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Abstract

Power-aware processors operate in various power
modes to reduce energy consumption with a correspond-
ing decrease in peak processor throughput. Recent work
has shown power-aware clusters can conserve significant
energy (>30%) with minimal performance loss (<1%) run-
ning parallel scientific workloads. Nonetheless, such sav-
ings are typically achieved using a priori knowledge of
application performance. Accurate prediction of parallel
power consumption and performance is an open problem.
However, such techniques would improve our understand-
ing of power-aware cluster tradeoffs and enable identifi-
cation of system configurations optimized for performance
and power (”sweet spots”). Speedup models are power-
ful analytical tools for evaluating and predicting the per-
formance of parallel applications. Unfortunately, existing
speedup models do not quantify parallel overhead for sim-
plicity. Consequently, these models are incapable of accu-
rately accounting for performance and power. We propose
power-aware speedup to model and predict the scaled ex-
ecution time of power-aware clusters. The new model ac-
counts for parallel overhead and predicts (within 7%) the
power-aware performance and energy-delay products for
various system configurations (i.e. processor counts and
frequencies) on NAS Parallel benchmark codes.

1 Introduction

The electricity bills for multi-megawatt high-end sys-
tems, such as NASA Columbia or Earth Simulator, are in
the hundreds of thousands of dollars annually. In just two
hours, Earth Simulator could produce enough BTU’s to heat
an average 2000 square foot home in the U.S. Midwest all
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winter long. As newer, larger machines are designed, such
costs and the increased failure rates due to elevated machine
room temperatures cannot be allowed to continue unabated.

Power-aware computing has recently gained traction in
the high-performance community [6, 7, 11-14, 16, 22-24].
Results from several groups of researchers have shown en-
ergy savings are possible using a priori performance pro-
filing to identify communication-bound phases in paral-
lel codes and reduce power to the processors by applying
DVFS (dynamic voltage and frequency scaling) to these
phases.

Accurate prediction of parallel power consumption and
performance would improve our understanding of power-
aware cluster tradeoffs and enable identification of ”sweet
spots” in system configurations optimized for performance
and power. Nonetheless, such models for power-aware par-
allel systems do not exist presently.

Any power-aware model of parallel performance must
accurately quantify the amount of execution time affected
by power modes. For example, parallel overhead influ-
ences the percentage of total execution time affected by par-
allelism. Similarly, parallel overhead affects the percent-
age of total execution time affected by processor frequency.
Furthermore, the percentage of total execution time due to
parallel overhead changes with application and number of
nodes. Thus the execution time effects of frequency and
parallelism are interdependent. As we will see in the next
section, this complicates modeling the power-performance
of power-aware clusters.

In this paper, we address the problem of identifying a
metric that models the performance of power-aware clus-
ters. We develop a new speedup model that quantifies the
effects of power modes on workload and accurately iden-
tifies the affected workload portions. Currently, we focus
on isolating the performance effects of changing processor
frequencies (power) and the number of nodes (parallelism).

We identify several key contributions of this work:



• We introduce the power-aware speedup model to ana-
lytically capture the interacting effects of parallelism
and processor frequency.

• We analyze the power-aware speedup for various
scientific applications included in the NAS Parallel
Benchmark suite running on a power-aware cluster.

• We show how to derive parameters for our model and
use them to predict performance and the power-aware
speedup for scientific applications.

The structure of the rest of the paper is as follows. In
Section 2, we show a motivating example for this work. We
present our power-aware speedup model in Section 3 and
use it to analyze the speedups for NPB benchmarks on a
power-aware parallel system in Section 4. In Section 5 we
show how to predict application performance and speedup
using simplified parameterization method and fine-grain pa-
rameterization method. Related work and conclusions are
discussed in Sections 6 and 7 respectively.

