
United-FS: A Logical File System Providing a Single Image of Multiple
Physical File Systems on NFS Server

Huan Chen1,2, Yi Zhao1,2, Jin Xiong1, Jie Ma1, and Ninghui Sun1

1National Research Center For Intelligent
Computing Systems, Institute of Computing
Technology, Chinese Academy of Sciences,

Beijing, 100080, China
{huanchen, zhaoyi, xj, majie,

snh}@ncic.ac.cn

2Graduate School of the Chinese Academy of
Sciences, Beijing, 100039, China

Abstract

NFS is considered to be the bottleneck in cluster

computing environment because of its limited
resources and centralized data management. With the
development of hardware, NFS server has more than
one I/O channel, more storage space and more
powerful CPU. In this paper, we describe the design
and the implementation of a new logical file system
called United-FS∗. It can make storage devices
connected to multiple I/O channels work concurrently
and cooperatively. It can be exported by NFS server to
provide a single file system image to clients by hiding
a variety of native file systems built on different type of
storage devices. This paper also compares the United-
FS with the Software RAID system both from
theoretical analysis and experiments. The results show
that United-FS is much more flexible and its
performance is better than Software RAID in most
cases.

Key：file system, software RAID, I/O channel, NFS,
Workload

1. Introduction

Earlier NFS server has limited hardware resources, so
it becomes the bottleneck when larger amount of

∗ This work is supported by the Innovation Research Project of
Chinese Academy of Sciences under the grant No. KGCX2-SW-116,
Key Technologies for New Generation Clusters

1-4244-0910-1/07/$20.00 ©2007 IEEE.

clients access the server simultaneously in cluster
environment. Parallel file systems try to solve such
problem by aggregating the I/O ability of multiple
servers. Most parallel file systems[2,4,5] do their best
to achieve good scalability and unlimited high
aggregated I/O performance. However, in reality, the
scale of cluster machine for most scientific computing
applications is not so large. In many cases, middle
scale cluster which contains tens to hundreds of nodes
is preferable for applications such as oil employment
computing, auto machine design and simulation, gene
sequence test, etc. Large scale parallel file system is
not suitable for middle and small cluster environment
in that such file system needs more than one server, the
management is complex, and the cost is high. Most
important, as the number of server increases, the
failure rate of the node increases too. The worst case is
the whole file system may not be accessible if one
node goes down.

NFS[1] is still considered to be the best choice in
small and medium sized LANs. It emerged in 1990 and
was designed around a central server model. The
advantages of NFS are that users can access files just
like using local disks and the files can be shared
among users. But for I/O intensive applications, when
more clients are added and files are accessed
concurrently, the server immediately becomes a
performance bottleneck because it is limited by its
resources including CPU, storage and network.

With the development of computer hardware, the
performance of CPU, network and disk increases
greatly, the mainboard of the computer can support
much more component devices and the speed of

system bus connected to different devices also
increases. Because all the I/O channels and the
network channels on the server are extended, the
physical I/O bandwidth can be improved if all the
channels work concurrently. For such hardware system,
how to make good use of multiple channels and
physical file systems to provide high NFS I/O
bandwidth becomes an issue.

To solve this issue, we developed a logical file
system called United-FS. It is a logical file system
because it locates on the top of many physical file
systems. The advantages of United-FS are:

 It can make all I/O channels work concurrently
and cooperatively.

 It can make good use of the native file systems
to manage the different type of storage devices

 It can provide the NFS clients with a single
view of exported file system which manages
multiple native file systems on NFS server.

In this paper, we present the design and
implementation of United-FS, and we compare United-
FS with software RAID both from the characteristic
and performance aspects. The rest of this paper is
organized as follows: Section 2 describes the
architecture of our United-FS system. Section 3
discusses implementation details of our prototype.
Section 4 analyzes the differences between United-FS
and Software RAID techniques. Section 5 shows the
experimental results of the performance comparison
between United-FS and Software RAID.

