
1-4244-0910-1/07/$20.00 © 2007 IEEE.

Client-Side Implementation of Dynamic Asynchronous
Invocations for Web Services

Giancarlo Tretola1, EugenioZimeo2

1University of Sannio
Dept. of Engineering

Benevento,82100 Italy
tretola@unisannio.it

2University of Sannio
Research Centre on Software Technology

Benevento,82100 Italy
zimeo@unisannio.it

Abstract

Web Services are becoming more and more

fundamental building blocks of Web-based distributed
applications and a core technology for Grid systems. Due
to their flexibility, Web Services easily combine, in a
common and coherent framework, ubiquitous computing
with heterogeneous applications composed of different
kinds of resources and, typically distributed in many
organizations. We expect that this technology will follow
the same evolution paths that have characterized other
technologies so far, with some specificity due to the
openness and size of the application context. In this
connection, optimizations tied to invocations and
workflows are assuming a primary role in Web Services
research. The synchronous request/reply nature of the
most diffused underling protocol (HTTP) introduces
several restrictions in many application scenarios. On the
other hand, asynchronous interactions are allowed by
using message oriented middleware platforms, like JMS,
which are typically harder to handle than object- and
process-oriented middleware. In this paper, we propose a
first implementation of a module that allows for dynamic
Web Services invocations, which, on the basis of meta-
data added to WSDL, is able to select the most
appropriate invocation technique for calling a Web
Services operation.

1. Introduction

Nowadays, Web Services are achieving a growing

maturity in the field of distributed applications
development. There are many domains that are involved
with Web Services composition. Workflow Management
[18] products, for example, are able to interact with
functionality offered as Web Services. Grid Computing is
showing an increasing interest in Web Services for

enhancing and simplifying access to heterogeneous and
dispersed computing resources [9]. Business processes
performed using Web Services composition and
orchestration is a soundly possibility in several field of
distributed application development [7] and they are
increasingly used in B2B and B2C applications.

In recent years, in fact, the Web has become the
primary environment for operating B2B and B2C
heterogeneous applications using Service Oriented
Computing (SOC) [13]. The SOC paradigm is
increasingly appreciated and we are going towards a
future in which organizations interact by means of
interoperable Web Services. The vision of a software
market based on providing and requiring components
offered as Web Services is more and more real. An
interesting and promising context in which Web Services
are assuming a significant role is automotive, with
particular regard to e-procurement, collaborative
engineering, and supply chain management. We have
matured a specific experience on these topics in the
context of the LOCOSP Project [22], which aims to define
a distributed platform for the logistics of knowledge in
collaborative engineering. In the LOCOSP Platform Web
Services wrap engineering activities in the product
development process and use Grid technologies (WSRF
[14] and related standards) to deliver and retrieve data
(CAD artefacts) to and from external suppliers.

Due to this growing maturity it is important starting to
consider possible weakness to fix in the model or, at least,
take into account efficiency improvements. Several
research activities involve Web Services at different
abstraction levels. At high level, an open discussion exits
on the approach to use for Web Services modelling and
development. An important debate is about considering
Web Services as distributed objects or not [2][3]. Some
authors affirm that Web Services are different from
distributed objects and must be treated with a dedicated
approach. Others advocate that Web Services are only
particular cases of distributed Objects and could benefit of
similar treatment. In our opinion it is not important how to

consider Web Services from an abstract level but it is
really important to have tools and methodology that are
already used and tested in other environments, like the
object oriented one. These approaches could allow an
improvement in the way services are consumed. In fact a
lot of attention is also appointed to interaction and
implementation issues. Several works are involved with
bringing asynchronous service invocation in the Web
Services world [4][5][7]. Other activities have proposed
the introduction of Object-Oriented techniques in Web
Services modelling [1].

In this work, we will report the first results of our
ongoing research that aims at extending Web Services
from a semantic point of view in order to support more
advanced features. Our vision is to consider an Object
Oriented approach to Web Services consuming,
introducing more abstract interface to interact with them
as they were instance of remote objects. This approach, in
our opinion, could ease the client side application building
and management. Moreover, it is our conviction that using
the Object Oriented approach in distributed computing is
an efficient and more sure path to introduce concurrent
programming concepts [10]. The introduction of such
principles allows for further improvements in other fields
like workflow management, for example. In our works,
we have shown how it is possible to improve performance
using fine-grained concurrency and asynchronous
invocation in workflow enactment [11] and in Grid
scheduling [12].

