
Towards Optimal Multi-level Tiling for Stencil Computations

Lakshminarayanan Renganarayana, Manjukumar Harthikote-Matha,
Rinku Dewri, and Sanjay Rajopadhye

Department of Computer Science, Colorado State University, USA
{ln,manjuhmm,rinku}@cs.colostate.edu and Sanjay.Rajopadhye@colostate.edu

Abstract

Stencil computations form the performance-critical core
of many applications. Tiling and parallelization are two
important optimizations to speed up stencil computations.
Many tiling and parallelization strategies are applicable
to a given stencil computation. The best strategy depends
not only on the combination of the two techniques, but
also on many parameters: tile and loop sizes in each di-
mension; computation-communication balance of the code;
processor architecture; message startup costs; etc. The best
choices can only be determined through design-space ex-
ploration, which is extremely tedious and error prone to do
via exhaustive experimentation. We characterize the space
of multi-level tilings and parallelizations for 2D/3D Gauss-
Siedel stencil computation. A systematic exploration of a
part of this space enabled us to derive a design which is up
to a factor of two faster than the standard implementation.

1. Introduction

Stencil computations form the basis for a wide range
of scientific applications from simple Jacobi to complex
multigrid solvers. Their inclusion in major benchmarks like
SPEC [25], HPFBENCH [9], PARKBENCH [19], and NAS

Parallel Benchmarks [18], clearly show their importance.
The development of special purpose stencil compilers [4]
and implementation of pattern matchers in general compil-
ers [24] to identify stencil computations, highlight the po-
tential for performance improvements from loop transfor-
mations and optimizations.

Tiling [10, 31, 32] is a loop transformation that can be
used for (i) partitioning data and computations among par-
allel processors and (ii) reordering computations within a
single processor to improve data locality. For stencil com-
putations a variety of multi-level tiling schemes are pos-
sible. For example, consider just two levels of tiling: an
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outer level for parallelism and an inner level for data lo-
cality. For every outer level tiling strategy, many paral-
lelizations are possible, and for each such parallelization,
several inner level (for locality) tiling strategies are pos-
sible. The best schemes are those with lowest execution
times, which depend on optimal choices of tiling and par-
allelization strategies and parameters. Not only are there
many such schemes, for each of them the space of the tile
sizes is also huge. The global question is which combination
of tiling and parallelization strategy with which parameters
produces the minimum running time for a given set of pro-
gram size parameters and a given parallel machine? It is
time consuming and error prone to develop parallel imple-
mentations for each combination of tiling and paralleliza-
tion scheme and experiment with them to find a good one,
or to even eliminate the obviously poor ones.

There have been extensive studies [27, 23, 14, 30, 6, 11]
on tiling stencil computations for locality. Schemes for
tiling stencil computations for parallelism can be classi-
fied based on whether or not they tile the outermost time
loop. The commonly used data partitioning scheme [7] does
not tile the time loop and uses the “owner-computes” rule
to determine the computation distribution. Early work by
Wolfe [28] shows that skewing can be used to enable tiling
of the time loops. Recently, Wonnacott [29] shows that time
skewing can be used to tile for parallelism as well as lo-
cality. Several important issues are not addressed by these
authors. For a given stencil computation,

• what is the space of legal tiling and parallelization
schemes?

• what are the trade-offs between these schemes?

• how do the tiling choices at the parallelization level
affect the choices at locality1?

• what are the globally optimal tile sizes?

1Mitchell et al. [16] point out that ignoring such tiling interactions will
lead to suboptimal solutions.



A study of these issues will enable us to develop high per-
formance, multi-version, platform specific implementations
of stencil computations. As an analogy, consider the matrix
multiplication code generated by ATLAS [26]. The gener-
ated final code has different versions for different shapes of
matrices, and makes several platform specific choices for
optimizations. Our experiments show that stencil compu-
tations are similar, i.e., the optimal strategy depends on the
shape of the domain (size of the grid and the number of time
steps). We envision a tool that explores the space of legal
tiling and parallelization schemes, selects optimal parame-
ters and generates a multi-version high performance imple-
mentation of a given stencil computation. As a first step
towards such a tool, this paper makes the following contri-
butions.

