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Abstract 
 

Hybrid chip multithreaded SMPs present new 
challenges as well as new opportunities to maximize 
performance.  Our intention is to discover the optimal 
operating configuration of such systems for scientific 
applications and to identify the shared resources that 
might become a bottleneck to performance under the 
different hardware configurations.  This knowledge will be 
useful to the research community in developing software 
techniques to improve the performance of shared memory 
programs on modern multi-core multiprocessors. 

In this paper, we study a two-way dual-core Hyper-
Threaded (HT) Intel Xeon SMP server under single 
program and multi-program multithreaded workloads 
using the NAS OpenMP benchmark suite. Our 
performance results indicate that in the single-program 
case, the CMP-based SMP and CMT-based SMP 
configurations have the highest average speedup across 
all of the applications.  The most efficient architecture is a 
single HT-enabled dual-core processor that is almost 
comparable to the performance of a 2-way dual-core HT-
disabled system. 
 
 

1. Introduction 
 

Increasing energy consumption and excessive heat 
generation resulting from high CPU clock rates and 
increased chip density has driven the processor industry to 
develop aggressive Chip Multithreading (CMT) [15] 
processors for general-purpose applications.  The Intel 
Xeon [5], IBM Power5 [8], Intel Itanium 2 [11], and Sun 
UltraSPARC T1 [16] are examples of such 
microprocessors. 

CMT processors combine Chip Multiprocessing (CMP) 
[4] and Simultaneous Multithreading (SMT) [18] to 
provide better support for thread-level parallelism.  CMPs 
contain multiple cores on a single chip allowing more than 
one thread to be executed at a time.  Each core has its own 

resources as well as shared resources, such as the memory 
bus.  The extent of shared resources varies between 
different implementations.  

SMT is a technique that allows multiple independent 
threads to execute different instructions each cycle.  Intel 
Hyper-Threaded (HT) processors [10] are implementations 
of SMT.  An HT-enabled core appears as two logical 
processors to the operating system, where each processor 
maintains a separate run queue.  These logical processors 
share many hardware resources such as cache, execution 
units, TLBs, branch prediction unit, and load and store 
buffers.  Numerous complex interactions among the 
shared resources may affect the performance of 
multithreaded applications running on SMTs [17, 3]. 

CMT-based Symmetric Multiprocessors (SMPs) 
present new challenges as well as new opportunities to 
maximize performance provided the resources available 
could be shared efficiently.  As the number of possible 
concurrently executing threads increases the sharing and 
interaction amongst the threads must be considered.  The 
increased thread load results in heavy demand on the 
cache subsystem, growing numbers of bus transactions, 
and more stall cycles [2] that may significantly affect the 
performance of OpenMP [13] applications. 

To the best of our knowledge, this paper is the first to 
study a real two-way Intel Xeon CMT-based SMP server 
running OpenMP applications.  The Intel Xeon CMT 
processors studied in this work have two distinct cores 
with separate 2MB L2 caches.  Each core has two 
hardware contexts, when enabled.  The introduction of 
dual-channel main memory further complicates the 
situation with chip multithreaded SMPs.  The layout of the 
Intel dual-core Xeon processors has an additional 
bottleneck as each individual physical chip shares a 
memory bus amongst its two cores.  

This paper contributes by evaluating the performance 
of various multithreaded hardware configurations under a 
number of parallel applications in the NAS OpenMP suite 
[7].  We consider the effects of resource sharing within the 
processors and/or cores on system performance by 



 

collecting data from the hardware performance counters.  
We attempt to pinpoint the architectural limitations of 
different multithreaded architectures available in such a 
CMT-based SMP system by observing its overall cache 
performance, TLB miss rates, stalled CPU cycles, branch 
prediction rate, bus transactions, and overall CPI.  The 
work presented here is the first step towards devising 
optimal schedulers to improve the performance of 
multithreaded applications running on emerging 
multithreaded, multi-core architectures. 

