
Parallel Java: A Unified API for Shared Memory
and Cluster Parallel Programming in 100% Java

Alan Kaminsky
Rochester Institute of Technology
Department of Computer Science

Rochester, NY 14623 USA
ark@cs.rit.edu

Abstract

Parallel Java is a parallel programming API whose
goals are (1) to support both shared memory (thread-based)
parallel programming and cluster (message-based) paral-
lel programming in a single unified API, allowing one to
write parallel programs combining both paradigms; (2) to
provide the same capabilities as OpenMP and MPI in an
object oriented, 100% Java API; and (3) to be easily de-
ployed and run in a heterogeneous computing environment
of single-core CPUs, multi-core CPUs, and clusters thereof.
This paper describes Parallel Java’s features and architec-
ture; compares and contrasts Parallel Java to other Java-
based parallel middleware libraries; and reports perfor-
mance measurements of Parallel Java programs.

1. Introduction

Three trends are converging to move parallel computing
out of its traditional niche of scientific computations pro-
grammed in Fortran or C. First, parallel computing is be-
coming of interest in other domains that need massive com-
putational power, such as graphics, animation, data mining,
and informatics; but applications in these domains tend to
be written in newer languages like Java. Second, Java is
becoming the main programming language students learn;
recognizing this trend, the ACM Java Task Force has re-
cently released a collection of resources for teaching intro-
ductory programming in Java [1]. Third, even desktop per-
sonal computers are now using multicore CPU chips. In
other words, today’s desktop PCs are shared memory mul-
tiprocessor (SMP) parallel computers, and desktop appli-
cations will need to use SMP parallel programming tech-
niques to take full advantage of the PC’s hardware. Thus,

1-4244-0910-1/07/$20.00 c©2007 IEEE.

APIs are needed for parallel programming in Java in do-
mains other than scientific computing.

In the scientific computing arena, parallel programs are
generally written either for SMPs or for clusters. Rein-
forcing this dichotomy are separate standard libraries—
OpenMP [16] for thread-based shared memory parallel pro-
gramming on multi-CPU SMP machines, MPI [13] for
process-based message passing parallel programming on
clusters of single-CPU machines. However, it will soon be
impossible to build a cluster of single-CPU machines, since
every machine will come with a multicore CPU chip or
chips. While parallel programs for such “hybrid SMP clus-
ter” machines can be written using the process-based mes-
sage passing paradigm, sending messages between different
processes’ address spaces on the same SMP machine often
yields poorer performance than simply sharing the same ad-
dress space among several threads. A hybrid SMP cluster
parallel program should use the shared memory paradigm
for parallelism within each SMP machine and should use
the message passing paradigm for parallelism between the
cluster machines [17]. Yet there are no standard libraries,
let alone standard Java libraries, that combine the shared
memory and message passing paradigms in a single API.

Parallel Java (PJ) [9, 10] was developed in response to
these trends. With features inspired both by OpenMP and
by MPI, PJ is a unified shared memory and message passing
parallel programming library written in 100% Java. Using
the same PJ API one can write parallel programs in Java
for SMP machines, clusters, and hybrid SMP clusters. PJ
also includes its own middleware for managing a queue of
PJ jobs on a cluster and launching processes on the cluster
machines.

This paper is organized as follows. Section 2 describes
the features of the PJ API for SMP parallel programming,
cluster parallel programming, and hybrid SMP cluster par-
allel programming. Section 3 describes the architecture of
the PJ middleware. Section 4 compares and contrasts PJ

to other Java-based parallel middleware libraries. Section 5
reports performance measurements of PJ programs. Section
6 concludes with status and future plans.