• We characterize the space of possible legal tilings and
load balanced parallelizations for 2D/3D Gauss-Siedel
9-point stencil. We focus on two candidates from this
space to illustrate the need to explore this space. Even
this partial exploration led us to derive a new strategy
which is up to a factor of two faster than the standard
implementation.

• We develop analytical models for the parallel execu-
tion times of the two strategies. We formulate a con-
strained optimization problem for the optimal tile sizes
and transform it to a convex optimization problem,
which can be solved efficiently.

• For both the strategies, we study an additional level of
tiling for locality and analyze the interactions between
the choices at different levels.

• We experimentally validate our analytical models. We
discuss the performance improvements and trade-offs
obtained with various strategies. We show how the best
strategy depends on the shape of the stencil iteration
space. This leads to a division of the input space into
regions where different strategies perform better.

In the next section we characterize the space of legal tilings
and parallelizations. In Sections 3 and 4 we discuss in detail
the tilings and parallelizations for the two strategies and de-
rive analytical models for their execution times. We present
experimental validation and discuss performance improve-
ments and trade-offs in Section 5. We discuss related work
in Section 6 and present our conclusions and future work in
Section 7.

2. Space of Tiling and Parallelizations

We consider 2D/3D stencil computations in which a two
dimensional data grid of size Ni ×Nj is updated iteratively

over Nk time steps. We call Ni, Nj , and Nk as the loop size
parameters and let �N = (Ni, Nj, Nk). As a representative
of this class (3D stencils) we consider the Gauss-Siedel 9
point stencil computation given in Figure 1 (left). The com-
putation domain is a 3D cuboid of size Ni × Nj × Nk. A
graphical view of the nine dependences are shown in Fig-
ure 1 (right). Gauss-Siedel (in place updates) stencils are
expected to have faster convergence than the Jacobi stencils,
which use all the 9 values from previous time steps. On the
other hand, the dependences of the Jacobi stencil are easier
to tile and/ or parallelize. We consider the difficult (to tile
and parallelize) but faster converging Gauss-Siedel stencils.
Our characterization and models are directly adaptable and
applicable to other types of 2D/3D stencils.

2.1. Tiling and parallelization model

Tiling [10, 31] partitions the iteration space into groups
which are executed in an atomic fashion – all iterations in a
given tile are executed by a processor before any iteration of
its next tile. Note that this notion of atomicity still permits
any legal (re)ordering of the computation and communica-
tion steps within a tile. A rectangular tiling is one where
rectangles are used for partitioning. We consider rectangu-
lar tiling possibly preceded by a skewing transformation to
make it legal. We denote the tile sizes along the dimen-
sions i, j, and k of the 3D iteration space by si, sj, and sk,

respectively. The tile graph consists of nodes representing
tiles and edges between them representing the dependences
between tiles. It is well known that [1, 32] if the si’s are
large as compared to the elements of the dependence vectors
of the original loop, then the dependencies between the tiles
are unit vectors (or binary combinations thereof, which can
be neglected for analysis purposes without loss of general-
ity). An important property is that the tile graph with such
unit dependence vectors can be viewed as an n-dimensional
system of uniform recurrence equations [12]. Such a view
allows us to use the powerful systolic array synthesis meth-
ods [20, 21] to formally reason about optimal paralleliza-
tions of the tile graph. In the context of exploring the space
of possible tiling and parallelizations, such a formal reason-
ing helps in constraining the search space to a few valid and
good candidates.

In any parallelization, the dependences in the tile graph
induce some delay before which all the processors can start
executing. We call this initial delay the latency of a paral-
lelization strategy. Once all the processors begin to execute,
any idle time incurred by a processor is a consequence of
the chosen parallelization. We restrict ourselves to paral-
lelizations that are free of such idle times. We call such
parallelizations idle-free. We also restrict ourselves to al-
locations that are load-balanced, i.e., to ones that allocate
an equal amount (except at boundaries) of computation to



f o r k = 1 . . . Nk

f o r i = 1 . . . Ni

f o r j = 1 . . . Nj

A[i, j] = ω � (A[i − 1, j] + A[i − 1, j − 1]+
A[i, j − 1] + A[i − 1, j + 1]+
A[i + 1, j] + A[i + 1, j + 1]+
A[i, j] + A[i, j + 1] + A[i + 1, j − 1])

Figure 1. (Left) Gauss-Siedel style successive over-relaxation code. 9 point stencil computation.
(Right) Dependences of the 9 point stencil computation.

every processor. For the stencil computations this can al-
ways be achieved. Practical experience as well as our an-
alytical models predict that optimal performance can only
be achieved under such idle free load balanced paralleliza-
tions. Further, for allocation functions we restrict to orthog-
onal projections—ones that are parallel to some canonical
axes.

