
FEMS: An Adaptive Finite Element Solver∗

Alberto Bertoldo

University of Padova
Dept. of Information Engineering

Via Gradenigo 6/B, I-35131, Padova, Italy
cyberto@dei.unipd.it

Abstract

In this paper we investigate how to obtain high-level

adaptivity on complex scientific applications such as Finite

Element (FE) simulators by building an adaptive version

of their computational kernel, which consists of a sparse

linear system solver. We present the software architecture

of FEMS, a parallel multifrontal solver for FE applications

whose main feature is an install-time training phase where

adaptation to the computing platform takes place. FEMS

relies on a simple model-driven mesh partitioning strategy,

which makes it possible to perform efficient static load bal-

ancing on both homogeneous and heterogeneous machines.

1 Introduction

Most of the time and expertise spent in developing to-

day’s scientific applications is devoted to address optimiza-

tion and portability issues. Nevertheless, most of the ap-

plications are able to exploit only a small fraction of the

available computing power, since a deeper knowledge of

the target architecture would be required to get higher per-

formance. The concept of adaptive software has become

more and more popular as the complexity of computing ar-

chitectures increased, making hand-tuned codes not a viable

solution any more. Moreover, the great development of grid

infrastructures in the last few years has been increasing the

demand of performance portability and parallel efficiency,

which in turn are the main goals of adaptivity. Various adap-

∗This work was partially carried out under the HPC-EUROPA project

(RII3-CT-2003-506079), with the support of the European Community -

Research Infrastructure Action under the FP6 “Structuring the European

Research Area” Programme. Further support came from the European

Union under the FP6-IST/IP Project AEOLUS.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

tive techniques have been recently proposed for the compu-

tation of the Discrete Fourier Transform [12, 17] and the

solution of basic linear algebra problems [18], which also

include some performance modeling [19].

Finite Element (FE) applications are typically used to

solve systems of partial differential equations (PDEs) that

stem from a mathematical model of some physical phenom-

ena of interest [20]. From a computational point of view,

solving an FE problem involves the solution of large sparse

linear systems whose sparsity pattern depends on the under-

lying mesh topology. Since the physical phenomena to be

simulated may be non-linear and evolving through time, a

given problem may require the solution of many linear sys-

tems with the same sparsity pattern but different numerical

values. At each iteration, the sparse linear system represent-

ing the computational problem can be solved through iter-

ative or direct methods. Direct methods generally produce

more accurate solutions than iterative ones, and are gener-

ally more stable [11]. On the other hand, they are difficult

to parallelize because of the strong data dependencies, and

are often memory intensive. In direct methods based upon

LU decomposition, the coefficient matrix A ∈ IRN×N is

first decomposed as A = LU in O(N3) work, where L is

a lower-triangular matrix with unitary diagonal and U is an

upper-triangular matrix. After such decomposition, solving

the initial system reduces to the easier problem of solving

two triangular systems Ly = b and Ux = y, each taking

O(N2) work.

The solution strategy studied in this paper is based upon

a direct technique called multifrontal method [16] and ap-

plies to unsymmetric FE problems where static pivoting is

enough to guarantee numerical stability. This latter con-

straint is motivated by the fact that numerical pivoting can

dramatically reduce the effectiveness of extracting and us-

ing structural information to optimize the numerical compu-

tation. The multifrontal method makes it possible to turn the

problem of an LU decomposition of a huge sparse matrix

A into a sequence of partial LU decompositions of smaller

dense matrices. The method interleaves phases of assembly

of larger and larger portions of the FE mesh with elimina-

tion phases, where a partial LU decomposition is executed

on a subset of rows and columns that will never be further

updated by future assembly phases.

The assembly/elimination process can be represented by

an Assembly Tree (AT) that is a full, but generally not com-

plete, binary tree, whose leaves correspond to elements,

internal nodes to mesh regions, and the root to the whole

mesh. Therefore, the AT represents a hierarchical partition

of the FE mesh into nested regions. In our parallel imple-

mentation of the multifrontal method, the computation re-

lated to the AT is distributed among the computing proces-

sors. We can find a set of disjoint subtrees that covers all

the leaves of the AT and associate each of these subtrees

to a single distinct processor. After an initial data distribu-

tion, computation on these subtrees can proceed in parallel

without any communication involved. We call each of these

subtrees a Private Assembly Tree (PAT). The uncovered part

of the AT, whose leaves have PAT roots as their children, is

called Cooperative Assembly Tree (CAT) since it involves

explicit communication between processors.