2. Architecture

2.1. NFS Server Hardware Platform

In order to exploit the maximal performance of each
component, especially to extend the I/O transport
capability, we customize the mainboard of the server to
support multiple I/O channels. There are three HT
PCI-X Tunnels link to the dual core CPU, and each
PCI-X bus has two PCI slots, so there are total twelve
PCI slots. A PCI slot can support a dual channel SCSI
card or a dual port gigabyte network interface card.

Such powerful server platform benefits us a lot. First,
much more disks and network interface cards can be
added to the system because of the extended system
bus. Moreover, the cost of such server is much lower
than multiple low-end servers while the performance is
same.

2.2. United-FS — a Logical File System

As mentioned in the above section, the I/O server’s
hardware has multiple I/O channels which can support
many I/O devices. But how to make good use of
multiple channels and physical file systems to provide
high NFS I/O bandwidth becomes the issue.

To solve this issue we developed a logical file
system—United-FS, which manages the underlying
physical file systems instead of developing a volume
manager which manages the disk storage directly. The
reason we develop the logical file system is that the
complex disk block information can be managed by
the physical file system, and different physical file
system has its own characteristics of managing blocks.
United-FS will decide where the file data should be
stored so all the file system can work concurrently and
cooperatively. By exporting United-FS, NFS clients
can only see a single mount point, so all the physical
file systems on NFS server is transparent to clients

Fig. 1. United-FS Architectures

The architecture of the United-FS system is as
shown in figure 1. On each device, we build a native
file system, and on top of it is a logical file system. It
manages the underlying native file systems and is
exported by the NFS server. We classify the data to be
stored in United-FS into two kinds: metadata and file
data. We store metadata and file data in separate
physical file system. The file system storing metadata
is called Metadata Server File System, while other file
systems storing real file data is called Data Server File
System. The Metadata Server keeps the mapping
information that guides the system to redirect the
read/write requests to the right Data Server to be
processed. By exporting the United-FS, users will see a
single NFS mount point without knowing there are
several file systems in service. Then all the Metadata
Server and Data Server are transparent to NFS clients.

VFS

United-FS

Reiser
FS

EXT3

EXT3

XFS

Metadata Server
File System

Data Server
File Systems

3. Implementation

In this section, we will describe the implementation of
the metadata management and the real file data
placement policies in details.

3.1. Metadata

Metadata contains the information that describes the
location and extensive attributes of the file data.
Metadata is important to the consistency and
performance of the whole file system because before
accessing the data, metadata information should be
gotten first. If there is a mistake in metadata, the whole
file data or even whole file system may not be
accessible because one can not get the correct
information to find where the data is stored. If
accessing metadata is slow, it will affect the whole file
system I/O performance severely for operations
relative to accessing metadata take large scale in
overall operations.

In United-FS, we use a single physical file system
which we called MSFS (Metadata Server File System)
to store the metadata of each file. MSFS manages the
whole directory tree which is identical to the
traditional file system. If it is a file, the file data is
replaced with information about which data server to
store the real file data and the strategies of storing the
data (for example single mode or stripe mode). All the
real file data are stored in Data Server File System.

The stability and reliability of centralized metadata
management can be promised by some mature
technologies. For example, metadata server can be
constructed on top of hardware RAID which provides
high data reliability.

The performance of processing metadata should also
be taken into account. All the metadata about file data
location information is stored in a small file that only
needs dozens of bytes in the MSFS. According to such
characteristics, we chose Reiser file system as our
MSFS. The first reason is that Reiser file system is a
journal file system, so metadata consistency can be
maintained by itself. Second, based on our test,
Reiserfs has a good performance in processing small
files. Third, there is no pre-allocated inode number
limitation in Reiser file system.

3.2. Data Placement Policy

Logical file system can have a global view of all the
underlying physical file systems. The file system that
stores the real file data is called DSFS (Date Server
File System). Then, what file system should be used as

DSFS? Where the data should be stored so as to make
good use of the characteristics of these file systems?

In our system, we implemented two data placement
policies: single policy, and stripe policy. Single policy
means a file is stored in a single DSFS. Stripe policy
means a file is stored in several DSFS in striped mode
as RAID does. Users can choose different policy
according to their workload.

