
Dynamic Load Balancing of Unbalanced Computations Using Message Passing

James Dinan1, Stephen Olivier2, Gerald Sabin1, Jan Prins2,
P. Sadayappan1, and Chau-Wen Tseng3

1 Dept. of Comp. Sci. and Engineering 2 Dept. of Computer Science
The Ohio State University Univ. of North Carolina at Chapel Hill

Columbus, OH 43221 Chapel Hill, NC 27599
{dinan, sabin, saday}@cse.ohio-state.edu {olivier, prins}@cs.unc.edu

3 Dept. of Computer Science
Univ. of Maryland at College Park

College Park, MD 20742
tseng@cs.umd.edu

Abstract

This paper examines MPI’s ability to support continu-
ous, dynamic load balancing for unbalanced parallel ap-
plications. We use an unbalanced tree search benchmark
(UTS) to compare two approaches, 1) work sharing using
a centralized work queue, and 2) work stealing using ex-
plicit polling to handle steal requests. Experiments indicate
that in addition to a parameter defining the granularity of
load balancing, message-passing paradigms require addi-
tional parameters such as polling intervals to manage run-
time overhead. Using these additional parameters, we ob-
served an improvement of up to 2X in parallel performance.
Overall we found that while work sharing may achieve bet-
ter peak performance on certain workloads, work steal-
ing achieves comparable if not better performance across
a wider range of chunk sizes and workloads.

1 Introduction

The goal of the Unbalanced Tree Search (UTS) parallel
benchmark is to characterize the performance that a par-
ticular combination of computer system and parallel pro-
gramming model can attain when solving an unbalanced
problem that requires dynamic load balancing [16]. This is
accomplished by measuring the performance of executing
parallel tree search on a richly parameterized, unbalanced
workload. In particular, the workloads explored by UTS

1-4244-0910-1/07/$20.00 c©2007 IEEE.

exemplify computations where static partitioning schemes
cannot yield good parallelism due to unpredictability in the
problem space.

Shared memory and Partitioned Global Address Space
(PGAS) programming models (e.g. OpenMP, UPC, CAF, or
Titanium) provide a natural environment for implementing
dynamic load balancing schemes through support for shared
global state and one-sided operations on remote memory.
On shared memory machines, the ability to offload coher-
ence protocols, synchronization operations, and caching of
shared data into the hardware gives these systems a great
advantage over distributed memory systems where support-
ing such global operations often results in high latency and
runtime overhead. For this reason, the best performance
on distributed memory systems can often only be achieved
through direct management of communication operations
using explicit message passing [3].

Parallel programming models based on two-sided mes-
sage passing pose significant challenges to the implemen-
tation of parallel applications that exhibit asynchronous
communication patterns. Under these models, establish-
ing support for computation-wide services such as dynamic
load balancing and termination detection often introduces
complexity through the management of additional non-
blocking communication operations and the injection of ex-
plicit progress directives into an application’s critical path.
The need to explicitly manage this complexity for high per-
formance exposes the programmer to additional opportuni-
ties for race conditions, starvation, and deadlock.

In this paper, we present an implementation of the UTS
benchmark using the Message Passing Interface (MPI). We

explore approaches to mitigating the complexity of support-
ing dynamic load balancing under MPI and investigate tech-
niques for explicitly managing load balancing activity to in-
crease performance. Our discussion begins with a presen-
tation of the Unbalanced Tree Search problem followed by
a discussion of the implementation of both centralized and
distributed load balancing schemes using MPI. We then ex-
plore techniques for fine tuning load balancing activity to
enhance performance. Finally, we evaluate these schemes
on a blade cluster and characterize the performance and
scalability attainable in the presence of dynamic load bal-
ancing for such systems.

2 Background

2.1 Unbalanced Tree Search Benchmark

The unbalanced tree search (UTS) problem is to count
the number of nodes in an implicitly constructed tree that is
parameterized in shape, depth, size, and imbalance. Implicit
construction means that each node contains all information
necessary to construct its children. Thus, starting from the
root, the tree can be traversed in parallel in any order as long
as each parent is visited before its children. The imbalance
of a tree is a measure of the variation in the size of its sub-
trees. Highly unbalanced trees pose significant challenges
for parallel traversal because the work required for differ-
ent subtrees may vary greatly. Consequently an effective
and efficient dynamic load balancing strategy is required to
achieve good performance.