The global matrix Ai to be partially decomposed at the

assembly/elimination step i and the local (sub)matrix A
p
i

assigned to a processor p can be arranged into the following

block form:

Ai =

[

Si Ri

Ci Ni

]

A
p
i =

[

S
p
i R

p
i

C
p
i N

p
i

]

(1)

where S
p
i and R

p
i are obtained as a row partition of Si and

Ri. Similarly, C
p
i and N

p
i are obtained as a row partition

of Ci and Ni. Then, the elimination algorithm consists of

computing the following four steps:

1. LiUi ← Si [complete LU decomposition of Si]

2. Ūi ← (Li)
−1Ri [lower-triangular system solution

with multiple right-hand sides]

3. L̄
p
i ← C

p
i (Ui)

−1 [upper-triangular system solution

with multiple right-hand sides]

4. Ā
p
i ← N

p
i − L̄

p
i Ūi [Schür complement w.r.t. Si]

where the partial factors Li, L̄
p
i , Ui, and Ū

p
i can be stored

elsewhere in view of the final forward and backward sub-

stitution activities needed to obtain the final solution. The

local Schür complements Ā
p
i will contribute to the multi-

frontal step related to the parent node. In the step related to

the root, only the block Si is non-zero and the elimination

algorithm only consists of Step 1. In order to respect data

dependencies, specific parallel algorithms for the first two

steps are required, which can consider different communi-

cation patterns and data replication schemes. A detailed de-

scription of our approach to the parallel multifrontal method

can be found in [4, 6].

Table 1. Features of computing platforms
used for testing. MareNostrum (MN) and Kadesh

are sited at BSC (Spain), CLX at Cineca (Italy),
and Opter1 at the University of Padova (Italy).

Computing platforms

Features MN Kadesh CLX Opter1

Vendor IBM IBM IBM Intel AMD

Proc. PPC970 Power3 Power4 Xeon P4 Opteron

Clock 2.2 GHz 375 MHz 1.0 GHz 3.06 GHz 2.2 GHz

L1 size 32 KB 64 KB 32 KB 8 KB 64 KB

L2 size 1 MB 8 MB 1.5 MB 512 KB 1 MB

L3 size – – 32 MB – –

Mem. 4 GB 4 GB 4 GB 2 GB 8 GB

SMP

size

2 16 4 2 2

N.

proc.

10240 128 36 768 2

Network Myrinet IBM SP Switch2 Myrinet –

BLAS ESSL ESSL MKL ATLAS

In this paper we present the software architecture of

an adaptive tool called FEMS (Finite Element Multifrontal

Solver) to solve sparse linear systems coming from the so-

lution of FE problems on both homogeneous and heteroge-

neous clusters of SMPs, which cover almost 80% of the cur-

rent parallel architectures in the Top500 list [9]. Some of the

sequential and parallel machines used for testing the pack-

age are summarized in Table 1. Our main goal is to provide

FE application developers with a parallel library that auto-

matically adapts to the target computing architecture and to

the input data. The first type of adaptation is performed

during the installation of the library by means of a training

phase, whereas the second type of adaptation is performed

at execution time during a symbolic analysis phase aimed at

speeding up the subsequent numerical computation. While

the first adaptation is done only once for a given comput-

ing architecture, the second one must be done whenever the

user specifies a new FE problem to be solved. Nevertheless,

the computing cost associated to such adaptation is usually

affordable, since FE applications generally need to obtain

the numerical solution of many linear systems sharing the

same structure.

The rest of the paper is organized as follows. In Sec-

tion 2 we propose an overview of the software architec-

ture of FEMS and a brief description of its main compo-

nents. Section 3 presents a more detailed description of the

mesh partitioner, which is the main component of the static

load-balancing strategy we devised. Finally, in Section 4

we draw some conclusions on the work done and offer an

overview of future research in this area.

C
o

m
p

u
ta

tio
n

a
l

m
o

d
e

l

solver

solver

Numerical

FEMS

Kernel model

run time install time

Adapted

model

L
in

e
a

r s
y
s
te

m
 s

o
lv

e
r

Random
data set

Trainer

Kernel

selector

k
e

rn
e

ls

C
u

s
to

m
M

a
c
h

in
e

c
o

n
fig

u
ra

tio
n

computational

Symbolic

Numerical
data

Structural
data

Callback

Figure 1. FEMS software architecture.