To summarize, we consider rectangular tiling and idle-
free load balanced parallelizations only. As shown in the
later sections, the set of choices to be considered after these
restrictions is still rich.

2.2. Need for and implications of skewing

Skewing is a loop transformation that changes the de-
pendence distances in the stencil code. In the context of
stencil computations, skewing is often used to transform the
dependence distances into non-negative ones, thus making
tiling legal. Given the dependences of the 9-pt stencil (cf.
Figure 1), tiling certain dimensions require certain skewing
transformations to make it legal. However, as a side effect,
skewing also changes the shape of the iteration space. For
instance, skewing a rectangular iteration space will make
it a parallelogram. As a consequence, a rectangular tiling
of the parallelogram iteration space will result in both full
(rectangular) and partial (non-rectangular) tiles. Partial tiles
increase the tiling overhead and also makes analytical mod-
eling difficult. Hence, there is a trade-off: extra tiling over-
head introduced by skewing versus ability to tile additional
dimensions.

2.3. Space of tilings and allocations for par-
allelization

The space of possible rectangular tilings for the 9-pt
stencil (cf. Figure 1) corresponds to the choice of which
and how many dimensions do we choose to tile. Note that
we are not characterizing the space of tile sizes, which we

will do later for each possible tiling. Tiling different dimen-
sions requires a different set of skews of the iteration space.
The choices and the corresponding skews are discussed be-
low and a graphical view of them is shown in Figure 2 (top
box).

1. Tile the program with no skewing. The program
dependences limit such tilings. For example, in or-
der to tile either the i or the j loops, sk has to be
1. Furthermore, in order to tile the j loop, si must
also be 1. Thus the possible tilings are: (i) the trivial
1× 1× 1, Nk ×Ni ×Nj and 1×Ni ×Nj tiles which
we discarded for obvious reasons; (ii) 1 × si×Nj tiles;
and (iii) 1× 1× sj tiles, which we discard because the
computation-to-communication balance of the tiles is
too low2. We pursue the 1 × si × Nj tiling. For this
tiling strategy, a parallelization on an 1D processor ar-
ray is the only choice, where the processors are aligned
along the i axis (cf. Figure 3 (left)). The choices are
shown in the left-most branch of Figure 2.

2. Tiling both i and j dimensions. We need to skew
i with respect to j to make tiling along j legal. This
case also covers the case of tiling just along j when
the tile size along i is 1. For this tiling, we can paral-
lelize the tile graph on an 2D or 1D processor array.
For an 1D processor array we align it along the i axis.
For the 2D processor array, we can either align the pro-
cessors along the ik-plane or the ij-plane. For the ij-
plane alignment the processors are arranged in a par-
allelogram shaped grid and for the ik-plane alignment
they are arranged in a rectangular grid. The choices
are shown in the second branch (from left) in Figure 2.

3. Tiling both i and k dimensions. We need to skew i

with respect to k to make tiling along k valid. Based
on a similar reasoning as above, this choice also covers

2It would be easy to use the ideas in this paper to confirm analytically
and experimentally that this is indeed the case.



Figure 2. Space of multi-level tilings and parallelizations for the 9-pt. stencil. The choices (path)
shown in bold correspond to the two strategies explored in detail.

the tiling just along k. For this tiling, a parallelization
on an 1D processor array is the only choice. The pro-
cessors are aligned along the k axis as shown in Fig-
ure 4 (right). The choices for this strategy are shown
in the third branch (from left) in Figure 2.

4. Tiling all the three (i, j and k) dimensions. We need
to first skew i with respect to k and then skew j with
respect to i. This choice also covers the case of tiling
just j and k. For this tiling, with orthogonal proces-
sor allocations, only an 2D processor array is possible.
The 2D processor array is aligned along the ik-plane.
However, if we expand our space and consider non-
orthogonal processor allocations, there are two linear
array parallelizations possible3. We do not discuss
these choices further. The choices related to the 2D
processor array is shown in the right most branch in
Figure 2.