The overall shape of the tree is determined by the tree
type. A major difference between tree types is the proba-
bility distribution (binomial or geometric) used to generate
children for each node. A node in a binomial tree has m
children with probability q and has no children with proba-
bility 1 − q, where m and q are parameters of the class of
binomial trees. When qm < 1, this process generates a fi-
nite tree with expected size 1

1−qm . Since all nodes follow
the same distribution, the trees generated are self-similar
and the distribution of tree sizes and depths follow a power
law [14]. The variation of subtree sizes increases dramati-
cally as qm approaches 1. This is the source of the tree’s
imbalance.

The nodes in a geometric tree have a branching factor
that follows a geometric distribution with an expected value
that depends on the depth of the node. In order to simplify
our discussion, we focus here on geometric trees having
a fixed branching factor, b. Another tree parameter is the
value r of the root node. Multiple instances of a tree type
can be generated by varying this parameter, hence providing
a check on the validity of an implementation. A more com-
plete description of tree generation is presented elsewhere
[16].

2.2 MPI

The Message Passing Interface (MPI) is an industry
standard message passing middleware created by the MPI
Forum [11]. MPI defines a parallel programming model
in which communication is accomplished through explicit
two-sided messages. Under this model, data must be explic-
itly transmitted between processors using Send() and Recv()
primitives.

2.3 Dynamic Load Balancing

The technique of achieving parallelism by redistributing
the workload as a computation progresses is referred to as
dynamic load balancing. In this work, we examine two dif-
ferent dynamic load balancing schemes: work sharing and
work stealing. These two schemes were chosen because
they represent nearly opposite points in the design space
for dynamic load balancing algorithms. In particular, work
stealing is an inherently distributed algorithm which is well
suited for clusters whereas work sharing is inherently cen-
tralized and is best suited for shared memory systems.

Hierarchical schemes have also been proposed that of-
fer scalable dynamic load balancing for distributed memory
and wide-area systems. These schemes offer greater scal-
ability and tolerance for high latency links. However, they
are often constructed using work sharing or work stealing
algorithms (e.g. Hierarchical Stealing [17]).

2.3.1 Work Sharing

Under the work sharing approach, processors balance the
workload using a globally shared work queue. In UTS,
this queue contains unexplored tree nodes. Work in the
shared queue is grouped into units of transferable work
called chunks and the chunk size, c, parameter defines the
number of tree nodes contained within a chunk.

In order to perform depth-first search, each processor
also maintains a depth-first stack containing the local col-
lection of unexplored nodes, or fringe, of the tree search.
When a processor has exhausted the work on its local stack,
it gets another chunk of unexplored nodes from the shared
queue. If no work is immediately available in the shared
queue, the processor waits either for more work to become
available or for all other processors to reach a consensus
that the computation has ended. When a processor does
have local work, it expands its local fringe and pushes the
generated children onto its stack. If this stack grows to be
larger than two chunks, the processor sends a chunk of its
local work to the shared queue, allowing the surplus work
to be performed by other processors that have become idle.

MPI-2 has been introduced to provide one-sided put/get semantics,
however in the context of this work we specifically target the popular two-
sided model of MPI-1.

2.3.2 Work Stealing

While work sharing uses global cooperation to facilitate
load balancing, work stealing takes a distributed approach.
Under work stealing, idle processors search among the other
processors in the computation in order to find surplus work.
In contrast to work sharing, this strategy places the burden
of finding and moving tasks to idle processors on the idle
processors themselves, minimizing the overhead to proces-
sors that are making progress. For this reason, work steal-
ing is considered to be stable because no messages are sent
when all processors are working [2]. In comparison, work
sharing is unstable because it requires load balancing mes-
sages to be sent even when all processors have work.