2 Motivating Example

Amdahl’s Law, or the law of diminishing returns, is a
parallel speedup model commonly used by the research
community. The basic idea is that any system enhancement
is only applicable to a certain portion of a workload. For
parallel computing, the increased number of nodes is con-
sidered the enhancement and the speedup is often defined
as the ratio of sequential to parallel execution time:

SN (w) =
T1(w)
TN (w)

(1)

where,
w: the workload or total amount of work (in instructions

or computations),
T1(w): the sequential execution time or the amount of

time to complete workload w on 1 processor, and
TN (w): the parallel execution time or the amount of time

to complete workload w on N processors.
If the fraction of enhanced workload (FE) is the portion

of the total workload that is parallelizable, and the enhance-
ment will reduce execution time of the parallelizable work-
load portion by a speedup factor (SE), the parallel speedup
for the entire workload can be expressed [1, 27] as:

SN (w) =
T1(w)
Tn(w)

=
[
(1 − FE) +

FE

SE

]−1

(2)

For e enhancements where e >= 1, we can generalize
Equation 2 [27] as:

SN (w) =
∏
e

[
(1 − FEe) +

FEe

SEe

]−1

(3)

Table 1. To determine the best system con-
figuration for FT for all combinations of fre-
quency and processor count, we need pair-
wise speedup comparisons to the slowest
frequency (600 MHz) and the smallest num-
ber of nodes (N = 1) as the base sequen-
tial execution time. To predict speedup, we
use Equation 3 for e = 2 variables. Each
table entry is the relative error. 600 MHz is
used as the basis for comparison, so its col-
umn shows no error since it effectively varies
only with number of nodes, exemplifying tra-
ditional speedup. Errors occur when trying
to compare the results for two enhancements
simultaneously since their effects are inter-
dependent and not modeled by Equation 3.

N
Frequency (MHz)

600 800 1000 1200 1400
2 0% 30% 31% 49% 66%
4 0% 18% 36% 42% 58%
8 0% 30% 41% 59% 78%

16 0% 26% 40% 54% 72%

Equation 3 states that the speedup for a workload us-
ing e simultaneous enhancements is the product of the indi-
vidual speedups for each enhancement. This generalization
of Amdahl’s Law is the only available speedup model that
considers multiple enhancements simultaneously. Thus, we
investigate its suitability for power-aware parallel systems.

In power-aware clusters, a typical goal is to maxi-
mize performance while minimizing power consumption.
Speedup models can be used to predict performance, and
thus identify ”sweet spot” system configurations of proces-
sor count and frequency that meet these constraints. If the
performance or speedup prediction is accurate, we can ei-
ther select the best speedup across all the data, or use the
execution time predictions in an energy-delay metric [3] to
determine the tradeoffs between performance and energy.

We use the speedup model in Equation 3 to predict the
simultaneous effects of processor count and frequency on
speedup relative to the lowest processor frequency (600
MHz) and smallest number of processors (N = 1). Table
1 shows the speedup prediction errors of a parallel Fourier
transform (FT) application.Each table entry is the relative
errors for prediction against actual measured speedup. Due
to the large errors between predicted and measured speedup,
identifying ”sweet spot” system configurations using Equa-
tion 3 for multiple enhancements is problematic.

Equation 3 over predicts speedup on power-aware clus-
ters since it assumes the effects of multiple enhancements
are independent. Power-aware clusters and applications vi-
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olate this assumption since parallel overhead depends on
processor counts and influences the effects of frequency
scaling. Use of Equation 3 to model FT on a 16-node
power-aware cluster gives errors as large as 78%, 45% on
average. In our power-aware cluster work, we combine the
effects of processor count and frequency into a metric that
captures and explains their simultaneous effects on execu-
tion time. Ultimately, we would like to predict these effects
for unmeasured processor counts and frequencies. To this
end, we propose power-aware speedup and denote it as:

SN (w, f) =
T1(w, f)
TN (w, f)

(4)

where
w: the workload or total amount of work (in instructions

or computations),
f : the clock frequency in clock cycles per second,
T1(w, f): the sequential execution time or the amount of

time to complete workload w on 1 processor for frequency
f , and

TN (w, f): the parallel execution time or the amount
of time to complete workload w on N processors for fre-
quency f .

