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Abstract

The design of microprocessor chip for high-end comput-
ing systems is moving towards many-core architectures with
10s or 100+ processing units. An important class of the tar-
get applications for such architectures are scientific numeri-
cal computations, many of which are intrinsically determin-
istic - that is for a given input a fixed output (result) should
be produced no matter how the program is parallelized. It is
critical that the read-after-write data dependencies in such
programs should be implemented correctly and efficiently
via fine-grain data synchronization. In this paper, we inves-
tigate the parallelization of three representative scientific
computation kernels using fine-grain data synchronization
supported by an recently proposed architectural mechanism
for many-core chips, called Synchronization State Buffer
(SSB) [25]. Using detailed simulation on a simulator for
the IBM 160-core Cyclops-64 chip architecture with the SSB
extension, our experiments demonstrate significant perfor-
mance advantage of using fine-grain data synchronization
based parallelization schemes for scientific workloads.

1 Introduction

Many-core architectures that integrate 10s (or beyond) of
tightly-coupled processing cores on a single chip is emerg-
ing [10, 8]. In order to fully utilize the massive intra-chip
parallelism provided by such chips, it is important to exploit
the fine-grain parallelism inherent in applications. Efficient
fine-grain synchronization is essential for determining the
granularity of parallelism that can be exploited. For shared-
memory multithreading programming model, which is nor-
mally employed for many-core architectures, synchroniza-
tion ensures the correctness of the parallel programs by en-
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forcing mutual exclusion and read-after-write data depen-
dence. The reset of this paper will only address fine-grain
synchronization that enforces read-after-write data depen-
dencies among multiple concurrent threads. We will use
the term fine-grain data synchronization to refer this type
of synchronization throughout the paper.

An important class of the target applications for many-
core architectures are scientific numerical computations,
many of which are intrinsically deterministic - that is for
a given input a fixed output (result) should be produced no
matter how the program is parallelized. It is critical that
the data dependencies in such programs should be realized
efficiently to best exploit parallelism.

In [25], we have proposed a novel architectural mech-
anism to support fine-grain synchronization on many-core
chips, called Synchronization State Buffer (SSB). SSB is
a small buffer attached to the memory controller of each
memory bank. It records and manages states of active syn-
chronized data units to support and accelerate word-level
fine-grain synchronization, including both mutual exclusion
and read-after-write data dependency synchronization.

One of the functionalities of SSB is to provide efficient
fine-grain data synchronization, which ensures that a con-
sumer thread reads a value at word-level in memory only
after it has been written by a producer thread. Based on
SSB, this paper investigates the parallelization of three rep-
resentative scientific computation kernels. For each kernel,
we demonstrate how it can be effectively parallelized with
word-level fine-grain data synchronization.

To illustrate and understand the performance advantage
of fine-grain synchronization based parallelization schemes,
we conducted the experiments on a state-of-the-art many-
core architecture – the 160-core IBM Cyclops-64 (C64)
chip architecture [13]. We extended the C64 architecture
simulator with the SSB architectural feature. Using detailed
simulation, our experimental results demonstrate: (1) on
multithreaded many-core architectures, fine-grain data syn-



chronization mechanism is important and effective for ex-
ploiting fine-grain parallelism in scientific application ker-
nels; (2) for many-core architectures, fine-grain synchro-
nization based parallelization schemes can achieve signifi-
cant performance improvement over the coarse-grain ones.
For the three representative kernels we investigated, when
running with 128 threads, fine-grain based implementation
outperforms the coarse-grain ones by 38.1%, 312%, and
94.9% respectively; (3) with only modest hardware exten-
sion to many-core architectures, SSB provides an efficient
mechanism for enforcing read-after-write data dependen-
cies at word-level in memory among concurrent threads;
and (4) in SSB implementation, a small buffer for each
memory bank is sufficient for multithreaded scientific ap-
plications using fine-grain data synchronization.

2 SSB: Supporting Efficient Fine-Grain Syn-
chronization on Many-Core Architectures

A new hardware architectural feature, called Synchro-
nization State Buffer (SSB), is recently proposed for many-
core chips to support efficient word-level fine-grain syn-
chronization [25]. Unlike the full/empty bits like fine-grain
synchronization [21, 3, 11, 2, 17, 15], which tags the en-
tire memory of the machine by associating additional ac-
cess state bits with each word in memory, the design of SSB
is motivated by the following observation: at any instance
only a small fraction of memory locations is actively partic-
ipating in synchronization [25].