2 Software architecture

An overview of the software architecture of FEMS is

given in Figure 1. At installation time, users can specify

some information describing the computing architecture,

which includes a hierarchical description of the parallel ar-

chitecture where the FE application will run, called the Ma-

chine Tree (MT). Each node of the MT corresponds to a

submachine whose processing elements are the leaves of the

subtree rooted at that node, and each edge corresponds to a

communication subnetwork1. Nodes and edges of the MT

come along with a set of parameters describing the capa-

bilities of the corresponding submachine and subnetwork.

In the current version of the library, users can describe the

memory hierarchy of each processing element by specify-

ing the number of memory levels and their sizes. Note

that this description is powerful enough to describe many

parallel computing architectures, including clusters of Chip

Multi Processors (CMPs) that are about to dominate both

the high-end and the low-end computing markets. More-

over, the descriptions of the computing capabilities can be

easily enriched as soon as the employed performance mod-

els become more complex than the simple ones already im-

plemented. For example, Kadesh is a heterogeneous cluster

of SMPs which can be represented by the MT in Figure 2.

The machine has 8 nodes (S0 to S7) with 16 IBM Power3

processors each, sharing the same network N with another

set of 9 nodes (S8 to S16) each featuring 4 IBM Power4

processors.

After providing such a description of the computing ar-

chitecture, users can execute the kernel selector, whose task

is to benchmark various built-in implementations of sequen-

tial and parallel algorithms for the LU decomposition of

1We assume that the edges connecting siblings to their common father

are of the same type, i.e. the components of a submachine share the same

communication network.

dense matrices, as well as user-defined routines, to pick up

the best performing one. This tool also finds which are the

implementation parameters, such as block sizes, that better

adapt the computational kernels to cache and network fea-

tures. This testing process is performed once for each target

computing machine at installation time, and it usually takes

up to few minutes, depending on the hardware speed and

memory size. The benchmark results form a kernel model

used by the solver to select the best performing kernel for

each elimination step, in a way similar to what ATLAS and

FFTW do [18, 12]. The purpose of the trainer is to monitor

the execution of the solver running on suitable training data

sets. The collected data is used to adapt both sequential and

parallel computational models that describe the execution

time of the solver running on the target machines, and that

will be used at run time to perform static load balancing.

The trainer is usually executed once at installation time, but

it can also used at run time to perform a finer tuning for

sufficiently long running FE applications.

At run time, the symbolic solver uses the structural

data defining the given FE problem, coupled with the

architecture-dependent information obtained at installation

time, to compute an efficient mesh partitioning for load bal-

ancing purposes, and to optimize communication patterns.

The numerical computation is then simulated on symbolic

data to extract information used to speed up the next nu-

merical iterations, as described in [4, 5]. This is done once

for each FE problem and its execution time is generally less

than the time required for one numerical iteration. On the

other hand, the numerical solver is called as many times as

required by the FE application. At each iteration of the solu-

tion process, the FE application provides the solver with the

required input data through a user-defined callback func-

tion which returns a partial linear system for each required

mesh element. Since each processor gets only the numeri-

cal data it needs during the solution process, the input does

not need to be precomputed, thus reducing the total mem-

ory requirements, and avoiding costly data distribution and

computational bottlenecks. The main components of this

software architecture are described with greater detail in the

following sections. For a deeper insight into the devised al-

gorithms and experimental results, please refer to [4].

2.1 Kernel selector

An LU decomposition [14] can be visualized as a three

nested-loop algorithm on i, j, and k whose inner basic op-

eration is the following update:

aij ← aij −
aik · akj

akk

By changing the loop order, six different algorithms may be

obtained, which still maintain the same computational com-

M

S8S7

P131P128P127P112

N7 N8

N

S0

P15P0

N0

S16

P163P160

N16

Figure 2. A simple Machine Tree.

plexity, but change the memory access pattern. When exe-

cuted on computing architectures with a deep hierarchical

memory, these implementations may have different perfor-

mance [8]. Out of the six versions obtained by permuting

the loop order, we focus on those that are column-oriented,

since our solver is written in Fortran. We identify these

versions through the respective loop order: kji, jki, and

jik.