Power-aware speedup is the ratio of sequential execution
time for a workload (w) and frequency (f ) on 1 processor
to the parallel execution time for a workload and frequency
on N processors. In the next section we detail the addi-
tional equations necessary to quantify the execution times
of Equation 4. In succeeding sections, we show how our
model improves the error rates shown in Table 1 and we
identify the key differences between power-aware speedup
and Equations 1-3 (Amdahl’s Law).

3 Power-Aware Speedup

In this section, our goal is to describe power-aware
speedup in the simplest terms possible. We will use the
terms defined by Equation 4 and introduce definitions as
needed to understand each derivation step and then use the
defined terms to express equations that build on one another.
By the end, the equations will be quite large, but our hope
is the fundamental concepts remain straightforward.

Sequential execution time for a single workload
(T1(w, f))

CPI: the average number of clock cycles per workload.
Using this definition and others from Equation 4, we de-

fine sequential execution time as

T1(w, f) = w
CPI

f
(5)

This is a variant of the CPU performance equation [27].
The time to execute a program on 1 processor is the product
of the workload (w) and the rate at which workloads execute

(CPI/f or seconds per workload). For now, we assume f is
a fixed value, noting that T1(w, f) depends on the processor
frequency.

Sequential execution time for an ON-chip/OFF-chip
workload (T1(wON , fON )), T1(wOFF , fOFF )

wON : ON-chip workload, or all workloads that do not
require data residing OFF-chip at the time of execution.

wOFF : OFF-chip workload, or all workloads that re-
quire OFF-chip data accesses at the time of execution.

fON : ON-chip clock frequency in clock cycles per sec-
ond. Affected by processor DVFS.

fOFF : OFF-chip clock frequency in clock cycles per
second. Not affected by processor DVFS.

CPION , CPIOFF : the average number of clock cycles
per ON-chip (CPION ) or OFF-chip (CPIOFF ) workload.

Others have shown [8, 33] that a given workload (w)
can be divided into ON-chip (wON ) workload and OFF-
chip (wOFF ) workload. Under these constraints, the total
amount of work (in instructions or computations) is given
as w = wON + wOFF . We can modify our simple repre-
sentation of sequential execution time 1 as:

T1(w, f) = T1(wON , fON ) + T1(wOFF , fOFF )

= wON CPION

fON
+ wOFF CPIOFF

fOFF

(6)

Assuming ON-chip and OFF-chip frequencies are equal

( fON = fOFF ), and CPI = (CPION+CPIOFF )
2 , this

equation reduces to Equation 5. We observe that gener-
ally for ON-chip and OFF-chip workloads fON �= fOFF ,
meaning CPU and memory bus frequencies differ, and
CPIOFF �= CPIOFF , meaning the workload throughput
is different for ON- and OFF-chip workloads.

Parallel execution time on N processors for
an ON-/OFF-chip workload with DOP = i
(TN (wi

ON ),TN (wi
OFF ))

i: the degree of parallelism or DOP defined as the max-
imum number of processors that can be busy computing
a workload for an observation period given an unbounded
number of processors.

m: the maximum DOP for a given workload.
wi: the amount of work (in instructions or computations)

with i as the DOP .
wi

ON : the number of ON-chip workloads with DOP =
i.

wi
OFF : the number of OFF-chip workloads with

DOP = i.
N : the number of homogeneous processors available for

computing the workloads.

1This does not account for out-of-order execution and overlap between
memory access and computation, simplifying the discussion for now.
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wPO: the parallel overhead workload due to extra work
for communication, synchronization, etc.

T (wPO, f): the execution time for parallel overhead
wPO for frequency f .

TN (w, f): the parallel execution time or the amount
of time to complete workload w on N processors for fre-
quency f .