Based on this observation, SSB is proposed as a mod-
est hardware extension to many-core architectures. SSB
is a buffer with a small number of entries attached to the
memory controller of each memory bank. It records and
manages states of active synchronized data units to support
and accelerate word-level fine-grain synchronization. SSB
caches the states of memory locations that are currently ac-
cessed by SSB synchronization operations. An interesting
aspect of the SSB design is that it avoids enormous memory
storage cost, and still creates an illusion that each word in
memory is associated with a set of states that can be used
to support word-level fine-grain synchronization. In case
that an SSB for a memory bank is full, the SSB operation is
trapped to software, which will apparently slows down the
requested synchronization operation. However, it has been
shown that the hardware synchronization resource provided
by SSB is normally sufficient [25].

Because of the relatively smaller storage cost, each SSB
entry can afford to encode large states – thus can support
a rich set of synchronization functionalities. In the current
design, SSB can be used to enforce mutual exclusion with
various type of locks and read-after-write data dependencies
between threads [25]. In the context of this paper, we are
only interested in the fine-grain data synchronization.

Using SSB fine-grain synchronization operation is mem-
ory efficient. First, since SSB maintains the states for the
synchronized memory locations in hardware, there is no
need to allocate corresponding software-managed synchro-
nization variables, which cost extra memory. Second, with
one memory transaction, an SSB instruction does not only
perform the synchronization on the memory location, but
also brings the datum to the processor upon success. There-
fore, a successful SSB operation combines synchronization
and memory load into a single memory transaction.

The details of the principles, designs, and preliminary
experimental results of SSB are described in the accompa-
nying paper [25].

3 Case Studies in Parallelization with SSB
Fine-Grain Synchronization

In this section, we investigate how to use fine-grain data
synchronization to exploit fine-grain parallelism in scien-
tific workload via case studies on three kernels. These three
kernels are significant because they represent typical com-
putation patterns when parallelizing scientific applications:
the 1D Laplace solver represents the iterative style of com-
putation, the linear recurrence equations demonstrate irreg-
ular pattern of data dependencies, and the wavefront compu-
tation shows a general form of wavefront-like propagated
computation in the solution space.

We attempt to parallelize these kernels using fine-grain
data synchronization. Unlike global synchronization (i.e.,
barrier) based coarse-grain parallelization, where read-
after-write data dependencies are enforced by making all
consumers wait for all producers at a common synchro-
nization point, the fine-grain data synchronization takes a
point-to-point approach, which allows the consumer only
waits for the data it needs for proceeding the computa-
tion. Therefore, fine-grain synchronization can avoid un-
necessary waiting and global communication that caused by
coarse-grain barrier synchronization.

3.1 1D Laplace Solver

Laplace’s equation is a famous partial differential equa-
tion, which is important in many fields of science, such as
electromagnetism, astronomy, and fluid dynamics. The 1D
Laplace solver use a finite difference method to achieve nu-
merical approximation of the equation, whose pseudo code
is shown as follows:

for( i = 0; i < ITERATIONS; i++){
for( j=1; j< TOTALSIZE-1; j++ )
xnew[j] = 0.5*(x[(j-1)]+x[(j+1)]+b[j]);
for( j=1; j< TOTALSIZE-1; j++)

x[j] = xnew[j];
}
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Figure 1. Data Dependencies and Synchronizations in 1D Laplace Solver

In the kernel, at each iteration, every position of a 1D
array is updated with a value function of its left and right
neighbors that computed from the previous iteration. All
the elements of the array need to be updated before the next
iteration starts. For simplicity, within each iteration, two
arrays are actually used. One stores the data computed by
previous iteration, the other stores the data generated by the
current iteration.

The multithreaded parallel implementation partitions the
1D array among threads, such that each partition only
contains consecutive elements. To enforce the producer-
consumer relation, a barrier is performed after all xnew
are computed, and another barrier is executed after xnew
is copied to x. This barrier based coarse-grain synchro-
nization scheme enforces each thread to wait for all others
completing the current iteration before starting the next one.