3 Algorithms

3.1 Work Sharing in MPI

Because MPI provides the programmer with a dis-
tributed memory view of the computation, the most natural
way to implement work sharing under MPI is with a work
manager. This work manager’s job is to maintain the shared
work queue, to service work releases and work requests,
and to detect termination. Because the parallel performance
of our work sharing implementation depends greatly on the
speed with which the manager is able to service requests,
the manager does not participate in the computation.

In order to efficiently service requests from all proces-
sors in the computation, the work manager posts two non-
blocking MPI Irecv() descriptors for each worker in the
computation: one for work releases and one for work re-
quests. Work releases are distinguished from work requests
by the message’s tag. When a worker generates surplus
work, it releases a chunk of work to the manager. When
a worker requests a chunk of work from the queue manager
it sends a work request message to the manager and blocks
waiting for a response. If the manager is not able to imme-
diately service the processor’s request for work, it adds the
processor to the idle queue and services the request once
more work becomes available. If the manager detects that
all processors have become idle and no work is available in
the queue, it concludes that the computation has terminated
and it sends all processors a termination message.

3.1.1 Out of Order Message Receipt in MPI

The MPI specification guarantees that between any two
threads, the program order of blocking operations is ob-
served [11]. However, in the presence of send buffering and
non-blocking receive operations, this guarantee may mis-
lead the incautious programmer into relying on an ordering
that can be violated. We encountered this exact problem in

our initial implementation which created a very hard-to-find
race condition: occasionally the queue manager would lose
a chunk of work, resulting in premature termination.

The cause of the race condition was that the manager was
receiving messages out of order. A worker would release a
chunk of work to the queue manager using a blocking send
operation and quickly exhaust its local work, sending out
a blocking work request to the queue manager. Both send
operations would be buffered at the sender, immediately re-
turning in the sender’s context. The larger work release
message would then be transmitted by the MPI runtime sys-
tem using rendezvous protocol whereas the smaller work
request message would be transmitted using eager protocol.
Because of this, they would arrive at the work manager out
of order and when the manager polled its receive descrip-
tors it would see the work request before seeing the work
release. If all other processors were in the idle queue at the
time the last work request message was received, the queue
manager would detect termination early, never having seen
the incoming release message.

Rather than solve this problem by using unbuffered
sends, we implemented a simple but effective timestamp-
ing scheme. Under this scheme, each worker keeps track
of the number of chunks it has released to the shared queue
and transmits this count along with each work request. The
queue manager also maintains a count of the number of
chunks it has received from each worker. When the man-
ager attempts to detect termination it compares these counts
and if they don’t match, the manager knows that there are
still outstanding messages in-flight and it continues to poll
its receive descriptors.

3.2 Work Stealing in MPI

In general, stealing is a one-sided operation. However,
due to MPI’s two-sided communication model, processors
that have exhausted their local work are unable to directly
steal chunks of computation from other processors. Instead,
idle processors must rely on cooperation from busy proces-
sors in order to obtain work. In order to facilitate this model
for work stealing we created an explicit polling progress
engine. A working processor must periodically invoke the
progress engine in order to observe and service any incom-
ing steal requests. The frequency with which a processor
enters the progress engine has a significant impact on per-
formance and has been parameterized as the polling inter-
val, i.

If a processor has received a steal request at the time it
calls into the progress engine, it checks to see if it has sur-
plus work and attempts to satisfy the request. If enough
work is available, a chunk of work is sent back to the thief
(requesting) processor. Otherwise, the victim responds with
a “no work” message and the thief moves on to its next

potential victim. Under this approach, processors with no
work constantly search for work to become available until
termination is detected. However, because each processor
posts only a single receive descriptor for steal requests, the
total number of steal requests serviced per polling interval
is stable and is bounded by the number of processors in the
computation.

3.2.1 Distributed Termination Detection

Our work stealing implementation uses a modified ver-
sion of Dijkstra’s well-known termination detection algo-
rithm [8]. In this algorithm, a colored token is circulated
around the processors in a ring in order to reach a consen-
sus. In our implementation the token can be any of three
colors: white, black, or red. Processor 0 owns the token
and begins its circulation. Each processor passes the token
along to its right as it becomes idle, coloring it white if it
has no work and has not given work to a processor to its
left or black if it has work or has given work to a processor
to its left. In order to address the same out-of-order mes-
sage receipt race condition encountered in the work sharing
implementation, the token carries with it two counters: one
counting the total number of chunks sent and another count-
ing the total number of chunks received.

