
Optimizing Sorting with Machine Learning Algorithms

Xiaoming Li†, Marı́a Jesús Garzarán and David Padua
† Department of Electrical and Computer Engineering, University of Delaware
Department of Computer Science, University of Illinois at Urbana-Champaign

xli@ece.udel.edu, {garzaran, padua}@cs.uiuc.edu
Abstract

The growing complexity of modern processors has made
the development of highly efficient code increasingly diffi-
cult. Manually developing highly efficient code is usually
expensive but necessary due to the limitations of today’s
compilers. A promising automatic code generation strategy,
implemented by library generators such as ATLAS, FFTW,
and SPIRAL, relies on empirical search to identify, for each
target machine, the code characteristics, such as the tile
size and instruction schedules, that deliver the best perfor-
mance. This approach has mainly been applied to scientific
codes which can be optimized by identifying code charac-
teristics that depend only on the target machine. In this
paper, we study the generation of sorting routines whose
performance also depends on the characteristics of the in-
put data.

We present two approaches to generate efficient sorting
routines. First, we consider the problem of selecting the
best “pure” sorting algorithm as a function of the charac-
teristics of the input data. We show that the relative perfor-
mance of “pure” sorting algorithms can be encoded as a
function of the entropy of the input data set. We used ma-
chine learning algorithms to compute a function for each
target machine that, at runtime, is used to select the best
algorithm. Our second approach generalizes the first ap-
proach and can build new sorting algorithms from a few
primitive operations. We use genetic algorithms and a clas-
sifier system to build hierarchically-organized hybrid sort-
ing algorithms capable of adapting to the input data. Our
results show that the algorithms generated using this sec-
ond approach are quite effective and perform significantly
better than the many conventional sorting implementations
we tested. In particular, the routines generated using the
second approach perform better than the most popular li-
braries available today: IBM ESSL, INTEL MKL and the
C++ STL. The best algorithm we have been able to gen-
erate is on the average 26% and 62% faster than the IBM
ESSL in an IBM Power 3 and IBM Power 4, respectively.

1 Introduction
Although compiler technology has been extraordinarily

successful at automating the process of program optimiza-
tion, much human intervention is still needed to obtain high-
quality code. One reason is the unevenness of compiler im-
plementations. There are excellent optimizing compilers for

some platforms, but the compilers available for some other
platforms leave much to be desired. A second, and perhaps
more important, reason is that conventional compilers lack
semantic information and, therefore, have limited transfor-
mation power. An emerging approach that has proven quite
effective in overcoming both of these limitations is to use
library generators. These systems make use of semantic in-
formation to apply transformations at all levels of abstrac-
tions. The most powerful library generators are not just pro-
gram optimizers, but true algorithm design systems.

ATLAS [10], PHiPAC [2], FFTW [4] and SPIRAL [11]
are among the best known library generators. ATLAS and
PHiPAC generate linear algebra routines and focus the op-
timization process on the implementation of matrix-matrix
multiplication. During the installation, the parameter val-
ues of a matrix multiplication implementation, such as tile
size and amount of loop unrolling, that deliver the best per-
formance are identified using empirical search. This search
proceeds by generating different versions of matrix multi-
plication that only differ in the parameter value that is being
sought. An almost exhaustive search is used to find the best
parameter values. The other two systems mentioned above,
SPIRAL and FFTW, generate signal processing libraries.
The search space in SPIRAL or FFTW is too large for ex-
haustive search to be possible. Thus, these systems search
using heuristics such as dynamic programming [4, 6], or
genetic algorithms [9].