We implemented various versions of these algorithms

that perform LU decomposition of dense square matrices

without numerical pivoting. The first implementation does

not make use of any optimized library routine such as the

BLAS [10]. The computation performed by these scalar

versions of the LU decomposition algorithm can be made

into vector computations, thus making it possible to em-

ploy vector routines such as BLAS Level 2. The next step

is to group together the vector computations into blocks to

exploit BLAS Level 3 routines. Doing so, the outer loop be-

comes a block loop for a given block size. At each iteration

of such loop, we have to solve the (constant size) LU de-

composition of the diagonal block. All the previous scalar

and vector algorithms can be used to solve each subprob-

lem, and also one of the blocked algorithms with a smaller

block size can be employed in a recursive fashion, thus ob-

taining a sort of cache oblivious algorithm [13]. An ap-

proach similar to the one adopted in FFTW [12] could be

also devised, where the leaves of the recursion tree (corre-

sponding to the codelets in the FFTW lingo) are small pieces

of automatically generated straight-line code. Moreover,

users can define custom kernels for the LU decomposition

of dense matrices without numerical pivoting, by provid-

ing the source code at installation time. These kernels will

be compiled and then included in the benchmark process

as well as the built-in kernels provided by the FEMS pack-

age. This makes it possible to include routines from other li-

braries, such as those provided by LAPACK, whenever they

become available on the computing platform, by just writ-

ing the required wrappers2.

We have devised specific parallel benchmarks to inves-

2Note that LAPACK only features routines for LU decomposition with

numerical pivoting, which is not supported by FEMS. LAPACK LU without

pivoting essentially corresponds to our block kji implementation.

Table 2. Kernel model for some tested archi-
tectures. The tested kernels are the three
loop variants for the (s)calar, (v)ector, (b)lock,
and (r)ecursive algorithms. Values in brack-
ets are block sizes.

Computing platforms

Level Mare Kadesh CLX Opter1

Nostrum (Power4)

Base jki-v jki-v kji-v jik-v

L1 jki-v kji-b (20) kji-v kji-b (10)

L2 jki-v kji-b (60) kji-b (30) kji-b (50)

L3 – kji-r (290) – –

> L3 jki-b (62) kji-b (60) kji-b (30) kji-r (300)

tigate the performance of such implementations. For each

memory level of the current processor, the kernel selector

benchmarks all registered kernels solving randomly gener-

ated problems that fit in that level. If the best performing

kernel is a block algorithm, it also searches for the best

block size. The performance is evaluated by measuring

the running time by means of high-precision cycle coun-

ters, like the ones used in FFTW. If such counters are not

accessible, standard timing routines are used, which how-

ever guarantee a much lower accuracy. At the end of this

testing process, the identifiers of the best performing ker-

nels (along with their implementation parameters) for each

memory level of each processing element constitute the ker-

nel model. The data computed by the kernel selector run-

ning on some of the tested computing platforms is illus-

trated in Table 2. Block algorithms call the best kernel for

the L1 level, whereas recursive algorithms call the best ker-

nel for the previous smaller level in a recursive fashion. We

also find the best base kernel (among scalar and vector ker-

nels) which is used in the block kernels for L1. Note that

vector kernels using BLAS Level 2 perform better than the

corresponding scalar ones, probably due to a better usage of

the processor registers, whereas block and recursive kernels

generally perform better in the highest levels of the memory

hierarchy [4]. As expected, the chosen block size is related

to the memory level size.

2.2 Trainer

The trainer first monitors the solver to collect some pa-

rameters describing each step of the solution process and

the corresponding computing time. Then it uses this infor-

mation to adapt a given computational model to the target

architecture. In turn, the model is at the core of the load-

balancing strategy. Users can choose to train the solver on

randomly-generated FE problems or to provide their own

data sets. In the first case, users can specify the problem

size and the trainer automatically generates a suitable FE

mesh and random partial linear systems corresponding to its

elements. Then, it simulates a parallel FE application that

calls FEMS to solve the related computational problem. In

the second case, the solver can be trained through a real FE

application, thus increasing the model accuracy by taking

into account also the computing time of the callback func-

tion, which is heavily application-dependent. The training

process can be executed in parallel on the whole comput-

ing machine or on a smaller submachine: the training on

PAT nodes adapts a sequential computational model for the

related processor type, whereas the training on CAT nodes

adapts a parallel model. This also makes it possible to use

FEMS in heterogeneous parallel architectures.