Whenever processor 0 receives the token it checks
whether a consensus for termination has been reached. If
the token is white and both counters are equal then termi-
nation has been reached and processor 0 circulates a red
token to inform the other processors. Otherwise, processor
0 colors the token white, resets the counters with its local
counts and recirculates the token.

3.2.2 Finalizing MPI with Outstanding Messages

During the termination phase of the computation, all pro-
cessors continue searching for work until they receive the
red token. To avoid deadlock, steal requests and their cor-
responding steal listeners must be non-blocking. Because
of this, any processor can have both outstanding Send() and
Recv() operations when it receives the red token.

Many MPI implementations (e.g. MPICH, Cray MPI,
LAM, etc...) will allow the user to simply discard these
outstanding messages on termination via the collective
MPI Finalize(). However, the MPI specification states
that a call to MPI Finalize() should not complete in the
presence of any such messages. Some MPI implementa-
tions, notably SGI’s implementation, do honor these se-
mantics. Under these runtime systems, any program that
calls MPI Finalize() without first cleaning up its outstand-
ing messages will hang.

MPI does provide a way to cancel outstanding messages
by calling MPI Cancel(). However this function is not com-
pletely supported on all platforms. Notably, MPICH does

not support canceling send operations so any code that re-
lies on MPI Cancel() will have limited portability. In addi-
tion to this, the specification states that for any non-blocking
operation either MPI Cancel() can succeed or MPI Test()
but not both. Therefore trying to cancel a message that has
succeeded will result in a runtime error. However simply
calling MPI Test() once before calling MPI Cancel() will
introduce a race condition. Thus, it would seem that the
MPI specification does not provide any safe mechanism for
terminating a computation in the presence of outstanding
messages!

Our solution to this problem was to introduce another
stage to our termination detection algorithm that acts as a
message fence. In this new stage we color the token pink
before coloring it red. When the pink token is circulated all
processors cease to introduce new steal requests and update
the token’s message counters with counts of the number of
steal messages sent and the number received. The pink to-
ken then circulates until all control messages have been ac-
counted for (usually 1 or 2 circulations in practice). This
is detected by processor 0 by comparing the token’s coun-
ters to ensure that they are equal. Once they are, processor
0 colors the token red informing all nodes that communi-
cation has reached a consistent state and it is now safe to
terminate.

3.3 Managing Load Balancing Overhead

We define the overhead of a dynamic load balancing
scheme to be the amount of time that working processors
must spend on operations to support dynamic load balanc-
ing. In the following sections, we describe polling-based
solutions that allow us to reduce the overhead for each dy-
namic load balancing scheme by fine tuning the frequency
of load balancing operations to better match particular sys-
tems and workloads.

3.3.1 Work Stealing

Overhead in our work stealing implementation is naturally
isolated to the polling-based progress engine. Working pro-
cessors must periodically invoke the progress engine to ser-
vice any incoming steal requests. The frequency with which
these calls are made is parameterized as the polling interval.
If calls are not made frequently enough then steal requests
may go unnoticed and the load may become imbalanced.
However, if calls are made too frequently then performance
will be lost due to the overhead of excess polling.

Algorithm 1 Work stealing polling interval
1: if Nodes Processed % Polling Interval = 0 then
2: Progress Engine()
3: end if

In the case of work stealing, we have experimentally ob-
served that the optimal polling interval does not vary with
the chunk size or the workload. Instead, the optimal polling
interval is a fixed property of the combination of hardware
and runtime systems.

3.3.2 Work Sharing

Overhead in the work sharing scheme is incurred when
working processors must release a chunk of their work to
the work manager. These communication operations are not
initiated by a request for work, instead they must occur pe-
riodically in order to ensure the load remains balanced. For
this reason, work sharing is unstable.