2. Parallel Java API

To illustrate the PJ API, we will use Floyd’s algorithm
for finding all shortest paths in an N -node graph. The input
is an N ×N distance matrix D, where Drc is the distance
from node r to node c if the nodes are adjacent or is ∞
otherwise. On output, Drc is the length of the shortest path
from node r to node c if there is a path between the nodes
or is ∞ otherwise. Floyd’s algorithm is:

for i = 0 to N−1
for r = 0 to N−1

for c = 0 to N−1
Drc = min (Drc, Dri + Dic)

2.1. SMP Programming

In a parallel version of Floyd’s algorithm designed to run
on an SMP parallel computer, the distance matrix will be
located in shared memory. The outer loop on i cannot be
parallelized because of sequential dependencies from one
iteration to the next. The nested inner loops on r and c, how-
ever, can be parallelized. Here is the computational core of
the PJ SMP program (the complete program is available in
the PJ distribution [10]).

static double[][] d;
new ParallelTeam().execute (new ParallelRegion()

{
public void run() throws Exception

{
for (int ii = 0; ii < n; ++ ii)

{
final int i = ii;
execute (0, n-1, new IntegerForLoop()

{
public void run (int first, int last)

{
for (int r = first; r <= last; ++ r)

{
for (int c = 0; c < n; ++ c)

{
d[r][c] = Math.min (d[r][c],

d[r][i] + d[i][c]);
}

}
}

});
}

}
});

The program creates a ParallelTeam object which con-
tains a number of hidden threads. The number of threads
can be specified on the Java command line; the default is
one thread for each CPU in the SMP machine. The pro-
gram then creates a ParallelRegion object and tells the par-
allel team to execute the parallel region. Each team thread

calls the parallel region’s run() method, and the Java vir-
tual machine (JVM) schedules the threads to run simulta-
neously, each on its own processor. On each iteration of
the outer loop on i, each thread creates an IntegerForLoop
object and executes it. This object provides a work-sharing
parallel loop over the index range 0 through N−1. The par-
allel loop objects partition the full index range among them-
selves and cause each team thread to perform a different
subset of the iterations on r. Thus, the team threads simul-
taneously compute different portions of the distance matrix
d, a shared static variable, resulting in a parallel speedup.

PJ has work-sharing parallel loop classes to iterate over
an index range (int or long) using a static, dynamic,
or self-guided loop schedule (these loop schedules are the
same as in OpenMP). The loop schedule can be specified in
the source code at compile time or as a command line flag
at run time. With a static loop schedule (the default), the
complete index range (0 to N−1 in this example) is divided
into K equal-sized chunks, where K is the number of paral-
lel team threads. Each team thread calls the IntegerForLoop
object’s run() method with the lower and upper bounds of
a different chunk as the first and last arguments. In
other words, each thread’s subset of the loop iterations is
fixed before the iterations start; this can lead to an unbal-
anced load and reduced performance if different iterations
do different amounts of work. A dynamic or self-guided
loop schedule can yield a balanced load and improved per-
formance in such a situation. With a dynamic loop sched-
ule, the complete index range is divided into chunks where
each chunk consists of a specified number of iterations (the
chunk size). With a self-guided loop schedule, the com-
plete index range is divided into chunks whose sizes are de-
termined automatically; each chunk consists of half the re-
maining number of iterations divided by K , so that chunks
start out larger and become progressively smaller. With a
dynamic or a self-guided loop schedule, each team thread
then repeatedly gets the next available chunk and calls the
IntegerForLoop’s run() method to execute that chunk’s it-
erations until all chunks have been executed. In this way,
some threads can execute fewer long-running chunks while
other threads execute more short-running chunks, so that
each thread runs for about the same total time yielding a
balanced load.

PJ also has parallel loop classes to iterate over the el-
ements of an array, over the objects returned by an Itera-
tor, and over the objects in an Iterable collection. These are
analogous to the “for-each” loop added to the Java language
in Java 5.

PJ has a work-sharing ParallelSectionGroup class, which
contains a number of ParallelSection objects, each of which
contains a section of code; each team thread executes a dif-
ferent parallel section simultaneously. PJ supports single
sections (executed by only one team thread) and critical sec-

tions protected by exclusive or nonexclusive locks.
Variables in a PJ program are either shared or thread-

local depending on where they are declared. Shared vari-
ables are typically static fields of the main program class,
thread-local variables are typically instance fields of the par-
allel loop class. PJ also supports shared reduction variables
with arbitrary user-defined reduction operators.