(1) Single policy can be applied to the situation that

many users access file system simultaneously. By
dispatching the requests to different DSFS, the number
of requests belonging to a single DSFS is decreased
which will reduce the random movement of the disk
head. All the file data are stored sequentially in a
unique file system, so it does help to pre-fetch data of a
file according to the pre-fetch algorithms. It is also
good for the data reliability. When increasing the
number of disks, the rate of disk failure will also be
increased. If a DSFS breaks down, it will only affect
the files on that particular file system while files on the
other DSFS are still accessible.

Load balance problem should be paid attention to
for the single policy because this policy will easily
cause most active files to locate in the same DSFS. To
solve this problem we implement two load balance
methods. The first one is to dispatch the new file
creation request on a neighbor DSFS of previous
created file using Round Robin algorithm. The other
method is to dispatch requests according to the user
information of applications. Files belongings to the
same user are placed in the same DSFS. The dispatch
granularity of such case is not a single request but a
batch of requests that relative to the same user.

(2) Stripe policy can be applied to the situation that

the size of the requests is very large. A file is divided
into N sub-files that reside on separate DSFS. Multiple
DSFS then can process the request concurrently so as
to improve a single file throughput.

For United-FS is designed for the NFS environment,
we prefer single storage policy than stripe policy.
Because from the result of our test, we found that the
cost of stripe policy is higher than single policy. When
heavy workload comes, the number of requests
dispatched to the same disk does not reduce, so the
disk head movement decreases the performance greatly.
Another reason is the system kernel mechanism of
writing dirty pages back causes that the concurrency of
accessing a striped file is not as good as software
RAID stripe mode.

4. Analysis Comparison between United-FS
and Software RAID

The United-FS has several advantages over Software
RAID.

First, United-FS interacts with physical file system
interface, so it does not has to manage the location
information of each disk block. All the work of
managing block information is done by physical file
system.

Second, it does not have to care about whether the
device is SCSI device or IDE device or an array of
RAID disks.

Third, United-FS has much more flexibility than
Software RAID. Recently, there are many kinds of
physical file systems and each of them has some
particular characteristics suitable for some particular
environment, so United-FS can take advantages of the
characteristics of the underlying physical file system to
improve the overall IO performance. Also, different
users have different data reliability requirements. For
example, for those who need high data reliability,
United-FS can dispatch the files to the system build on
the hardware RAID devices but Software RAID can
not do this.

The last but not the least, Software RAID is at the
level of device driver, so it can not view the
information about the application request. All the
information it knows is about data block. This limits
the capability of scheduling the request in multi-
application environment, while logical file system can
get all the information about a request including file
inode information, user id, offset and count etc. For
this reason, it is much applicable to implement
application request scheduling mechanism at the
logical file system level. Table 1. shows the
characteristic comparison between United-FS and
Software RAID.

Table 1. Comparison between United-FS and Software
RAID

 United-FS Software RAID

Level file system driver in OS

Storage strategy single、 stripe RAID[0-5]

Granularity file stipe size (64k default)

CPU cost lower high

Scalability good good

Flexibility good no

Reliability good according to RAID level

5. Experimental comparison between
United-FS and Software RAID

5.1. Data Placement Policy

All the experiments are conducted on a special NFS
server running SUSE 10. The server has a dual-core
CPU, 4 GB memory, 8 disks and 4 network cards.
There are 128 commercial clients running SUSE 10 in
our experimental system. The benchmark we choose is
N-user IOzone. Each user writes its own file
sequentially, and the filesize is 6GB.

In this section, we will compare the performance of
United-FS with software RAID0 to show that United-
FS performs better in multiple users system with heavy
workload.

5.2. Disk Scalability

Figure 2 shows the IOzone sequential write
performance comparison between United-FS and LVM
driver configured with different physical file system
when the number of disks increases. And figure 3
shows the read performance result. In this test, we use
single data placement policy for United-FS while we
use stripe mode for LVM. We don’t use stripe data
placement policy in United-FS because the system
overhead is much higher than single data placement
and the performance is not good in multiple users
doing concurrent I/O operations environment.