Let m be the number of assembly/elimination steps in-

volved in the solution of the training FE problem, which in

turn depends on the number of mesh elements. Let p(i)
be the vector of s ≥ 1 parameters that characterize step i,

which have been fixed since they depend on the parallel

multifrontal algorithm. The values of such parameters can

be set up in the symbolic solver since they depend only on

structural data. During the numerical solution of the train-

ing problem, the solver measures the execution time t(i) of

each assembly/elimination step i by means of the same cy-

cle counters used by the kernel selector. The collected data

is then given back to the trainer to be processed. Finally,

let f(p) ∈ IRn, n ≥ 1 be the functions that make up the

computational model of the solver. Such set of functions is

provided by FEMS, but can be easily modified by the user

though a registration mechanism similar to the one adopted

to manage the LU kernels.

We want to compute a set of architecture-dependent

model parameters m ∈ IRn such that
∑n

j=1
mjfj(p(i))

gives a good estimation of t(i). Since m ≫ n this is a

least-square problem. The trainer builds the matrix M =
[fj(p(i))]ij ∈ IRm×n whose rows correspond to decompo-

sition steps and whose columns are obtained evaluating the

model functions w.r.t. the step parameters. Let t ∈ IRm be

the vector of the computing times of the m steps. The model

parameters are found by solving the least-square problem

min
m∈IRn

‖Mm− t‖ (2)

by means of SVD or equivalent methods [14].

In the current version of FEMS, where the first two steps

of the elimination algorithm at node i are replicated on the

whole blocks Si and Ri [6], we included a very simple uni-

fied computational model given by the following functions:

f1(p) = p3

1
[Elimination Step 1]

f2(p) = p2

1
p2 + p2

1
p3 [Elimination Step 2 and 3]

f3(p) = p1p2p3 [Elimination Step 4]

f4(p) = (p1 + p2)(p1 + p3) [Assembly]

f5(p) = p4 [Overhead]

Table 3. Sequential model parameters com-
puted by the trainer for MareNostrum.

Reg. type Elem. Comp.

Mem. lev. L1 L1 L2

m1 0.24E-08 0.46E-10 0.47E-09

m2 0.75E-08 0.14E-09 0.14E-09

m3 0.41E-08 0.63E-09 0.43E-09

m4 0.39E-09 0.43E-07 0.85E-07

m5 0.64E-04 0.24E-04 -0.81E-03

where the step parameters are related to the size of the ma-

trix blocks shown in (1), i.e. p1(i) = rows(Si), p2(i) =
rows(Cp

i), p3(i) = columns(Ri), and p4(i) is the number

of processors computing node i. During the training pro-

cess, the symbolic solver collects the values of such param-

eters, which depend only on how the mesh is recursively

partitioned, and the numerical solver collects the running

time t(i). Note that these functions also give a sequen-

tial model for the assembly/elimination steps, since on PAT

nodes p2(i) = p3(i) and p4(i) = 1.

The trainer evaluates such functions on the values of the

parameters p collected by the solver and builds the ma-

trix M. Data points, corresponding to the rows of M, are

divided in three groups: one for the assembly/elimination

steps of the mesh elements (PAT leaves), one for compos-

ite regions at PAT internal nodes, and one for composite

regions at CAT nodes. Moreover, in order to reduce the fit-

ting error, data points are filtered depending on the levels

of the memory hierarchy specified by the user: for each

memory level, we solve a different least-square problem

like (2) obtained by considering only those decomposition

steps whose matrix blocks fit in that level, but not in the pre-

vious smaller one (if any). The solution of each least-square

problem gives the values of the model parameters m, which

will be used to estimate the computing time as described in

Section 3. Table 3 shows the model parameters found by the

trainer for one of the tested machines when using a random

data set.

In order to appreciate the effectiveness of the adapted

computational models, we report in Table 4 the average fit-

ting and validation errors for some of the tested computing

platforms, computed as:

Error =
1

m

m
∑

i=1

|
∑n

j=1
mjfj(p(i))− t(i)|

t(i)
(3)

We have validated the model using a different data set with

respect to the one used to fit the training data. Note that both

types of error are below 10% for most of the adapted mod-

els, and are generally higher on machines running Linux

due to the noise introduced by the operating system. The

fitting error can be used to decide whether repeating the

training phase or adjusting each memory level threshold.

Table 4. Fitting and validation errors for some
adapted computational models.