The first aspect we consider is related to asynchronous
invocations. As stated in [5], an application that invokes a
service asynchronously could continue its execution
without needing to wait for a result and could perform
other operations, stopping only when the result is needed
to continue computing. Moreover, asynchronous
interactions avoid the necessity for managing a session in
the communication with service but require persistence of
the call state information. This mechanism is useful for
many applications in a distributed and heterogeneous
execution environment: (1) to overlap computation with
communication in order to tolerate the high latencies that
characterize wide-area distributed systems; (2) to
anticipate the scheduling and the execution of activities
that do not completely depend on the result of an
invocation; (3) to easily support interactions for long-
running transactions; (4) to homogenously consider
interactions with humans and machines in order to handle
them in the same way at control level.

The remaining part of the paper is organized as
follows. Section 2 describes related work on asynchronous
Web Services invocation. Section 3 analyzes the
interaction patterns that could be used for asynchronous
invocation of Web Services. Section 4 describes the
architecture of the dynamic invocation component we

have designed, implemented and tested. Section 5
concludes the paper and describes the current activities we
are involved with to improve the component and to add
other functionalities.

2. Related Work

In [4], the authors describe the results of their studies

about Web Services asynchronous invocation by
presenting a description of several approaches that could
be used to implement correlation between requests and
responses and proposing an exhaustive semantic
description model to achieve the result. Moreover, a
classification and a description of the most used
asynchronous interaction patterns is presented. The work
discusses several important aspects of asynchronous
interactions. The implementation effort has been aimed to
realize the described patterns in an experimental
environment, like Acer Business Portal, in PattiChiari
Web site [27], and MetalC project [1]. Differently from
them, we intend to realize an autonomous and dynamic
invoker that eases interaction with Web Services where
asynchronous invocation is one possible interaction
scheme supported.

In [6], the author presents an analysis of enterprise
applications, in a SOA environment, which could benefit
of the asynchronous invocation given the fact that
business processes involves human participants and
human interactions. Both of them benefit of asynchronous
interactions. The approach followed uses WS-Addressing
[15] coupled with a call-back-based approach. The
method proposed calls for a client side Web Service that
implements a call-back interface, i. e. an interface used by
the server to notify operation completion an to deliver the
result. Although, the approach is interesting, it requires
service modification and is not transparent.

In [7], the authors tackle the problems that arise when
asynchronous invocations are performed in complex
applications composed with Web Services. The authors
are concerned with problems related to activities failure in
long running processes and management of running
process reconfiguration. They have defined a Document
Flow Model (DFM), a message-based workflow
modelling of asynchronous interactions among Web
Services in workflow processes. The authors are now
working on the realization of simulation tools for
asynchronous invocation to test their ideas.

Another important aspect in Web Services modelling is
about the relationship with distributed objects paradigm
and methodologies [2][3]. The discussion is about
considering or not Web Services as distributed objects and
the comparison between the relative performances.

In [1] the authors present a performance comparison
using document oriented applications. Another point that

authors underline is that the Web Service client code is
uneasy to use. The client application is involved to
manipulate request and response, rather than directly
perform operations on server objects as in the RMI
implementation, for example. The authors propose to
implement a document centric RMI implementation,
which benefits of the advantages of both approaches. The
work is very interesting and proposes a new point of view
of the problems arising in distributed computing realized
with services composition. However, we stick with Web
Service approach and believe that interoperability and
security issues are better managed in respect to distributed
objects. There is, however, the need to intervene for
performance improvement.

Summarizing, the idea of asynchronous invocation is
present in the literature and it is recognized that is a
valuable mechanism. As we anticipated, our interest is to
introduce concurrent programming [10] in Web Services.
Moreover we are interested in developing a concrete
component in Java language, to couple with other projects
in which we are involved.

3. Asynchronous invocation patterns

The aynchronous invocation of Web Services (also

known as deferred synchronous invocation when a result
is returned) could be described as a call in which the
consumer must not wait for the result from the provider
counterpart. The caller, or consumer, may continue the
execution and can receive the result when it is ready. So
the result is requested from the server if it is really needed
and just in the moment it is needed. The first problem that
arises is related to the connection of one response to the
right request. A soundly solution is the use of a transaction
ID associated to the request that is attached to the response
to obtain the right coupling. Another important point to
consider is the possibility for the caller to query the called,
or provider, about result availability.