One might wonder why the last choice above does not cover
all the other cases by appropriately letting the correspond-
ing dimensions (i, j, and/or k) equal to 1? The answer is,
skewing creates partial tiles and leads to a different cost
function for the total computation time. The overhead of
partial tiles should be avoided whenever possible, so that
we can derive simpler parallel implementations and more

3These non-orthogonal projections make every communication non-
local, which would result in higher communication costs. Based on this
intuition we have restricted ourselves to orthogonal projections. It is not
clear whether this is always globally optimal but it definitely makes the
space more tractable.

precise execution time models.

2.4. Space of tilings for locality

After an outer level of tiling for parallelism we can tile
another level for locality. We call a tile from the outer level
of tiling (for parallelism) as a parallel-tile and a tile from
the inner level of tiling (for locality) a cache-tile. Corre-
spondingly we also refer to their sizes as parallel-tile sizes
and cache-tile sizes.

We have two choices for cache tiling: tile i and j di-
mensions only or tile i, j and k dimensions. Both may re-
quire additional skewing transformations to make them le-
gal. This additional skewing is not required if it has already
been done for the outer (parallelism) level tiling. Given that
the data of the stencil is 2D, tiling just the i and j dimen-
sions will allow us to exploit the limited amount of spa-
tial locality. To exploit temporal locality we need to tile
the (time) k dimension. The choices are shown in Figure 2
(lower box).

2.5. Interactions between tilings

Two types of interactions ensue, viz., (i) skewing trans-
formations at parallelism level can enable or disable tiling
along certain dimensions for locality, and (ii) the parallel
tile sizes restrict the lower and upper bounds of the cache
tile sizes. These interactions stem from the fact that a
parallel-tile becomes the iteration space for the cache tiling.



We describe below two instances where a decision made at
the parallelism level affects the choices in the inner level.

Consider the case in which we do not tile the k loop at the
parallelism level. This choice leads to parallel-tiles which
are slices of the ij-plane and disables cache level tiling of
the k loop. These slices become the iteration space for the
cache-level tiling. So, we can see that the cache-tiles are
forced to be 2 dimensional and hence can only exploit spa-
tial locality. (Recall that we need to also tile the k dimen-
sion to exploit temporal locality.) The first two branches
(from left) in Figure 2 shows this consequence — observe
the leaves showing the possibility of only 2D cache tiles.

When tiling j loop is made legal by skewing transfor-
mations at the outer level, there is no additional skewing
required at the inner cache-level to get 2D cache-tiles. This
case is shown in the second and fourth branches (from left)
in Figure 2. On the other hand, notice that for the strategies
shown in the first and third branches (from left) in Figure 2,
we need to skew i loop with respect to j to make tiling j

loop legal and hence get 2D cache-tiles.

3. 1D Strips

In this section we consider the first strategy (left most
branch in Figure 2) and develop an analytical model for the
parallel execution time. In the modeling, we use three pa-
rameters, viz., α, β and τ, to model the quantities that are
dependent on the loop program and parallel architecture on
which it is to be executed. α represents the time to exe-
cute an iteration of the given loop program. β and τ repre-
sent respectively the start up cost of a MPI communication
call and the time to communicate a double precision data
value. We use an affine communication model, viz., τx+β,

to estimate the cost of communicating a message of size x.

In this tiling strategy, each tile is a 1×si×Nj rectangular
parallelepiped, i.e., only the i loop is effectively tiled. The
j loop has a single “tile” of size Nj , and the k loop “tiles”
have unit size. Because there is only one tile in the j dimen-
sion, the resulting tile graph can be viewed as a 2D grid in
the (i, k) plane as shown in Figure 3 (left). The dependence
between a producer tile at (pi, pj) and a consumer tile at
(ci, cj) is given by (ci − pi, cj − pj). The dependences be-
tween tiles are (0, 1) to the north, with a data “volume” of
Njsi, and (1, 0) (east) and (−1, 1) (north-west), both with
volume Nj .