Platform Region Memory Fitting Validation

Type level error error

MareNostrum Elem. L1 16% 25%

Comp. L1 4.0% 5.3%

Linux L2 1.6% 4.3%

Kadesh Elem. L1 2.7% 2.9%

(Power3) Comp. L1 3.1% 4.2%

AIX L2 2.1% 1.0%

CLX Elem. L1 2.6% 3.8%

Comp. L1 3.9% 7.6%

Linux L2 1.7% 3.9%

Opter1 Elem. L1 4.3% 11.0%

Comp. L1 7.7% 7.7%

Linux L2 0.9% 1.9%

2.3 Symbolic solver

The symbolic solver executes the symbolic analysis of

the FE problem, whose task is to prepare optimized data

structures supporting numerical system solution [5, 6]. Out

of the many parts composing the symbolic solver, we de-

scribe here only those which follow an adaptive approach.

The mesh partitioner is also executed in the symbolic anal-

ysis phase, but it will be described in grater detail in Sec-

tion 3.

MT-to-AT mapping. Recall from Section 1 that the CAT

is a binary tree with NP

2
leaves, where each node is asso-

ciated with a subset of the NP computing processors. The

topology of the CAT determines how the computing pro-

cessors interact to carry out the assembly/elimination steps

related to its nodes, so it is crucial to exploit submachine

locality, in order to reduce communication overheads. This

goal can be achieved by embedding the CAT into the MT

describing the parallel architecture.

The FE application may be executed on a submachine of

the target architecture. On clusters of SMPs, users generally

choose the number of processors they want to employ for

the execution. Then the solver must first determine the run-

time Sub-Machine Tree (SMT) as the minimal connected

subgraph that includes such processing elements. Let i be

an internal SMT node and Ci be the set of its children,

which are interconnected by the network Ni. Since the

SMT is generally not binary, the subgraph induced by such

nodes has to be mapped into a binary tree whose root corre-

sponds to i and leaves to the nodes in Ci. This binary tree

becomes part of the final CAT, whose nodes will be com-

puted by processing elements that communicate through the

network Ni. By applying this substitution process on all the

internal SMT nodes, we completely define the topology of

the CAT. There are many ways of turning SMT nodes into

CAT subgraphs. One simple way is to create a balanced bi-

nary tree by equally dividing the submachines between the

children, whereas more complex solutions should also try

to balance the number of SMT leaves.

AT-to-KERNEL mapping. Once the AT and the related

mesh partitioning have been computed (see Section 3), the

symbolic solver associates each AT node to the best LU de-

composition kernel for that elimination step, by using the

kernel model found by the kernel selector (see Section 2.1).

Each computing processor loads the kernel model cor-

responding to its type, which gives the best kernel imple-

mentation for each of its memory levels. Note that the size

of the matrix blocks involved in the elimination phase (see

Section 1) depends only on how the mesh has been recur-

sively partitioned. Therefore, for each node of its PAT and

for the CAT nodes it contributes to process, each processor

easily estimates the smallest memory level that contains the

matrix blocks involved in that elimination step by using a

simple memory model based on a direct mapping mecha-

nism, which in turn gives the best kernel along with the im-

plementation parameters. At run time, the numerical solver

automatically calls such routines on the required numerical

data with negligible overhead.

3 Parallel model-driven mesh partitioner

The computational model adapted by the trainer is used

to obtain an efficient static load balancing strategy. By static

we mean that work distribution and communication patterns

do not depend on numerical data and can be determined in

the symbolic analysis phase based only on structural infor-

mation. Indeed, using implicit minimum degree as pivoting

method [7] implies that the step parameters p depend only

on how the FE mesh is recursively partitioned into nested

regions. Therefore, we look for the partition that produces

the best load balancing among the processors, thus reducing

the time wasted on synchronization.

We developed a simple partitioner that works on rect-

angular meshes made of rectangular elements and recur-

sively partitions it in rectangular regions3. Each region is

divided into two parts along the longest dimension to maxi-

mize the aspect ratio in terms of number of elements, since

the amount of work to perform the elimination phase is re-

lated to the size of the region boundary. For the sake of

simplicity, regions in charge of a single processor are split

in the middle of the longest dimension and the model is used

only to estimate the related computing time. For regions in

charge of more than one processor, the bisection point guar-

anteeing the best balancing is obtained via a local search

3A similar model-driven approach could be adopted to partition general

FE meshes and could be extended to three-dimensional meshes.