In this project, we explore the problem of generating
high-quality sorting routines. Compared sorting with the
algorithms implemented by the library generators just men-
tioned, the difference is that the performnace of the algo-
rithms they implement is complemently determined by the
characteristics of the target machine, but not by character-
istics of the input data, except the size of the input data.
However, the performance of sorting algorithms depends on
other input factors such as the distribution of the input data.
In fact, as shown both theoretically and practically, multi-
way merge sort performs very well on some classes of input
data sets while radix sort performs poorly on the same sets.
For other data set classes we observe the reverse situation.
Hence, the approach of today’s generators is useful to opti-
mize the parameter values of a sorting algorithm, but not to
select the best sorting algorithm for a given input. What is
more, not only do we need to tune individual sorting algo-
rithms for different computer architectures, also we need to
find the solution of how to combine different sorting algo-
rithms, because different input classes can be best sorted by

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

different sorting algorithms.
In this project, we study the problem of how to automat-

ically generate highly efficient sorting routines for different
computer architectures. Our study has two phases. In the
first phase, we try to answer the question how to select, at
runtime, the best “pure” sorting algorithm for a given input
set to be sorted. In the second phase, we extend and gener-
alize our first approach through the development of a new
library generator that produces implementations of compos-
ite sorting algorithms in the form of hierarchy of sorting
primitives whose particular shape ultimately depends on the
architectural features of the target machine and the charac-
teristics of the input data. We make three contributions in
this project:
• The development of machine-learning techniques that

predict and select, based on the characteristics of the in-
put data, the best “pure” sorting algorithm at runtime.

• The definition of sorting primitives by combining which
we can represent a large collection of new composite sort-
ing algorithms.

• The development of genetic algorithms and classifier sys-
tems that during the installation time searches for the func-
tion that maps the characteristics of the input and the ar-
chitectural features of the target machine to the best com-
posite sorting algorithm.

Our results show that our approach is very effective. The
best algorithm we have generated is on the average 36%
faster than the best “pure” sorting routine, being up to 45%
faster. Our sorting routines perform better than all the com-
mercial libraries that we have tried including IBM ESSL,
INTEL MKL and the STL of C++. On the average, the gen-
erated routines are 26% and 62% faster than the IBM ESSL
in an IBM Power 3 and IBM Power 4, respectively.

The rest of this paper is organized as follows. Section 2
outlines the machine learning techniques that we develop to
select “pure” sorting algorithms at runtime. Section 3.1 dis-
cusses the primitives that we use to build sorting algorithms.
Section ?? explains how to use genetic algorithms to gener-
ate a classifier system for sorting rountines. Section 4 shows
performance results. Finally Section 5 presents out conclu-
sion.

2 Selection the Best Pure Sorting Algorithm
as a Function of the Input Data

Sorting is one of the topics that has been studied most ex-
tensively in Computer Science. A large number of sorting
algorithms have been proposed and their asymptotic com-
plexity, in terms of the number of comparisons or number
of iterations, has been carefully analyzed [7]. However, per-
formance of sorting algorithms on real machines is less well
understood especially when complex factors such as local-
ity and instruction level parallelism are taken into account.

Our first approach consists in generating code which at
run time selects the fastest among several versions of sort-
ing as a function of characteristics of the input. The first
step is to optimize each algorithm. We do this using em-
pirical search to determine the best form of each sorting

algorithm. However, no matter how aggressively we tune
a sorting algorithm, there is no single sorting algorithm that
performs better than all other sorting algorithms for all in-
put sets. Therefore, the second step is to compute a function
that maps the characteristics of the input data to one of the
algorithms. This function, called Selection Function is used
at execution time to decide which version of sorting is to be
executed each time the generated sorting routine is invoked.

We use versions of quicksort, radix sort, and multiway
merge sort as the main alternatives from where the runtime
selection will be made. We also considered other sorting al-
gorithms, but we found that in none of them perform better
than the best of the first three algorithm. Quicksort and mul-
tiway merge sort are comparison-based algorithms, while
radix sort is a radix-based algorithm.

2.1 Tuning Each Sorting Algorithm

As mentioned above, our first approach starts with the
tuning of each of the three sorting algorithms mentioned
above through empirical search. For quicksort, we applied
all optimizations suggested by Sedgewick [8] and then em-
pirically searched for the best values of two parameters: the
number of pivots, and the segment size at which recursion
stops and a straight line sorting is applied. The first param-
eter influence the level of the recursion at which the seg-
ments resulting from quicksort fit into cache. The second
parameter influences the number of registers are used at the
leaf level. These parameter, therefore, influence the perfor-
mance of quicksort.