To explore different parallelizations, we first derive the
optimal wavefront schedule for the tile graph, which is
t(i, k) = i + 2k. This schedule is shown as dotted lines
across the tile graph in Figure 3 (left). It is optimal in the
sense that the total execution time for this schedule (assum-
ing unbounded processors) is Ni

si
+ 2Nk − 1, which equals

the length of the longest path in the graph.

Next, we choose an appropriate allocation of tiles to (vir-
tual) processors. For our rectangular tile graph, only two al-
locations lead to a load balanced parallelization, namely by
columns, or by rows. Allocation by rows, where each pro-
cessor sequentially executes all the tiles in a row of the tile
graph, leads to a parallelization that allows multiple passes.
We developed an analytical model for it and determined the
optimal tile size. However, this parallelization is almost al-
ways outperformed by the column wise allocation, and is
not described further in the interests of brevity.

Allocation by columns, where tile (i, k) is performed by
virtual processor i, yields a parallelization (i.e., a “macro
systolic array”) that has bidirectional communication: pro-
cessor i sends to i + 1 for the (1, 0) dependence, and to
i − 1 for the (−1, 1) dependence. This has two important
consequences.

• Every processor is active only on alternate time steps.
This problem can easily be corrected by a well known
systolic technique called clustering or serialization [5].
We allocate two adjacent virtual processors to a single
physical processor which alternates between the two
tiles and is thus always busy. This combined two-tile
unit is called a “macro tile” or a Strip.

• It precludes adaptation to run on fewer processors in
multiple passes, using another common systolic tech-
nique called LPGS (for Locally Parallel Globally Se-
quential) partitioning [17]. This means that si = Ni

2p
,

i.e., each macro tile is a Ni

p
× Nj strip.

A processor performs the following steps: receive data re-
quired to execute the strip, execute the strip and send com-
puted data to neighbors. As a latency hiding optimization,
we can relax the strict order between the receive-compute-
send steps, and interleave them. In the execution of a strip,
if we allow the processors to move the sends as early as
possible and the receives as late as possible, we get the op-
timized code shown in Figure 3 (right). In this version, a
processor receives the data to compute its left-most column,
computes it and sends the new values immediately. Then it
computes the middle region of the strip, receives the data to
compute the right-most column, computes it, and sends the
new values.

There are no tiling parameters to choose optimally, and
the analytical model developed below predicts the running
time for this parallelization. The single pass execution im-
plies that the tile size si along i has to be Ni

P
. Let pi denote

the ith processor, and p′ = pP−1 the last processor. The
total execution time of this tiling and parallelization can be
modeled as Tstrip = Latency(p′) + TPP(p) × TET(si).

Where, P is the number of processors, si = Ni

P
is the tile

size, Latency(p′) is the latency for last processor to start,
TPP(p) is the number of tiles allocated to any processor
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for k = 1 . . . Nk

for each strip S

receive Rcol[k] of pi−1

compute Lcol[k] of S

send Lcol[k] of S to pi−1

compute MiddleRegion[k] of S

receive Lcol[k − 1] of pi+1

compute Rcol[k] of S

send Rcol[k] of S to pi+1

Figure 3. (Left) Tile graph of 1D strips tiling. The fastest schedule is shown in dotted lines.
(Right) Steps performed by each (non-boundary) processor in 1D Strips tiling. Lcol[],Rcol[],and
MiddleRegion[] corresponds to the left column, right column and middle portion of a strip. The
index k and k − 1 indicates, respectively, whether they are from the same k plane or the previous
plane.

p, and TET(si) is the time to compute a tile. To com-
pute the time to execute a tile, we observe that during the
computation of a tile a processor performs Njsi computa-
tions and communicates its left and right columns, of size
Nj , to the previous and next processors. Hence, we have
TET(si) = α × Nj × si + 4(τNj + β), where, α, τ, and
β are as discussed earlier. Every processor is allocated Nk

macro tiles (or strips), hence TPP(p) = Nk.