The total amount of work (in instructions or compu-
tations) is given as w =

∑
1≤i≤m(wi

ON ) + wOFF
i ),

where1 ≤ i ≤ m. Thus,

TN (wi, f) = TN (wON
i , fON ) + TN (wOFF

i , fOFF )

=
wON

i

i
· CPION

fON
+

wOFF
i

i
· CPIOFF

fOFF

(7)

where m ≤ N .2 Next, we include the additional execu-
tion time T (wPO, f) for parallel overhead. We assume par-
allel overhead workload cannot be parallelized, but that it
is divisible into ON-chip (wPO

ON ) and OFF-chip (wOFF
PO )

workloads. Thus

TN (w, f) =
m∑

i=1

(
TN (wON

i , fON ) + TN (wOFF
i , fOFF )

)

+ T (wPO, f)
(8)

and

TN (w, f) =
m∑

i=1

(
wON

i

i
· CPION

fON
+

wOFF
i

i
· CPIOFF

fOFF

)

+
(

T (wON
PO , fON ) + T (wOFF

PO , fOFF )
)

(9)

Power-aware speedup for DOP and ON-/OFF-chip
workloads (SN (w, f))

fON
0 : the lowest available ON-chip frequency.

SN (w, f): the ratio of sequential execution time
(T1(w, f)) to parallel execution time (TN (w, f)).

On power-aware parallel systems, ON-chip frequency
fON may change due to DVFS scheduling of the proces-
sor. As a consequence, power-aware speedup has two key
variables: ON-chip clock frequency (fON ) and the num-
ber of available processors (N ) computing workload w.
Speedup is computed relative to the sequential execution
time to complete workload w on 1 processor at the lowest

2Strictly speaking, this limitation is not required. For M > N , we
can add an �i/N� term to Equation 5 and succeeding equations to limit
achievable speedup to the number of available processors, N . We omit
this term to simplify the discussion and resulting formulae.

available ON-chip frequency, fON
0 . Power-aware speedup

is defined using Equations 6 and 9 as:

SN (w, f) =
T1(w, f)
TN (w, f)

=
[
wON CPION

fON
0

+ wOFF CPIOFF

fOFF

]/

[ m∑
i=1

(
wON

i

i
· CPION

fON
+

wOFF
i

i
· CPIOFF

fOFF

)

+
(

T (wON
PO , fON ) + T (wOFF

PO , fOFF )
)]

(10)

Usage of power-aware speedup (SN (w, f))
Equation 10 illustrates how to calculate power-aware

speedup. For a more intuitive description, assume the work-
load is broken into a serial portion (w1) and a perfect paral-
lelizable portion (wN ) such that w = w1 + wN , N = m,
and wi = 0 for i �= 1, i �= m. Then, allowing for flex-
ibility in our execution time notation, we can express the
power-aware speedup under these conditions as:

SN (w, f) =
[
T1(wON , fON

0 ) + T1(wOFF , fOFF )
]/

[[
TN (wON

1 , fON ) + TN (wOFF
1 , fOFF )

]
+

[
TN (wON

N , fON ) + TN (wOFF
N , fOFF )

]

+
[
T (wON

PO , fON ) + T (wOFF
PO , fOFF )

]]

(11)

Here, T1(wON , fON
0 ) + T1(wOFF , fOFF ) is the base

line sequential execution time unaffected by CPU frequency
scaling or parallelism. TN (wON

1 , fON ) is the sequential
portion of the workload affected by CPU frequency scal-
ing, but not affected by parallelism. TN (wOFF

1 , fOFF )
is the sequential portion of the workload not affected by
CPU frequency scaling or parallelism. TN (wON

N , fON ) is
the parallelizable portion of the workload also affected by
CPU frequency. TN (wOFF

N , fOFF ) is the parallelizable
portion of the workload not affected by CPU frequency.
T (wON

PO , fON ) is the parallel overhead affected by CPU
frequency. T (wOFF

PO , fOFF ) is the parallel overhead not
affected by CPU frequency.

4 Power-Aware Parallel Speedup Evaluation

In this section, we analyze the power-aware speedup for
two classes of applications: computation-bound applica-
tions with negligible parallel overhead and communication-
bound applications with significant parallel overhead. We
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Table 2. Operating points in frequency and
supply voltage for the Pentium M 1.4GHz pro-
cessor.

Frequency Supply Voltage
1.4GHz 1.484V
1.2GHz 1.436V
1.0GHz 1.308V
800MHz 1.180V
600MHz 0.956V

use the embarrassingly parallel (EP) and Fourier transform
(FT) benchmarks from the NAS Parallel Benchmark suite
[2] for each category respectively. We note that our inten-
tion here is to show the accuracy of our approach for ana-
lytically quantifying the impact of power-aware features on
execution time and speedup. We start with EP since the re-
sults are straightforward and as proof of concept for power-
aware speedup. We describe results for more interesting
codes, FT in the succeeding subsection.