For radix sort we use the implementation of Jiménez et
al [5], which is an improved Reverse Radix Sort [7]. The
key improvement of CC-radix sort to the Reverse Radix
Sort is that CC-radix sort recursively checks if the data
structures to sort the keys (the original vector of records,
the destination vector, and the counters) fit in the cache. If
they do, the simple radix sort algorithm is used. If, however,
the data structures do not fit in the cache, the algorithm par-
titions the bucket into sub-buckets using one step of reverse
sorting.

In multiway merge sort the keys are partitioned into p
subsets. In our implementation, the subsets were sorted us-
ing CC-radix sort. The subsets are merged using a heap
or priority queue [7]. We empirically searched for the best
values of two parameters, the fan-out and the heap size, of
multiway merge sort. The fan-out influences spatial locality
and heap size influence the number of active input element
which reside in cache. Thus, by empirically searching the
best value of heap size, we can maximize the locality of
multiway merge sort.

2.2 Learning the Selection Function

The performance of a sorting algorithm depends on ar-
chitectural factors such as cache size, cache line size, and
number of registers. Performance also depends on charac-
teristics of the input data that are only known at run time
like the number of keys to be sorted, the degree to which
the keys are already sorted, and the distribution of the val-
ues of the keys. The relation between architectural and in-

put data factors and the values of an algorithm parameters
(e.g. height of the heap in multiway merge sort) is not well
understood and is quite complex.

The design a strategy to dynamically select sorting al-
gorithms requires the answers to two questions: (1) Which
input data characteristics affect the performance of sorting
algorithms ?, and (2) How can we compute a function that
maps the characteristics of the input onto the best sorting
algorithm ?

In our work, we considered two characteristics of the in-
put data: number of keys to sort, and the entropy of the input
data. The number of keys determines if the input set can fit
into the cache and, as a result, affect the overall execution
time. The other factor, the entropy of the input data can
be used to differentiate between the relative performance of
radix sort and comparison based sorting algorithms which
in our case are quicksort and multiway merge sort. CC-
radix sort partitions the data in each bucket that does not
fit into the cache. If the values of the elements in the input
data are concentrated around some values, it is more likely
that most of these elements will end up in a small number
of buckets. Thus, more partitions will have to be applied
before the buckets fit into the cache. On the other hand,
when the elements are spread out, values will be distributed
among the buckets and fewer partitions will be necessary to
fit the buckets in the cache, and as a result CC-radix sort
will perform better.

To compute the function that can predict the relative per-
formance of sorting algorithms based on the characteristics
of the input data, we assume that our function is linearly
separable in the number of keys and the entropy. Experi-
mental data shows that good results are possible under this
assumption. It can also be argued that this is a reasonable
assumption by observing that the entropies of the most sig-
nificant digits are more important (have a bigger weight)
than the entropy of the least significant digits. The reason
is that if the entropy value of the more significant digits is
high, it is more likely that the subsets will fit into the cache,
and as a result, partitioning will not have to be applied us-
ing the low order digits. The relative weights of the entropy
of each digit will depend on the amount of data to sort and
the size of the cache. Intuitively, for a given cache size, the
more data we sort, the more digits we will need to consider
until the data fit in the cache.

The Winnow algorithm is a machine learning technique
that can learn linear separatable functions. It seems appro-
priate to deal with this problem. We first train the Winnow
algorithm with training data that consists of input sets with
different number of keys and entropies. For each input in
the training set we measure the performance of each algo-
rithm. For each size of the input data set, the Winnow algo-
rithm will result in a tuned weight vector. In addition to the
weight vector we also keep track of which algorithm was
better: CC-radix sort or either quicksort for smaller data
set sizes or multiway merge for larger sizes. At runtime, the
system computes the entropy vector of all the digit positions
of the input data. Then, it computes the inner product of the

entropy vector and the weight vectors which are learned by
the Winnow algorithm. If the result is larger than the thresh-
old, the prediction is to use CC-radix sort. If however, the
value is smaller, the algorithm to use will be either quicksort
or multiway merge, depending on the input data set size.