There are four patterns that describe asynchronous
interactions in the distributed objects field adopting an
RPC style.

Fire and Forget consists in a pure asynchronous
request message sent from the client to the server, without
any result restitution. In this case, the client does not wait
for the service completion of the functionality and
continue its execution.

The Sync with Server describes an interaction similar to
the preceding one but with the difference that the client
must wait until the server confirms the reception of the
request. When the acknowledgement is received, the client
and server could continue the execution concurrently.

The Polling Object pattern is used when the invocation
is asynchronous but the client will need the result to
complete its computation. Then, the client does not need

the result immediately and so can continue to run without
stopping. In this case, the client receives an object on
which it is possible to perform a polling, i.e. a query about
result availability. If the result is ready, it is provided to
the client, otherwise it is placed in waiting state until the
result will be ready.

The Result Callback asks for asynchronous invocation
of the server functionality and the result is returned by the
server with the invocation of an appropriate functionality
of the client object: the call-back handler. Such handler
must be provided by the client, implementing a defined
interface, and passed to the server when the asynchronous
invocation is done. When the server completes the
execution, it uses the call-back handler to asynchronously
send the result to the client.

In the context of Web Services, the transport layer that
supports the interaction plays an important role. Some
protocols already support asynchronous messaging
(HTTPR, JMS, MS Messaging) and are well fitted for
asynchronous invocations. Other protocols are inherently
synchronous and so require sessions and correlations
(HTTP, HTTPS, RMI, SMTP).

The selection of the protocol is often bound to the
operative environment and network infrastructure used for
communication. Another open question is about the RPC
implementation and the message based interaction. The
former is preferred by developers because they are more
used to act in terms of method or procedure invocations,
and problems related to the remote components are hidden
by the middleware.

The message based approach is less familiar to
developers but has several advantages. It does not use a
client-server description, and so the participants in
message exchange could be seen as peers.

The message exchange could be time-independent
while RPC requires an active connection between the
participants. RPC is intrinsically point-to-point, while
message could be replicated and delivered to many
receivers.

In our approach, we chose to decouple the interaction
of the consumer with the provider through an
intermediary. This component allows for the client to use
RPC style call of Web Services functionality. Then, the
component is in charge to dynamically perform the
invocation that could be synchronous or asynchronous.

4. Dynamic invocation module architecture

The WSDynamicInvoker module could be used as

independent component to support the development of a
client for Web Services consuming or it could be used as a
component of a system performing dynamic invocation
using different interaction patterns. The aim is to simplify
client-side invocation of any Web Service. The invocation

mechanism could be synchronous or asynchronous,
depending on the client necessity and the service
implementation. The interaction is dynamic, in respect to
Web Services binding, because the client must only
provide the chosen service, the method to invoke and the
parameters, in similar manner to a method invocation on
an object instance. The module is able to autonomously
contact the service, retrieve the WSDL, prepare and send
the request message. Furthermore the module is able to (1)
receive the response message, (2) perform its analysis and
(3) provide to the client the data contained.

<<use>> <<use>>

WSDynamicInvoker

InvokerGUI

WSException

JAX-WS XMLSchemaParser

Figure 1. Package Diagram

The principal objective is to allow the invocation of

any type of Web Service independently from the operating
system. The server-side environment could be
Tomcat/Axis, Microsoft IIS, J2EE, etc. In regards to
invocation style, it is possible to use RPC or Document
style. Furthermore using SOAP, it is possible to use
encoded or literal style for the invocation. Combining the
styles, four basic combinations are possible, plus one used
only in Microsoft Windows environments: RPC/Encoded,
RPC/Literal, Document/Encoded (rarely used and not
compliant to WS-I), Document Literal, Document Literal
Wrapped (introduced to improve usability in Windows
environments).

