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Abstract

Irregular applications, which rely on pointer-based data
structures, are often difficult to parallelize. The input-
dependent nature of their execution means that traditional
parallelization techniques are unable to exploit any latent
parallelism in these algorithms. Instead, we turn to opti-
mistic parallelism, where regions of code are speculatively
run in parallel while runtime mechanisms ensure proper
execution. The performance of such optimistically paral-
lelized algorithms is often dependent on the schedule for
parallel execution; improper choices can prevent success-
ful parallel execution.

We demonstrate this through the motivating example of
Delaunay mesh refinement, an irregular algorithm, which
we have parallelized optimistically using the Galois system.
We apply several scheduling policies to this algorithm and
investigate their performance, showing that careful consid-
eration of scheduling is necessary to maximize parallel per-
formance.
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1 Introduction

When parallelizing a program, the first step is to deter-
mine what can be done in parallel safely. Traditionally, this
has required determining regions of code which are com-
pletely independent. Much of the existing work on parallel
programming has focused on parallelizing “regular” appli-
cations which deal with matrices and arrays. These applica-
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tions are amenable to analysis, meaning that finding inde-
pendent regions of code is relatively straightforward. How-
ever, a significant class of algorithms are “irregular,” using
pointer-based data structures such as trees and graphs. An
exemplar of this class of algorithms is Delaunay mesh re-
finement, a widely used computational geometry algorithm
which makes heavy use of sets and graphs.

Existing analysis techniques are often insufficient to ac-
curately detect dependences in these types of algorithms.
This is due not only to the complexity of pointer-based
structures but also as a result of the input-dependent nature
of the algorithms. Dependences between regions of code
only become apparent at run-time. Thus, traditional tech-
niques must conservatively assume that the dependences ex-
ist, and hence cannot exploit any parallelism in these appli-
cations.

One promising approach to parallelizing such applica-
tions is optimistic parallelization. These techniques assume
that regions of code are independent, and allow them to
execute concurrently. Because no a priori analysis is per-
formed, run-time checks are used to detect whether the con-
current execution is, in fact, correct. If it is, then execution
continues. If it turns out that the concurrent regions were
not independent, a recovery mechanism is employed to en-
sure proper execution. In this way latent parallelism, which
may only become apparent at run-time, can be exposed and
exploited. We have developed a system for optimistic par-
allelization, called Galois, which can be easily applied to
problems such as Delaunay mesh refinement.

The efficacy of optimistically parallelized algorithms is
dependent on how often the speculative parallel execution
is actually safe. If conflicts between concurrently execut-
ing regions of code are rare, then significant speedups may
be achieved. If conflicts are frequent, then optimistic paral-
lelization provides no benefit, as execution will essentially
serialize. Thus, it is important to employ a suitable schedul-
ing policy to effectively decide what code should be exe-



Figure 1. A Delaunay mesh. Note that the cir-
cumcircle for each of the triangles does not
contain other points in the mesh.

cuted in parallel. The choice of scheduling policy can have
a significant effect on performance.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the example problem of Delaunay mesh re-
finement and how it may be parallelized. Section 3 sur-
veys existing parallelization techniques and why they are
unsuitable for problems such as Delaunay mesh refinement.
Section 4 briefly describes the Galois system for optimistic
parallelization. Section 5 explains the impact that schedul-
ing policy can have on performance, Section 6 provides an
evaluation of several policies on a Galois implementation of
Delaunay mesh refinement and Section 7 concludes.

2 Delaunay Mesh Refinement

Mesh generation is an important problem with applica-
tions in many areas such as the numerical solution of partial
differential equations and graphics. The goal of mesh gen-
eration is to represent a surface or a volume as a tessellation
composed of simple shapes like triangles, tetrahedra, etc.

Although many types of meshes are used in practice, De-
launay meshes are particularly important since they have a
number of desirable mathematical properties [2]. The De-
launay triangulation for a set of points in the plane is the
triangulation such that no point is inside the circumcircle of
any triangle (this property is called the empty circle prop-
erty). An example of such a mesh is shown in Figure 1.