For sequential write/read operation, XFS file system
performs better than EXT3 file system due to the
different data block organization. As the number of
disks increases, the CPU usage also increases. EXT3
spends much more CPU than XFS, so when there are
more disks, the CPU becomes the bottleneck that
causes the un-scalable performance.

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10 12

disks

b
a
n
d
w
i
d
t
h
(
M
B
/
s
)

UnitedFS－XFS
XFS-LVM

UnitedFS-EXT3
EXT3-LVM

Fig. 2. Write Performance by Number of Disks

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10 12
disks

ba
n
dw

i
dt

h
(M

B
/s

)
UnitedFS－XFS

XFS-LVM
UnitedFS-EXT3

EXT3-LVM

Fig. 3. Read Performance by Number of Disks

The result shows that United-FS performance scales
linearly in the number of disks as LVM does and the
performance is better. The reason is that the United-FS
costs less CPU than LVM which needs CPU for each
block address computation.

5.3. User Scalability

We measure the performance of the 8-disk I/O server
varying the number of local users who concurrently
conduct I/O operations. Figure 4 shows the write
performance when the number of local users increases
and figure 5 shows the read performance result. The
write performance of United-FS is better than LVM
because we distribute the requests to different disks
while for LVM all user requests will be distributed to
each disk. As to the United-FS, the reduced number of
requests on a disk will make the disk head movement
less random. But for read, as shown in figure 5, when
there are 16 processes reading files, the performance of
United-FS is not as good as LVM. The reason is that
read is a synchronous operation and the workload is
not heavy enough. So the parallel disk read of LVM
performs better than United-FS using single data
policy which does not fully exploit the disk parallelism
when the workload is light. As the number of
processes increases, the parallelism of disk access of
United-FS is better.

Figure 6 shows the sequential write performance
when the number of NFS clients increases and figure 7
shows the read result. We start 64 nfsds to process
NFS requests on NFS server. The client number scales
from 8 to 128. The United-FS write performance is
better than LVM due to the writeback mechanism in
Linux kernel which will gather write requests to
increase the sequential write rate. We can see from
figure 7 that the read performance of United-FS is not

good as LVM. The reason is that read is synchronous
operation and 64 nfsds influence the sequential read
effect greatly. In such case, concurrent read access of
LVM performs better.

0

100

200

300

400

500

600

8 16 32 64 128
processes

b
a
n
d
w
i
d
t
h
(
M
B
/
s
)

UnitedFS－XFS

XFS-LVM

UnitedFS-EXT3
EXT3-LVM

Fig. 4. Write Performance by Number of Processes

0

100

200

300

400

500

600

700

8 16 32 64 128
processes

b
a
nd

w
id

t
h
(M

B
/s

)

UnitedFS－XFS

XFS-LVM

UnitedFS-EXT3

EXT3-LVM

Fig. 5. Read Performance by Number of Processes

0

50

100

150

200

250

300

350

400

8 16 32 64 128

clients

b
a
n
d
w
i
d
t
h
(
M
B
/
s
)

UnitedFS－XFS
XFS-LVM
UnitedFS-EXT3
EXT3-LVM

Fig. 6. NFS Write Performance by Number of Clients

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128

clients

b
an

dw
id

t
h(

M
B/

s
)

UnitedFS－XFS
XFS-LVM
UnitedFS-EXT3
EXT3-LVM

Fig. 7. NFS Read Performance by Number of Clients

6. Related Works

A single disk has the limitation in capability and
physical data access speed. To maximize the
bandwidth of local storage, many methods are
exploited to make a collection of disks work in parallel.
The method can be classified into three categories:

One is at the hardware level. The dedicated I/O
server is configured with high-performance hardware
RAID disks and presents to the host only a single disk
for RAID array. In I/O intensive environments,
performance is optimized by striping the large I/O
request into several records distributed to different
drives in the array. This solution works but it is quite
expensive.