The last processor can only start after it receives the
right most column of its left neighbor, i.e., p′ can start af-
ter the first P − 1 processors execute their tiles. Hence,
Latency(p′) = (P − 1) × TET(si). By plugging in these
functions we get

Tstrip = (Nk + P − 1) ×
(

α

(
NiNj

P

)
+ 4(τNj + β)

)
(1)

3.1. Cache tiling

Each processor executes a set of parallel-tiles, each of
size Ni

P
×Nj. This strip can be further tiled to exploit some

limited amount of spatial locality. However, to make the
tiling of the strip legal, we need to skew the j loop with
respect to the i loop. We perform this transformation and
then tile both the i and the j loop to obtain 2D cache-tiles.
Note that the decision of not tiling the k loop at the outer
level results in a situation where we cannot tile the k loop
at the inner (cache) level, to exploit temporal locality. We
select the best cache-tile sizes empirically, i.e., by running
the cache-tiled code for several tile sizes and selecting the
best. The space of tile sizes is chosen such that the tile
footprint is smaller than the cache capacity.

4. Semi-oblique Strips

In this tiling strategy, we seek to tile the k and i di-
mensions. To make this tiling legal we first skew the i

loop with respect to the k loop with the transformation
(k, i, j) �→ (k, i + k, j). The transformed dependences are
shown in Figure 4 (left). We then tile the k and i loops with
tile sizes sk and si, respectively. We do not tile the j loop
and allow sj = Nj . The skewed iteration space together
with the tiling is shown in Figure 4 (right).

We parallelize this tiled iteration space on a linear array
of P processors aligned along the k axis as shown in Fig-
ure 4 (left). The target architecture is a distributed memory
machine and the execution model is SPMD style with MPI
based communication. Note that depending on whether
Nk

sk
> P or not, there might be more than one pass. Every

processor executes one or more rows (along i) of Ni

si
tiles

of size sk × si ×Nj. Such an allocation is load balanced—
all the processors execute the same amount of computation
(assuming P divides Nk

sk
evenly). During the execution of

a tile, a processor receives the bottom (i j) face of the tile
from the processor below it, computes the tile, and sends the
top (i j) face to the processor above it. These faces commu-
nicated between processors are of size siNj .

The execution time of the tiled parallelized loop pro-
gram is given by Tsos = Latency(pP−1) + TPP(p) ×

TET(si, sk), where we have TET(si, sk) = (αsiskNj +
2(τNjsi + β) ). The number of tiles allocated to a proces-
sor is TPP(p) = Nk

skP
×

Ni+sk

si
. This follows from the fact

that Nk

skP
gives the number of passes executed by a processor

and Ni+sk

si
is the number of tiles executed by a processor in

one pass.
The slope sk

si
(also known as the rise [8]) plays a fun-



Figure 4. (Left) Skewed dependences that make this tiling legal. (Right) Semi-oblique strips tiling.

damental role in determining the latency. Processor pP−1

can start its first tile only after (P − 1) ×
(

sk

si
+ 1

)
tiles

are executed. Hence, we have Latency(pP−1) = (P − 1)×(
sk

si
+ 1

)
×TET(si, sk). To ensure that there is no idle time

between the passes, we need to make sure that by the time
the first processor finishes all the tiles from its first pass, the
last processor should have finished at least one tile. This

constraint is given by P
(

sk

si
+ 1

)
≤

Ni+sk

si
. Putting them

all together we get the following constrained optimization
problem

minimize Tsos =

[(
Nk

skP
×

Ni + sk

si

)
+ (P − 1) ×

(
sk

si

+ 1

)]
×

(αsiskNj + 2(τNjsi + β) ) (2)

subject to P

(
sk

si

+ 1

)
≤

Ni + sk

si

We can transform this optimization problem (Eqn. 2)
into a Geometric Program (GP), which is a special class of
optimization problems. The key insight that permits this
transformation is the property that the tile sizes always take
positive values only. An introduction of GPs is beyond the
scope of this paper. We refer the interested reader to [22]
which shows the use of GPs to solve optimal tiling prob-
lems. Geometric programs can be transformed into con-
vex optimization problems using a variable substitution [3]
and solved efficiently using polynomial time interior point
methods [13]. Integers solutions can be found by using a
branch-and-bound algorithm. We use YALMIP [15] – a tool
that provides an high level symbolic interface in MATLAB

to define and solve GPs for integer solutions. The number
of (tile) variables of our GPs are related to number of di-
mensions tiled and hence are often small. In our experience
with solving GPs related to tiling, the integer solutions were
found in a few (less than ten) iterations of the branch-and-
bound algorithm. The (wall clock) running time of this al-
gorithm was just a few seconds, even with the overhead of
using the symbolic MATLAB interface.