From the point of view of a thread, however, it only
needs to wait for its two neighbor threads to supply the data
at the border of its partition in order to continue its own
computation (see Figure 1). Assuming that the portion of
the x array assigned to a thread is between xstart and xend,
in order to start its next iteration, this thread only needs to
read two elements from its two neighbors. For instance, for
starting the computation of xnewstart and xnewend at it-
eration i, the thread only needs its two neighbors to write
their results into xstart−1, and xend+1 at iteration i − 1.

Using this scheme, we can implement another parallel
version of the solver using the SSB single-writer-single-
reader operations to perform the fine-grain data synchro-
nization between threads. The coarse-grain barriers are re-
moved, the data synchronization is used to enforce each
thread to wait for the data that is exactly necessary for start-
ing the new iteration.

3.2 Linear Recurrence Equations

Linear recurrence equations are widely used in scientific
linear algebra computations. Livermore Loop 6 [14] repre-
sents a general form of linear recurrence equations:

for ( i=1 ; i<n ; i++ )
for ( k=0 ; k<i ; k++ )

W[i] += b[k][i] * W[(i-k)-1];

As shown in Figure 2, the outer loop computes the array
W, and at each iteration i, W[i] depends on values com-
puted in all previous iterations, that is, W[i] depends on
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Figure 2. Characteristics of Linear Recur-
rence Equations

W[0], W[1], ... , W[i-1]. Such cross-iteration depen-
dencies of array W makes it difficult to parallelize this loop
at compilation time [23].

An iteration of the outer loop is an inner product of know
values. Given infinite number of threads, the time complex-
ity is O(log n) [14]. Observe that an element W [i] appears
in the sum of all elements whose indices are higher than its,
i.e., W [i+1], W [i+2], ... , and W [n]. Therefore, at iteration
i instead of summing elements W [1] through W [i − 1] to
compute W [i], one can add W [i− 1] multiplied by the cor-
responding elements of b to W [i] through W [n] [14]. The
loop after such transformation is shown as follows:

for ( k=0 ; k< n - 1 ; k++ )
for ( i= k + 1 ; i < n ; i++ )

W[i] += b[i-1][i-k] * W[k];

In the new loop, at an iteration of the outer loop, all the
addition in the inner loop can be done in parallel, thus the
time complexity is O(1) if infinite number of threads is as-
sumed [14]. Our coarse-grain implementation is based on
the new loop. At each iteration of the outer loop, the com-
putation of the inner loop is partitioned to different threads.
After the computation, all threads join a barrier, then start
next iteration.

However, we regard the barrier-based coarse-grain ap-
proach has several drawbacks. First, The parallelism at each
iteration (outer loop) is continuously decreasing along the
computation. Second, since the number of iterations of the
inner loop, which keeps changing, can not always be di-
vided evenly among threads, the computation is normally
unbalanced. Third, notice that each iteration of the inner
loop computes a different W [i]. When an iteration of the
inner loop is assigned to a thread, a corresponding W [i] is
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of Livermore Loop 6 (4 threads, round-robin
scheduling, chunk size = 1)

loaded, a new value is computed, and stored back to the
global memory. Therefore, there is no locality exploited
for W [i]. Moreover, the barrier at the end of each iteration
creates an “all-to-all wait” scenario, which requires global
communication among threads.

To address these issues, we use SSB-based fine-grain
synchronization to parallelize the loop. The parallelization
is based on the original loop code. For simplicity, we as-
sign the iterations of the outer loop to different threads in a
round-robin fashion. Using this scheduling policy, the com-
putation for a W [i] is performed by a single thread. There-
fore, the partial result of W [i] can be kept in the register of
the thread to exploit the locality. Only when the final result
is computed, the W [i] is written back to global memory.

By analyzing the loop nests carefully, our actual paral-
lelization and synchronization scheme is shown in Figure 3,
which illustrates the case where 8 iterations are concur-
rently executed by 4 threads, and the chunk size of round-
robin scheduling is 1 iteration. When thread 1 completes
iteration 1, it notifies threads 2, 3, and 4 about the avail-
ability of W [1]. Thread 1 then executes iteration 5 accord-
ing to the round-robin work distribution policy. Although
the computation of iteration 5 depends on W [1] to W [4],
it does not have to explicitly wait for W [1], since thread 1
itself computed W [1] previously. Similarly, when thread 2
moves to iteration 6, it does not need to check the availabil-
ity of W [1], or W [2], because W [2] is computed by itself
previously, and when W [2] is available, W [1] is ensured to
be available. By taking this synchronization strategy, after
the computation of an iteration, a thread performs a syn-
chronized write to the memory to notify num threads − 1
readers. When a thread begins a new iteration i to compute
W [i], it uses normal load operations to read from W [0] to
W [(i−1)−(num threads−1)], and uses synchronized read
to load the remaining num threads−1 elements of W . As a

result, no matter how large the problem size is, the number
of synchronization reads and writes required only depends
on the number of threads.

