

1-4244-0910-1/07/$20.00 ©2007 IEEE.

A Comprehensive Analysis of OpenMP Applications on Dual-Core
Intel Xeon SMPs

Ryan E. Grant Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University, Kingston, ON, CANADA K7L 3N6
ryan.grant@ece.queensu.ca ahmad.afsahi@queensu.ca

Abstract

Hybrid chip multithreaded SMPs present new
challenges as well as new opportunities to maximize
performance. Our intention is to discover the optimal
operating configuration of such systems for scientific
applications and to identify the shared resources that
might become a bottleneck to performance under the
different hardware configurations. This knowledge will be
useful to the research community in developing software
techniques to improve the performance of shared memory
programs on modern multi-core multiprocessors.

In this paper, we study a two-way dual-core Hyper-
Threaded (HT) Intel Xeon SMP server under single
program and multi-program multithreaded workloads
using the NAS OpenMP benchmark suite. Our
performance results indicate that in the single-program
case, the CMP-based SMP and CMT-based SMP
configurations have the highest average speedup across
all of the applications. The most efficient architecture is a
single HT-enabled dual-core processor that is almost
comparable to the performance of a 2-way dual-core HT-
disabled system.

1. Introduction

Increasing energy consumption and excessive heat
generation resulting from high CPU clock rates and
increased chip density has driven the processor industry to
develop aggressive Chip Multithreading (CMT) [15]
processors for general-purpose applications. The Intel
Xeon [5], IBM Power5 [8], Intel Itanium 2 [11], and Sun
UltraSPARC T1 [16] are examples of such
microprocessors.

CMT processors combine Chip Multiprocessing (CMP)
[4] and Simultaneous Multithreading (SMT) [18] to
provide better support for thread-level parallelism. CMPs
contain multiple cores on a single chip allowing more than
one thread to be executed at a time. Each core has its own

resources as well as shared resources, such as the memory
bus. The extent of shared resources varies between
different implementations.

SMT is a technique that allows multiple independent
threads to execute different instructions each cycle. Intel
Hyper-Threaded (HT) processors [10] are implementations
of SMT. An HT-enabled core appears as two logical
processors to the operating system, where each processor
maintains a separate run queue. These logical processors
share many hardware resources such as cache, execution
units, TLBs, branch prediction unit, and load and store
buffers. Numerous complex interactions among the
shared resources may affect the performance of
multithreaded applications running on SMTs [17, 3].

CMT-based Symmetric Multiprocessors (SMPs)
present new challenges as well as new opportunities to
maximize performance provided the resources available
could be shared efficiently. As the number of possible
concurrently executing threads increases the sharing and
interaction amongst the threads must be considered. The
increased thread load results in heavy demand on the
cache subsystem, growing numbers of bus transactions,
and more stall cycles [2] that may significantly affect the
performance of OpenMP [13] applications.

To the best of our knowledge, this paper is the first to
study a real two-way Intel Xeon CMT-based SMP server
running OpenMP applications. The Intel Xeon CMT
processors studied in this work have two distinct cores
with separate 2MB L2 caches. Each core has two
hardware contexts, when enabled. The introduction of
dual-channel main memory further complicates the
situation with chip multithreaded SMPs. The layout of the
Intel dual-core Xeon processors has an additional
bottleneck as each individual physical chip shares a
memory bus amongst its two cores.

This paper contributes by evaluating the performance
of various multithreaded hardware configurations under a
number of parallel applications in the NAS OpenMP suite
[7]. We consider the effects of resource sharing within the
processors and/or cores on system performance by

collecting data from the hardware performance counters.
We attempt to pinpoint the architectural limitations of
different multithreaded architectures available in such a
CMT-based SMP system by observing its overall cache
performance, TLB miss rates, stalled CPU cycles, branch
prediction rate, bus transactions, and overall CPI. The
work presented here is the first step towards devising
optimal schedulers to improve the performance of
multithreaded applications running on emerging
multithreaded, multi-core architectures.

Our performance results indicate that for single-
program workloads, the CMP-based SMP and CMT-based
SMP configurations have the highest average speedup
across all of the applications. However, the CMT
architecture despite having half as many available
computational resources has only a 13.6% slowdown over
the CMP-based SMP case.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Our experimental
framework is described in Section 3. Section 4 presents
our performance results and analysis. Finally, the paper is
concluded in Section 5 with some thoughts on future
research.