Our performance results indicate that for single-
program workloads, the CMP-based SMP and CMT-based 
SMP configurations have the highest average speedup 
across all of the applications.  However, the CMT 
architecture despite having half as many available 
computational resources has only a 13.6% slowdown over 
the CMP-based SMP case.  

The rest of this paper is organized as follows.  Related 
work is discussed in Section 2.  Our experimental 
framework is described in Section 3.  Section 4 presents 
our performance results and analysis.  Finally, the paper is 
concluded in Section 5 with some thoughts on future 
research. 
 

2. Related Work 
 

SMT [18], CMP [4], and CMT [15] architectures have 
been well studied and analyzed by researchers to 
determine their potential pitfalls.  However, most of the 
research has been done with single-threaded applications, 
simulations, or analytical methods.  Some work has been 
reported on multi-program, single-threaded workloads [17, 
1] as well as multithreaded parallel applications [2, 19, 17, 
9, 3].  Our work in this paper concerns parallel workloads 
on real CMT-based SMP systems. 

In the analysis of SMT implementations on real 
machines, Tuck and Tullsen [17] analyzed the Intel 
Pentium 4 HT processor.  They found that up to a 25% 
improvement in the performance of parallel applications 
could be achieved, but the Pentium 4 HT shows symbiotic 
[14] behavior due to cache and resource conflicts.  Bulpin 
and Pratt [1] studied the performance of a dual-CPU HT 
processor.  They found high cache miss rate could be 
detrimental on simultaneously executing threads.  Grant 
and Afsahi [3] experimented with dual and quad HT-based 
Intel servers.  They discovered majority of parallel 
applications benefit from having a second thread in one-
processor situations.  However, only a few applications 
enjoy performance gain when HT is enabled on both 
processors.  They identified the trace cache misses and its 
delivery rate as a potential performance bottleneck. 

Liao et al. [9] evaluated OpenMP on Sun UltraSPARC 
IV chip multiprocessor servers.  They devised several 
experiments in order to get a better understanding of the 
behavior of OpenMP on such architectures.  They 

observed that the OpenMP implementation designed for 
traditional SMP architecture might not achieve good 
scalability.  Zhu et al. [20] studied performance of basic 
OpenMP constructs on the IBM Cyclops-64 architecture, 
consisting of 160 hardware thread units in a chip. 

Curtis-Maury and others [2] introduced new scheduling 
policies that use runtime performance information to 
identify the best mix of threads to run across processors 
and within each processor.  In [19], Zhang and Voss 
focused on tuning the behavior of OpenMP applications 
executing on SMPs with SMT processors.  They proposed 
a self-tuning loop scheduler to react to behavior caused by 
inter-thread data locality, instruction mix and SMT-related 
load imbalance. 
 

3. Experimental Methodology 
 

The experiments were conducted on a Dell PowerEdge 
2850 SMP server.  The PowerEdge 2850 has two dual-
core 2.8GHz Intel Xeon EM64T processors (Paxville 
core), with a 12KB shared execution trace cache, and 
16KB L1 shared data cache on each core.  A private 2MB 
L2 cache is available for each core on the chip.  There are 
4GB of DDR-2 SDRAM on an 800 MHz Front Side Bus.   

Using LMbench [12] we have measured the L1, L2, 
and main memory latencies of the processor at 1.43ns, 
10.61 ns, and 136.85ns, respectively.  The main memory 
read and write bandwidths are 3.57 GB/s and 1.77 GB/s, 
respectively.  The system was tested to determine if any 
memory bandwidth differences existed between the 
operation of threads on a single physical chip and the 
operation of those same threads spread out to both 
physical chips.  It was discovered that the main memory 
read and write bandwidths when using two physical chips 
are 4.43 GB/s and 1.61 GB/s respectively.  The memory 
bandwidth of system is important, as it is a known source 
of performance limitation.  Although memory latencies 
and bandwidth have a major effect on such commercial 
systems, they are unavoidable and conclusions made on 
the performance of such architectures must be made in an 
environment inherently bound by such memory 
limitations. 