The functionality offered to clients are: synchronous
invocation, asynchronous invocation with polling object,
asynchronous invocation with call-back, and finally a so
called auto invocation that let the module to choose the
best technique to use. In the last case, the dynamic invoker
takes the decision basing on the complexity of the
functionality involved in the invocation. The idea is that
provider could describe the computational complexity of
the service, based on its implementation. By knowing such
information, the requestor could choose the invocation
pattern that fits in well. The complexity of a service could
be described with an additional optional tag defined as a
WSDL extension: the complexity tag. Such tag could be
introduced in the operation part of the WSDL description

giving metadata about its computational complexity. This
tag could assume a value belonging to an enumeration,
which should provide the possible complexity description
of an operation. Each value of the enumeration could
group a complexity class, for example linear, logarithmic,
exponential, factorial and so on. One labelled an operation
with the complexity tag and if the problem size is known,
the invoker could be able to estimate the duration of the
operation. Basing on this information, the invoker could
choose the more apt way to invoke the service. Currently,
the policy that guides the selection assigns synchronous
invocation to operations with low complexity and
asynchronous with call-back handler to operations with
high complexity. It is our intention to provide an
extensible hot spot to define specialized policy for
invocation style selection.

The module for dynamic invocations is organized in
three packages: the WsDynamicInvoker, the JAX-WS 2.0
and the XML Schema Parser. The package diagram,
depicted in figure 1, shows that WSDynamicInvoker
contains also two sub-packages for Exception handling
and for a graphical testing application.

The package WSDynamicInvoker is in charge to
interact with the client application, to manage the result of
asynchronous invocations and to serialize and de-serialize
the request and response messages.

The package’s classes Invoker and the Caller are the
classes responsible of invoking Web Services. They use
an instance of the WSDLAnalyzer class to perform the
analysis of the WSDL of the service to invoke. The related
class diagram is shown in figure 2.

The creation of SOAP request message is performed
using an instance of SOAPMessageBuilder class. The
invocation to the Web service is performed by the Caller
object that is in charge to send the request message. If the
invocation is asynchronous, a Future Object [10][16][21]
is returned, which in this context acts like a placeholder
for the result and also as a pollable object for testing result
availability.

Invoker Caller

FutureHolder

SOAPMessageBuilder

SOAPMessageReader

WSDLAnalyzer

1

11

1

1

1

<<use>> <<use>>

<<use>>

<<use>>

<<use>>

<<has>>

Figure 2. Class Diagram of WS Dynamic Invoker

The WSDLAnalyzer has the role to interact with the

WSDL of the Web Services and retrieve from it the
information on the service to invoke and the operation to
require. Furthermore, it has to understand the SOAP types

of the parameters to use in the interaction. The
SOAPMessageBuilder uses this info to create the request
message to be sent and for serializing the complex types.
The SOAPMessageReader receives the response from the
Web Service and extract the operation result, performing
the required deserialization operations. The FutureHolder
class, inspired to the homonymous object implemented in
ProActive middleware [20] and available as interface to be
implemented in Java [21], models the result of the
invocation either synchronous or asynchronous and has
the following methods:
• getValue(): provides the result of the operation as an

Object. It is a blocking operation in the sense that if
the result is still not available, the accessing thread is
suspended (wait by necessity [20],[21])

• isDone(): allows to test if the result is available and is
a non blocking operation.
The package XMLSchemaParser is used to perform

analysis of WSDL, particularly complex types that could
be used as operation parameters. The class SchemaParser
has the responsibility to analyze the types in WSDL and,
if necessary, to retrieve the external resource imported.

The last package is the library JAX-WS 2.0 [16] that is
used to perform the invocation of services both
synchronously and asynchronously. In WSDL four
interaction patterns are possible: one-way, notification,
request-response and solicit-response.

The first and the second ones could be imagined as
procedure without a return value; the difference is that the
one-way is initiated by the client, while the notification is
performed by the server. The other two interactions are
modelled on a couple of messages: a request and an
answer message. Also in this case, the only difference is
that the request-response interaction is initiated by the
client while the solicit-response is initiated by the server.
Therefore, two general interactions can be considered
independently from the caller: one-way and request-
response. The first category of interaction is obviously
asynchronous, but could be used only if the required
operation does not return a result to the caller; it is
performed in JAX-WS with the method invokeOneWay.
The second category could be performed in both ways,
synchronously and asynchronously using JAX-WS.