Space limitations preclude describing all of PJ’s features
for shared memory parallel programming here. For a com-
plete list, refer to the PJ documentation [9].

2.2. Cluster Programming

In a parallel version of Floyd’s algorithm designed to run
on a cluster parallel computer, there are K processes, each
running a copy of the program on its own processor. Each
process has a rank between 0 and K − 1. The distance ma-
trix is split among the processes, each process computes a
different portion of the matrix, and the pieces are recom-
bined. Here is the core of the PJ cluster program (consider-
able detail is omitted).

static Comm world = Comm.world();
static int rank = world.rank();
static double[][] d;
static double[] d_i;
static DoubleMatrixBuf[] rowSliceBuffers;
static DoubleMatrixBuf rowSliceBuffer;
static DoubleArrayBuf d_i_buffer;
world.scatter (0, rowSliceBuffers, rowSliceBuffer);
for (int i = 0; i < n; ++ i)

{
world.broadcast (i_root, d_i_buffer);
for (int r = 0; r < rlen; ++ r)

{
for (int c = 0; c < n; ++ c)

{
d[r][c] = Math.min (d[r][c], d[r][i] + d_i[c]);
}

}
}

world.gather (0, rowSliceBuffer, rowSliceBuffers);

d holds the distance matrix; the complete matrix in pro-
cess rank 0, one slice of the matrix in the other processes.
d i holds row i of the distance matrix, received from the
process in charge of row i. rowSliceBuffers is an ar-
ray of buffer objects, one buffer for each process. A buffer
is a “view” of a group of data items stored in some other
variable, allowing those data items to be sent or received
in messages. Each buffer in rowSliceBuffers refers to a
different slice of the rows and all of the columns of the ma-
trix d. rowSliceBuffer is the buffer corresponding to this
process’s rank. d i buffer is a buffer referring to the array
d i. (The code for initializing these variables and buffers is
omitted.)

The program scatters the distance matrix from process
0 to all the processes by calling the scatter() method
on the world communicator. rowSliceBuffers specifies
the source data items in process 0 to be sent to each process,

and rowSliceBuffer specifies the destination for this pro-
cess’s data items. The program then executes Floyd’s algo-
rithm. On each outer loop iteration, the process in charge of
row i (process rank i root) broadcasts the contents of row
i to all the processes by calling the broadcast() method.
Each process then executes the nested inner loop iterations
for the process’s slice of the rows and all the columns.
Finally, the program gathers the distance matrix from all
the processes back into process 0 by calling the gather()
method.

PJ provides class Comm, a communicator for message
passing. The world communicator encompasses all the
processes in the program. Class Comm has methods for
point-to-point communication operations: send, receive,
and send-receive, in blocking and non-blocking versions.
Class Comm also has methods for collective communica-
tion operations: broadcast, scatter, gather, all-gather, and
reduce with arbitrary user-defined reduction operators. PJ
provides buffer classes to act as sources or destinations for
the messages’ data items. By specifying the proper buffer,
PJ can send and receive primitive data types as well as
Java objects (using object serialization); and PJ can send
and receive single variables, arrays, matrices, and portions
thereof. User-defined buffer classes to send and receive
other data structures can also be written.

For a complete list of PJ’s message passing features, re-
fer to the PJ documentation [9].

2.3. Hybrid SMP Cluster Programming

To get a hybrid SMP cluster version of Floyd’s algo-
rithm, simply replace the sequential for loop on r in the
cluster version with the parallel loop of the SMP version.
Slices of the distance matrix are still scattered to the clus-
ter processors, which compute the slices in parallel. Within
each processor (SMP machine), all threads share the dis-
tance matrix slice, and the threads compute the rows of the
slice in parallel. Here is the core of the PJ hybrid SMP clus-
ter program.

static Comm world = Comm.world();
static int rank = world.rank();
static double[][] d;
static double[] d_i;
static DoubleMatrixBuf[] rowSliceBuffers;
static DoubleMatrixBuf rowSliceBuffer;
static DoubleArrayBuf d_i_buffer;
world.scatter (0, rowSliceBuffers, rowSliceBuffer);
new ParallelTeam().execute (new ParallelRegion()