The operating system used for the testing was a Red 
Hat Linux Enterprise WS 4.1 distribution with Kernel 
2.6.9-11.  This kernel provided the option to limit the 
number of processors that can be activated by the 
operating system.  The number of active processors was 
limited using the maxcpus = X boot option of the kernel.  
This option causes the kernel to only initialize and use X 
logical processors.  This method of disabling additional 
processors is preferable when determining scalability since 
it better emulates a smaller system.  To test the system in a 
variety of configurations some of the tests were run while 
masking off some of the available processors in the 
system, enabling us to test the performance using different 



 

thread distributions between the existing resources.  The 
default Linux scheduler was used for assigning the 
individual threads amongst the specified processors. 
 
3.1. Terminology 
 

Figure 1 presents the labeling used for the hardware 
contexts in the HT-enabled and HT-disabled systems.  
Such labeling will help understand the hardware contexts 
available for use in each configuration.  
 

 
Figure 1. System configuration labeling. 
 

Table 1 shows the various configurations used in our 
study.  The basic terminology used to describe these 
configurations is comprised of three parts.  The first part is 
either HToff or HTon, which describes the state of Hyper-
Threading in the system.  The second term indicates the 
total number of application threads that were used.  The 
third term represents the number of physical processor 
chips used in the tests (i.e. the number of dual-core 
processors used, either 1 or 2). 
 

Table 1. Configuration information 

Terminology H/W Contexts Architecture 
Serial B0 Serial 
HTon -2-1 A0, A1 SMT 
HToff -2-1 B0, B1 CMP 
HTon -4-1 A0, A1, A2, A3 CMT 
HToff -2-2 B0, B2 SMP 
HTon -4-2 A0, A1, A4, A5 SMT-based SMP
HToff -4-2 B0, B1, B2, B3 CMP-based SMP
HTon -8-2 A0, A1, A2, A3, 

A4, A5, A6, A7 
CMT-based SMP 

 
3.2. NAS OpenMP Benchmarks 
 

The NAS Parallel Benchmarks have been widely used 
to characterize high-performance computers.  We used the 
NAS OpenMP benchmark suite (version 3.2) [7] in our 

experiments.  The suite consists of five kernels, (CG, MG, 
FT, IS, EP), and three simulated CFD applications (BT, 
SP, LU).  We experimented with Class B of CG, MG, BT, 
FT, SP, and LU benchmarks.  Class B is large enough to 
provide realistic results, while ensuring that the working 
set fits in memory. 

Application characteristics were gathered at run-time 
using the hardware performance counters available on the 
Intel Xeon processor.  We collected the data using Intel 
VTune Performance Analyzer version 7.2 [6].  The Intel 
Fortran and C/C++ compilers (version 8.1) were used to 
build the benchmark applications.  The default compiler 
flags for the NAS make utility were used during 
compilation. 
 

4. Experimental Results and Analysis 
 

In order to present the results in a fair manner, the 
configurations must be divided into several groups.  The 
HTon-2-1 configuration must be examined in comparison 
to the serial case.  In the second group, the HToff-2-1 
configuration can be compared directly to the HTon-4-1 
configuration, the only difference between the two being 
the presence of HT.  The third group comprises the HTon-
4-2 and HToff-2-2 configurations, which can also be 
compared to the second group, as the difference between 
these two groups is the use of both physical chips, 
although only at 50% usage to create resources similar to 
those available to the second group.  The fourth and final 
group is the HToff-4-2 and HTon-8-2 group, which utilizes 
all of the resources available in our platform with HT on 
and off.  Comparisons may also be made between groups, 
but only in the context of performance per resources 
available to help determine the configurations that make 
the best use of the resources available to them. 
 