In order to fine tune the performance of our work sharing
implementation, we have introduced the release interval, i,
parameter. The release interval defines how frequently a re-
lease operation is permitted. Thus, in order for a working
processor to release work to the work manager, the proces-
sor must now have enough work as well as sufficient elapsed
time since its last release.

Algorithm 2 Work sharing release interval
1: if Have Surplus Work() and

Nodes Processed % Polling Interval = 0 then
2: Release Work()
3: end if

The polling optimal interval for our work stealing
scheme is a system property that does not vary with respect
to chunk size and workload. However, under work sharing,
the optimal release interval does vary with respect to these
parameters. This is because each of these parameters con-
trols different aspects of the load balancing overhead. Un-
der work stealing the frequency with which working proces-
sors must perform load balancing (i.e. overhead) operations
depends only on the frequency with which steal requests
are generated. The frequency with which these requests are
generated is influenced only by the workload and the load
balance achieved using the chosen chunk size. Therefore,
the polling interval does not directly affect the total volume
of load balancing operations. Instead, the polling interval
attempts to achieve better performance by trading latency
in servicing load balancing requests for reduced overhead
of checking for the these requests.

In contrast to this, the work sharing release interval at-
tempts to directly inhibit the frequency with which working
processors perform load balancing operations by allowing
no more than one release per period. Thus, the overhead
of our work sharing scheme is not only related to how fre-
quently a processor generates surplus work, but also to how
often it is permitted to release such work.

4 Experimental Evaluation

4.1 Experimental Framework

Our experiments were conducted on the Dell blade clus-
ter at UNC. This system is configured with 3.6 GHz P4
Xeon nodes, each with 4GB of memory; the interconnection
network is Infiniband; and the infiniband-optimized MVA-
PICH MPI environment [15] was used to run our experi-
ments.

Our experimental data was collected for two unbalanced
trees, each with approximately 4 million nodes. T1 corre-
sponds to a geometric tree with a depth limit of 10 and a
fixed branching factor of 4. T3 corresponds to a binomial
tree with 2000 initial children, a branching factor of 8 and
a branching probability of 0.124875. A significant differ-
ence between T1 and T3 is that T3 maintains a much larger
fringe during the search, allowing it to be balanced using a
larger chunk size.

4.2 Impact of Polling Interval on Stealing

Figure 1 shows the performance of our work stealing
implementation over a range of polling intervals, for a 32-
processor execution. From this figure, we can see that intro-
ducing the polling interval parameter allows us to improve
performance by 40%-50% on these workloads. However,
polling intervals that are too large can result in performance
loss by increasing the steal response latency disproportion-
ately to the polling overhead.

We can also see that the optimal polling interval for the
stealing progress engine is roughly independent of both the
chunk size and the workload. Because of this, on a given
system the polling interval can be fixed and only the chunk
size must be tuned to achieve optimal performance for a
given workload. Based on the data collected here, we have
chosen i = 8 as the polling interval for our test system.

4.3 Impact of Release Interval on Sharing

Figure 2 shows the performance of our work sharing im-
plementation over a range of release intervals, also for a
32-processor execution. From these two graphs, we can see
that tuning the release interval allows us to achieve over 2X
performance improvement on T1, but very little improve-
ment on T3. This is because the performance achievable on
T3 is most dependent on the choice chunk size.

From this figure, we also observe that the optimal re-
lease interval and chunk size both vary with respect to a
given workload and that the optimal chunksize also varies
with respect to the release interval. While the best perfor-
mance for T3 is achieved with the release interval i = 32
and chunk size c = 50, T1’s best performance is achieved

Figure 1. Impact of polling interval on MPI work stealing on Dell Blade cluster using 32 processors

Figure 2. Impact of release interval on MPI work sharing on Dell Blade cluster using 32 processors

for i = 256, c = 5. However, from the data collected we
can see that i = 128 is a reasonable compromise for both
workloads and in order to draw a comparison between our
two load balancing schemes we fix i = 128 for our system.