The synchronous invocation is performed with the
method invoke() and uses the request-response interaction
(or solicit-response); in this case the invoking threads is
blocked. The asynchronous invocation (or solicit-
response) can be done with the method invokeAsync(),
which has two overloaded versions. The first returns a
pollable object, i.e. that could be polled asking for result,
which extends the Future interface of Java. The second
uses a handler, implementing the interface asyncHandler,
which is passed to the JAX-WS and works as a call-back
for receiving the notification when the result is computed.

To better understand the invoker architecture, a look to the
dynamic behaviour at run-time is useful.

A primary difference between synchronous and
asynchronous interactions exists. Only one thread is
responsible, in the former case, of the invocation process,
serialization and deserialization of the parameters and the
result of every message exchanged with the invoked Web
Service. In the asynchronous invocation there are three
running threads. The first one interacts with the client
application, receives the methods name and the arguments,
serializes the parameters, provides the Future object to the
client. The second thread is responsible of the real
invocation activity interacting with the service. The last
thread is responsible of future object management and
updates its value, de-serializing the response message.

The interaction with the client of the module is
performed creating an object of the Invoker class, that
receives the parameters necessary to perform the
invocation: the end point of the service, the operation to
invoke, a vector of objects that contains the parameters
and an integer value used to choose the type of invocation
to perform. The possible values of the last parameter
allows for choosing between synchronous invocation,
asynchronous invocation with polling, asynchronous
invocation with call-back and automatic and is specifiable
with symbolic constants. The automatic mode allows the
module to choose autonomously the nature of the
invocation, basing on services description meta-data
contained in the complexity tag, if it is available, otherwise
it executes the invocation with a call-back handler.

Application

Invokernew

invoke

FutureHolder
new

Web Service

Caller

invoke

getValue

new

createRequest

analyzeResponse

start

Figure 3. Synchronous invocation

Figure 3 shows the sequence diagram for the

synchronous invocation. The first thing to note is that also
synchronous invocation receives a future object as result,
but the control is returned to the invoking application only

when the value is computed and the returned future
already contains the result of the operation.

The interaction is performed with the following steps.
The application creates the invoker object passing the
parameters. The constructor of the Invoker class creates an
instance of FutureHolder and one of Caller. The Caller
instance performs the creation of the SOAP request
message and invokes the Web Service synchronously.
When the result is computed it is returned with a response
message to the Caller. The Caller object updates the
Future Holder object that de-serializes the result and
signals to the Invoker that the execution is completed. The
invoker, then, returns the control to the application that
could act on the Future Holder, received as result,
invoking the getValue() method and obtaining the result
of the operation.

Application

Invoker

FutureHolder

Web Service

Caller

new

new

new

start
invoke

createRequest

analyzeRequest

invokeAsync

getValue

Figure 4. Non-blocking Asynchronous Invocation

Figure 4 shows the sequence diagram for the

asynchronous invocation. The interaction is the same
either using the call-back handler or using the polling
object. The only difference is that in the case a call-back
handler is employed, the FutureHolder is used also in that
role. The sequence of interaction is quite similar to the
synchronous case. The differences are that the Invoker
object returns a FutureObject to the application that can
continue its execution without blocking.

The reference to the FutureObject resolves the problem
of the correlation between request and the corresponding
result. The invocation of the Web Service is performed
using the asynchronous method provided by JAX-WS.
When the result is computed, it is returned to the Caller
that updates the Future, in the case of pollable object
invocation.

In the other case, the call-back handler, which is the
FutureHolder itself, is invoked and used to store the value
that is available for the application. If the request for
value, with getValue() method, is performed by the client
after the Future updating, the invoking application could
continue the execution without waiting.

Figure 5, on the other hand, depicts the situation in
which the invoking application tries to act on the
FutureHolder before the value is updated. In this case, the
accessing thread is blocked in the getValue() method and
can not continue its execution. The thread is awakened
when the result of the operation is provided by the Web
Services to the FutureHolder. From the application point
of view, the use of the pollable object is similar to the
asynchronous invocation with callback, but the client
application is responsible to test whether the value is
ready, with the isDone() method, to avoid blocking with
the invocation of the getValue() method.

The autonomous management of the invocation can be
done deploying services using the proposed optional
WSDL extension that gives semantic information about
the service implementation: the complexity flag for the
operation attribute of Web Service. This optional flag
could be used by the provider to define the computational
complexity of the operation and allows the dynamic
invoker module to choose the style of invocation.