4.1. Multithreaded, Single-Program Results 
 

In this section, we present the wall clock performance 
of individual applications running under various 
multithreaded configurations.  Their impact on 
architectural components is shown in Figure 2. 
 
4.1.1. Cache Performance. The performance of the cache 
is very important to overall system performance, and can 
illustrate potential benefits and drawbacks of certain 
system configurations.  The L1 cache miss rates are flat 
across the different configurations.  This seems counter- 
intuitive but is a byproduct of the benchmark applications 
themselves as they use a large amount of infrequently 
changing variables in their calculations, and only a small 
number of new variables for each loop.  This means that a 
large number of L1 cache requests are hits, while only a 
small number are misses, requesting the few new variables 
required for the next loop.  This leads to a good L1 cache 
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miss percentage due to the large number of requests. 
Examining the HTon-2-1 configuration, we can see that 

it has relatively good trace cache performance and 
excellent overall hit rates within each level of cache for all 
of the applications with the exception of the L2 miss rate 
for the LU benchmark.  The second group is similar to the 
third group in trends in memory performance, with the 
HTon configurations having a higher miss rate than the 
HToff configurations.  This is not unexpected as the HTon 
configurations have less memory available to the system 
per execution thread, thereby causing more cache 
evictions, which are not offset by the sharing of data 
between the threads. 

The final group of HToff-4-2 and HTon-8-2 has fairly 
comparable memory performances, with the HTon-8-2 
having the advantage only on the trace cache of the CG 
and MG benchmarks while the HToff-4-2 configuration has 
the advantage in the L2 miss rate on the LU benchmark. 
 
4.1.2. TLB Performance. ITLB misses rise significantly 
between the different groups, with the number of ITLB 
misses increasing as the complexity and resources of the 
architectures increase.  DTLB misses are relatively flat 
across all groups indicating that the increases in 
complexity do not significantly impact the performance of 
the DTLB. 
 
4.1.3. Stall Cycles. The examination of the number of 
cycles spent stalled due to memory order clearing, mis-
predicted branches, lack of instructions in the trace cache, 
or the delay caused by the need to load data in from 
memory can help to determine why some of the 
configurations are performing the way they do.  The 
number of cycles spent in a stalled state for the HTon-2-1 
configuration is poor relative to the other configuration 
groups.  This is most likely due to its lack of 
computational resources.   Group 2, 3 and 4 show similar 
patterns with the HTon configurations having more stalled 
cycles than the HToff configurations.  This is an indication 
of thread contention for shared resources in the cores. 
Interestingly, the configurations from group 3 are worse in 
terms of percentage of stalled cycles throughout all of the 
tests compared to group 2.  The average percentage of 
stalled cycles for the HToff configurations is 0.83%, while 
the average for the HTon configurations is 1.62%. 
 
4.1.4. Branch Prediction. Branch prediction rates are 
excellent for almost all of the benchmarks across all 
configurations, with the exception of the HTon 
configurations from groups 2 and 3 for CG and HTon-8-2 
for MG.  This helps to explain the number of stalled cycles 
and consequently the high CPI that the HTon 
configurations in groups 2 and 3 have for the CG 
benchmark. 
 

4.1.5. Bus Transactions. When examining the bus 
transaction characteristics of the configurations it is clear 
that group 1 is the only group that has the memory 
bandwidth capacity left over to perform any kind of pre-
fetching activities, spending ~50% of its time in 4 of 5 of 
the benchmarks pre-fetching data into the cache.  The only 
other instance of significant pre-fetching is the HTon-8-2 
configuration for the CG benchmark. 
 