{
public void run() throws Exception

{
for (int ii = 0; ii < n; ++ ii)

{
final int i = ii;
single (new ParallelSection()

{
public void run() throws Exception

{
world.broadcast (i_root, d_i_buffer);

}
});

execute (0, rlen-1, new IntegerForLoop()
{
public void run (int first, int last)

{
for (int r = first; r <= last; ++ r)

{
for (int c = 0; c < n; ++ c)

{
d[r][c] = Math.min (d[r][c],

d[r][i] + d_i[c]);
}

}
}

});
}

}
});

world.gather (0, rowSliceBuffer, rowSliceBuffers);

After scattering the initial distance matrix to all pro-
cesses, the program creates a ParallelTeam object with a
number of threads. The threads execute a ParallelRegion
object’s run() method simultaneously. The run() method
contains the triply-nested loop of Floyd’s algorithm. As in
the cluster version of the program, on each iteration of the
outer loop on i, the contents of row i must be broadcast from
the process in charge of row i to all the processes. How-
ever, this time multiple threads are executing the run()

method; but only one of the threads must do the broadcast,
and the remaining threads must wait for the broadcast to
finish. This is accomplished by creating a new ParallelSec-
tion object and passing it to the ParallelRegion’s single()
method. The single() method causes one thread to call
the ParallelSection’s run() method and perform the broad-
cast, and the single() method causes the other threads to
wait until the first thread returns from the ParallelSection’s
run() method. (In OpenMP parlance, this is a “single sec-
tion.”) Once the broadcast is complete, all the threads pro-
ceed to execute the middle loop on r in parallel, using an
IntegerForLoop as in the shared memory version of the pro-
gram. At the conclusion of the triply-nested loop, the pro-
gram gathers the distance matrix into process 0 as in the
cluster version.

3. Parallel Java Architecture

Figure 1 shows the architecture of PJ running on a cluster
parallel computer with one frontend processor and multiple
backend processors connected by a high-speed network. A
Job Launcher Daemon runs on each backend processor, and
a Job Scheduler Daemon runs on the frontend processor.
(All PJ processes are written in Java.) The Job Scheduler
keeps track of each backend processor’s status and main-
tains a queue of PJ jobs; a web interface displays the cluster
status.

To run a PJ job on the cluster, the user logs into the front-
end processor and uses the java command to launch the
PJ program. This JVM becomes the job frontend process.

Job
Scheduler
Daemon

Job
Frontend
Process

Job
Launcher
Daemon

Job
Backend
Process

Terminal

Web
Browser

stdin

stdout
stderr

Cluster
status

Communicator

Frontend Processor

Backend Processors

Figure 1. Parallel Java architecture

The job frontend connects to the Job Scheduler. (All in-
terprocess communication in PJ uses TCP sockets.) The
Job Scheduler waits until the requisite number of backend
processors are idle, then tells the job frontend which back-
end processors to use. The job frontend connects to the
Job Launcher on each backend processor and tells the Job
Launcher to spawn a JVM. These JVMs become the job
backend processes. The job backends connect to the job
frontend, obtain the program’s class files and command line
arguments, and call the static main() method of the main
program class. The job frontend relays the job’s standard
input, standard output, and standard error streams between
the job backends and the user’s terminal.

As the PJ program runs in the job backend processes, the
job backends set up connections among themselves for mes-
sage passing via the world communicator. Message pass-
ing is implemented using Java New I/O (NIO) direct byte
buffers and socket channels. Message data items of a primi-
tive type are transferred between the program variables and
the communication byte buffers using the NIO primitive
data type bulk get() and put() methods; message data
items of a non-primitive type (objects) are transferred be-
tween the program variables and the communication byte
buffers using Java object serialization. However, PJ uses
multi-threaded blocking I/O (“Old” I/O) to send to and re-
ceive from the socket channels, rather than single-threaded
selector-based I/O; timing measurements show that block-
ing I/O gives better performance than selector-based I/O.