4.1. Cache tiling

Each parallel-tile is a semi-oblique block of size sk ×

si × Nj . Each block can be further tiled for locality. Since
we have tiled the k loop at the outer level we can have both
2D as well as 3D tiles at the inner (cache) level. To make
tiling the j loop legal, we have to skew it with respect to the
i loop. After this transformation, we can either choose to
tile only the i and j loop to obtain 2D cache-tiles, which can
exploit spatial locality, or tile all the three loops to obtain 3D
cache-tiles and exploit both spatial and temporal locality.
We explore only the choice of 2D cache-tiles and leave 3D
cache-tiles as future work. Note that the optimal parallel-
tile size si from the outer level affects the iteration space
sizes for the 2D cache-tiling, viz., si×Nj . We select the best
cache-tile sizes empirically, i.e., by running the cache-tiled
coded for several tile sizes, which are within the bounds of
si and Nj , and selecting the best.

5. Experimental Results

We have implemented two versions, one with cache tiling
and one without, for both the 1D Strips and Semi Oblique
Strip (SOS) strategies. The implementation of the 1D Strips
is the optimized latency hiding version. For both the strate-
gies, we selected the best cache-tile sizes by running the
cache-tiled code (on a single processor) for a range of tile
sizes (within the bounds imposed by parallel-tile sizes). For
the 1D Strips, we observed that for the small tile sizes range,
there is a steep decrease in the running time as we increase
the tile sizes. This trend stops and the running time becomes
relatively constant for larger tile sizes. After experiment-
ing with several strip sizes, we found the cache-tile of size
60× 140 to be the best and used it for our experiments. For
the SOS strategy, the running time had a similar behavior
with respect to cache-tile sizes. After experimenting with
several grid sizes, we found that the optimal parallel-tile
size si is always very small, and hence we let the cache-tile
size along the i dimension to be the same as si. This results
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Figure 5. Speedups for SOS over Strip strategy without (left) and with (right) cache tiling. Results for
five different grid sizes Ni = Nj = 1200, 2160, 3120, 4080, and 5040, each for a set of small time steps
Nk = P (the number of processors), are shown.

in no cache-tiling along i. For the cache-tile size along j we
selected a value of 50 which belongs to the flat execution
time region.

We used a IBM Cluster 1600 running AIX, at the Na-
tional Center for Atmospheric Research, Colorado, for our
experiments. The IBM Cluster is a Symmetric Multipro-
cessing (SMP) system. The nodes are made of 1.3-GHz
POWER4 processors. The processors in a single node can
communicate via shared memory, and the nodes themselves
communicate via an SP Switch2 interconnect. We used the
IBM mpcc compiler for our experiments with standard-O3
optimization levels. Our parallel implementations are writ-
ten using the MPI message passing library.

We obtained values of α = 5.5× 10−8, β = 4.1× 10−6

and τ = 5.3×10−9 as follows. We ran the loop body of the
stencil computation for 1000 iterations and took the average
execution time as α – the time to compute one iteration. We
estimated the cost of communicating one double value (τ ),
and the MPI communication call start up cost (β), with a
ping-pong style MPI program that mimics the communica-
tion pattern of our tiled programs.

Stencil computations used in PDE solvers have fast con-
vergence and the number of time steps are usually small,
such as 8, 16, or 24. The type of stencil computations used
in simulations, such as water models, have large number of
time steps. For our experiments we considered these two
type of stencils over square grids, i.e., Ni = Nj. We found
that for small time step stencils the SOS strategy performs
better than Strips, and as the number of time steps increases,
its performance becomes comparable to that of Strips. This

divides the input space into two regions where one of the
strategies is clearly preferable over the other.

