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Abstract

Heterogeneous distributed computing systems often must
operate in an environment where system parameters are
subject to uncertainty. Robustness can be defined as the
degree to which a system can function correctly in the pres-
ence of parameter values different from those assumed. We
present a methodology for quantifying the robustness of re-
source allocations in a dynamic environment where task ex-
ecution times are stochastic. The methodology is evaluated
through measuring the robustness of three different resource
allocation heuristics within the context of a stochastic dy-
namic environment. A Bayesian regression model is fit to the
combined results of the three heuristics to demonstrate the
correlation between the stochastic robustness metric and
the presented performance metric. The correlation results
demonstrated the significant potential of the stochastic ro-
bustness metric to predict the relative performance of the
three heuristics given a common objective function.

1. Introduction

Heterogeneous parallel and distributed computing is de-
fined as the coordinated use of compute resources that have
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different capabilities to optimize system performance fea-
tures. Often, heterogeneous, distributed computing sys-
tems must operate in an environment replete with uncer-
tainty. Robustness in this context can be defined as the de-
gree to which a system can function correctly in the pres-
ence of parameter values different from those assumed [1].
We present the use of a stochastic robustness metric [14]
to quantify the robustness of a resource allocation in a dy-
namic environment. This formulation of the stochastic ro-
bustness metric is used to predict the typical relative perfor-
mance of three different resource allocation heuristics taken
from the literature and adapted to the presented problem. A
Bayesian regression model is fit to the combined results of
the three heuristics to demonstrate the relationship between
the stochastic robustness metric and the presented perfor-
mance metric. The accuracy of the robustness predictions
are then evaluated to determine their utility in predicting
resource allocation heuristic performance in a dynamic en-
vironment.

The major contribution of this paper is a mathemat-
ical formulation for quantifying the robustness of a re-
source allocation in a stochastic dynamic environment and
a methodology for applying the robustness formulation to
predict heuristic performance. We demonstrate the pro-
posed methodology by successfully predicting the relative
performance of three heuristics taken from the literature and
adapted to this environment. Finally, we present a detailed
evaluation of the three heuristics using both the proposed
robustness metric and a performance objective appropriate
to the studied environment.

The environment considered in this research is that of
a heterogeneous, distributed computing system designed to



service a high volume web site of world-wide interest. The
system being modeled was used to implement the 1998
World Cup web site [3] that processed more than 1.3 bil-
lion HTTP requests during the summer of 1998. The web
site was provided to a world-wide audience by four het-
erogeneous, geographically dispersed systems—each with
their own processing capacity and workload distribution
techniques. This class of system is very challenging to
implement but occurs surprisingly frequently. The World
Cup football tournament is just one example of an event
of world-wide appeal that necessitates web based cover-
age. Sites of this type are typically constructed for specific
events and the volume of traffic is on the order of billions
of requests in a period of only a few months or less. Other
such events might include the Summer Olympics, the Win-
ter Olympics, or the tour de France; all are reasonably ex-
pected to draw the attention of a world-wide audience in the
billions.

This research developed resource allocation heuristics
for a single location of a distributed system capable of
processing a high volume of requests. Incoming requests
were dispersed to one of four processing centers. Thus,
each location was responsible for processing some fraction
of the total traffic to the site. This work focused on a loca-
tion comprising eight heterogeneous servers responsible for
processing 45% of the overall traffic [2].

A task is defined to be a menu-driven HTTP request for
data from the web site. Mapping tasks to machines in this
distributed system is rather challenging as it must be done
under uncertainty because the exact execution time required
to process a task is not known a priori. However, past ob-
servations of task execution times can be used to construct
a probability mass function (pmf) [17] that models the pos-
sible execution times for a given task. The pattern of task
arrivals to the site was modeled after real traffic patterns ob-
served by the 1998 World Cup web site [2].

In the next section, we present the details of the problem
to be addressed. Section 3 defines a means for determin-
ing stochastic completion times for tasks in this system us-
ing the details of the problem statement. The definition of
stochastic completion times is then used in Section 4 to de-
rive a stochastic robustness metric that is subsequently used
to predict heuristic performance. In Section 5, we present
the heuristics that have been developed as part of this re-
search. Details of the simulation environment are presented
in Section 6 and the results of the heuristics are evaluated
in Section 7. Section 8 presents an overview of the relevant
related work. Section 9 concludes the paper.