3 Generating Composite Sorting Algorithms
Our second strategy is a generalization of our first ap-

proach. Since, as discussed above, different sorting algo-
rithms perform differently depending on the characteristics
of the input data; it is natural to expect that performance im-
provements could result from the application of a composite
strategy where different algorithms are applied to each par-
tition generated in a recursive sorting algorithm. Compos-
ite sorting algorithm can select different methods of sorting
based on the characteristic of each partition. In this sec-
tion, we first outline a framework that contains both sorting
primitives and selection primitives, as well as rules of how
to combine the primitives to form composite sorting algo-
rithms. Then we present the machine-learning techniques
that we used to search for the best composite sorting algo-
rithm using those primitives.

3.1 Sorting Primitives

The building blocks of our composite sorting algorithms
are primitives. These primitives were identified based on
experiments with three sorting algorithms: quicksort, CC-
radix sort, and multiway merge sort; and the study of the
factors that affect their performance. Darlington [3] intro-
duced the idea of sorting primitives and identified two of
them: merge sort and quicksort. We use six primitives rep-
resenting the three pure algorithms mentioned above which
are the ones that obtained better results in our experiments.
If other sorting algorithms with good performance were
identified, they could be easily added to our framework.

In this second approach, we searched for an optimal al-
gorithm by building composite sorting algorithms. We use
two types of primitives to build new sorting algorithms:
sorting and selection primitives. Sorting primitives repre-
sent pure sorting algorithms which involve partitioning the
data, such as radix sort, merge sort and quicksort. Selec-
tion primitives dynamically decide which sorting algorithm
to apply.

3.1.1 Sorting Primitives

The composite sorting algorithms considered in this study
assume that the data is stored in consecutive memory loca-
tions. The data is then recursively partitioned using one of
four partitioning methods. The recursive partitioning ends
when a leaf sorting algorithm is applied to the partition. We
first describe the four partitioning primitives followed by
a description of the two leaf sorting primitives. For each
primitive we also identify the parameter values that are to
be searched for by the library generator.

1. Divide − by − V alue (DV)

This primitive corresponds to the first phase of quicksort
which, in the case of a binary partition, selects a pivot

and reorganizes the data so that the first part of the vec-
tor contains the keys with values smaller than the pivot,
and the second part those that are greater than or equal to
the pivot. In our work, the DV primitive can partition the
set of records into two or more parts using a parameter np
which specifies the number of pivots. Thus, this primitive
divides the input set into np + 1 partitions and rearranges
the data around the np pivots.

2. Divide − by − position (DP)

This primitive corresponds to multiway merge sort and
the initial step breaks the input array of keys into two or
more partitions or subsets of the same size. It is implicit
in the DP primitive that, after all the partitions have been
processed, the partitions are merged to obtain a sorted ar-
ray. The merging is accomplished using a heap or priority
queue [7].

The DP primitive has two parameters: size which speci-
fies the size of each partition, and fanout, which specifies
the number of children of each node of the heap.

3. Divide − by − radix (DR)

The Divide-by-Radix primitive corresponds to a step of
the radix sort algorithm. The DR primitive distributes the
keys to be sorted into buckets depending on the value of a
digit in the record. Thus, if we use a radix of r bits, the
keys will be distributed into 2r sub-buckets based on the
value of a digit of r bits. The DR primitive has a parameter
radix that specifies the size of the radix in number of bits.