4.1.6. CPI. When examining the Cycles per Instruction 
(CPI) of the different configurations, many of the 
observations made in the previous sections can be 
observed impacting the efficiency of the system.  It is 
interesting to note that the high CPIs of the HTon 
configurations from groups 2 and 3 running the CG 
benchmark correlate directly to very poor branch 
prediction rates and relatively high L2 cache miss rates, 
which combine to give these two configurations higher 
CPIs than those in their respective groups.  The poor CPI 
of the HTon-8-2 configuration executing MG also 
corresponds to a poor branch prediction rate but without 
the high L2 cache miss rate.  This makes sense as a high 
branch misprediction rate would cause many flushes of the 
execution pipeline and therefore reduce overall efficiency.  
The configurations with high relative CPIs also have a 
correspondingly lower speedup. 
 
4.1.7. Wall Clock Performance. The NAS benchmarks 
were run through a series of ten independent trials, with 
minimal variance between tests (<~1-5%).  The speedup 
of NAS applications is depicted in Figure 3, while the 
average speedup across all applications for various 
multithreaded architectures is shown in Table 2. 

Overall, the CMP-based SMP and CMT-based SMP 
configurations have the highest average speedup across all 
of the applications.  The runtimes of the NAS benchmarks 
show an interesting trend that is new to the dual-core Intel 
Xeon architecture, that the use of SMT on a CMT chip can 
be extremely beneficial to the performance of a system.  
Of particular interest are the results for HTon-4-1.  In this 
case, the overall performance of a single CMT chip is 
comparable (13.6% slowdown) to the performance of two 
dual-core processors operating with HToff (CMP-based 
SMP) despite having half as many available computational 
resources. 

When overall processor resources are increased to 
utilize two dual-core processors with HT enabled, the 
results are similar to previously observed HT-related 
behavior in that the overall effect reduces computational 
speed and results in a slowdown of approximately 6.7% 
versus HToff [3].  Therefore, we can conclude that HT is of 
benefit when enabled for smaller numbers of processors 
(<4).  However, the efficiency of HT with fewer physical 
processors has increased from previous observations most 
likely due to the improvements in memory bus speed. 
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Figure 2. L1, L2, and trace cache miss rates, ITLB miss rate, DTLB load and store misses 
normalized to serial case, % of execution spent in a stalled state, branch prediction rate, 
% of prefetching bus accesses, and CPI of NAS benchmarks. 
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Figure 3. Speedup for NAS OpenMP applications. 
 

Except for the CG benchmark, the performance of the 
HTon-8-2 case is worse than the HToff-4-2 case.  To better 
understand the reasons behind this we examine the CG 
application in detail.  In general, the HTon-8-2 setup results 
in less total bus accesses than the HToff-4-2 case, with an 
L1 cache miss rate of 47.1% versus 56.2% for the HToff-4-
2 case.  This, coupled with an L2 cache miss rate of 1% 
versus 9.6% translates into a higher number of non-

prefetching bus accesses from the HToff-4-2 case.  The 
HToff-4-2 case has a lower CPI of 1.04 versus the HTon-8-
2’s CPI of 4.02 that would imply that the performance of 
the HToff-4-2 case should be superior.  However, a large 
number of bus transactions in the HTon-8-2 case are 
speculative prefetching (51.2% of all bus accesses) while 
the vast majority of bus transactions for the HToff-4-2 case 
are not the result of prefetching.  This leads to much more 
speculative execution in the HTon-8-2 case, which is not 
accounted for in the CPI as it is counted as cycles per 
instruction committed.  The trace cache performance of 
the HTon-8-2 system is worse than the HToff-4-2 case in all 
of the benchmarks, except for CG and MG, with the 
HTon-8-2 configuration having a major advantage of 
35.6% miss rate versus the HToff-4-2’s miss rate of 87.3% 
for CG. 
 