4.4 Performance Comparison

Figures 3 and 4 show the performance in millions of
nodes per second for the work sharing and work stealing
implementations on trees T1 and T3. We can immediately
see that the overhead of maintaining a shared work queue is
a significant impediment to performance in the work shar-
ing implementation and that it leads to poor scaling and sig-
nificant performance loss with more than 32 processors. In
contrast to this, work stealing is more stable with respect to
chunk size and is able to scale up to 64 processors.

By fixing the release and polling intervals, we are able
to focus on the relationship between chunk size, workload,
and performance. This means that under both dynamic load
balancing schemes and for a given workload, the frequency
of load balancing is inversely proportional to the chunk size.
This is because any work in excess of two chunks is consid-
ered available for load balancing. Thus, very small chunk
sizes lower the cutoff between local and surplus work, cre-

ating more opportunities for load balancing to occur. Like-
wise, very large chunk sizes increase the cutoff between lo-
cal and shareable/stealable work, reducing the number of
chances for performing load balancing. Because of this,
performance is lost for small chunk sizes due to high load
balancing overhead and performance is lost for very large
chunk sizes as the inability to perform load balancing leads
to poor work distribution.

This trend is especially apparent under work sharing
where smaller chunk sizes increase the frequency of release
operations, quickly overwhelming the work manager with
load balancing requests. In comparison, under work steal-
ing load balancing operations only occur in response to a
processor exhausting its local work. Thus, work stealing is
better able to facilitate the fine-grained load balancing re-
quired by T1 while work sharing struggles as communica-
tion with the work manager becomes a bottleneck.

For workloads such as T3 which can tolerate more
coarse-grained load balancing, work sharing is able to
achieve performance rivaling that of work stealing even
though one of its processors does no work. This is because
processors spend much less time idle as the queue manager
is able to satisfy work requests more quickly than can be
achieved under work stealing. However, this performance is

Figure 3. Performance of work sharing vs. chunk size (i = 128)

Figure 4. Performance of work stealing vs. chunk size (i = 8)

only available over a small range of chunk sizes due to the
delicate balance between contention to communicate with
the work manager and achieving an even work distribution.

On tree T3 we can also see that the work sharing imple-
mentation is very sensitive to the message latency. This is
visible at chunk size 50 in Figure 3 where the larger chunk
size has caused the MPI runtime to switch from eager to
rendezvous protocol for work transfers. On this tree, we
can also see that even though it is better suited for work
sharing, we are unable to achieve scalability past 32 proces-
sors as the work manager’s latency grows proportionately
in the number of processors.

4.5 Load Balancing Visualization

Figure 5 shows Paraver [10] traces for 16 threads run-
ning UTS on tree T1 on the Dell Blade cluster. The dark
blue segments of the trace represent time when a thread
is working and the white segments represent time when a
thread is searching for work. Under work stealing, A yel-
low line connects two threads together via a steal operation.
Steal lines have been omitted from the work sharing trace in
order to improve readability. Under work sharing, all load
balancing operations happen with respect to the manager

(processor 16) who performs no work. Therefore, any pro-
cessor’s transition from the idle state (white) to the working
state (blue) must be the result of a work transfer from the
manager to the idle node.

In figure 5(a), we can see that under work stealing ex-
ecution is divided into three stages: initialization, steady-
state, and termination. Steal activity is high as the fringe
expands and collapses in the initialization and termination
stages. However, for over 60% of the runtime the workload
remains well distributed, leading to relatively low steal ac-
tivity. Figure 5(b) shows a similar trace for work sharing
on tree T1. From this trace, we can see that a great deal of
time has been wasted on idle processors. This is because
as each processor releases work to the manager, it releases
its nodes closest to the root. Because the geometric tree is
depth limited, this causes each processor to frequently give
away the nodes that lead to the good load balance achieved
under work stealing.

5 Related Work

Many different schemes have been proposed to dynam-
ically balance the load in parallel tree traversals. A thor-
ough analysis of load balancing strategies for parallel depth-

(a) Work Stealing: p = 16, i = 8, c = 5 (b) Work Sharing: p = 16, i = 128, c = 5

Figure 5. Paraver traces for tree T1

first search can be found in [12] and [13]. Work stealing
strategies in particular have been investigated theoretically
as well as in a number of experimental settings and have
been shown to be optimal for a broad class of problems re-
quiring dynamic load balance [5].

