In Proceed-
ings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS-VI), Oct. 1994.

[5] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R.
Lebeck. Exact analysis of the cache behavior of nested
loops. In Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, June 2001.

[6] C. Chen, J. Chame, and M. W. Hall. Combining mod-
els and guided empirical search to optimize for multi-
ple levels of the memory hierarchy. In Proceedings of
the International Symposium on Code Generation and
Optimization, Mar. 2005.

[7] G. Cheong and M. Lam. An optimizer for multime-
dia instruction sets. In The Second SUIF Compiler
Workshop, Stanford University, USA, Aug. 1997.

[8] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic al-
gorithms. In Proceedings of ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embed-
ded Systems (LCTES’99), May 1999.

[9] A. Eichenberger, P. Wu, and K. O’Brien. Vectoriza-
tion for short simd architectures with alignment con-
straints. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, June
2006.

[10] M. Frigo. A fast Fourier transform compiler. In Pro-
ceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, May 1999.

[11] S. Ghosh, M. Martonosi, and S. Malik. Precise
miss analysis for program transformations with caches
of arbitrary associativity. In Proceedings of the

Eighth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS-VIII), Oct. 1998.

[12] K. Goto and R. van de Geijn. High-performance im-
plementation of the level-3 BLAS. Technical Report
TR-06-23, Department of Computer Science, Univer-
sity of Texas at Austin, 2006.

[13] P. M. W. Knijnenburg, T. Kisuki, K. Gallivan, and
M. F. P. O’Boyle. The effect of cache models on it-
erative compilation for combined tiling and unrolling.
Concurrency and Computation: Practice and Experi-
ence, 16(2–3):247–270, Mar. 2004.

[14] A. Krall and S. Lelait. Compilation techniques for mul-
timedia processors. International Journal of Parallel
Programming, 28(4):347–361, 2000.

[15] S. Larsen and S. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets. In
Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, June
2000.

[16] S. Larsen, E. Witchel, and S. Amarasinghe. Increas-
ing and detecting memory address congruence. In In-
ternational Conference on Parallel Architectures and
Compilation Techniques, Sept. 2002.

[17] R. Lee. Subword parallelism with max2. ACM/IEEE
international symposium on Microarchitecture,
16(4):51–59, Aug. 1996.

[18] S.-W. Liao. SUIF Explorer: An Interprocedural and
Interactive Parallelizer. PhD thesis, Dept. of Com-
puter Science, Stanford, Aug. 2000.

[19] N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante.
Quantifying the multi-level nature of tiling interac-
tions. In Proceedings of the 10th International Work-
shop on Languages and Compilers for Parallel Com-
puting, Aug. 1997.

[20] D. Nuzman, I. Rose, and A. Zaks. Optimizing data
permutations for simd devices. In Proceedings of the
Conference on Programming Language Design and Im-
plementation, June 2006.

[21] G. Pike and P. N. Hilfinger. Better tiling and array
contraction for compiling scientific programs. In Pro-
ceedings of Supercomputing ’02, Nov. 2002.

[22] P. Ranganathan, S. Adve, and N. Jouppi. Performance
of image and video processing with general-purpose
processors and media ISA extensions. In International
Symposium on Computer Architecture, May 1999.

[23] G. Ren, P. Wu, and D. Padua. Optimizing data per-
mutations for simd devices. In Proceedings of the Con-
ference on Programming Language Design and Imple-
mentation, June 2006.

[24] G. Rivera and C.-W. Tseng. Data transformations for
eliminating conflict misses. In Proceedings of ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, June 1998.

[25] J. Shin. Compiler Optimizations for Architectures Sup-
porting Superword-level Parallelism. PhD thesis, Dept.
of Computer Science, USC, Aug. 2005.

[26] J. Shin, J. Chame, and M. W. Hall. Compiler-
controlled caching in superword register files for mul-
timedia extension. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, Sept. 2002.

[27] J. Shin, M. W. Hall, and J. Chame. Superword-level
parallelism in the presence of control flow. In Proceed-
ings of the International Symposium on Code Genera-
tion and Optimization, Mar. 2005.

[28] B. Singer and M. Veloso. Stochastic search for signal
processing algorithm optimization. In Proceedings of
Supercomputing ’01, Nov. 2001.

[29] N. Sreraman and R. Govindarajan. A vectorizing com-
piler for multimedia extensions. International Journal
of Parallel Programming, 2000.

[30] M. Stephenson, S. Amarasinghe, M. Martin, and U.-
M. O’Reilly. Meta optimization: Improving com-
piler heuristics with machine learning. In Proceedings
of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 2003.

[31] O. Temam, E. D. Granston, and W. Jalby. To copy
or not to copy: A compile-time technique for assessing
when data copying should be used to eliminate cache
conflicts. In Proceedings of Supercomputing ’93, Nov.
1993.

[32] X. Vera, J. Abella, A. González, and J. Llosa. Opti-
mizing program locality through CMEs and GAs. In
Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques, Sept.
2003.

[33] R. C. Whaley, A. Petitet, and J. J. Dongarra. Auto-
mated empirical optimization of software and the AT-
LAS project. Parallel Computing, 27(1–2):3–35, Jan.
2001.

[34] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In Proceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, June 1991.

[35] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Com-
bining loop transformations considering caches and
scheduling. In Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, Dec. 1996.

[36] J. Xiong, J. Johnson, R. Johnson, and D. Padua.
SPL: A language and compiler for DSP algorithms.
In Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, June
2001.

[37] K. Yotov, K. Pingali, and P. Stodghill. Think globally,
search locally. In Proceedings of the 2005 ACM Inter-
national Conference on Supercomputing, June 2005.