2. Problem Statement

2.1. Introduction

The system studied in this research is an instance of a
more general class of dynamic, heterogeneous computing
(HC) system where task arrival times are not known in ad-
vance and exact task execution times are uncertain prior
to their completion. All incoming tasks to the system are
assumed to have been previously classified into one of C
classes prior to their arrival. Each of the classes corresponds
to a gross classification of the relative complexity of the re-
quest being processed. Each task class defines a set of pmfs,
where each pmf describes the probability of all execution
times for that class on a given machine within the HC suite.
Further, all of the classes of tasks (HTTP requests) that the
system may be asked to perform are known in advance, i.e.,
the web server has prior knowledge about what web pages
it is providing.

Each arriving task has a relative deadline limiting the to-
tal time available to process each request. The relative dead-
line for each task class is assumed to have been established
in advance. Because tasks in this environment are HTTP
requests for data, made by a user of the website, it is as-
sumed that if a task cannot be completed by its deadline
then the request can be considered to be “timed out” and
the user that submitted the original request will make the
request again. Therefore, there is no benefit to completing
tasks that miss their deadlines and, consequently, tasks that
miss their deadlines will be discarded.

2.2. Performance Metric

In this environment, each incoming task has a hard dead-
line for its completion, i.e., failure to complete a task by its
deadline will result in a penalty. To model the impact of
missing a task deadline the resource allocation heuristic will
be penalized by a constant factor of 1 for each task deadline
that is missed. That is, for a given task iwith deadline βmax

i

let comp(i) be the actual completion time of task i and de-
fine the cost to process a task i, denoted cost(i), as follows

cost(i) =
{

0, if comp(i) ≤ βmax
i ;

1, otherwise. (1)

The overall cost of a resource allocation is defined as the
sum of the cost of each processed task. Define PT as the
set of all tasks that are processed by the system, then the
objective of a resource allocation in this environment can
be expressed as,

Minimize
∑

∀i∈PT

cost(i). (2)



Intuitively, resource allocations in this environment are ex-
pected to minimize the number of tasks that miss their dead-
lines.

2.3. Mapping Events

All of the resource allocation heuristics evaluated in this
work operate in a pseudo-batch mode [10,11]. In a pseudo-
batch mode heuristic, all tasks that have not begun execu-
tion and are not next in line to begin execution can be con-
sidered for remapping when a mapping event occurs. Map-
ping events occur within the system whenever a new task
arrives or an existing task completes.

3. Stochastic Task Completion Time

Although some tasks may belong to the same class, task
execution times may still vary depending on the details of
the data requested. For this reason, task execution times are
modeled as random variables. In addition, it is reasonable
to assume that each task execution time is independent be-
cause any single HTTP request can be satisfied without any
need to process another HTTP request, i.e., each request is
self-contained.

Let each task i belong to exactly one class ci in the set of
all task classifications C where membership in a class im-
plies a specific random variable Tcij representing the execu-
tion time of that task class on machine j (one of the M ma-
chines in the HC suite). In this research, it is assumed that
the probability distributions describing the random variable
Tcij were created from measurements of the response times
of actual requests for data from the site. A typical method
for creating such a distribution relies on a histogram esti-
mator [17] that produces a discrete probability distribution
known as a probability mass function. Define fcj to be a
unimodal pmf describing the execution time of tasks in class
c on machine j. We consider only unimodal distributions of
execution times to simplify the application of the stochastic
robustness metric.

Determining the completion time for a machine j, and
therefore the completion time of a particular task i, requires
a means of combining the execution times for all tasks as-
signed to that machine. In a deterministic model of task
execution times, the estimated execution times for all tasks
assigned to machine j would be summed with the machine
ready time to produce a completion time. A similar pro-
cedure is followed in the stochastic case as well. How-
ever, calculating stochastic completion times requires the
summation of random variables as opposed to determinis-
tic values. The summation of random variables given their
pmfs can be found as the convolution of their corresponding
pmfs [9].