Dynamic Load Balancing under message passing has
been explored in the context of different problems [1] [17]
as well as in a more general context [4] [18]. Many of the
challenges we encountered in the implementation of work
stealing on top of MPI are similar to those encountered by
the implementers of active messages over MPI [7], one-
sided communication over MPI [9], and shared memory
programming over the MPI conduit [6].

6 Conclusions

We have enhanced the UTS benchmark with MPI imple-
mentations that allow us to extend our characterization of
the performance of unbalanced computations to commodity
clusters and distributed memory systems. Taking our UTS
implementation as an example, we have identified several
challenges faced by implementers of irregular parallel al-
gorithms under MPI. In particular, we explored support for
dynamic load balancing and distributed termination detec-
tion using an explicit polling progress engine. We also ex-
plored tolerating out-of-order message receipt and provided
a portable solution to finalizing the MPI runtime system in
the presence of asynchronous messages.

By introducing additional parameters to explicitly man-
age communication overhead, we observed a speedup of
up to 2X in parallel performance. We also observed that,
while work sharing may achieve better performance on cer-
tain workloads, work stealing achieves comparable, if not
better, performance and scalability across a wider array of
chunk sizes and workloads.

References

[1] R. Batoukov and T. Srevik. A generic parallel branch and
bound environment on a network of workstations, 1999.

[2] P. Berenbrink, T. Friedetzky, and L. Goldberg. The natural
work-stealing algorithm is stable. In 42nd IEEE Symposium
on Foundations of Computer Science, pages 178–187, 2001.

[3] K. Berlin, J. Huan, M. Jacob, G. Kochhar, J. Prins, W. Pugh,
P. Sadayappan, J. Spacco, and C.-W. Tseng. Evaluating
the impact of programming language features on the per-
formance of parallel applications on cluster architectures.
In L. Rauchwerger, editor, LCPC, volume 2958 of Lecture
Notes Comp. Sci., pages 194–208, 2003.

[4] M. Bhandarkar, L. Kale, E. de Sturler, and J. Hoeflinger.
Adaptive load balancing for MPI programs. In ICCS ’01.

[5] R. Blumofe and C. Leiserson. Scheduling multithreaded
computations by work stealing. In Proc. 35th Ann. Symp.
Found. Comp. Sci., pages 356–368, Nov. 1994.

[6] D. Bonachea and J. C. Duell. Problems with using MPI 1.1
and 2.0 as compilation targets. In SHPSEC ’03.

[7] Dan Bonachea. AMMPI: Active Messages over MPI, 2006.
[8] E. W. Dijkstra and C.S.Scholten. Termination detection for

diffusing computations. Inf. Proc. Letters, 11(1):1–4, 1980.
[9] J. Dobbelaere and N. Chrisochoides. One-sided communi-

cation over MPI-1.
[10] European Center for Parallelism. PARAVER, 2006.
[11] M. P. I. Forum. MPI: A message-passing interface standard.

Technical Report UT-CS-94-230, 1994.
[12] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable load

balancing techniques for parallel computers. J. Par. Dist.
Comp., 22(1):60–79, 1994.

[13] V. Kumar and V. N. Rao. Parallel depth first search. part ii.
analysis. Int’l J. Par. Prog., 16(6):501–519, 1987.

[14] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In KDD ’05.

[15] J. Liu, J. Wu, S. Kini, P. Wyckoff, and D. Panda. High per-
formance RDMA-Based MPI implementation over Infini-
Band, 2003.

[16] S. Olivier, J. Huan, J. L. J. Prins, J. Dinan, P. Sadayappan,
and C.-W. Tseng. UTS: An unbalanced tree search bench-
mark. In LCPC, Nov. 2006.

[17] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Effi-
cient load balancing for wide-area divide-and-conquer ap-
plications. In PPoPP’01.

[18] G. Weerasinghe. Asynchronous Communication in MPI.
Master’s thesis, University of Connecticut, Connecticut,
USA, 1997.