Table 2. Average speedup for architectures 

SMT 
 

CMP 
 

CMT
 

SMP 
 

SMT 
based 
SMP 

CMP 
based
SMP 

CMT 
based
SMP 

1.81 1.42 1.87 1.83 1.43 2.11 2.10 
 



 

4.2. Multithreaded, Multi-Program Results 
 

The performance of the given architectural 
configurations is also of interest in a multi-program 
environment.  The results shown in Figure 4 were 
collected using the same configurations as in the previous 
section, but utilized more than one concurrent program 
execution at a time to examine the ability of the 
architectures to handle complimentary and 
uncomplimentary workloads of multiple programs.  Two 
NAS benchmarks were selected for this task: the FT 
benchmark, which is a Fourier transform operation 
requiring mostly computational resources and limited 
memory resources; and the CG benchmark, which requires 
significant memory resources. 

Three separate tests were conducted, one with two 
copies of CG, one with two copies of FT and one with one 
copy of CG and one copy of FT.  The maximum number 
of execution threads available to each system 
configuration was used, with the threads being distributed 
evenly between the executing programs. 
 
4.2.1. Cache Performance. The L1 cache miss rates are 
relatively stable across the different configurations.  
However, the L2 cache miss rates show that the HTon-2-1 
configuration has difficulty achieving a high hit rate for 
the CG, as does the HTon-8-2 configuration.  In general, all 
of the HTon configurations have a worse L2 miss rate than 
their HToff equivalents, except for a few cases with the 
CG/CG workload.   

The trace cache miss rate finds the HToff configurations 
for both groups 2 and 3 are better than the HTon 
configurations for both the CG/FT and CG/CG workloads, 
with the HTon configurations having an advantage in the 
FT/FT workload.  The advantage for the HTon 
configurations for the FT/FT workload for group 2 is 
significant, but the advantage is even greater for the HTon 
configuration of group 3.  Finally, group 4 shows that 
there is no advantage to the HTon-8-2 configuration in 
terms of trace cache misses for any of the workloads.   
 
4.2.2. TLB Performance. The HTon configurations suffer 
from excessive ITLB misses in groups 2 and 3 when 
running CG.  In general, the CG and FT benchmarks 
benefit from running together versus their identical pairs.  
The HTon configuration from group 3 also has difficulties 
with its DTLB for the FT/FT and CG/CG workloads.  This 
implies that the execution units are potentially being 
starved of instructions, but further investigation into the 
amount of stalling that occurs due to these misses is 
required to determine the real effect of this finding.   
 

4.2.3. Stall Cycles. The amount of total execution cycles 
spent in a stalled state for this multi-application workload 
is surprising.  When running a complimentary workload 
(CG/FT) we can see that a significant amount of time is 
spent in a stalled state.  From this, we can infer that the 
system is having a very difficult time providing the 
programs with the required resources, possibly switching 
the processors on which the programs are running 
frequently.  This implies that there could potentially be 
significant gains in performance made if the exact causes 
of this stalled operation can be determined and rectified.  
 
4.2.4. Branch Prediction. When examining the branch 
prediction rate we can see that the HToff configurations 
from groups 2 and 3 are both worse than the HTon 
configurations for all of the tests except for the CG/CG 
workload.  Group 1 has relatively good branch prediction 
across the workloads, and group 4 shows that there is only 
a marginal difference between the branch prediction rates 
between the HTon-8-2 and HToff-4-2 configurations. 
 
4.2.5. Bus Transactions. The prefetching activities being 
undertaken by each of the configurations reinforce the 
stalled operation results examined earlier in this section.  
The configurations spend a significant amount of time 
prefetching when running the CG/FT workload.  From this 
we can infer that the source of the stalling is not due to 
memory bandwidth issues, but instead can be attributed to 
other factors such as pipeline flushes. 
 
4.2.6. CPI. The CPI results for each workload indicate that 
despite the high number of execution cycles in which the 
systems are stalled for the CG/FT workload, the actual 
CPI of the HTon configurations does not suffer 
significantly. With the exception of the CG/CG workload, 
the HTon configurations for groups 2 and 3 are better than 
the HToff configurations in terms of CPI.  Group 4 shows 
that the HTon-8-2 configuration is worse for all workloads 
than the HToff-4-2 configuration. 
 