Compared to the barrier-based coarse-grain approach,
our fine-grain solution 1) exploits the inherent fine-grain
parallelism in the computation, thus can achieve better
workload balancing at runtime; 2) achieves much better lo-
cality as explained before; and 3) eliminates the use of bar-
rier, thus avoids the overhead of the barrier as well as the
unnecessary “all-to-all wait” scenario.

3.3 Wavefront Computation

Wavefront computations are common in scientific appli-
cations. In this paper, we focus on the 2D wavefront com-
putation problem. Given a matrix, the left and top edges of
which are all initialized, the computation of each remain-
ing element depends on its neighbors to the left, above, and
above-left. If the solution is computed in parallel, the com-
putation at any instant form a wavefront propagating for-
wards in the solution space.

Figure 4 illustrates the coarse-grain parallelization
scheme inspired by [24]. The solution space is partitioned
along the x dimension. Let T be the number of threads,
X be the number of rows. Each thread is assigned with
the computation of X/T contiguous rows. In order to gain
parallelism, the solution space is further partitioned to K
blocks along the y dimensions. Each thread completes all
the computation in a block, joins a barrier, and starts the
computation of the next block, as shown in Figure 4(b). The
parameter K determines the degree of the parallelism. With
the increase of K, the granularity of data associated with
each barrier synchronization is decreasing, and the number
of global synchronizations (barriers) required is increasing.
Therefore, the level of parallelism that can be exploited is
determined by the efficiency of the barrier synchronization.

In our fine-grain implementation, the rows of the ma-
trix are assigned to threads in a round-robin fashion (mod-
ulo T ). With this static scheduling policy, to compute an
element, only the availability of its above neighbor needs
to be checked. SSB fine-grain single-writer-single-reader
synchronization can be used to enforce the data dependen-
cies. A straightforward synchronization scheme is to al-
low synchronized read/write on each data elements. To re-
duce the amount of synchronization, we group 8 consec-
utive elements in a row as a block. Once a thread com-
pletes the computation for a block, it writes the first ele-
ment of the block to the memory with a synchronized write,
and the other elements in the block are written with normal
store instructions. Afterwards the thread moves to the next
block. Before the computation of a block, a thread performs
a synchronized read to get the first element of the block,
the remaining elements of the block are read with normal
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Figure 4. Coarse-Grain Parallelization of Wavefront Computation: Number of Threads T = 4, Number
of Computation Blocks K = 2 ∗ T = 8.

load instructions. With the fine-grain solution, although the
computation is still in a wavefront form, a thread can be
kept busy as soon as the block, which it is waiting for, be-
comes available. Except the prologue and epilogue stages
of the computation, all threads can be kept usefully busy in
a pipelined fashion. Unlike the global synchronization with
barrier, threads never wait unnecessarily.

4 Evaluation Framework

We evaluate the performance of the three kernels on a
state-of-the-art many-core architecture – the IBM 160-core
Cyclops-64 (C64) chip architecture [13].

The C64 chip architecture explores a many-core design
by integrating a large number (160) of hardware thread units
and embedded SRAM memory banks (32KB each) on a sin-
gle silicon die. C64 also employs an explicitly addressable
memory hierarchy without data cache. All the on-chip and
off-chip resources (e.g., 4 off-chip DRAM banks, 250MB
each) are connected through a high-bandwidth crossbar net-
work. The crossbar also guarantees a sequential consistency
memory model for the C64 chip architecture [13]. C64 has
efficient support for thread level execution, such as ISA-
level sleep/wakeup instructions. All the thread units within
a C64 chip connect to a 16-bit signal bus, which provides a
means to efficiently implement barriers. It is worth noting
that we use the hardware barrier in the implementation of
the coarse-grain parallelization approaches for the three ker-
nels. C64 provides no hardware support for context switch,
and uses a non-preemptive thread execution model. The
peak performance of a C64 chip is 80GFLOPS.