32 33

34 35

42 43

44 45

36

37

38

39

40 41

46

47

48 49

50

51

19

21

23

27

29

31

8

9

10

11

12 13 14 15

Figure 3. Model-driven partitions of a rectan-
gular mesh obtained in homogeneous (left)
and heterogeneous (right) environments.

around the point in the middle of the longest dimension.

The objective is to minimize the difference between the es-

timated computing time related to the two subregions that

are recursively obtained in the same fashion. The result-

ing partitioning algorithm is exponential in the mesh size

but fortunately we can employ simple heuristics to make it

affordable [6].

During the symbolic analysis phase, each processor

loads the computational models previously adapted to its

type by the trainer, and uses them to estimate the com-

puting time of each multifrontal step it will have to com-

pute. Let us first consider the partitioning step related to

an internal PAT node i. The values of the step parameters

p1(i) = order(Si) and p2(i) = p3(i) = order(Ni) depend

only on the shape of the related mesh region and on how it

is partitioned into two subregions. Given a bisection of the

region, we estimate the computing time as

t̂(i) =
5

∑

j=1

mjfj(p(i)) (4)

where the right adapted model (determined by m) is cho-

sen by finding the smallest memory level that contains the

required matrix blocks. The estimated computing time of

the subtree rooted at i is obtained by adding t̂(i) to the es-

timated time needed to compute the left and the right sub-

trees, which are obtained in the same way in a recursive

fashion. Let us now consider the partitioning step related to

a CAT node i. The partitioner searches for a partition of the

related mesh region that minimizes the estimated comput-

ing time of the subtree rooted at i, which is obtained adding

t̂(i) to the maximum between the estimated time needed to

compute the left and the right subtrees.

Starting from the AT root, each processor cooperates

with the other processors to find the best partitions on CAT

nodes. Note that the CAT topology is determined by the

MT-to-AT mapping before partitioning the mesh, whereas

each processor determines the topology of its own PAT

while partitioning the mesh. This parallel approach to mesh

partitioning makes it possible to embrace the case of hetero-

CATPAT

Load imbalancing

Figure 4. Trace of one iteration using both
the adapted (top) and non-adapted (bottom)
computational models to partition the mesh.

geneous architectures and considerably reduces the search

time to find an optimal partition with respect to balancing.

The results of such model-driven mesh partitioning can

be appreciated by looking at Figure 3, which shows the

mesh regions associated to the PAT root of each processor

when solving a real FE problem. The partition on the left

refers to 26 (homogeneous) processors in MareNostrum.

Note that when trying to balance the work done by each

processor, the regions close to the mesh border are gener-

ally wider because they involve less computation, even if in

this case the adapted computational model is the same for

every processor. The difference can be more relevant when

increasing the mesh size and the number of processors. The

partition on the right has been obtained by using 4 Power3

processors of node S0 and 4 Power4 processors of node S8

in Kadesh. Regions from 12 to 15 will be computed by

slower processors, so that they are quite smaller than re-

gions from 8 to 11. Moreover, the same effect on the border

regions can be observed within homogeneous groups.

Figure 4 shows a portion of parallel traces obtained with

PARAVER [1] on 16 Power3 processors in Kadesh. They

represent one iteration of the numerical decomposition pro-

cess related to random FE problems, using the adapted and

the non-adapted computational models. The execution time

is in abscissa with the same scale for both traces, whereas

the computing processes are in ordinate. Light gray re-

gions correspond to computation, dark gray regions to wait-

ing time due to synchronization, and the black lines are the

MPI communications. The two dashed rectangles in the top

trace show part of the computation in each PAT and in the

CAT, with the model-driven partitioner using the adapted

computational model found by the trainer. Note that the

computation proceeds synchronously and the waiting time

is very low without involving any additional data redistribu-

tion. On the other hand, when the model-driven partitioner

does not use the model parameters to estimate the comput-

ing time, load imbalance causes longer waiting times, as

shown in the bottom trace; in this case, the last two steps

are still balanced due to mesh symmetries. Note that, when

using a general graph-partitioning tool like METIS [15], the

balancing worsens even more, as already proved in [6]. The

use of adapted computational models becomes crucial when

increasing the number of processors and in heterogeneous

environments.