Since PJ is written in 100% Java, it will run on any plat-
form that supports Java Development Kit (JDK) 1.5.0. (PJ
has been tested on Solaris and on Linux.) Installing PJ
on a cluster is easy; simply run the Job Scheduler and Job
Launcher daemons. Even if the cluster consists of heteroge-
neous machines with different CPUs and operating systems,
PJ’s message passing will still work due to Java’s platform
independence. Installing PJ on an SMP machine is even
easier, as no daemons are needed; PJ programs just run like
any other Java programs.

4. Related Work

JOMP [6, 7] is a Java API for thread-based SMP parallel
programming. Patterned after OpenMP, JOMP uses com-
piler directives to insert parallel programming constructs
into a regular program. In a Java program, the JOMP di-
rectives take the form of comments beginning with //omp.
The JOMP program is run through a precompiler which
processes the directives and produces the actual Java pro-
gram, which is then compiled and executed. JOMP supports
most features of OpenMP, including work-sharing parallel
loops and parallel sections, shared variables, thread local
variables, and reduction variables.

PJ, like JOMP, supports most features of OpenMP; but
unlike JOMP, PJ’s parallel constructs are obtained by in-
stantiating library classes rather than by inserting precom-
piler directives. Thus, PJ needs no extra precompilation
step. Further, since no intermediate source file is needed,
debugging tools can debug PJ programs directly. In addi-
tion, Java programmers are accustomed to writing object
oriented programs by instantiating classes rather than by
adding precompiler directives.

Many Java versions of the MPI standard have been de-
veloped; mpiJava [5, 14] and MPJ [4] are typical. mpiJava
is implemented as a thin Java native interface (JNI) wrapper
on top of a native MPI library. MPJ is a 100% Java im-
plementation of the MPI standard. Both mpiJava and MPJ
adhere closely to MPI’s Fortran and C oriented API; for ex-
ample, each provides a Comm class with the same method
names and arguments as MPI’s message passing subrou-
tines.

Like mpiJava and MPJ, PJ provides MPI-like function-
ality for message passing parallel programming. Also like
MPJ, PJ is a 100% Java implementation that does not use a
native MPI library. However, while providing MPI’s func-
tionality, PJ does not attempt to adhere closely to MPI’s
API. This considerably simplifies PJ’s message passing
methods. For example, mpiJava has two different methods
for scattering, each with many arguments:

public void Scatter
(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root);

public void Scatterv
(Object sendbuf, int sendoffset, int[] sendcount,
int[] displs, Datatype sendtype, Object recvbuf,
int recvoffset, int recvcount, Datatype recvtype,
int root);

In contrast, PJ has one method for scattering with only three
arguments:

public void scatter
(int root, Buf[] srcarray, Buf dst);

By encapsulating in a separate buffer object (class Buf) all
the information about where to retrieve or store data items,

PJ’s one scatter method provides the same functionality as
MPI’s (and mpiJava’s) multiple scatter routines. Again,
Java programmers are accustomed to hiding these sorts of
details in separate objects. Section 5 compares the perfor-
mance of message passing in PJ versus mpiJava.

CCJ [15] is a Java library of MPI-like collective com-
munication operations. CCJ provides the barrier, broad-
cast, scatter, gather, all-gather, reduce, and all-reduce opera-
tions (but not point-to-point communication operations like
send, receive, and send-receive). Rather than implementing
its own low-level communication protocol, CCJ is imple-
mented on top of Java remote method invocation (RMI);
this allows CCJ to transfer arbitrary serializable objects, not
just primitive data types as in MPI. Furthermore, CCJ can
scatter and gather portions of arbitrary collection objects
among a group of parallel processes, as long as the col-
lections implement CCJ’s DividableDataObject interface;
CCJ is not limited to scattering and gathering arrays as in
MPI. For example, CCJ can scatter and gather the nodes in
a linked list data structure, or the elements of a sparse matrix
data structure. However, since CCJ uses RMI, CCJ’s perfor-
mance depends critically on the RMI layer’s performance;
the authors implemented CCJ using the Manta high perfor-
mance Java RMI system [12] rather than the RMI layer in
the standard Java platform.