In practice, the Delaunay property alone is not sufficient,
and it is necessary to impose quality constraints governing
the shape and size of the triangles. For a given Delaunay
mesh, this is accomplished by iterative mesh refinement,
which successively fixes “bad” triangles (triangles that do
not satisfy the quality constraints) by adding new points to
the mesh and re-triangulating. Figure 2 illustrates this pro-
cess. To fix the bad triangle in Figure 2(a), a new point is
added at the circumcenter of this triangle. Adding this point
may invalidate the empty circle property for some neighbor-
ing triangles, so all affected triangles are determined (this
region is called the cavity of the bad triangle), and the cavity
is re-triangulated, as shown in Figure 2(c). Re-triangulating
a cavity may generate new bad triangles but it can be shown

Figure 2. Fixing a bad element.

1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12: }

Figure 3. Pseudocode of the mesh refinement
algorithm

that this iterative refinement process will ultimately termi-
nate and produce a guaranteed-quality mesh. Different or-
ders of processing bad elements lead to different meshes,
although all such meshes satisfy the quality constraints [2].

Figure 3 shows the pseudocode for mesh refinement. The
input to this program is a Delaunay mesh in which some
triangles may be bad, and the output is a refined mesh in
which all triangles satisfy the quality constraints. There are
two key data structures used in this algorithm. One is a
worklist containing the bad triangles in the mesh. The other
is a graph representing the mesh structure; each triangle in
the mesh is represented as one node, and edges in the graph
represent triangle adjacencies in the mesh.

Opportunities for Exploiting Parallelism. The natural
unit of work for parallel execution is the processing of a
bad triangle. Our measurements show that on the average,
each unit of work takes about a million instructions of which
about 10,000 are floating-point operations. Because a cav-
ity is typically a small neighborhood of a bad triangle, two
bad triangles that are far apart on the mesh may have cavi-
ties that do not overlap. Furthermore, the entire refinement
process (expansion, retriangulation and graph updating) for
the two triangles is completely independent; thus, the two
triangles can be processed in parallel. This approach obvi-
ously extends to more than two triangles (see Figure 4). If
however the cavities of two triangles overlap, the triangles
can be processed in either order but only one of them can be
processed at a time. Whether or not two bad triangles have
overlapping cavities depends entirely on the structure of the
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mesh, which changes throughout the execution of the algo-
rithm. Full details of how this algorithm can be parallelized
are available in [5]

Figure 4. An example of processing several
elements in parallel. The left mesh is the orig-
inal mesh, while the right mesh represents
the refinement. In the left mesh, the dark grey
triangles represent the “bad” elements, while
the horizontally shaded are the other elements
in the cavity. In the right mesh, the the black
points are the newly added points and verti-
cally shaded triangles are the newly created el-
ements.

How much parallelism is there in Delaunay mesh gener-
ation? The answer obviously depends on the mesh and on
the order in which bad triangles are processed, and may be
different at different points during the execution of the al-
gorithm. One study by Antonopoulos et al. [1] on a mesh of
one million triangles found that there were more than 256
cavities that could be expanded in parallel until almost the
end of execution.

3 Existing Techniques

3.1 Pessimistic Parallelization

The standard approach to parallelizing a sequential code
requires that regions of code which are independent of one
another be identified. Determining the independence of two
regions can either be done manually or through the use
of dependence analyses. Because problems such as De-
launay mesh refinement make heavy use of pointer based
data structures, various alias analyses [4] and shape analy-
ses must be used [9].

Once independent regions of code are identified, they
can then be executed in parallel. Thus, if all the iterations
of a loop are independent (as in a Fortran-style do-all loop),
the loop can be executed in parallel.

While this is a natural method of exploiting parallelism
in many loop-based codes, a brief inspection shows that
it is not immediately applicable to Delaunay mesh refine-
ment. First, the worklist creates a loop-carried dependence

throughout the loop; every iteration depends on the new
state of the worklist created by the previous iteration. Even
disregarding this dependence (which can be partially mit-
igated through the use of work-sharing constructs such as
OpenMP’s parallel-for [3]), we cannot guarantee that exe-
cuting the iterations concurrently will produce the desired
result.