We implemented SSB as an extension to the C64 ISA us-
ing an execution-driven binary-compatible simulator for the
C64 many-core architecture [12]. We model the C64 chip
design with the 160 cores, the multi-level memory hierar-
chy, and the crossbar interconnection network. The simu-
lator takes into account the main sources of pipeline delays

and stalls in the processor architecture, as well as models
all details in the memory hierarchy, including contention
in memory and the crossbar network. The SSB extension
to C64 is implemented in the simulator. SSB instructions
that require return values have the same latency as a load
instruction, otherwise the latency is same as a store instruc-
tion. For our experiments, the chosen size of SSB for on-
chip and off-chip banks are 16 and 1,024 respectively. Both
are 8-way set associative.

5 Experimental Results

In this section, we demonstrate the efficiency and effec-
tiveness of fine-grain data synchronization through the ex-
perimental results.

5.1 1D Laplace Solver

SSB-based fine-grain synchronization naturally ex-
presses the data dependencies in the 1D Laplace solver. The
“one-to-one wait” data synchronization strategy avoids the
unnecessary “all-to-all wait” scenario due to the use of bar-
rier as well as the overhead of barrier. As a result, the SSB-
based fine-grain synchronization approach beats the barrier
based coarse-grain counterpart in all cases, even the C64
hardware-based barrier is very efficient. For example, when
the solver runs on 128 threads with a problem size of 4,096,
the SSB-based version can achieve a speed up of 109, and
outperform the coarse-grain version by 38.1%.

5.2 Linear Recurrence Equations

Given a W array with size 5,120, Figure 6 compares
the fine-grain data synchronization based approach with the
coarse-grain based one. For the fine-grain approach, the
chunk size, is the number of iterations to be scheduled per
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Figure 6. Speedup of Livermore Loop 6

time by the round-robin algorithm. For the coarse-grain ap-
proach, the parallel version is based on a sequential version
that has been loop unrolled certain times specified by the
chunk size. In Figure 6, when chunk size equals to 2 or 4,
the speedups are calculated against the sequential versions,
which have also been loop unrolled twice and 4 times re-
spectively. Therefore, the comparison of two curves will be
meaningful, only if the chunk size is the same. As shown
in Figure 6, the fine-grain data synchronization based ap-
proach always performs better when running on a large
number of threads.

Figure 7 shows the performance improvement of
the SSB-based fine-grain approach over the coarse-
grain one (calculated as (Speedupfine−grain −
Speedupcoarse−grain)/Speedupcoarse−grain). We
can observe that the performance improvement increases
significantly when the number of threads is large. For
example, when 128 threads are used, the fine-grained
approach with a chunk size of 4 achieves an absolute
speedup of 72, which demonstrates a 312% improvement
over the corresponding coarse-grained one. The perfor-
mance advantage of the SSB-based fine-grain approach
is attributed to 1) fine-grain parallelism exploited by
SSB-based synchronization solution; 2) better data locality;
and 3) the removal of the barriers.
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5.3 Wavefront Computation

Our experiments are conducted with a 1024 × 1024 ma-
trix 1. Figure 8 compares the speedups of the fine-grain
approach to the coarse-grain ones.

Recall that we group 8 consecutive elements in a row as
a block in our fine-grain synchronization based paralleliza-
tion scheme. In the code, the computation of the 8 elements
in a block is written in a similar way as loop unrolling. To
make a fair comparison, the innermost loop of the coarse-
grain based implementation is also unrolled 8 times. The
speedups shown in Figure 8 is also calculated against the se-
quential version, the inner loop of which has been unrolled
8 times. For the coarse-grain approach, we experiment with
three different K values.

From Figure 8, it is apparent that the SSB-based fine-
grain approach outperforms others when running with mul-
tiple threads. For the coarse-grain versions, it can also be
observed that a larger K can improve performance only if
the number of threads (T ) is moderate. When number of
threads is large, the cost of barrier cancels out the benefit

1A 1024 × 1024 matrix of doubles exceeds the capacity of on-chip
SRAM memory of current C64 chip design. For the purpose of our exper-
iments, we extend the on-chip SRAM memory to 10M in the simulator.
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brought by associating finer grain of data (due to larger K)
with each barrier synchronization.