Application

Invoker

FutureHolder

Web Service

Caller

new

new

new

start

getValue
invokeAsync

createRequest

analyzeResponse

invoke

Figure 5. Blocking Asynchronous Invocation

Figure 6 shows the client application provided with the

Dynamic Invoker, useful to test the different ways of
interaction. We have used the graphical client to invoke

Web Services developed by ourselves and provided by
other organizations on the Internet.

Figure 6. Testing Application

From the user point of view, the result of the

invocation is always a future object that wraps the real
result. The access to the result is obtained always with the
method getValue, but it is more correct to test always the
availability of the result using the method isDone. This is
particularly true if the invocation style is chosen
autonomously by the dynamic invoker.

4.1. Workflow and Grid computing improvements

The asynchronous invocation could be used in

workflow execution to obtain performance optimization,
by mean of activities anticipation, as we have discussed in
our previous work [11].

To obtain activities anticipation it is possible to use
asynchronous invocation techniques. The asynchronous
invocation could be a mechanism that, as we have shown
in [11], allows the process enactor, the Workflow Engine
[23], to not suspend process execution waiting for
activities completion.

Our contribution was the definition of a Workflow
Pattern, the Early Start Pattern, which can ease the
modelling effort and, at same time, allows for
performance improvements. The experimental work was
conducted using the ProActive Middleware to develop
services able to be invoked asynchronously. The key point
is the exploitation of fine-grained concurrency at run-time
to overlap sequential activities execution, completing
process in a minor total time and improving performances.

Our goal is to integrate the same concepts implemented
for obtaining fine-grain concurrency in Web Services
environments and, consequently, in modern Grid systems
[24] [25].

Web Services are a useful way to model Grid
Resources and to obtain better interoperability and
platform independence [26]. As we have shown in a
previous work [12], execution of a workflow process in

Grid is a problem able to be separated in two main parts:
scheduling of activities and mapping to appropriate
resources. The Early Start Pattern could be
advantageously introduced in Grid systems to perform
optimistic scheduling. Such kind of scheduling may be
very useful in performance improvements thanks to the
overlapping of dispatching, scheduling and other
managing activities of grid systems with the
computational activities. The overlapping of Grid
activities contribute to improve performance also because
it increases the resource allocated at same time. This is a
very useful way to shorten the total execution time as
shown in figure 7.

time

resource
allocation

time

resource
allocation

Figure 7. Resource allocation with conservative
sequential and optimistic anticipated
executions

Another important point that emerges from both our

preceding works is the possibility to transform the control
flow into dataflow synchronization for some parts of a
process.

Using the early start pattern it is possible to obtain such
advantages in a simple way keeping the modelling easy.
Both our works have shown results obtained from
execution of services modelled as active objects provided
by ProActive. Our future objective is to extend such
results to Web Services implementing asynchronous
invocation and automatic continuation in a middleware for
services invocation. The DynamicInvoker described in
this work represents the first step in such direction.

5. Conclusion and future works

In this paper, we discussed the problem of

asynchronous invocation. We tackled the problem of
designing a Dynamic component that is able to exploit the
features offered by the JAX-WS library. The module is
able to perform asynchronous invocation of Web Services

resolving the problem of correlation between the
invocation and the result. Moreover the module is also
able to perform the invocation dynamically, acting as a
proxy for the invoking application. We presented also a
proposal to label Web Service operation with an
additional tag to indicate computational complexity to
allow for automatic selection of the invocation style.

The implemented module, furthermore, is more than a
solution for asynchronous invocation. It opens a new
development style in the field of Web Services. In our
current activity, we are working on an extension of the
module to realize a middleware that is able to perform
asynchronous invocations and also automatic continuation
as in ProActive [20]. We are testing the automatic
continuation using future objects to invoke other services.
To obtain future updating, we are using WS-Addressing
[15] in order to implement updating server-side strategies,
which do not require further client interventions. The
objective is the realization of a new methodology in Web
Services consuming that supports an object-oriented
approach to distributed application development based on
Web Services composition. One of the advantages that
could be obtained is the possibility to use the fine-grained
concurrency [11][12], that we have tested with RMI and
ProActive, to execute composed Web Services. It is also
possible to adopt Web Services to wrap workflow client
applications so allowing asynchronous interactions
towards human participants in workflow processes.