4.1 Experimental Platform

The power-aware system used in these experiments is a
16-node DVS-enable cluster. It is constructed with 16 Dell
Inspiron 8600s connected by a 100M Cisco System Cata-
lyst 2950 switch. Each node is equipped with a 1.4 GHz In-
tel Pentium M processor using Centrino mobile technology
to provide high-performance with reduced power consump-
tion. The processor includes an on-die 32K L1 data cache,
a on-die 1 MB L2 cache, and each node has 1 GB DDR
SDRAM. Enhanced Intel Speedstep technology allows soft-
ware to dynamically adjust the processor among five supply
voltage and clock frequency settings given by Table 2.

We installed open-source Linux Fedora Core and
MPICH for communication on each node. We use DVS
scheduling techniques similar to our previous work [15] on
this system.

4.2 Power-aware Speedup for
Computation-Bound Benchmark
EP

Figure 1 shows the measured parallel execution time and
power-aware speedup for the EP benchmark. EP evaluates
an integral using a pseudorandom trial. Cluster-wide com-
putations require virtually no inter-processor communica-
tion. The ratio of memory operations to computations on
each node is very low. Figure 1 indicates the following for
the EP workload:

1. Execution time (Figure 1a) for a fixed frequency can

be reduced by increasing the number of nodes used in
computations.

2. Execution time (Figure 1a) for a fixed processor count
can be reduced by increasing the CPU clock rate.

3. Speedup (Figure 1b) for a fixed base frequency
(600MHz) increases linearly with the number of pro-
cessors. For instance, speedup increases from 1 at 1
processor to 15.9 at 16 processors.

4. Speedup (Figure 1b) for 1 processor increases linearly
with processor frequency. For instance, speedup in-
creases from 1.0 at 600MHz to 2.34 at 1400MHz.

5. The overall speedup using simultaneous enhancements
of processor count and frequency is nearly the product
of the individual speedups for each enhancement. For
instance, the maximum speedup (36.5) measured on 16
processors for 1400MHz is almost equal to the prod-
uct of measured parallel speedup (15.9) and frequency
speedup (2.34).

We now use our power-aware speedup formulation to ex-
plain these observations analytically. A computation-bound
application such as EP spends the majority of its execu-
tion time doing calculations on the CPU, and the time spent
performing OFF-chip (i.e. memory) accesses is negligible.
Thus, the workload w is only an ON-chip workload, or more
formally w =

∑m
i=1 wON

i . OFF-chip workloads are negli-
gible, or

∑m
i=1 wOFF

i = 0. The characteristics of EP also
indicate a majority of the workload can be completely par-
allelized, such that w =

∑m
i=1 wi = wN , where N = m,

and wi = 0 for i �= m. Hence, w =
∑m

i=1 wON
i = wON

N ,
and since EP exhibits almost no inter-processor communi-
cation, wON

PO = wOFF
PO = 0. Under these assumptions, the

analytical power-aware speedup for EP using Equation 11
is

SN (w, f) =
T1(w, f0)
TN (w, f)

=
wON

N
CPION

fON
0

wON
N

N · CPION

fON

= N · fON

fON
0

(12)

application exhibits near perfect performance: easily par-
allelized workload, no overhead for communication, and
nearly ideal memory behavior. Thus, the speedup pre-
dicted by Equation 12 is a simple product of the indi-
vidual speedups for parallelism (N ), and for frequency
(fON/fON

0 ), where we are comparing a faster frequency
(e.g. fON = 1400) to the base frequency (fON

0 = 600
). The predicted speedup for 16 processors (37.3) is within
2.3% of the measured speedup (36.5), and this error is the
maximum error over all the predictions for EP.