2. Related Work

SMT [18], CMP [4], and CMT [15] architectures have
been well studied and analyzed by researchers to
determine their potential pitfalls. However, most of the
research has been done with single-threaded applications,
simulations, or analytical methods. Some work has been
reported on multi-program, single-threaded workloads [17,
1] as well as multithreaded parallel applications [2, 19, 17,
9, 3]. Our work in this paper concerns parallel workloads
on real CMT-based SMP systems.

In the analysis of SMT implementations on real
machines, Tuck and Tullsen [17] analyzed the Intel
Pentium 4 HT processor. They found that up to a 25%
improvement in the performance of parallel applications
could be achieved, but the Pentium 4 HT shows symbiotic
[14] behavior due to cache and resource conflicts. Bulpin
and Pratt [1] studied the performance of a dual-CPU HT
processor. They found high cache miss rate could be
detrimental on simultaneously executing threads. Grant
and Afsahi [3] experimented with dual and quad HT-based
Intel servers. They discovered majority of parallel
applications benefit from having a second thread in one-
processor situations. However, only a few applications
enjoy performance gain when HT is enabled on both
processors. They identified the trace cache misses and its
delivery rate as a potential performance bottleneck.

Liao et al. [9] evaluated OpenMP on Sun UltraSPARC
IV chip multiprocessor servers. They devised several
experiments in order to get a better understanding of the
behavior of OpenMP on such architectures. They

observed that the OpenMP implementation designed for
traditional SMP architecture might not achieve good
scalability. Zhu et al. [20] studied performance of basic
OpenMP constructs on the IBM Cyclops-64 architecture,
consisting of 160 hardware thread units in a chip.

Curtis-Maury and others [2] introduced new scheduling
policies that use runtime performance information to
identify the best mix of threads to run across processors
and within each processor. In [19], Zhang and Voss
focused on tuning the behavior of OpenMP applications
executing on SMPs with SMT processors. They proposed
a self-tuning loop scheduler to react to behavior caused by
inter-thread data locality, instruction mix and SMT-related
load imbalance.

3. Experimental Methodology

The experiments were conducted on a Dell PowerEdge
2850 SMP server. The PowerEdge 2850 has two dual-
core 2.8GHz Intel Xeon EM64T processors (Paxville
core), with a 12KB shared execution trace cache, and
16KB L1 shared data cache on each core. A private 2MB
L2 cache is available for each core on the chip. There are
4GB of DDR-2 SDRAM on an 800 MHz Front Side Bus.

Using LMbench [12] we have measured the L1, L2,
and main memory latencies of the processor at 1.43ns,
10.61 ns, and 136.85ns, respectively. The main memory
read and write bandwidths are 3.57 GB/s and 1.77 GB/s,
respectively. The system was tested to determine if any
memory bandwidth differences existed between the
operation of threads on a single physical chip and the
operation of those same threads spread out to both
physical chips. It was discovered that the main memory
read and write bandwidths when using two physical chips
are 4.43 GB/s and 1.61 GB/s respectively. The memory
bandwidth of system is important, as it is a known source
of performance limitation. Although memory latencies
and bandwidth have a major effect on such commercial
systems, they are unavoidable and conclusions made on
the performance of such architectures must be made in an
environment inherently bound by such memory
limitations.

The operating system used for the testing was a Red
Hat Linux Enterprise WS 4.1 distribution with Kernel
2.6.9-11. This kernel provided the option to limit the
number of processors that can be activated by the
operating system. The number of active processors was
limited using the maxcpus = X boot option of the kernel.
This option causes the kernel to only initialize and use X
logical processors. This method of disabling additional
processors is preferable when determining scalability since
it better emulates a smaller system. To test the system in a
variety of configurations some of the tests were run while
masking off some of the available processors in the
system, enabling us to test the performance using different

thread distributions between the existing resources. The
default Linux scheduler was used for assigning the
individual threads amongst the specified processors.

3.1. Terminology

Figure 1 presents the labeling used for the hardware
contexts in the HT-enabled and HT-disabled systems.
Such labeling will help understand the hardware contexts
available for use in each configuration.