We present experimental validation and performance
improvements for the small number of time steps case.
Five different square (Ni = Nj) grid sizes viz.,
1200, 2160, 3120, 4080, and 5040, with small time steps
Nk were used for experiments. For such small time steps
in the SOS strategy, the number of processors is set to Nk,

since the processors are aligned along the k dimension. Fig-
ure 5 shows the speedup achieved by the SOS over the Strip
strategy (without and with tiling for locality) for the five dif-
ferent grid sizes with number of processors P = Nk. With-
out cache tiling we obtained speedups of up to 60% (with
an average of 40%). Also, we observed higher speedups for
larger grids. We observed in single processor experiments
that cache tiling helps SOS (30%) more than Strips (5%).
These improvements are reflected in their parallel imple-
mentations (Figure 5(right)). Speedups up to a factor of 2.1
are seen with cache tiling (see P = 24 in Figure 5(right)).
Here, we see a similar trend of higher speedups for larger
grid sizes. Clearly, for stencils with small time steps, the
new SOS strategy performs much better than the standard
Strips strategy. A two fold decrease in running time is sig-
nificant for such applications.

We validated our analytical models for the two strategies,
using more than 100 different combinations of stencil grid
sizes and number of processors, and have found them to be
reasonably accurate. We present here a subset of them. The
percentage error in predicted with respect to the actual for
SOS is shown in Figure 6(left) and for Strips in Figure 6
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Figure 6. Percentage error in predicted with respected to actual for SOS (Left) and Strip (Right) strate-
gies without cache tiling. Results are reported for five different grid sizes (Ni = Nj) each for a set of
time steps Nk equal to number of processors P.

(right). Our models consistently under predict the execu-
tion time. Overall, the predictions are within 20% of the
actual execution time, which is good for tiling and design
space exploration. Further, for SOS, we conducted experi-
ments to see how close is the predicted to the actual at the
optimal tile sizes (si and sk), obtained by solving the con-
strained optimization problem (cf. Eqn. 2). We found that
near the optimal running time the predictions are fairly close
(within 20%) and at points far from optimum the difference
is higher. This is the desired behavior for such analytical
models.

6. Related Work

There have been extensive studies [27, 23, 14, 30, 6, 11]
on tiling stencil computations for locality. In the space of
multi-level tilings that we characterize, these locality im-
proving techniques can be leveraged to improve the imple-
mentations at the leaf (uni-processor) level. Data or domain
decomposition [7] is a standard scheme used in tiling sten-
cil computations for parallelism. Early work by Wolfe [28]
shows that skewing and tiling transformations can be com-
bined to tile for both parallelism and locality. Recently,
Wonnacott [29] shows that time skewing can be used to tile
for parallelism as well as locality. As discussed in Section 1,
these authors propose transformations that can enable and
make tiling beneficial for parallelism and locality. We char-
acterize the space of possible multi-level tilings and paral-
lelizations with the goal of systematically deriving the best
implementation for a given stencil.

Andonov et al. [1] consider 2D (1D data and 2D itera-
tion space) computations and propose an analytical model
similar to ours for estimating the execution time of a tiled
program and present analytical closed form solutions for
the optimal tile sizes and the number of processors. We
consider an 3D iteration space and characterize the possi-
ble multi-level tilings and parallelizations. Our analytical
BSP style cost models are inspired by theirs. Bordawekar
et al. [2] present a technique for optimizing communication
for out-of-core distributed stencil computations. They show
how a compiler can choose the tiling parameters based on
the stencil computation and processor information. Their
goal is to minimize the communication, whereas our goal
is to find the tiling strategy and tile sizes that minimize the
total execution time.

7. Conclusions and Future Work

We have characterized the space of legal multi-level
tilings and parallelizations for the 2D/3D 9-pt Gauss-Siedel
stencil computations. We have shown that a systematic ex-
ploration of a part (2 strategies) of this space leads to a new
strategy which achieves up to a factor of two improvement
over the standard implementation. A two fold decrease in
running time is significant for such applications. This il-
lustrates the importance of exploring this space. Further,
the exploration helped us to divide the input space into re-
gions where different designs are better. This shows us the
need for runtime data dependent choice of the best imple-
mentation. We consider our results as a first step towards a



complete exploration of this space.
As a future work, we envision to build a framework that

will take a stencil computation as input and will automati-
cally determine the required skewing transformation, and
generate analytical models for different tiling and paral-
lelization strategies, and select the best strategy. Majority
of the required theory for this is known, and we believe that
our GP framework is general enough to integrate all these
techniques into a single tool. As an immediate future work,
we wish to implement and explore other tiling strategies.
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