Let MQ(t) be the set of all tasks that are either pend-
ing execution or are currently executing on any of the M
machines in the HC suite at time t. To determine the com-
pletion time for a task i on machine j at time t, identify the
subset of tasks in MQ(t) that were mapped to machine j
in advance of task i, denoted MQij(t). The execution time
pmfs for the pending tasks will be convolved [9] with the
completion time distribution of the currently executing task
and the execution time distribution for task i on machine j
to produce the stochastic completion time pmf for task i on
machine j.

The execution time pmf for the currently executing task
on machine j requires some additional processing prior to
its convolution with the pmfs of the pending tasks to create
a completion time pmf. For example, if the currently exe-
cuting task on machine j began execution at time tj prior
to time t, some of the impulse values of the pmf describ-
ing the completion time of the currently executing task may
be in the past. Therefore, to accurately describe the com-
pletion time of task i at time t requires that these past im-
pulses be removed from the pmf and the remaining distri-
bution renormalized. After renormalization, the resulting
distribution describes the completion time of the currently
executing task at time t on machine j. To simplify notation,
define an operator GT (s, d) that accepts a scalar s and a
pmf d as input and returns a renormalized probability distri-
bution where all impulse values of the returned distribution
are greater than s. The completion time pmf of the currently
executing task on machine j is determined by applying the
GT operator to its completion time pmf, using the current
time t. The resulting distribution is then convolved with the
pmfs of the pending tasks on machine j and the execution
time distribution of task i to produce the completion time
pmf for task i on machine j at the current time t.

4. Stochastic Robustness Metric (SRM) for a
Dynamic Mapper

4.1. Instantaneous SRM

Recall that the individual deadline of each task has been
defined in advance; let βmax

i denote the deadline for the ith

task to arrive to the system. Let fc1j be the execution time
pmf of the currently executing task on machine j. Order the
members of MQij(t) according to their scheduled order of
execution on machine j and let fc2j be the execution time
pmf of the first pending task on machine j, with fc|MQij(t)|j

as the execution time pmf of the last pending task on ma-
chine j that is ahead of task i.

Convolution of a scalar with a pmf has the effect of shift-
ing the pmf by the value of the scalar and has no impact on
the distribution of probabilities in the pmf. Therefore, if
MQij(t) = ∅, i.e., MQij(t) is empty, the completion time



distribution for task i on machine j is merely its execution
time distribution fcij shifted to the current time. The com-
pletion time distribution at time t for task i, denoted Fi(t)
can be found as follows,

Fi(t) =


t ∗ fcij , if MQij(t) = ∅;

GT{t, tj ∗ fc1j} ∗ fc2j ∗ · · ·
∗fc|MQij(t)| ∗ fcij , otherwise.

(3)
Following from our prior work on robustness [14], the

robustness of the finishing time for task i can be found as the
probability that task i will finish before its deadline. This
probability defines a local robustness characteristic, denoted
ψi(t), and can be expressed as P

[
Fi(t) ≤ βmax

i

]
. The in-

dividual local robustness characteristics can then be com-
bined to produce the stochastic robustness metric at time t,
denoted ψ(t), as follows,

ψ(t) =
∏

∀i∈MQ(t)

(
P
[
Fi(t) ≤ βmax

i

])
. (4)

This combination of local robustness characteristics de-
fines an instantaneous measure of robustness (instantaneous
SRM) for this resource allocation at a particular time t. In-
tuitively, the measure defines the probability that all tasks
pending or currently executing at time t will meet their
deadlines.

4.2. Dynamic SRM Value

The instantaneous measure of robustness is used as a ba-
sis for defining a single dynamic SRM value. To define that
value, recall that a mapping event occurs whenever a task
completes execution or a new task arrives at the system.
An instantaneous SRM value is generated at each mapping
event during the course of a simulation trial. These instan-
taneous SRM values are then combined to create a sam-
ple dynamic SRM value for the resource allocation heuris-
tic. Given the relationship between the dynamic SRM value
and the performance metric, the dynamic SRM value can
be used to predict the relative performance of two resource
allocation heuristics.