PJ provides functionality similar to CCJ. PJ has MPI-like
collective communication operations (although all-reduce
and barrier are not implemented yet) as well as point-to-
point communication operations. PJ can transfer arbitrary
serializable objects. PJ can scatter and gather portions of
arbitrary collection objects; this is done by defining an ap-
propriate subclass of class Buf, the class PJ uses to retrieve
or store the data elements being sent or received in a mes-
sage. Unlike CCJ, PJ uses its own low-level communication
protocol that is implemented using the high performance
NIO direct byte buffers and socket channels in the standard
Java platform. (NIO was not part of the standard Java plat-
form in 2001 when CCJ was developed.) Also, PJ includes
classes for OpenMP-like shared memory parallel program-
ming; CCJ provides only message passing operations.

Object-Oriented SPMD (OO-SPMD) [3], an extension
of the ProActive library [2], introduces an interesting, al-
beit unconventional, paradigm for parallel programming in
Java—a paradigm based on active objects rather than mes-
sage passing. Active objects run concurrently on the pro-
cessor nodes; the active objects are associated together to
form a group; asynchronous method calls are performed
on the group, causing each object in the group to execute
the methods; data is transferred between the active objects
as arguments of the method calls. In contrast, PJ follows
the conventional thread-based shared memory paradigm of
OpenMP and the process-based message passing paradigm
of MPI. Also, like OpenMP and MPI, PJ is targeted primar-

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N=500

N=1000

N=1500

Speedup vs. Processors

Number of Processors

S
p

e
e

d
u

p

Figure 2. Floyd SMP program speedup

ily at programming tightly coupled parallel machines such
as SMP machines and clusters with a dedicated high speed
network; OO-SPMD is targeted more towards programming
loosely coupled parallel machines such as computing grids.

Smith and Bull [17] describe how to write “mixed mode”
applications using both MPI and OpenMP, what we are call-
ing hybrid SMP cluster programs. They also survey several
mixed mode projects (though none in Java). They point out
that because MPI implementations are not necessarily mul-
tiple thread safe, MPI calls in an OpenMP program must
be made in sequential code, such as single sections or criti-
cal sections. This introduces additional thread synchroniza-
tion overhead that is not required by the application logic.
In contrast, PJ’s message passing constructs are multiple
thread safe by design and require no extra thread synchro-
nization when combined with PJ’s shared memory parallel
programming constructs. (The single section in the hybrid
SMP cluster PJ program presented earlier is required by the
application logic.)

Taboada et al. [18] describe the design of Java Fast Sock-
ets, a high performance socket implementation in Java for
high speed cluster interconnection networks. They identi-
fied Java NIO direct byte buffers with their primitive data
type bulk get() and put()methods, NIO socket channels,
and non-blocking selectors as important features for high
performance Java sockets. While PJ’s message passing does
use NIO direct byte buffers and socket channels, PJ does not
use selectors. During development, both a multi-threaded
blocking version and a single-threaded selector-based ver-
sion of PJ’s message passing classes were developed, and
the former version yielded significantly better performance

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N=500

N=1000

N=1500

Speedup vs. Processors

Number of Processors

S
p

e
e

d
u

p

Figure 3. Floyd cluster program speedup

measurements. (Specifically, the time to send a message
was about 50% longer with the latter version.)

5. Parallel Java Performance

Figure 2 plots the measured speedup of the SMP version
of the PJ program for Floyd’s algorithm with respect to a
sequential version of the program for 500, 1,000, and 1,500-
node graphs. The two smaller problem sizes show poor
speedups due to the relatively large sequential overhead of
synchronizing the parallel team threads (a barrier wait) at
the end of every outer loop iteration. With a 1,500-node
graph there is relatively less sequential overhead, hence bet-
ter speedups. (The tests were run on a Sun Microsystems
UltraSPARC-IV 8-CPU SMP machine using Sun’s JDK
1.5.0. Each timing measurement was the median of seven
program runs.)

Figure 3 plots the measured speedup of the cluster ver-
sion of the PJ program for Floyd’s algorithm with respect
to a sequential version of the program. Again, the smaller
problem sizes show poorer speedups due to the relatively
larger sequential overhead of the scatter, broadcast, and
gather message passing operations. (The tests were run on a
cluster of Sun Microsystems UltraSPARC-IIi Solaris work-
stations using Sun’s JDK 1.5.0. Each timing measurement
was the median of seven program runs.)