Although the data dependencies in wavefront computa-
tion implies serialization, the multithreaded implementation
with fine-grain data synchronization demonstrates the capa-
bility to exploit the inherent parallelism within such com-
putation form. When running with 128 threads, the SSB-
based implementation shows a speedup of 104, which out-
performs the three coarse-grain implementations by 94.9%,
194.2%, and 392.7%, respectively.

5.4 Effectiveness of Fine-Grain Synchro-
nization

An SSB synchronized write fails only if the previous
synchronized write has not been consumed by a synchro-
nized read, while an SSB synchronized read fails if the tar-
get data is not available yet. Both experiences a slow down
if the corresponding SSB happens to be full, since the syn-
chronization operation is trapped to software. A successful
SSB synchronized read can combine synchronization and
memory load into a single memory transaction, thus incurs
low overhead compared to a normal load operation. There-
fore, successful synchronization is always desired.

64 threads 128 threads
Benchmark Success Full Success Full

Rate Rate Rate Rate

1D Laplace Solver 88.20% 0 84.29% 0
(4,096)
Livermore Loop6 87.52% 0 72.13% 0
(chunk size: 4)
Wavefront 99.86% 0 99.83% 0

Table 1. Synchronization Success Rates and
SSB Full Rates

We measured the percentage of successful synchroniza-
tions among all synchronizations issued for the three ker-
nels as shown in Table 1. We can see that even for large

number of threads, most fine-grain synchronization opera-
tions are successful, which in turn ensures low cost of syn-
chronization. We also observed that the SSB buffer never
fills up for the the three kernels. This analysis shows that
a small SSB for each memory bank is normally sufficient
to cache the access states of outstanding synchronizing data
units for multithreading programs. Using modest hardware
cost, SSB achieves the same effect as if each word of the
entire memory is tagged.

6 Related Work

HEP [21], Tera [3], MDP [11], Alewife [18, 2], M-
Machine [17], Cray MTA-2 [1], the MT processor in El-
dorado [15], and others associate additional access state
bits (e.g., full/empty bits) with each word in entire mem-
ory. Fine-grain synchronization is achieved by accessing
those word-level state bits in memory. Experience of paral-
lelizing scientific code with full/empty bits fine-grain syn-
chronization mechanism on Tera [3] or its successor Cray
MTA-2 [1] has been reported in many literatures [22, 9, 5].
Agarwal et. al have reported their experience on the MIT
Alewife machine [2]. They evaluated the performance of
scientific applications, such as SOR, and MICCG3D, paral-
lelized using J-structure and L-structure supported by hard-
ware full/empty bits [18].

An I-structure is a data structure proposed to facilitate
parallel computing [6] on dataflow model based systems.
Using single assignment semantics. an I-structure element
can only be written once, but it can be read many times.
Producer-consumer type of fine-grain data synchronization
is achieved by interacting with the state of an I-structure
when accessing it. Unlike I-structure, which regards the
redefinition of an element as an error, the M-structure is
a fully mutable data structure such that an element can be
redefined repeatedly [7].

Recently, hardware transactional memory (TM) [16, 4,
20, 19], is proposed to support non-blocking fine-grain syn-
chronization. A transaction is a sequence of memory reads
and writes executed by a single thread, which is guaranteed
to be atomic and serializable. TM systems provide great
potential to facilitate multithreading programming. The
design of TM intends to provide a non-blocking replace-
ment for the lock-based mutual exclusion synchronization.
SSB does not only support fine-grain mutual exclusion,
in a blocking fashion, but also fully support determinis-
tic fine-grain data synchronization that enforces read-after-
write data dependencies among concurrent threads.

7 Summary

In this paper, we reported our experience on paralleliza-
tion of three representative scientific application kernels on
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a multithreaded many-core architectures. Using fine-grain
data synchronization mechanisms supported by SSB, a re-
cently proposed architectural extension to many-core chips,
we illustrate how the three kernels can be parallelized to ex-
ploit fine-grain parallelism by avoiding unnecessary waiting
and global communication due to the use of coarse-grain
synchronization. By experimenting on the simulator for the
160-core IBM Cyclops-64 architecture, significant perfor-
mance benefit from using fine-grain data synchronization
has been observed.
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