If a heuristic consistently maintains a high ψ(t) value
over some number of mapping events then there is a con-
sistently low probability that tasks will miss their deadlines
over that same period. Therefore, the average ψ(t) value
over a large enough number of mapping events should cor-
relate with a consistently low probability that tasks will miss
their deadlines. That is, heuristics that maintain a high aver-
age ψ(t) value can reasonably be expected to produce a low
cost. For this reason, the dynamic SRM value is defined as
the average of the instantaneous SRM values found, at each
mapping event, during a simulation trial.

4.3 Using the Dynamic SRM value

In a dynamic environment, the set of tasks being consid-
ered is constantly changing due to task arrivals and com-
pletions. Recall that to compute ψ(t) the start time of the
currently executing task on each machine is required (i.e.,
tj). Determing the start time for a task i requires knowledge
of the actual execution time of the previously executed task
k on that machine to calculate task k’s actual completion
time. During simulations used for heuristic evaluation, our
methodology utilizes the expectation of the execution time
pmf as the actual execution time for each task. Thus, the
start time of the subsequent task i is known, enabling the
calculation of ψ(t).

Taking the expectation of the class pmfs to produce the
most likely actual execution times to use for the evaluation
simulations is reasonable in this environment because the
task execution time pmfs are assumed to be unimodal. Fur-
ther study is required to determine the most effective ap-
proach when execution time pmfs are not unimodal.

A second factor in evaluating a resource allocation
heuristic is the set of tasks and the ordering of task arrivals.
Because of variations in the set of tasks to be executed and
changes in their arrival ordering, multiple simulation trials
should be conducted to adequately predict the typical rel-
ative performance among the evaluated resource allocation
heuristics. In evaluating our results, we will demonstrate
that in a dynamic environment a small number of simulation
trials are required to sufficiently indicate the performance of
a resource allocation heuristic relative to our given perfor-
mance objective. Each trial involves a unique set of tasks
with a unique arrival order.

To produce a dynamic SRM value for a resource alloca-
tion heuristic a relatively small number of simulations are
executed where the mean of each task execution time distri-
bution is used as the actual execution time. This produces
a dynamic SRM value for each resource allocation (simu-
lation trial) where the dynamic SRM value is determined
as the average of the instaneous SRM values within that
simulation trial. The dynamic SRM values for all of the
simulation trials are then combined by taking their average
to determine a single dynamic SRM value for the resource
allocation heuristic.

The dynamic SRM values for different resource alloca-
tion heuristics can then be compared to select the approach
that is more robust within the given environment. That is,
given the presented formulation of the instantaneous SRM,
a simulation trial that has a higher dynamic SRM value
should reasonably be expected to produce fewer task dead-
line misses. In the next section, we present the heuristics
that are to be evaluated using the dynamic SRM value in
Section 7.



5. Resource Allocation Heuristics to Evaluate

5.1. Introduction

The goal of resource allocation heuristics is to select
a mapping of tasks to machines and scheduling of tasks
within a machine that minimizes an objective function. The
presented heuristics do not directly attempt to maximize the
stochastic robustness metric, instead focusing on minimiz-
ing the primary objective function. In the results section,
the heuristics will be compared using both the stochastic
robustness metric and their average performance relative to
minimizing Equation 2. All of the heuristics were given a
limited amount of time to complete a mapping event.

5.2. Two Phase Greedy

The Two Phase Greedy heuristic is based on the princi-
ples of the Min-Min algorithm (first presented in [8], and
shown to perform well in many environments [7], [10],
[15]). The heuristic allocates one task at each iteration, con-
tinuing until all task allocations have been resolved. In the
first phase of each iteration, the Two Phase Greedy heuris-
tic determines the best assignment (according to the perfor-
mance goal) for each of the tasks left unmapped. In the sec-
ond phase, it selects the task to map based on the best result
found in the first phase. The completion time distribution
for a given machine j at time t is denoted F j(t). Given
the set of tasks assigned to machine j at time t, denoted
MQj(t), F j(t) can be found as follows:

F j(t) = GT{t, tj ∗ fc1j} ∗ fc2j ∗ · · · ∗ fc|MQj(t)|
. (5)

The Two Phase Greedy heuristic is summarized in Figure 1.

while not all tasks are mapped
for each unmapped task i

find machine mj such that
mj ← argmin

1≤j≤M

[
E[F j(t) ∗ fcij ]

]
;

resolve ties arbitrarily;
end for loop
let A = all (i,mj) pairs found above
select pair(s) (x,my) such that
(x, y)← argmin

∀(i,mj)∈A

[
E[Fmj (t) ∗ fcimj

]
]
;

resolve ties arbitrarily;
map x to machine y;
update F y(t) based on assignment;

end while loop.

Figure 1. Pseudo-code describing the Two
Phase Greedy heuristic.

5.3. Segmented Two Phase Greedy (STG)

The segmented two phase greedy heuristic relies on
“segmenting” the collection of tasks to be allocated into n
groups and then applying a two phase greedy heuristic to
each group [18]. A weighting factor is used to determine
segments. The new STG heuristic introduced here for this
environment calculates a task’s weight based on the prob-
ability of the task meeting its deadline. That is, the lower
the probability that a task will complete within its deadline
the higher its queuing priority will be. A weight πi that is
used to assign the task queueing order is defined for a task i
given M machines as follows,

πi =

M∑
j=1

P[Fi(t) ≤ βmax
i ]

M
. (6)

The individual weights are used to define a weighted
expected time to compute for each task, denoted Wij for
a given task i on machine j.

Wij = πiE[Tcij ] (7)

The weighted expected execution times are combined
to produce a weighted expected completion time, denoted
WECT

ij (t) for a given task i on machine j at time t.
The weighted expected completion time is calculated using
Equation 8.

WECT
ij (t) =Wij + E[F j(t)] (8)

Tasks are sorted in ascending order according to the av-
erage of theirWij values across all machines at the time of
the mapping event. The sorted task list is then divided into
n segments of equal length that are allocated to machines
using a two phase greedy heuristic. The two phase greedy
heuristic is used to minimize the weighted expected com-
pletion time for the last to finish task. Figure 2 presents the
details of the STG heuristic discussed here.

Because a new mapping event occurs each time a task
finishes, in general, each machine needs no more than two
pending tasks. Thus, once every machine has two tasks
pending, the heuristic can terminate the mapping event.
This was utilized in the implementation of the STG heuris-
tic to improve the heuristic’s execution time.

5.4. Negotiation

Iterative approaches have been applied to static map-
ping problems to search the space of task permutations in
a schedule [4, 5, 16]. Local search also has been applied
to dynamic scheduling problems [12, 13]. The negotia-
tion heuristic introduced here is modeled after such iterative



sort tasks in ascending order by averageWij value
partition sorted task list into n segments
for each segment S

while not all tasks are mapped
for each unmapped task i in S

find the machine mj such that
mj ← argmin

1≤j≤M

[
WECT

ij (t)
]
;

resolve ties arbitrarily;
end for loop
from all (i,mj) pairs found above
select pair(s) (x, y) such that

(x, y)← argmin
∀(i,mj)

[
WECT

imj
(t)

]
;

resolve ties arbitrarily;
map task x to machine y;
update F y(t) based on assignment;

end while loop
end for loop.

Figure 2. Pseudo-code describing the STG
heuristic.

heuristics operating in a dynamic environment. A total or-
dering of tasks serves as input to a schedule builder that as-
signs tasks to machines such that the performance objective
is maximized. The total ordering is iteratively permuted and
the schedule builder re-applied to produce a new resource
allocation. Schedules with a higher value are kept, where
value is defined by the evaluation of a fitness function. The
procedure is analogous to a next-descent search in schedule
space.