Figure 1. System configuration labeling.

Table 1 shows the various configurations used in our
study. The basic terminology used to describe these
configurations is comprised of three parts. The first part is
either HToff or HTon, which describes the state of Hyper-
Threading in the system. The second term indicates the
total number of application threads that were used. The
third term represents the number of physical processor
chips used in the tests (i.e. the number of dual-core
processors used, either 1 or 2).

Table 1. Configuration information

Terminology H/W Contexts Architecture
Serial B0 Serial
HTon -2-1 A0, A1 SMT
HToff -2-1 B0, B1 CMP
HTon -4-1 A0, A1, A2, A3 CMT
HToff -2-2 B0, B2 SMP
HTon -4-2 A0, A1, A4, A5 SMT-based SMP
HToff -4-2 B0, B1, B2, B3 CMP-based SMP
HTon -8-2 A0, A1, A2, A3,

A4, A5, A6, A7
CMT-based SMP

3.2. NAS OpenMP Benchmarks

The NAS Parallel Benchmarks have been widely used
to characterize high-performance computers. We used the
NAS OpenMP benchmark suite (version 3.2) [7] in our

experiments. The suite consists of five kernels, (CG, MG,
FT, IS, EP), and three simulated CFD applications (BT,
SP, LU). We experimented with Class B of CG, MG, BT,
FT, SP, and LU benchmarks. Class B is large enough to
provide realistic results, while ensuring that the working
set fits in memory.

Application characteristics were gathered at run-time
using the hardware performance counters available on the
Intel Xeon processor. We collected the data using Intel
VTune Performance Analyzer version 7.2 [6]. The Intel
Fortran and C/C++ compilers (version 8.1) were used to
build the benchmark applications. The default compiler
flags for the NAS make utility were used during
compilation.

4. Experimental Results and Analysis

In order to present the results in a fair manner, the
configurations must be divided into several groups. The
HTon-2-1 configuration must be examined in comparison
to the serial case. In the second group, the HToff-2-1
configuration can be compared directly to the HTon-4-1
configuration, the only difference between the two being
the presence of HT. The third group comprises the HTon-
4-2 and HToff-2-2 configurations, which can also be
compared to the second group, as the difference between
these two groups is the use of both physical chips,
although only at 50% usage to create resources similar to
those available to the second group. The fourth and final
group is the HToff-4-2 and HTon-8-2 group, which utilizes
all of the resources available in our platform with HT on
and off. Comparisons may also be made between groups,
but only in the context of performance per resources
available to help determine the configurations that make
the best use of the resources available to them.

4.1. Multithreaded, Single-Program Results

In this section, we present the wall clock performance
of individual applications running under various
multithreaded configurations. Their impact on
architectural components is shown in Figure 2.

4.1.1. Cache Performance. The performance of the cache
is very important to overall system performance, and can
illustrate potential benefits and drawbacks of certain
system configurations. The L1 cache miss rates are flat
across the different configurations. This seems counter-
intuitive but is a byproduct of the benchmark applications
themselves as they use a large amount of infrequently
changing variables in their calculations, and only a small
number of new variables for each loop. This means that a
large number of L1 cache requests are hits, while only a
small number are misses, requesting the few new variables
required for the next loop. This leads to a good L1 cache

 A0 A1 A2
A3

 Core 1 Core 2 Core 1 Core 2

A0 A1 A2 A3 A4 A5 A6 A7

CMT1 CMT2

 Core 1 Core 2
 CMP1 CMP2

HT-enabled System

 Core 1 Core 2

 B0 B1 B2 B3

HT-disabled System

miss percentage due to the large number of requests.
Examining the HTon-2-1 configuration, we can see that

it has relatively good trace cache performance and
excellent overall hit rates within each level of cache for all
of the applications with the exception of the L2 miss rate
for the LU benchmark. The second group is similar to the
third group in trends in memory performance, with the
HTon configurations having a higher miss rate than the
HToff configurations. This is not unexpected as the HTon
configurations have less memory available to the system
per execution thread, thereby causing more cache
evictions, which are not offset by the sharing of data
between the threads.