4. Divide − by − Radix − Assuming − Uniform −
Distribution (DU)

This primitive is based on the previous DR primitive, but
assumes that a digit is uniformly distributed. The compu-
tation of the histogram and the partial sum steps in the DR
primitive are used to determine the number of keys con-
taining each one of the digits at a particular position and
reserve the necessary space in the output vector. How-
ever, these steps (in particular computing the histogram)
are very costly. To avoid this overhead, we can assume
that a digit is uniformly distributed and that the number of
keys containing each digit is the same. Thus, with the DU
primitive, when sorting an input with n keys and a radix
of size r, each sub-bucket is assumed to contain n

2r keys.
In practice, some sub-buckets will overflow the space re-
served, because the distribution of the input vector is not
totally uniform. However, if the overhead to handle the
cases when there is overflow is less than the overhead to
compute the histogram and the accumulation step, the DU
primitive will run faster than the DR one. As in DR, the
DU primitive has a radix parameter.

Apart from these primitives we also have recursive primi-
tives that will be applied until the sequence is sorted. We
call them leaf primitives.

5. Leaf − Divide − by − V alue (LDV)

This primitive specifies that quicksort must be applied re-
cursively to sort the sequences until they are sorted.

6. Leaf − Divide − By − Radix (LDR)

This primitive specifies that radix sort is used to fully sort
the remaining subsets.

3.1.2 Selection Primitives

In addition to the sorting primitives, we also use selection
primitives. The selection primitives are used at runtime to
determine, based on the characteristics of the input, the sort-
ing primitive to be applied to each sub-sequence of a given
sequence. These selection primitives were designed to take
into account the number of keys in the partition and/or their
standard deviation. The selection primitives are:
1. Branch − by − Size (BS)

This BS primitive is used to select different paths based of
the size of the partition. Thus, this BS primitive, has one
or more (size1, size2, ...) parameters to choose the path to
follow. The size values are sorted and used to select n + 1
possibilities (less than size1, between size1 and size2, ...,
larger than sizen).

2. Branch − by − Entropy (BE)

Like the Branch − by − Size primitive, the Branch −
by − Entropy primitive has one or more threshold val-
ues, which are the inner-products of entropy and a weight
vector, that are used to select the path to proceed with the
sorting.

3.2 Using Genetic Algorithms to Optimize Composite
Algorithms

We use the eight primitives presented above (six sort-
ing primitives and two selection primitives) to build sort-
ing algorithms. These primitives cannot generate all possi-
ble sorting algorithms, but their combination spans a much
larger space of algorithms than that containing only the tra-
ditional pure sorting algorithms like quicksort or radix sort.
Also, by changing the parameters in the sorting and selec-
tion primitives, we can adapt to the architecture of the target
machine and to the characteristics of the input data.

We combine these primitive using genetic algorithms.
Next, we first explain why we believe that genetic algo-
rithms are a good search strategy and then we explain how
to use them.

3.2.1 Why Use Genetic Algorithms?

Traditionally, the complexity of sorting algorithms has been
studied in terms of the number of comparisons executed as-
suming a specific distribution of the input, such as the uni-
form distribution [7]. These studies assume that the time
to access each element is the same. This assumption, how-
ever, is not true for today’s processors with their deep cache
hierarchies and complex architectural features. Since there
are no analytical models of the performance of sorting al-
gorithms in terms of architectural features of the machine,
the only way to identify the best algorithm is by searching.

Our approach is to use genetic algorithms to search for
an optimal sorting algorithm. The search space is defined
by composition of the sorting and selection primitives de-
scribed in Section 3.1 and the parameter values of the prim-
itives. The objective of the search is to identify the hierar-
chical sorting that better fits the architectural features of the
machine and the characteristics of the input set.

There are several reasons why we have chosen genetic
algorithms to perform the search.

• Using the primitives in Section 3.1, the sorting algorithms
can be encoded as a tree where each primitive is repre-
sented as a node. The children of selection primitives are
the sorting primitives controlled by the selection primi-
tives. The children of the sorting primitives is the selection
primitive applied to each segment resulting from the appli-
cation of the sorting primitive. The leaf sorting primitives
are the leaves of the tree. Genetic algorithms can be easily
used to search in the space of possible trees for the most
appropriate tree shape and parameter values associated to
each node.

• The search space of sorting algorithms that can be derived
using the eight primitives in Section 3.1 is too large for
exhaustive search.