Floyd’s algorithm exhibits poor scalability for smaller
problem sizes because it is not a massively parallel problem;
on every outer loop iteration, there has to occur a thread syn-
chronization (SMP version) or a message broadcast (cluster
version). As an example of a massively parallel problem,

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 1M

N = 16M
N = 4M
N = 64M

Speedup vs. Processors

Number of Processors, K

S
p

e
e

d
u

p

Figure 4. AES key search SMP program
speedup

consider a known plaintext attack on a block cipher by an
exhaustive search of a portion of the key space. The pro-
gram’s inputs are a plaintext block, the ciphertext block ob-
tained by encrypting the plaintext block with a certain key,
the value of the key with some of the bits missing, and n,
the number of missing key bits. The program does a search
over all N = 2n values of the missing key bits. For each
potential key, the program encrypts the given plaintext with
that key and checks whether the result equals the given ci-
phertext; if so, the correct key has been found. The program
uses the Advanced Encryption Standard (AES) block cipher
with a 128-bit block size and a 256-bit key size.

Figure 4 plots the measured speedup of the SMP version
of the PJ program for block cipher key search with respect
to a sequential version of the program for N = 1, 4, 16, and
64 million potential keys searched (n = 20, 22, 24, and 26
missing key bits). Figure 5 plots the measured speedup of
the cluster version of the PJ program for block cipher key
search with respect to a sequential version of the program
for the same inputs. The key search program’s scalability
for this massively parallel problem is much better than the
Floyd’s algorithm program’s scalability.

Figure 6 compares the performance of message passing
in PJ versus mpiJava. A “ping-pong” program sent an N -
byte message from one process to another and back again,
measured the round trip time, and did 10,000 repetitions.
The measured message time T was half the average of the
round trip times. The message times for message sizes of
N = 100, 200, 500, 1,000, 2,000, 5,000, 10,000, and 20,000

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 1M

N = 16MN = 4M
N = 64M

Speedup vs. Processors

Number of Processors, K

S
p

e
e

d
u

p
Figure 5. AES key search cluster program
speedup

bytes are plotted, with three program runs for each message
size. The lines show the linear regression of the data for
N = 2,000 to 20,000 bytes. For PJ, the regression formula
(correlation = 1.000) is

T = (4.53×10−4 + 8.73×10−8N) sec
For mpiJava, the regression formula (correlation = 0.997) is

T = (4.61×10−4 + 9.10×10−8N) sec
Thus, PJ’s message passing performance is slightly better
than mpiJava’s, even though PJ is implemented in 100%
Java and mpiJava is implemented on top of native MPI. (The
tests were run on the aforementioned cluster, using Sun’s
MPI implementation and Sun’s JDK 1.4.2 for mpiJava.)

6. Status and Future Plans

The PJ distribution is available from the author’s web site
[10]. The shared memory parallel programming features of
PJ are largely complete. The message passing operations
of PJ are partially complete; so far, the send, receive, send-
receive, broadcast, scatter, gather, all-gather, and reduce op-
erations have been implemented.

For the past two years the author has used PJ to teach
a parallel programming course taken by upper division un-
dergraduate students and by graduate students. The course
covers both SMP parallel programming and cluster paral-
lel programming in Java. Several additional example PJ
programs, along with their performance measurements, are
available on the course web site [8] and are included in the
PJ distribution.

0 5 1 0 1 5 2 0
0.0

0.5

1.0

1.5

2.0

2.5
PJ
mpiJava

Message Time vs. Message Size

Message Size (K bytes)

M
e

ss
a

g
e

 T
im

e
 (

m
se

c)

Figure 6. PJ vs. mpiJava message passing
performance

Future plans for PJ include improving the performance
of PJ’s low-level message passing classes; improving the
performance of PJ’s high-level message passing (commu-
nicator) operations; implementing additional message pass-
ing operations such as all-reduce, all-to-all, and barrier; and
adding parallel file I/O capabilities like those of MPI-2.0.