Furthermore, in our current activity, we are conducting
performance measurements to give a quantitative
evaluation of the performance gain obtainable with
asynchronous invocation of Web Services, since we have
already obtained significant improvement of performance
in a workflow management system whose resources are
modelled as active objects.

Acknowledgements

We thank Fabio Muollo for his contribution during the
development phase of DynamicInvoker. The work
described in this paper is framed within the LOCOSP
Project funded by Italian Ministry of Research and
Education (MIUR) [22].

References

[1] W. R. Cook, J. Barfield, “Web Services versus Distributed
Objects: A Case Study of Performance and Interface
Design”, in Proceedings of the IEEE Intl. Conf. on Web
Services (ICWS) pp. 419-426, 2006.

[2] W. Vogels, “Web services are not distributed objects.”
IEEE Internet Computing, vol. 7, no. 6, pp. 59–66, 2003.

[3] K. P. Birman, “Like it or not, web services are distributed
objects,” Communication of ACM, vol. 47, no. 12, pp. 60–
62, 2004.

[4] M. Brambilla, S. Ceri, M. Passamani, A. Riccio,
“Managing Asynchronous Web Services Interactions”, in
Proceedings of the IEEE Intl. Conf. on Web Services
(ICWS), 2004, 80-87.

[5] H. Adams, Asynchronous operations and Web Services.
IBM, http://www-128.ibm.com/developerworks/.

 webservices/library/ws-asynch1.html
[6] R. R. Kodali, “Asynchronous Web Services Using WS-

Addressing”, SOA Web Service Journal, 2006,
http://webservices.sys-con.com/read/183956.htm

[7] J. Yang, C. Cîrstea, P. Henderson, “An Operational
Semantics for DFM, a Formal Notation for Modelling
Asynchronous Web Services Coordination”, QSIC 2005,
pp. 446 - 451.

[8] C. Peltz, “Web services orchestration and choreography”,
Computer, vol. 36, 2003, pp. 46-52.

[9] Jia Yu and Rajkumar Buyya, “A Taxonomy of Workflow
Management Systems for Grid Computing”, Volume 3,
Numbers 3-4, pp. 171-200, Springer Science+Business
Media B.V., New York, USA, Sept. 2005.

[10] Denis Caromel, “Towards a Method of Object-Oriented
Concurrent Programming”, Communication of ACM
volume 36, number 9, 90-102, 1993.

[11] G. Tretola, E. Zimeo, “Workflow Fine-grained
Concurrency with Automatic Continuations”, in
Proceedings of the IEEE IPDPS 06, 20th International
Parallel and Distributed Processing Symposium, Rhodes
Island, Greece, April 25-29, 2006.

[12] G. Tretola, E. Zimeo, “Activity Pre-Scheduling in Grid
Workflow”, to appear in Proceedings of the 15th
Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP),
February 7-9, 2007.

[13] “Web Services Architecture”, http://www.w3.org,
W3CWorking Group Note 11 February 2004.

[14] WSRF, http://www.globus.org/wsrf/.
[15] WS-Addressing, http://www.w3.org/Submission/ws-

addressing/.
[16] JAX-WS 2.0, https://jax-ws.dev.java.net/.
[17] Axis, http://ws.apache.org/axis/.
[18] Workflow Management Coalition, “The Workflow

Reference Model”, Document Number WfMC TC-1003,
www.wfmc.org.

[19] XMLSchema 1.1, http://www.w3.org/XML/Schema.
[20] Proactive, www-sop.inria.fr/oasis/ProActive/.
[21] Java language, http://java.sun.com.
[22] LOCOSP Project, http://plone.rcost.unisannio.it/locosp.
[23] Workflow Management Coalition, http://www.wfmc.org.
[24] Jia Yu and Rajkumar Buyya, “A Taxonomy of Workflow

Management Systems for Grid Computing”, Journal of
Grid Computing, Springer Press, New York, USA, 2005.

[25] The Grid Workflow Forum, www.gridworkflow.org.
[26] Globus Project. www.globus.org.
[27] PattiChiari. http://www.pattichiari.it/.
[28] MetalC site. http://www.metalc.it/.