• Genetic algorithms preserve the best subtrees and give
those subtrees more chances to reproduce. Sorting algo-
rithms can take advantage of this since a sub-tree is also a
sorting algorithm.

In our case, genetic programming maintains a popula-
tion of trees. Each tree is an expression which represents a
sorting algorithm. The probability that a tree is selected for
reproduction (called crossover) is proportional to its level
of fitness. The better trees are given more opportunities to
produce offsprings. Genetic programming also randomly
mutates some expressions to create a possibly better tree.

3.3 Optimization of Sorting with Genetic Algorithms

Encoding As discussed above we use a tree based schema
where the nodes of the tree are sorting and selection primi-
tives.

Operators Genetic operators are used to derive new off-
springs and introduce changes in the population. Crossover
and mutation are the two operators that most genetic algo-
rithms use. Crossover exchanges subtrees from different
trees. Mutation operator applies changes to a single tree.
Next, we explain how we apply these two operators.

Crossover The purpose of crossover is to generate new
offsprings that have better performance than their parents.
This is likely to happen when the new offsprings inherit the
best subtrees of the parents. In our work we used single-
point crossover and we chose the crossover point randomly.

Mutation Mutation works on a single tree. It intro-
duces diversity in the population. Mutation prevents the
population from remaining the same after any particular
generation [1]. This approach, to some extent, allows the
search to escape from local optima. Mutation changes the

parameter values hoping to find better ones. Our mutation
operator can perform the following changes:

1. Randomly change the values of the parameters in the
sorting and selection primitive nodes.

2. Exchange two subtrees.

3. Add a new subtree.

4. Remove a subtree. Unnecessary subtrees can be deleted
with this operation.

Fitness Function The fitness function determines the
probability of an individual to reproduce. The higher the
fitness of an individual, the higher the chances it will repro-
duce and mutate.

In our case, performance will be used as the fitness func-
tion. However, the following two considerations have been
taken into account in the design of our fitness function:

1. We are searching for a sorting algorithm that performs
well across all possible inputs. Thus, the average perfor-
mance of a tree is its base fitness. However, since we
also want the sorting algorithm to consistently perform
well across inputs, we penalize trees with a variable per-
formance by multiplying the base fitness by a factor that
depends on the standard deviation of its performance when
sorting the test inputs.

2. In the first generations, the fitness variance of the popula-
tion is high. That is, a few sorting trees have a much better
performance than the others. If our fitness function was
directly proportional to the performance of the tree, most
of the offsprings would be the descendants of these few
trees, since they would have a much higher probability to
reproduce. As a result, these offsprings would soon occupy
most of the population. This could result in premature con-
vergence, which would prevent the system from exploring
areas of the search space outside the neighborhood of the
highly fit trees. To address this problem, our fitness func-
tion uses the performance order or rank of the sorting trees
in the population. By using the performance ranking, the
absolute performance difference between trees is not con-
sidered and the trees with lower performance have more
probability to reproduce than if the absolute performance
value had been used. This avoids the problem of early con-
vergence and of convergence to a local optimum.

Evolution Algorithm An important decision is to choose
the appropriate evolution algorithm. The evolution algo-
rithm determines how many offsprings will be generated,
how many individuals of the current generation will be re-
placed and so on.

In this work we use a steady-state evolution algorithm.
For each generation, only a small number of the least fit
individuals in the current generation are replaced by the new
generated offsprings. As a result, many of the individuals
from the previous population are likely to survive.

The steady-state evolution algorithm that we use to gen-
erate a sorting routine evolves many generations. In each

generation, a fixed number of new offsprings will be gener-
ated through crossover and some individuals will mutate as
explained above. The fitness function will be used to select
the individuals to which the mutation and crossover oper-
ators are applied. Then, several input sets with different
characteristics (standard deviation and number of records)
will be generated and used to train the sorting trees of each
generation. New inputs are generated for each iteration.
The performance obtained by each sorting algorithm will
be used by the fitness function to decide which are the least
fit individuals and remove them from the population. The
number of individuals removed is the same as the number
generated. In this way, the number of individuals remains
constant across generations.