Each iteration of the negotiation heuristic relies on com-
puting the following two metrics. The local earliness metric
quantifies the difference between a task’s expected finish-
ing time and its deadline given the current mapping and
scheduling. The local earliness metric for a given task i
at time t, denoted LEMij , can be quantified as,

LEMij = βmax
i − E[Fi(t)]. (9)

Using the local earliness metric the global earliness metric,
denoted GEM for a given mapping event, can be found
as the sum of the local earliness metrics for all mappable
tasks. That is, given a task ordering o and an operator m(i)
that returns the machine that task i has been assigned

GEM(o) =
∑

∀i∈MQ(t)

LEMim(i). (10)

An iteration of the negotiation algorithm is defined as
follows. From a current ordering ω of tasks in MQ(t), two
tasks are randomly selected for swapping (tasks are initially
ordered by arrival times). The ordering that results from

this modification, denoted ω′, is used as an activity list for
a schedule builder. The schedule builder assigns each task
in ω′, in order, to the machine that maximizes the local ear-
liness metric as defined by Equation 9. The fitness of the
resulting mapping is measured using the global earliness
metric defined in Equation 10, where a higher global ear-
liness metric indicates a more fit schedule. If the fitness of
this mapping is the best encountered, the ordering ω′ is kept
for the next iteration. Otherwise, the ordering is discarded
and the original ordering ω is maintained for the next iter-
ation. Negotiation terminates after N iterations have been
executed. The Negotiation heuristic is summarized in Fig-
ure 3.

initialize ω to an ordering of all tasks to be mapped
for N iterations

randomly select two tasks for swapping
swap ordering of selected tasks
assign resultant total ordering to ω′

execute schedule builder using ω′

if (GEM(ω′) < GEM(ω))
ω ← ω′

end for loop.

Figure 3. Pseudo-code describing the Nego-
tiation heuristic.

6. Simulation Setup

For this research, it is assumed that 1) the time neces-
sary for a mapping event is negligible compared to the task
arrival time, and 2) task execution times are considerably
longer than the difference between successive inter-task ar-
rival times.

To evaluate the effectiveness of the dynamic SRM value
for predicting heuristic performance we considered two sets
of simulations. In the first set of simulations, a small num-
ber of simulation trials were conducted to produce a dy-
namic SRM value for a resource allocation heuristic, as de-
fined in our methodology. For the second set of simulations,
a larger number of trials were conducted to produce sample
cost values for each heuristic, where the actual execution
time for each task is determined by sampling the execution
time pmf for that task. For this work 10 simulation trials
were used to produce a dynamic SRM value for a resource
allocation heuristic as compared to 100 simulation trials to
evaluate the performance metric.

All simulations consisted of 1024 tasks to be processed
by eight machines, where task arrival times were not known
in advance. Each arriving task belonged to one of five
classes whose execution time pmfs for each machine were



known in advance. The execution time for a mapping event
for all heuristics was limited to 0.1 seconds.

7. Simulation Results

The heuristics were compared using the dynamic SRM
value and their ability to minimize cost, i.e., the number
of tasks that miss their deadlines. Recall that the dynamic
SRM value for each heuristic was constructed using a small
number of independent simulation trials, where the actual
execution times for tasks were set to the expectation of the
task execution time pmfs.

Evaluating the success of the dynamic SRM value in
comparing heuristics requires the actual performance of
each heuristic over a significant number of simulation trials.
Given the formulation of the dynamic SRM value, a high
dynamic SRM value for a heuristic should indicate a low
cost for the heuristic. In other words, heuristics that pro-
duce higher dynamic SRM values should have lower cost,
i.e., have fewer task deadline misses, than those with low
dynamic SRM values.

Figure 4 presents the cost distributions for each of the
three heuristics. Each distribution was generated using a
kernel density estimator where the kernel function was set
to be Gaussian [6]. The cost results from the 100 simulation
trials were used as the sample data for the kernel density
estimator. Also plotted in the figure are the means of each
distribution and the calculated dynamic SRM value for each
heuristic. The cost distributions for the three heuristics are
only valid in the interval [0, 1024] corresponding to the low-
est possible cost for a heuristic and the highest possible cost
given the defined simulation setup.