Recall that triangles can be processed in parallel only if
their cavities do not overlap, a property which cannot be de-
termined a priori, as this is entirely dependent on the input
data. Because dependence analyses are conservative, they
will determine that any two iterations may depend on one
another. Traditional parallelization techniques thus demand
that we execute the loop sequentially; the potential depen-
dence between iterations proscribes any parallelization.

3.2 Inspector-Executor Parallelization

One approach to taking input data into account in gen-
erating the parallel schedule is the inspector-executor ap-
proach [6]. This approach splits the computation into two
phases, an inspector phase that determines dependences
between units of work, and an executor phase that uses
the schedule to perform the computation in parallel. The
inspector can sometimes be generated automatically by a
compiler from the source program.

Because the inspector phase determines the schedule at
runtime, it can use the input data in computing the schedule.
This approach is not useful for our applications since key
data structures such as the mesh structure in Delaunay mesh
generation change at each iteration as the codes execute, so
the inspector must do all the work of the executor.

3.3 Optimistic Parallelization

We instead turn to optimistic parallelization. We note
that while there may be a dependence between any two it-
erations, with high probability, there won’t be. Optimistic
techniques speculatively execute regions of code concur-
rently in multiple threads while relying on some run-time
mechanism to determine if dependences exist between the
two regions. If no dependence exists, then the parallel exe-
cution was successful and execution continues. If a depen-
dence is detected, then the two regions of code cannot be
safely executed in parallel and one of the threads of execu-
tion is rolled back. Thus, it is possible to extract parallelism
from regions of code which are often, but not always, inde-
pendent.

Optimistic parallelization of loops was proposed by
Rauchwerger and Padua in [8], and hardware implementa-
tions of the run-time conflict detection and rollback systems
were discussed in several papers on Thread Level Specula-
tion [10, 7]. However, these approaches do not apply easily
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1: Mesh m = /* read in initial mesh */
2: Set wl;
3: wl.add(mesh.badTriangles());
4: for each e in wl do {
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand();
8: c.retriangulate();
9: m.update(c);
10: wl.add(c.badTriangles());
11: }

Figure 5. Delaunay mesh refinement using
set iterator

to programs such as Delaunay mesh refinement which are
based on dynamic worklists.

4 The Galois System

We have developed an object-based optimistic paral-
lelization system called Galois which allows complex ir-
regular applications to be parallelized relatively easily. For
lack of space, we give only the high level details.

The Galois memory model is a concurrent, shared-
memory execution model. The shared memory is organized
as a collection of objects whose methods are invoked by
threads to manipulate the internal state of these objects.
There are three main aspects to Galois: (i) syntactic con-
structs for packaging optimistic parallelization, (ii) asser-
tions about methods in class libraries, and (iii) a runtime
system for detecting and recovering from unsafe accesses
made by an optimistic computation to shared memory.

4.1 Concurrency constructs and execu-
tion model

The Galois system exposes parallelism through the use
of simple loop iterators. These constructs, which take the
form foreach e in set S do B(e), indicate sev-
eral things to the Galois system: (i) the loop should be par-
allelized, (ii) the iterations of the loop can be executed in
any order (as a set has no ordering constraints) and (iii)
there may be dependences between the various iterations.
This allows us to rewrite the Delaunay code in a very natu-
ral way, as seen in Figure 5.

When a program begins execution, there is a single mas-
ter thread. When the thread encounters an iterator, it spawns
some number of worker threads to aid in the concurrent ex-
ecution of the iterator. During this concurrent execution, it
is important that the system preserve the sequential seman-
tics of the iterator. Thus, the semantics of the set iterator
require that the final execution behave as if the iterations
were executed in some serial order.

4.2 Writing Galois Classes

Implementing the semantics of iterators in a parallel ex-
ecution is a non-trivial problem because each iteration may
manipulate a number of shared objects, such as the work
list and kd-tree in our applications, and method invocations
from different concurrent iterations get interleaved by the
objects. Therefore, it is important to determine when two
iterations can safely invoke methods on the same object
since disallowing this concurrent access to shared objects
severely restricts the amount of concurrency available.