The final group of HToff-4-2 and HTon-8-2 has fairly
comparable memory performances, with the HTon-8-2
having the advantage only on the trace cache of the CG
and MG benchmarks while the HToff-4-2 configuration has
the advantage in the L2 miss rate on the LU benchmark.

4.1.2. TLB Performance. ITLB misses rise significantly
between the different groups, with the number of ITLB
misses increasing as the complexity and resources of the
architectures increase. DTLB misses are relatively flat
across all groups indicating that the increases in
complexity do not significantly impact the performance of
the DTLB.

4.1.3. Stall Cycles. The examination of the number of
cycles spent stalled due to memory order clearing, mis-
predicted branches, lack of instructions in the trace cache,
or the delay caused by the need to load data in from
memory can help to determine why some of the
configurations are performing the way they do. The
number of cycles spent in a stalled state for the HTon-2-1
configuration is poor relative to the other configuration
groups. This is most likely due to its lack of
computational resources. Group 2, 3 and 4 show similar
patterns with the HTon configurations having more stalled
cycles than the HToff configurations. This is an indication
of thread contention for shared resources in the cores.
Interestingly, the configurations from group 3 are worse in
terms of percentage of stalled cycles throughout all of the
tests compared to group 2. The average percentage of
stalled cycles for the HToff configurations is 0.83%, while
the average for the HTon configurations is 1.62%.

4.1.4. Branch Prediction. Branch prediction rates are
excellent for almost all of the benchmarks across all
configurations, with the exception of the HTon
configurations from groups 2 and 3 for CG and HTon-8-2
for MG. This helps to explain the number of stalled cycles
and consequently the high CPI that the HTon
configurations in groups 2 and 3 have for the CG
benchmark.

4.1.5. Bus Transactions. When examining the bus
transaction characteristics of the configurations it is clear
that group 1 is the only group that has the memory
bandwidth capacity left over to perform any kind of pre-
fetching activities, spending ~50% of its time in 4 of 5 of
the benchmarks pre-fetching data into the cache. The only
other instance of significant pre-fetching is the HTon-8-2
configuration for the CG benchmark.

4.1.6. CPI. When examining the Cycles per Instruction
(CPI) of the different configurations, many of the
observations made in the previous sections can be
observed impacting the efficiency of the system. It is
interesting to note that the high CPIs of the HTon
configurations from groups 2 and 3 running the CG
benchmark correlate directly to very poor branch
prediction rates and relatively high L2 cache miss rates,
which combine to give these two configurations higher
CPIs than those in their respective groups. The poor CPI
of the HTon-8-2 configuration executing MG also
corresponds to a poor branch prediction rate but without
the high L2 cache miss rate. This makes sense as a high
branch misprediction rate would cause many flushes of the
execution pipeline and therefore reduce overall efficiency.
The configurations with high relative CPIs also have a
correspondingly lower speedup.

4.1.7. Wall Clock Performance. The NAS benchmarks
were run through a series of ten independent trials, with
minimal variance between tests (<~1-5%). The speedup
of NAS applications is depicted in Figure 3, while the
average speedup across all applications for various
multithreaded architectures is shown in Table 2.

Overall, the CMP-based SMP and CMT-based SMP
configurations have the highest average speedup across all
of the applications. The runtimes of the NAS benchmarks
show an interesting trend that is new to the dual-core Intel
Xeon architecture, that the use of SMT on a CMT chip can
be extremely beneficial to the performance of a system.
Of particular interest are the results for HTon-4-1. In this
case, the overall performance of a single CMT chip is
comparable (13.6% slowdown) to the performance of two
dual-core processors operating with HToff (CMP-based
SMP) despite having half as many available computational
resources.

When overall processor resources are increased to
utilize two dual-core processors with HT enabled, the
results are similar to previously observed HT-related
behavior in that the overall effect reduces computational
speed and results in a slowdown of approximately 6.7%
versus HToff [3]. Therefore, we can conclude that HT is of
benefit when enabled for smaller numbers of processors
(<4). However, the efficiency of HT with fewer physical
processors has increased from previous observations most
likely due to the improvements in memory bus speed.