As can be seen in Figure 4, the Negotiation heuristic
produced the lowest mean cost of 87.77 and had the high-
est dynamic SRM value of 0.609. The Two Phase Greedy
heuristic had the next lowest mean cost with 279.28 and the
next highest dynamic SRM value of 0.392. Finally, the STG
heuristic produced the highest mean cost of 593.6 and the
lowest dynamic SRM value of 0.206.

The results of Figure 4 suggest that there is a correlation
between the dynamic SRM value and the number of tasks
that miss their deadlines. If there is a correlation between
the dynamic SRM value and the number of deadline misses,
then a plot of all of the simulation sample points taken for
the three heuristics should lie on a common curve. To eval-
uate this conjecture, we combined the sample points for the
three heuristics and applied Bayesian regression to produce
Figure 5.

The sample costs taken from the three heuristics are plot-
ted as points in the figure where triangles represent the sam-
ple points taken from the Negotiation heuristic, diamonds
represent the sample points for the STG heuristic, and cir-

Figure 4. The distributions of cost values for
all three heuristics. The cost distributions
were generated using a kernel density esti-
mator and the results of the 100 simulation
trials.

cles the sample points for the Two Phase Greedy heuris-
tic. Using these data points a Bayesian regression model [6]
was generated to fit the points to a common curve. The re-
sults of the regression model are plotted in Figure 5 as the
the dynamic SRM value versus the logarithm of the cost.
The model combines a series of radial basis functions with
variance 0.2 that were uniformly distributed on the inter-
val [0,1]. The range of cost results for the simulation trials
were re-mapped to the interval [0,1] where 0 corresponds
to the smallest possible cost and 1 to the highest possible
cost, i.e., 1024. The line plotted in the figure represents the
mean of the Bayesian model and the shaded region repre-
sents one standard deviation around the mean. The gener-
ated model appears to fit the combined sample points taken
from the three heuristics to a single simple curve suggesting
that there may be a correlation between changes in the dy-
namic SRM value and changes in cost. Next, we consider
the relative performance of the individual heuristics.

From the plot of Figure 4, it appears that the negotia-
tion heuristic generally outperforms the others. To more
accurately compare the results of the three heuristics an-
other distribution was generated to assess the frequency
with which the Negotiation heuristic outperforms the STG
and Two Phase Greedy heuristics. Using the resource allo-
cation cost data taken from the 100 trials, Figure 6 shows the
cost distributions with mean values for both the Negotiation



Figure 5. Plot of dynamic SRM value versus the logarithm of the costs for all three heuristics. A
Bayesian regression model has been used to fit a curve to the combined set of sample points for all
three heuristics. The line in the figure is the mean of the regression model and the shaded region
represents one standard deviation around the mean.

heuristic and the STG heuristic and a cost comparison for
the two. To generate the cost comparison distribution, la-
beled “STG vs. Negotiation Cost Comparison,” the cost val-
ues generated for the Negotiation heuristic were subtracted
from those generated by the STG heuristic for each simula-
tion trial. The samples used to define the actual execution
times were drawn in advance of the simulation trials and
were the same for each heuristic. A kernel density estimator
was then applied to the resultant data points to generate the
distributions in the figure. For each simulation trial, the Ne-
gotiation heuristic produced a lower cost than that produced
by the STG heuristic. However, for a small number of simu-
lation trials the STG heuristic performed comparably to the
Negotiation heuristic. These cost comparison values were
very close to zero but still slightly positive causing the tail
of the cost comparison curve generated by the kernel den-
sity estimator to edge into negative values. This suggests
that there is a small probability that given the right circum-
stances STG might perform better than Negotiation.

Figure 7 compares the cost distribution for the Two
Phase Greedy heuristic with the cost distribution for the Ne-
gotiation heuristic. As can be seen in the comparison plot,
labeled “Two Phase Greedy vs. Negotiation Cost Compar-

ison,” the density estimate of the comparison cost distribu-
tion has a non-zero frequency for a sizable number of neg-
ative values. That is, for these trials the Two Phase Greedy
Heuristic had fewer task deadline misses than the Negoti-
ation heuristic. However, for the majority of the trials the
Negotiation heuristic outperformed the Two Phase Greedy
heuristic. From the cost comparison plot this can be seen
because the mean of the comparison cost distribution is
positive implying that more often than not the Two Phase
Greedy heuristic had a higher cost than Negotiation.