While the work so far has focused on implementing PJ’s
functionality, future work will also focus on performance
measurements and comparisons. Future plans for PJ in-
clude porting standard parallel benchmark codes, such as
the SPEC HPC 2002 and OMP Benchmarks, the Pallas MPI
Benchmarks, and the NAS Parallel Benchmarks, to PJ and
measuring their performance; comparing PJ’s performance
on standard benchmarks to the performance of other Java-
based parallel middleware libraries such as MPJ and mpi-
Java; and comparing PJ’s performance on standard bench-
marks to the performance of Fortran-, C-, OpenMP-, and
MPI-based versions.

A project in the domain of computational medicine to
use parallel computing to speed up the spin relaxometry
analysis of magnetic resonance images is underway. An
initial parallel program was written in Java using mpiJava
[11]. Future plans include rewriting the analysis program
using PJ and studying different parallel analysis algorithms.

7. Acknowledgments

I would like to acknowledge my student Luke McOmber,
who helped write the first version of PJ in 2005; the stu-

dents in my Parallel Computing I classes in 2005 and 2006,
who have helped me debug and refine the PJ library; and
the anonymous referees for suggesting improvements to this
paper.

References

[1] ACM Java Task Force. http://jtf.acm.org.
[2] L. Baduel, F. Baude, and D. Caromel. Efficient, flexible, and

typed group communications in Java. In 2002 Joint ACM-
ISCOPE Conference on Java Grande, pages 28–36, 2002.

[3] L. Baduel, F. Baude, and D. Caromel. Object-oriented
SPMD. In 2005 IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2005), pages 824–831,
May 2005.

[4] M. Baker and D. Carpenter. MPJ: A proposed Java message-
passing API and environment for high performance com-
puting. In International Parallel and Distributed Processing
Symposium (IPDPS 2000), pages 552–559, May 2000.

[5] M. Baker, D. Carpenter, G. Fox, S. Ko, and S. Lim. mpiJava:
An object-oriented Java interface to MPI. In International
Workshop on Java for Parallel and Distributed Computing,
IPPS/SPDP 1999, April 1999.

[6] J. Bull, M. Westhead, M. Kambites, and J. Obdržálek. To-
wards OpenMP for Java. In Second European Workshop on
OpenMP, pages 98–105, September 2000.

[7] JOMP Home Page. http://www.epcc.ed.ac.uk/
research/jomp/index_1.html.

[8] A. Kaminsky. Parallel Computing I course web site. http:
//www.cs.rit.edu/˜ark/531/.

[9] A. Kaminsky. Parallel Java Documentation. http://
www.cs.rit.edu/˜ark/pj/doc/.

[10] A. Kaminsky. Parallel Java Library. http://www.cs.
rit.edu/˜ark/pj.shtml.

[11] A. Kaminsky and L. McOmber. Solving and MRI spin re-
laxometry problem with parallel computing. Technical re-
port, Rochester Institute of Technology Department of Com-
puter Science, June 2005. http://www.cs.rit.edu/
˜ark/sr/index.shtml.

[12] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal,
and A. Plaat. An efficient implementation of Java’s re-
mote method invocation. In 7th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPoPP’99), pages 173–182, 1999.

[13] Message Passing Interface Forum. http://www.
mpi-forum.org.

[14] mpiJava Home Page. http://aspen.ucs.indiana.
edu/pss/HPJava/mpiJava.html.

[15] A. Nelisse, T. Kielmann, H. Bal, and J. Maassen. Object-
based collective communication in Java. In 2001 Joint ACM-
ISCOPE Conference on Java Grande, pages 11–20, 2001.

[16] OpenMP Home Page. http://www.openmp.org.
[17] L. Smith and M. Bull. Development of mixed mode MPI /

OpenMP applications. Scientific Programming, 9(2–3):83–
98, 2001.

[18] G. Taboada, J. Touriño, and R. Doallo. Designing efficient
Java communications on clusters. In International Parallel
and Distributed Processing Symposium (IPDPS 2005), page
182a, April 2004.