L1 Cache Miss Rate

0
10
20
30
40
50
60

BT CG MG LU SP

M
is

s
Ra

te
 (%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

L2 Cache Miss Rate

0

10

20

30

40

BT CG MG LU SP

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Trace Cache Miss Rate

0
20
40
60
80

100

BT CG MG LU SP

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

ITLB Miss Rate

0

20

40

60

80

100

BT CG MG LU SP

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Normalized DTLB Load and Store Misses

0

0.4

0.8

1.2

1.6

BT CG MG LU SP

N
or

m
al

iz
ed

 o
ve

r S
er

ia
l

Hton-2-1 Htoff-2-1 Hton-4-1 HToff-2-2
Hton-4-2 Htoff-4-2 HTon-8-2

% Stalled Operation

0

1

2

3

4

5

BT CG MG LU SP

St
al

le
d

O
pe

ra
tio

n
(%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HTofff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Branch Prediction Rate

80

85

90

95

100

BT CG MG LU SPB
ra

nc
h

Pr
ed

ic
tio

n
R

at
e(

%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

% P re fe tch in g B u s A c ce ss es

0

20

40

60

80

100

B T C G M G L U S P

%
 P

re
fe

tc
hi

ng
 B

us

A
cc

es
se

s

Se ria l HT on -2-1 HT off-2 -1 HTo n-4-1
HT off-2 -2 HT on -4-2 HT off-4 -2 HTo n-8-2

CPI

0

2

4

6

8

10

BT CG MG LU SP

C
PI

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 2. L1, L2, and trace cache miss rates, ITLB miss rate, DTLB load and store misses
normalized to serial case, % of execution spent in a stalled state, branch prediction rate,
% of prefetching bus accesses, and CPI of NAS benchmarks.

NAS OpenMP Benchmark Speedup

0
0.5

1
1.5

2
2.5

3
3.5

BT CG MG LU SP

Sp
ee

du
p

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 3. Speedup for NAS OpenMP applications.

Except for the CG benchmark, the performance of the
HTon-8-2 case is worse than the HToff-4-2 case. To better
understand the reasons behind this we examine the CG
application in detail. In general, the HTon-8-2 setup results
in less total bus accesses than the HToff-4-2 case, with an
L1 cache miss rate of 47.1% versus 56.2% for the HToff-4-
2 case. This, coupled with an L2 cache miss rate of 1%
versus 9.6% translates into a higher number of non-

prefetching bus accesses from the HToff-4-2 case. The
HToff-4-2 case has a lower CPI of 1.04 versus the HTon-8-
2’s CPI of 4.02 that would imply that the performance of
the HToff-4-2 case should be superior. However, a large
number of bus transactions in the HTon-8-2 case are
speculative prefetching (51.2% of all bus accesses) while
the vast majority of bus transactions for the HToff-4-2 case
are not the result of prefetching. This leads to much more
speculative execution in the HTon-8-2 case, which is not
accounted for in the CPI as it is counted as cycles per
instruction committed. The trace cache performance of
the HTon-8-2 system is worse than the HToff-4-2 case in all
of the benchmarks, except for CG and MG, with the
HTon-8-2 configuration having a major advantage of
35.6% miss rate versus the HToff-4-2’s miss rate of 87.3%
for CG.

Table 2. Average speedup for architectures

SMT

CMP

CMT

SMP

SMT
based
SMP

CMP
based
SMP

CMT
based
SMP

1.81 1.42 1.87 1.83 1.43 2.11 2.10

4.2. Multithreaded, Multi-Program Results

The performance of the given architectural
configurations is also of interest in a multi-program
environment. The results shown in Figure 4 were
collected using the same configurations as in the previous
section, but utilized more than one concurrent program
execution at a time to examine the ability of the
architectures to handle complimentary and
uncomplimentary workloads of multiple programs. Two
NAS benchmarks were selected for this task: the FT
benchmark, which is a Fourier transform operation
requiring mostly computational resources and limited
memory resources; and the CG benchmark, which requires
significant memory resources.

Three separate tests were conducted, one with two
copies of CG, one with two copies of FT and one with one
copy of CG and one copy of FT. The maximum number
of execution threads available to each system
configuration was used, with the threads being distributed
evenly between the executing programs.