Another is at system driver level--software RAID.
The Linux software RAID driver supports currently
RAID levels 0,1,4,5 and linear mode. Such method
occupies host system memory and consumes CPU
cycles. The performance of a software-based array is
directly dependent on server CPU performance and
load. In contrast, hardware RAID occupies less host
system memory, and it is operating system dependent.
Linux software RAID can distribute data across ATA,
SCSI, iSCSI, SAN, network or any other block device
while hardware RAID cannot even span a single card.

The third method is at file system level. The benefit
gained through this method is that it has much more
flexibility. It can implement aggregated I/O bandwidth
regardless of the type of hardware or the underlying
file system. RAIF[10] is a fan-out stackable file system
that implements RAID layout in file system level.
United-FS differs with RAIF in several aspects.
United-FS has a specific metadata file system that
stores the location and relative metadata information.
At this point, United-FS is a linear stackable file
system because the dentry in United-FS maps only one
dentry in metadata server file system. However, in

RAIF, the dentry in RAIF manages multiple dentries in
sub file systems. Thus, our data server file system
layout is different from the layout of the sub file
systems of RAIF. We can construct the data server file
system directory tree layout that matches the
characteristic of the file system best.

7. Conclusions and Future Work

United-FS is designed for a special hardware I/O
Server which has multiple I/O channels allowing
multiple I/O requests to be processed in a parallel
pattern. United-FS is implemented on the top of
several physical file systems, so it has the flexibility in
distributing the request to the proper physical file
system which is most efficient in processing the
request. United-FS can be exported by NFS server to
provide single NFS file system image to clients in the
middle scale multi-user cluster environment. This
paper also shows the characteristic and performance
comparison between United-FS and software RAID. In
future, we will add an intelligent scheduling
mechanism to schedule the I/O requests in a much
more adaptive mode to increase the performance in
NFS environment and we will try to improve the
metadata process efficiency.

8. References

[1] Sun Microsystems, Inc. “RFC 1813 - NFS: Network File
System Version 3 Protocol Specification.” IETF Network
Working Group. June 1995.

[2] Lustre: A Scalable, High Performance File System.
Cluster File System, Inc. 2003.

[3] P. Schwan. Lustre : Building a file system for 1,000-node
clusters. In Proceedings of the Linux Symposium, Ottawa,
July 2003.

[4] Philip H. Carns, Walter B. Ligon III, Robert B. Ross,
Rajeev Thakur, “PVFS: A Parallel File System for Linux
Clusters”, In Proceedings of the 4th Annual Linux Showcase
and Conference, October 2000

[5] Lombard P., Denneulin Y. nfsp: A distributed nfs server
for clusters of workstations. In Proceedings of International
Parallel and Distributed Processing Symposium, 2002

[6] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego, CA, June 2000.

[7] Muntz, D., Building a Single Distributed File System
from Many NFS Servers. Technical Report HPL-2001-176,
2001

[8] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang,
and L. Chu, A self-organizing storage cluster for parallel
data-intensive applications. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (SC ’04),
ittsburgh, PA, Nov. 2004.

[9] D. Patterson, G. Gibson, and R. Katz, A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the ACM SIGMOD, June 1988

[10] Joukov N., Rai A., Zadok E., Increasing distributed
storage survivability with a stackable raid-like file system.
In Proceedings of the 2005 IEEE/ACM Workshop on Cluster
Security in conjunction with the 5th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid),Cardiff, UK, 2005.

[11] Wright C. P., Dave J., Gupta, P., Krishnan H., Quigley
D. P., Zadok, E., Zubair M. N., Versatility and unix
semantics in namespace unification. ACM Transactions on
Storage, ACM, Vol. 1, No. 4, Novemeber 2005.

[12] Erez Zadok, Rakesh Iyer , Nikolai Joukov , Gopalan
Sivathanu, Charles P. Wright , On Incremental File System
Development. ACM Transactions on Storage (TOS) ，
Volume 2 , Issue 2 , May 2006

[13] G.Gibson and R.Meter, “Network Attached Storage
Architecture”. Communications of the ACM, vol.43, 2000

[14] http://sources.redhat.com/lvm2/

[15] Norcott, W. Iozone filesystem benchmark. URL:
http://www.iozone.org/, 1998