8. Related Work

In [14], the authors define a stochastic methodology for
evaluating the robustness of a resource allocation in a sta-
tic environment. In that work, uncertainty in system para-
meters and its impact on system performance are modeled
stochastically. This stochastic model was then used to de-
rive a quantifiable measure of the robustness of a resource
allocation in a static environment. This was done by defin-
ing stochastic completion times in a similar manner to our



Figure 6. A comparison of the STG heuristic’s
cost distribution and the Negotiation heuris-
tic’s cost distribution. The comparison plot,
labeled “STG vs. Negotiation Cost Compar-
ison,” shows that the Negotiation heuristic
consistently performs better than the STG
heuristic for all simulation trials.

current presentation. A major distinction between the two
formulations is that our previous work only considered a
static environment where all machines are idle at the begin-
ning of a mapping and the set of all tasks to be mapped is
known in advance. In this work, the completion time calcu-
lations are very similar but machines may not be idle when
a mapping event occurs and new tasks are constantly arriv-
ing. The stochastic completion time calculations are an im-
portant component of the stochastic robustness metric cal-
culation in [14]. The result of the calculation is a probabil-
ity distribution for task completion times that is then used
in the calculation of the stochastic robustness metric for a
resource allocation.

Intuitively, the expression of robustness presented in [14]
provides a measure of the likelihood that the makespan of
a resource allocation will fall within the provided bounds.
This general concept has been used in this work but has
been adapted to the details of the present dynamic environ-
ment. In this work, we were given bounds on the accept-
able completion times for each task as opposed to a bound
on the acceptable completion time for a collection of tasks.
The derived joint probability distribution that defines the
stochastic robustness metric corresponds to the probability

Figure 7. A comparison of the Two Phase
Greedy heuristic’s cost distribution and the
Negotiation heuristic’s cost distribution. The
comparison plot, labeled “Two Phase Greedy
vs. Negotiation Cost Comparison,” shows
that the Negotiation heuristic was not uni-
formly better than the Two Phase Greedy
heuristic.

that all tasks complete by their deadline as opposed to the
probability that the collection of tasks will complete by a
given deadline as in [14]. A further distinction of this work
over [14] is the use of many individual measures of the re-
source allocation to produce a predictive measure of the ro-
bustness.

In [11], the robustness concept is used to develop re-
source allocations in a dynamic environment. However,
that work utilizes a deterministic estimate of task execu-
tion times to develop the robustness of the resource allo-
cation’s makespan when the task execution time estimates
vary from their predicted values. In this work, the robust-
ness of a given resource allocation heuristic is instead for-
mulated with respect to its ability to meet individual task
deadlines. Another distinction between this work and [11]
is that task execution times in [11] are simply deterministic
execution time estimates. In contrast, this work models task
execution times as random variables where we assume the
existence of an empirical distribution.



9. Conclusions

Our results suggest that there is an inverse relationship
between the dynamic SRM value and the performance ob-
jective of the problem studied. In reviewing our results,
we explored the general relationship between the dynamic
SRM value and the performance objective by analyzing the
fit of a Bayesian regression model to our results. The rel-
atively good fit of the regression model to the combined
data of the three heuristics is strong evidence of the relation-
ship between the dynamic SRM value and the stated perfor-
mance objective. Our results appear to demonstrate that the
dynamic SRM value can simplify the evaluation of resource
allocation heuristics in a dynamic environment. That is, the
methodology for determining the dynamic SRM value for
a heuristic reduces the number of simulations required to
demonstrate the superiority of one heuristic over another in
a dynamic resource allocation environment.

Using these results we compared the performance of
three different heuristics taken from the literature and ap-
plied to a stochastic dynamic environment. From this com-
parison, the Negotiation heuristic showed promising results
in this environment. Given the apparent relationship be-
tween the dynamic SRM value and the stated performance
objective, a valuable extension of this work would be the de-
velopment of resource allocation heuristics that incorporate
the dynamic stochastic robustness metric during a resource
allocation.
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