4.2.1. Cache Performance. The L1 cache miss rates are
relatively stable across the different configurations.
However, the L2 cache miss rates show that the HTon-2-1
configuration has difficulty achieving a high hit rate for
the CG, as does the HTon-8-2 configuration. In general, all
of the HTon configurations have a worse L2 miss rate than
their HToff equivalents, except for a few cases with the
CG/CG workload.

The trace cache miss rate finds the HToff configurations
for both groups 2 and 3 are better than the HTon
configurations for both the CG/FT and CG/CG workloads,
with the HTon configurations having an advantage in the
FT/FT workload. The advantage for the HTon
configurations for the FT/FT workload for group 2 is
significant, but the advantage is even greater for the HTon
configuration of group 3. Finally, group 4 shows that
there is no advantage to the HTon-8-2 configuration in
terms of trace cache misses for any of the workloads.

4.2.2. TLB Performance. The HTon configurations suffer
from excessive ITLB misses in groups 2 and 3 when
running CG. In general, the CG and FT benchmarks
benefit from running together versus their identical pairs.
The HTon configuration from group 3 also has difficulties
with its DTLB for the FT/FT and CG/CG workloads. This
implies that the execution units are potentially being
starved of instructions, but further investigation into the
amount of stalling that occurs due to these misses is
required to determine the real effect of this finding.

4.2.3. Stall Cycles. The amount of total execution cycles
spent in a stalled state for this multi-application workload
is surprising. When running a complimentary workload
(CG/FT) we can see that a significant amount of time is
spent in a stalled state. From this, we can infer that the
system is having a very difficult time providing the
programs with the required resources, possibly switching
the processors on which the programs are running
frequently. This implies that there could potentially be
significant gains in performance made if the exact causes
of this stalled operation can be determined and rectified.

4.2.4. Branch Prediction. When examining the branch
prediction rate we can see that the HToff configurations
from groups 2 and 3 are both worse than the HTon
configurations for all of the tests except for the CG/CG
workload. Group 1 has relatively good branch prediction
across the workloads, and group 4 shows that there is only
a marginal difference between the branch prediction rates
between the HTon-8-2 and HToff-4-2 configurations.

4.2.5. Bus Transactions. The prefetching activities being
undertaken by each of the configurations reinforce the
stalled operation results examined earlier in this section.
The configurations spend a significant amount of time
prefetching when running the CG/FT workload. From this
we can infer that the source of the stalling is not due to
memory bandwidth issues, but instead can be attributed to
other factors such as pipeline flushes.

4.2.6. CPI. The CPI results for each workload indicate that
despite the high number of execution cycles in which the
systems are stalled for the CG/FT workload, the actual
CPI of the HTon configurations does not suffer
significantly. With the exception of the CG/CG workload,
the HTon configurations for groups 2 and 3 are better than
the HToff configurations in terms of CPI. Group 4 shows
that the HTon-8-2 configuration is worse for all workloads
than the HToff-4-2 configuration.

4.2.7. Wall Clock Performance. The results clearly
indicate that there is a tangible performance benefit to
running compute bound and memory bound applications
separately as the performance of both applications is better
in such a configuration for most architectures.
Surprisingly, the best performer of any configuration is
HTon-4-2, which is the fastest overall in two of the three
configurations. The HTon-8-2 configuration is the fastest
for the CG/FT test but only by a small margin. This
indicates that for multi-application workloads, some HTon
configurations can offer a significant performance benefit.

L1 Cache Miss Rate

0

10

20

30

40

50

60

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

L2 Cache Miss Rate

0

5

10

15

20

25

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Trace Cache Miss Rate

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

ITLB Miss Rate

0
10
20
30
40
50
60
70
80
90

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
R

at
e

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Normalized DTLB Load and Store Misses

0

0.5

1

1.5

2

2.5

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

No
rm

al
iz

ed
 o

ve
r S

er
ia

l

HTon-2-1 HToff-2-1 HTon-4-1 HToff-2-2
HTon-4-2 HToff-4-2 HTon-8-2

% Stalled Operation

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

St
al

le
d

O
pe

ra
tio

n
(%

)
Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Branch Prediction Rate

90

92

94

96

98

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

B
ra

nc
h

Pr
ed

ic
tio

n
R

at
e(

%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

% Prefetching Bus Accesses

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

%
 P

re
fe

tc
hi

ng
 B

us
A

cc
es

se
s

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

CPI

0

5

10

15

20

25

30

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

CP
I

Serial HTon-2-1 HToff-2-1 HTon-4-1
HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