4 Conclusions and future work

We investigated how to provide developers of FE appli-

cations with an efficient parallel direct solver which can

be automatically tuned to the target computing architec-

ture and to the input problems. We specifically address

those FE applications that do not require numerical pivot-

ing to get the desired numerical stability and accuracy and

that need to perform many iterations of the solution pro-

cess for each given FE problem. Our target architectures

are high-performance clusters of homogeneous or hetero-

geneous SMP nodes. We developed a new software archi-

tecture called FEMS where adaptation is performed both at

installation and run time. Using a simple description of the

computing platform provided by the user, we automatically

select the best elimination kernels and adapt a model of the

computation by means of a training phase, both performed

at installation time. Such model is used at run time in a

preprocessing phase to achieve good static load balancing

that reduces synchronization and communication volume

involved in the numerical solution process.

The work presented in this paper lays the foundations of

future research. Even if the computational model is very ac-

curate in estimating sequential computing time, it actually

does not take into account the communication cost in the

cooperative phase of the algorithm. A better model should

embody network bandwidth/latency parameters that reflect

how the processors are grouped together into SMP nodes

to improve load balancing, especially when employing par-

allel kernels described in [4]. Finally, an extensive testing

activity is required to compare our adaptive approach with

other solvers based on dynamic scheduling [2, 3], which

generally require more communication. Scalability and

memory requirements need also be explored when using

FE applications on problems featuring linear systems with

a number of unknowns ranging from 105 to 107.

References

[1] Details at http://www.cepba.upc.es/paraver.
[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent.

A fully asynchronous multifrontal solver using distributed

dynamic scheduling. SIAM J. of Matrix Anal. and Appl.,

23(1):15–41, 2001.
[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and

S. Pralet. Hybrid scheduling for the parallel solution of lin-

ear systems. Technical Report RR-5404, INRIA, 2004.
[4] A. Bertoldo. Adaptive Finite Element Applications. PhD

thesis, University of Padova, Italy, 2006.
[5] A. Bertoldo, M. Bianco, and G. Pucci. A fast multifrontal

solver for non-linear multi-physics problems. In Proc. of

ICCS, pages 614–617, 2004.
[6] A. Bertoldo, M. Bianco, and G. Pucci. A static parallel mul-

tifrontal solver for finite element meshes. In Proc. of ISPA,

pages 734–746, 2006.
[7] M. Bianco, G. Bilardi, F. Pesavento, G. Pucci, and B. A.

Schrefler. An accurate and efficient frontal solver for fully-

coupled hygro-thermo-mechanical problems. In Proc. of

ICCS, pages 733–742, 2002.
[8] J. Dongarra, F. Gustavson, and A. Karp. Implementing

linear algebra algorithms for dense matrices on a vector

pipeline machine. SIAM Review, 26(1):91–112, 1984.
[9] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. High-

performance computing: Clusters, constellations, mpps, and

future directions. Computing in Science and Engineering.,

7(2):51–59, 2005.
[10] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff. A set

of level 3 Basic Linear Algebra Subprograms. ACM Trans.

on Math. Soft., 16(1):1–17, Mar. 1990.
[11] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der

Vorst. Numerical Linear Algebra for High Performance

Computers. SIAM, Philadelphia, PA, USA, 1998.
[12] M. Frigo and S. G. Johnson. The design and implementation

of FFTW3. Proc. of the IEEE, 93(2):216–231, 2005.
[13] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-

dran. Cache-oblivious algorithms. In Proc. of the 40th

Annual Symposium on Foundations of Computer Science,

pages 285–297, 1999.
[14] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns

Hopkins University Press, third edition, 1996.
[15] G. Karypis and V. Kumar. Multilevel algorithms for multi-

constraint graph partitioning. In Proc. of Supercomputing,

pages 1–13. IEEE Computer Society, 1998.
[16] J. W. H. Liu. The multifrontal method for sparse matrix so-

lution: theory and practice. SIAM Rev., 34(1):82–109, 1992.
[17] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,

M. Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gačić,

Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.

SPIRAL: Code generation for DSP transforms. Proc. of the

IEEE, 93(2):232–275, 2005.
[18] R. C. Whaley and J. Dongarra. Automatically Tuned Linear

Algebra Software. In 9th SIAM Conf. on Parallel Processing

for Scientific Computing, 1999. CD-ROM Proceedings.
[19] K. Yotov, K. Pingali, and P. Stodghill. Think globally, search

locally. In ICS, pages 141–150, 2005.
[20] O. C. Zienkiewicz and R. L. Taylor. The finite element

method. Butterworth-Heinemann, fifth edition, 2000.