4.2.7. Wall Clock Performance. The results clearly 
indicate that there is a tangible performance benefit to 
running compute bound and memory bound applications 
separately as the performance of both applications is better 
in such a configuration for most architectures.  
Surprisingly, the best performer of any configuration is 
HTon-4-2, which is the fastest overall in two of the three 
configurations.  The HTon-8-2 configuration is the fastest 
for the CG/FT test but only by a small margin.  This 
indicates that for multi-application workloads, some HTon 
configurations can offer a significant performance benefit. 
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Figure 4.  L1, L2, and trace cache miss rates, ITLB miss rate, DTLB load and store misses 
normalized to serial case, % of execution spent in a stalled state, branch prediction rate, % 
of prefetching bus accesses, and CPI and speedup of multi-program workloads. 

 
4.3. Cross-Product Multi-Program Results 
 

The configurations were tested using pairs of 
applications, and completed for all possible two-program 
configurations.  The program pairs were run with enough 
evenly distributed threads as to fully load the architecture 
under test.  The testing setup and methodology used for 
the cross-product pairs was identical to that used in section 
4.2 with the exception of the larger set of applications that 
were used.  The results are shown in a box and whiskers 
plot in Figure 5.  The boxes in the figure represent the 
interquartile ranges of data (the 25th and 75th percentile of 
the data falls within the box), while the whiskers represent 
the maximum and minimum of the data. 

From these results, we can conclude that the HToff-4-2 
(CMP-based SMP) architecture provides the overall best 
performance for the majority of program pairs across all of 
the benchmarking programs.  However, for certain 
program pairs, the HTon architectures can provide better 
overall performance.  The performance of the CG 
benchmark when running with the BT benchmark on the 
HTon architectures is significantly better than on the HToff 
architectures, which accounts for the large whiskers on the 
CG results for the HTon architectures.  However, BT does 

not see significant speedup when run in conjunction with 
CG on HTon architectures. 
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Figure 5.  Speedup of NAS Benchmark Pairs. 
 

5. Conclusions and Future Work 
 

Multi-core systems have become the mainstream in 
processor design.  Such processors present new challenges 
in maximizing performance especially when a number of 
them are configured in an SMP fashion.  This paper sought 



 

to identify the optimal configurations for running OpenMP 
applications and to discover the shared resources that 
might become a bottleneck to performance under the 
different hardware configurations available in chip 
multithreaded SMPs.  By determining the potential causes 
of poor scalability or performance on different 
architectures we can adapt future operating system 
schedulers to achieve optimal performance when running 
OpenMP applications. 

In this paper, we presented the performance of 
scientific applications from the NAS OpenMP suite on a 
range of system configurations on a 2-way dual-core Intel 
Xeon SMP.  By collecting data from hardware 
performance counters, we analyzed the effect of HT on the 
various system configurations.  When utilizing all of the 
available system resources, most applications suffer from 
the increasing number of L2 cache misses, and resource 
contention when both dual-core processors use HT. 

Our results indicate that the most efficient architecture 
is a single dual-core processor with HT enabled, in terms 
of total computing power per system resources available. 
However, only one application enjoyed a performance 
gain due to HT on both dual-core processors.  We 
discovered that the CMP-based SMP provides the best 
overall performance for the majority of program pairs 
across all of the benchmarking programs for the multi-
program cases. 

The decisions made by the scheduler are crucial to the 
performance of multithreading architectures.  We are 
currently experimenting with other schedulers to improve 
the performance of OpenMP parallel applications on such 
hardware platforms.  It is clear that the CPI, L1 and L2 
cache miss ratios are not foolproof indicators of machine 
performance.  Therefore, we intend to use the knowledge 
presented here to devise methods of measuring the overall 
efficiency of the system to achieve excellent performance 
while ensuring high machine throughput.   
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