CG/FT Multiprogrammed Speedup Over Serial

0

0.5

1

1.5

2

HTon-
2-1

HToff-
2-1

HTon-
4-1

HToff-
2-2

HTon-
4-2

HToff-
4-2

HTon-
8-2

Sp
ee

du
p

CG FT

FT/FT Multiprogrammed Speedup Over Serial

0

0.5

1

1.5

2

HTon-
2-1

HToff-
2-1

HTon-
4-1

HToff-
2-2

HTon-
4-2

HToff-
4-2

HTon-
8-2

Sp
ee

du
p

FT FT

CG/CG Multiprogrammed Speedup Over Serial

0
0.5

1
1.5

2
2.5

3

HTon-
2-1

HToff-
2-1

HTon-
4-1

HToff-
2-2

HTon-
4-2

HToff-
4-2

HTon-
8-2

Sp
ee

du
p

CG CG

Figure 4. L1, L2, and trace cache miss rates, ITLB miss rate, DTLB load and store misses
normalized to serial case, % of execution spent in a stalled state, branch prediction rate, %
of prefetching bus accesses, and CPI and speedup of multi-program workloads.

4.3. Cross-Product Multi-Program Results

The configurations were tested using pairs of
applications, and completed for all possible two-program
configurations. The program pairs were run with enough
evenly distributed threads as to fully load the architecture
under test. The testing setup and methodology used for
the cross-product pairs was identical to that used in section
4.2 with the exception of the larger set of applications that
were used. The results are shown in a box and whiskers
plot in Figure 5. The boxes in the figure represent the
interquartile ranges of data (the 25th and 75th percentile of
the data falls within the box), while the whiskers represent
the maximum and minimum of the data.

From these results, we can conclude that the HToff-4-2
(CMP-based SMP) architecture provides the overall best
performance for the majority of program pairs across all of
the benchmarking programs. However, for certain
program pairs, the HTon architectures can provide better
overall performance. The performance of the CG
benchmark when running with the BT benchmark on the
HTon architectures is significantly better than on the HToff
architectures, which accounts for the large whiskers on the
CG results for the HTon architectures. However, BT does

not see significant speedup when run in conjunction with
CG on HTon architectures.

Multi-Programmed Speedup of NAS Benchmark Pairs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~ B
T

C
G

M
G LU S
P ~~

S
pe

ed
up

HTon
-2-

1

HToff-2
-1

HTon
-4-

1

HToff-2
-2

HTon
-4-2

HToff-4
-2

HTon
-8-2

Configuration

Figure 5. Speedup of NAS Benchmark Pairs.

5. Conclusions and Future Work

Multi-core systems have become the mainstream in
processor design. Such processors present new challenges
in maximizing performance especially when a number of
them are configured in an SMP fashion. This paper sought

to identify the optimal configurations for running OpenMP
applications and to discover the shared resources that
might become a bottleneck to performance under the
different hardware configurations available in chip
multithreaded SMPs. By determining the potential causes
of poor scalability or performance on different
architectures we can adapt future operating system
schedulers to achieve optimal performance when running
OpenMP applications.

In this paper, we presented the performance of
scientific applications from the NAS OpenMP suite on a
range of system configurations on a 2-way dual-core Intel
Xeon SMP. By collecting data from hardware
performance counters, we analyzed the effect of HT on the
various system configurations. When utilizing all of the
available system resources, most applications suffer from
the increasing number of L2 cache misses, and resource
contention when both dual-core processors use HT.

Our results indicate that the most efficient architecture
is a single dual-core processor with HT enabled, in terms
of total computing power per system resources available.
However, only one application enjoyed a performance
gain due to HT on both dual-core processors. We
discovered that the CMP-based SMP provides the best
overall performance for the majority of program pairs
across all of the benchmarking programs for the multi-
program cases.