Semantic Commutativity To permit multiple iterations
to access shared objects concurrently without violating
transactional semantics, the Galois system exploits commu-
tativity of method invocations: if two concurrent iterations
invoke the methods of a shared object, these invocations can
be interleaved without violating transactional semantics if
the invocations commute.

Because the internal state of objects is never visible,
we are not concerned with concrete commutativity (that is,
commutativity with respect to the implementation type of
the class), but with semantic commutativity (that is, com-
mutativity with respect to the abstract data type of the class).
We also note that commutativity of method invocations may
depend on the arguments of those invocations. For exam-
ple, add(x) commutes with remove(y), not with remove(x).
Commutativity information must be provided by the class
implementor.

Inverse Methods Because iterations are executed in par-
allel, it is possible for commutativity conflicts to prevent an
iteration from completing. Once a conflict is detected, some
recovery mechanism must be invoked to allow execution of
the program to continue despite the conflict. To permit this,
every method of a shared object that may modify the state
of that object must have an associated inverse method that
undoes the side-effects of that method invocation. For ex-
ample, for a set, the inverse of add(x) is remove(x), and the
inverse of remove(x) is add(x). This information too must
be provided by the class implementor.

4.3 Runtime System

The Galois runtime system is responsible for maintain-
ing the sequential semantics of the parallel iterator. It does
so by monitoring the concurrent execution of iterations and
detecting when iterations conflict. Each shared object keeps
track of which methods have been invoked by currently ex-
ecuting iterations (called “outstanding invocations”). When
an iteration attempts to invoke a method, it is checked for
conflicts against all outstanding invocations. If no conflicts
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are found, the conflict log is updated and execution contin-
ues. Otherwise, one of the conflicting iterations is rolled
back and restarted. In this manner, the sequential semantics
are preserved.

5 Scheduling

Optimistic parallelism is a viable approach to concurrent
execution as long as the optimism is warranted. If there
are infrequent conflicts and most concurrent iterations com-
plete successfully, then forward progress is rapidly made
and significant speedup can be achieved when executing in
parallel. However, if iterations conflict often (i.e. there are
few independent iterations), there is essentially no benefit
to optimistic parallelization; most iterations will simply be
rolled back, and only one iteration will complete at a time.
Effectively, the computation will serialize.

Even if a problem has a significant amount of potential
parallelism, this is not enough to guarantee that the opti-
mistic execution will successfully exploit it. If the ordering
of iterations is unspecified in the algorithm, we can think
of different scheduling policies. These policies determine
which iterations should be executed concurrently. A good
scheduling policy will minimize the number of concurrent
iterations which conflict with one another and lead to effi-
cient parallel execution, while a bad scheduling policy will
lead to a large number of conflicts and lead to highly ineffi-
cient parallel execution. Note that even though the majority
of iterations in Delaunay mesh refinement will not conflict
(as they will operate on distant portions of the mesh), it is
still possible to schedule iterations poorly such that execu-
tion will serialize.

5.1 Abort Ratios

To allow us to compare various scheduling policies, we
introduce the concept of abort ratio. The abort ratio is the
ratio of the number of iterations which are rolled back to
the total number of iterations executed (whether completed
successfully or rolled back). Thus, the abort ratio gives us
an estimate of the efficacy of a given scheduling policy. An
ideal schedule, which results in no conflicts between con-
current iterations, would have an abort ratio of zero. A poor
schedule, on the other hand, means that only one iteration
at a time will successfully execute while the rest roll back.
This will result in a abort ratio which approaches 100%
(note that because the total number of executed iterations
includes successful ones, the ratio will never reach 100%).

While there is a correlation between abort ratio and par-
allel efficiency, it may not always be significant; the cost
of the rollback is important as well. The major loss of ef-
ficiency due to rollbacks can be attributed to lost work. A
rolled back iteration means that whatever processing time

was spent executing the iteration was wasted. However, if
rollbacks occur at the beginning of an iteration, not much
work is lost due to the rollback. Thus, it is possible to have a
high abort ratio without impacting parallel efficiency much.