Several criteria can be chosen as stopping criteria such
as stop after a number of generations, or stop when the per-
formance has not improved more than a certain percentage
in the last number of generations.

4 Experimental Results
We evaluated our approach on seven different platforms:

AMD Athlon MP, Sun UltraSparc III, SGI R12000, IBM
Power3, IBM Power4, Intel Itanium 2, and Intel Xeon. Our
library generator produces code with outstanding perfor-
mance on all these platforms. We will only discuss the re-
sults from our second approach for lack of space and also
because our second approach subsumes the first one.

Figure 1 shows the performance of our library on IBM
Power3. The figure plots the execution time in CPU cycles
per key as the standard deviation changes from 29 to 223.
The test inputs used to collect the data in Figure 1 contained
14M records, and standard deviations of sizes 4n∗512, with
n ranging from 1 to 8.

Figure 1 shows that the full Xsort routine, generated by
our second approach, is the is on average 26% faster than
the best sorting routine in vendor provided libraries, IBM
ESSL.

 40

 60

 80

 100

 120

 140

 160

 180

 100 1000 10000 100000 1e+06 1e+07

E
x
e
c
u
t
i
o
n

T
i
m
e

(
C
y
c
l
e
.

p
e
r

k
e
y
)

Standard Deviation

IBM Power3

C++ STL IBM ESSL XSort

Figure 1: Performance of Xsort.

5 Conclusions
In this paper, we discuss a strategy to build compos-

ite sorting algorithms from primitives which are capable of
adapting to the target platform and the input data. Genetic

algorithms were used to search for the sorting routines. The
resulting algorithm is a composite algorithm where a dif-
ferent sorting routine is selected based on the entropy and
the number of keys to sort. In most cases, the routines are
radix based with different parameters depending on the in-
put characteristics and target machine. The routines gen-
erated by our strategy perform better than any commercial
routine that we have tried including the IBM ESSL, the IN-
TEL MKL and the STL of C++. On the average, our gener-
ated routines are 26% faster than the IBM ESSL on an IBM
Power 3 and 62 % on a IBM Power 4.

6 Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CSR-0509432.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

References
[1] T. Back, D. B. Fogel, and Z. Michalewicz. Evolutionary Computa-

tion Vol. I & II. Institute of Physics Publishing, 2000.

[2] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing Ma-

trix Multiply using PHiPAC: A Portable, High-Performance, ANSI C

Coding Methodology. In Proc.of the 11th ACM International Con-

ference on Supercomputing (ICS), July 1997.

[3] J. Darlington. A Synthesis of Several Sorting Algorithms. Acta In-

formatica, 11:1–30, 1978.

[4] M. Frigo. A Fast Fourier Transform Compiler. In Proc. of Program-

ing Language Design and Implementation, 1999.

[5] D. Jiménez-González, J. Navarro, and J. Larriba-Pey. CC-Radix: A

Cache Conscious Sorting Based on Radix Sort. In Euromicro Con-

ference on Parallel Distributed and Network based Processing, pages

101–108, February 2003.

[6] H. Johnson and C. Burrus. The Design of Optimal DFT Algorithms

Using Dynamic Programming. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 31:378–387, April 1983.

[7] D. Knuth. The Art of Computer Programming; Volume3/Sorting and

Searching. Addison-Wesley, 1973.

[8] R. Sedgewick. Implementing Quicksort Programs. Communications

of the ACM, 21(10):847–857, October 1978.

[9] B. Singer and M. Veloso. Stochastic Search for Signal Processing

Algorithm Optimization. In Proc. of Supercomputig, 2001.

[10] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Opti-

mizations of Sofware and the ATLAS Project. Parallel Computing,

27(1-2):3–35, 2001.

[11] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language

and a Compiler for DSP Algorithms. In Proc. of the International

Conference on Programming Language Design and Implementation,

pages 298–308, 2001.