The decisions made by the scheduler are crucial to the
performance of multithreading architectures. We are
currently experimenting with other schedulers to improve
the performance of OpenMP parallel applications on such
hardware platforms. It is clear that the CPI, L1 and L2
cache miss ratios are not foolproof indicators of machine
performance. Therefore, we intend to use the knowledge
presented here to devise methods of measuring the overall
efficiency of the system to achieve excellent performance
while ensuring high machine throughput.

6. Acknowledgments

We would like to thank the anonymous referees for
their insightful comments. This work is supported by
grants from the Natural Sciences and Engineering
Research Council of Canada (NSERC), Canada
Foundation for Innovation (CFI), Ontario Innovation Trust
(OIT), and Queen’s University.

References

[1] J.R. Bulpin and I.A. Pratt. Multiprogramming performance

of the Pentium 4 with Hyper-Threading. In 3rd Annual
Workshop on Duplicating, Deconstruction and Debunking
(WDDD 2004), pages 53–62, 2004.

[2] M. Curtis-Maury, T. Wang, C.D. Antonopoulos and D.S.
Nikolopoulos. Integrating Multiple Forms of Multithreaded

Execution on SMT Processors: A Quantitative Study with
Scientific Workloads. In 2nd International Conference on the
Quantitative Evaluation of Systems (QEST’05), 2005.

[3] R.E. Grant and A. Afsahi. Characterization of multi-
threaded scientific workloads on simultaneous
multithreading Intel processors. In Workshop on Interaction
between Operating System and Computer Architecture
(IOSCA 2005), 2005.

[4] L. Hammond, B.A. Nayfeh, and K.A. Olukotun. A single-
chip Multiprocessor. IEEE Computer, 30(9):79-85, 1997.

[5] Intel Corp., Intel Xeon processor. 2006.
[6] Intel Corp., Intel VTune performance analyzer, 2006.
[7] H. Jin, M. Frumkin, and J. Yan. The OpenMP

implementation of NAS parallel benchmarks and its
performance. NAS Technical report NAS-99-011, NASA
Ames Research Center, 1999.

[8] R. Kalla, B. Sinharoy, and J.M. Tendler. IBM Power5 chip:
a dual-core multithreaded processor. IEEE Micro, 24(2):40-
47, 2004.

[9] C. Liao, Z. Liu, L. Huang, and B. Chapman. Evaluating
OpenMP on chip multitreading platforms. In 1st
International Workshop on OpenMP (IWOMP 2005), 2005.

[10] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty,
J.A. Miller, and M. Upton. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology
Journal, Vol. 6, Issue 01, 2002.

[11] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-
thread Itanium processor. IEEE Micro, 25(2):10-20, 2005.

[12] L.W. McVoy and C. Staelin. Lmbench: Portable tools for
performance analysis. In 1996 USENIX Annual Technical
Conference, pages 279-294, 1996.

[13] OpenMP Architecture Review Board, OpenMP Specification
Version 2.5, 2005.

[14] A. Snavely and D.M. Tullsen. Symbiotic job scheduling for
a Simultaneous Multithreading Processor. In 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS’IX), pages 234-244, 2000.

[15] L. Spracklen and S.G. Abraham. Chip multithreading:
opportunities and challenges. In 11th International
Symposium on High-Performance Computer Architecture
(HPCA-11), pages 248-252, 2005.

[16] Sun Corp., Sun UltraSPARC T1 Processor, 2006.
[17] N. Tuck and D.M. Tullsen. Initial observations of the

simultaneous multithreading pentium 4 processor. In 12th
International Conference on Parallel Architectures and
Compilation Techniques (PACT 2003), pages 26-34, 2003.

[18] D.M. Tullsen, S.J. Eggers and H.M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd

Annual International Symposium on Computer Architecture
(ISCA’95), pages 392-403, 1995.

[19] Y. Zhang and M. Voss. Runtime empirical selection of loop
schedulers on Hyperthreaded SMPs. In 19th IEEE/ACM
International Parallel and Distributed Processing
Symposium (IPDPS 2005), 2005.

[20] W. Zhu, J.D. Cuvillo, and G.R. Gao. Performance
characteristics of OpenMP constructs on a many-core-on-a-
chip architecture. In 2nd International Workshop on OpenMP
(IWOMP 2006), 2006.