5.2 Policy Choices and Implementation

In the Galois system, different scheduling policies can
be applied by varying the implementation of the worklist
being iterated over. The worklist supports a getAny method
which is used by the runtime system to select elements to
process and an add method by which new work is placed on
the worklist. Thus, the implementation of the two methods
controls the schedule of execution. We can consider several
different scheduling policies for Delaunay mesh refinement:

• Queue: The simplest implementation of the worklist is
a queue. The getAny method removes elements from
the front of the worklist, while the add method places
new elements at the back. This is the default imple-
mentation in the sequential Delaunay mesh refinement
code.

• Randomized: The randomized scheduling policy re-
quires that getAny choose elements at random from
the worklist.

• Partitioned: Another policy which aims to reduce
the abort ratio when running on multiple processors is
partition-based scheduling. In this policy, the mesh is
logically partitioned, and each processor is given ele-
ments from different partitions.

6 Evaluation

We evaluated the performance of these scheduling poli-
cies when applied to a Galois implementation Delaunay
mesh refinement. The test system was a 4-processor Ita-
nium 2 machine, with each processor running at 1.5 GHz,
running Red Hat Linux. We first determined the abort ra-
tio of the three policies when running on 4 processors, as
seen in Table 1. We see that the partitioned schedule had
the smallest abort ratio, closely followed by the random-
ized schedule, both of which eliminated almost all roll-
backs. The queue schedule performs the worst. To under-
stand these results, we instrumented the codes to determine
the origins of these conflicts. It turned out that when a bad
triangle is fixed, it might produce a bunch of smaller bad
triangles in its cavity. In the queue implementation of the
worklist, these bad triangles are next to each other, so with
high probability, they are scheduled for execution on differ-
ent processors at roughly the same time. Their cavities will
conflict with high probability, and this leads to high abort ra-
tios. The randomized data structure reduces the probability
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Scheduling Policy Abort Ratio (%)
Queue 56.14

Randomized 0.8432
Partitioned 0.1601

Table 1. Abort ratios for different scheduling
policies when running the Galois implemen-
tation of Delaunay mesh refinement on 4 pro-
cessors
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Figure 6. Execution time vs. Number of pro-
cessors

of conflicts substantially, as does the partitioned approach,
and this improves performance.

We also examined the execution time and speedups (ex-
ecution time divided by single-processor execution time)
for the three different scheduling policies. We also com-
pared them against a reference, sequential implementation
of mesh refinement. Results for execution time are in Figure
6, and those for speedup are in Figure 7.

As expected from the abort ratios, randomized schedul-
ing and partitioned scheduling performed the best, each
achieving speedups of over 3 on four processors. Interest-
ingly, despite the lower abort ratio for partitioned schedul-
ing, its speedup is slightly less than randomized schedul-
ing. This is likely due to small amounts of load imbalance,
which manifest during the last stages of execution. As re-
flected in its abort ratio, the default queue scheduling policy
performs quite poorly in comparison to more informed poli-
cies.
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Figure 7. Speedup vs. Number of processors

7 Conclusions

It is clear that optimistic parallelization is the only fea-
sible approach to parallelizing many types of irregular ap-
plications, such as Delaunay mesh refinement. As a result,
a more careful consideration of the issues surrounding op-
timistic parallelism is clearly necessary. Successfully ex-
ploiting speculation demands that such speculation have a
high success rates. Thus it is very important to consider
scheduling in the context of optimistic techniques.

We have presented a number of different potential
scheduling policies, and evaluated them in the context of
an optimistic implementation of Delaunay mesh refinement.
We have found that naive scheduling (e.g. relying on the de-
fault iteration ordering from the sequential implementation)
can lead to a substantial performance penalty. More con-
sidered approaches to scheduling are clearly necessary, as
demonstrated by the higher performance of the randomized
and partitioned policies. We feel that a careful study of the
behavior of various algorithms can lead to highly efficient
scheduling policies which fully exploit any available paral-
lelism.
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