Predicting the power-aware speedup for EP makes a rea-
sonable case for using the product of individual speedups
described by Equation 3 (Amdahl’s Law generalization).
The speedup of embarrassingly parallel (EP) applications
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Figure 1. Figure (a) shows measured parallel
execution time with varying clock rate; Figure
(b) shows the speedup for scaled processor
counts and frequencies.

with small memory footprints will always improve with in-
creased processor count and frequency. Though EP predic-
tion shows our methods are as accurate and useful as Am-
dahl’s Law, this behavior is not typical of many parallel sci-
entific applications such as FT. In the next subsections we
use power-aware speedup techniques to analyze codes with
significant parallel overhead (FT) and more complex mem-
ory behavior.

4.3 Power-aware Speedup for
Communication-bound Benchmark
FT

Figure 2 shows the measured parallel execution time and
power-aware speedup for the FT benchmark. FT computes
a 3-D partial differential equation solution using fast Fourier
Transforms. Parallel FT iterates through four phases: com-
putation phase 1, reduction phase, computation phase 2, and
all-to-all communication phase. Both computation phases
spend most of their time performing calculations but with a
larger memory footprint than EP. The parallel overhead of
the reduction and all-to-all communication phases dominate
execution time. Figure 2 indicates the following for the FT
workload:

Execution Time of FT
under Different Clock Rate and # of Processors
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Figure 2. Execution time and two-
dimensional speedup of FT by parallel
computing and increasing CPU clock rate

1. Execution time (Figure 2a) for 2 or more processors is
reduced by increasing the number of processors used
in computations. However, the rate of improvement is
sub-linear.

2. Execution time (Figure 2a) for 1 processor can be re-
duced by increasing CPU clock rate. However, the rate
of improvement is sub-linear; from 1.0 at 600MHz to
1.9 at 1400MHz.

3. Speedup (Figure 2b) for a fixed base frequency (600
MHz) decreases from 1 to 2 processors. Speedup in-
creases from 2 to 16 processors. For instance, for
600MHz speedup increases from 1.0 on 1 processor
to 2.9 on 16 processors.

4. Speedup (Figure 2b) for 1 processor increases sub-
linearly with processor frequency. For instance,
speedup increases from 1.0 at 600MHz to 1.6 at
1400MHz.

5. The overall speedup using simultaneous enhancements
of processor count and frequency is a complicated
function. For example, the effects of frequency scaling
on execution time (Figure 2a) diminish as the number
of nodes increase.

We now use our power-aware speedup formulation to ex-
plain these observations analytically. First, we consider the
workload run sequentially at various CPU clock frequen-
cies. As mentioned, execution time decreases sub-linearly.
This behavior differs from EP where the effects were linear.
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The memory behavior of FT, computing transforms on siz-
able matrices, takes more time and more OFF-chip accesses
than EP. Thus, we cannot simplify the numerator of Equa-
tion 11 since we must consider both ON-chip and OFF-chip
delays in the workload.

Next, we consider the parallel overhead. A
communication-bound application such as FT spends
the majority of its execution time performing communica-
tions or parallel overhead, wPO. From 1 to 2 processors, the
execution time increases for all frequencies. This indicates
the parallel overhead is significant and we must determine
its effects on execution time. The parallel overhead for
FT is actually dominated by all-to-all communications and
synchronizations. In other work [5, 17], we observed such
communication overhead is not affected significantly by
CPU clock frequency. Thus, we claim wPO

ON = 0 , but
wPO

OFF is a significant portion of parallel execution time.
Last, we consider the effects of parallelism. FT is not

embarrassingly parallel, so the DOP can range from 1 to m.
As the processor counts increase, execution time decreases.
This indicates that a good portion of the workload is paral-
lelizable and affected by m ≤ 16. However, these effects
lessen with the number of nodes and speedup tends to flat-
ten out. In other work [10] on similar systems, we observed
speedups for this workload do not change significantly from
16 to 32 nodes. Since our system exhibits similar behavior
for this workload, m = 16 = N seems a reasonable as-
sumption - not to mention a limitation of our system 3 . Un-
der these assumptions, the analytical power-aware speedup
for FT using Equation 11 is

SN (w, f) =
T1(w, f)
TN (w, f)

=

wON CPION

fON
0

+ wOFF CPIOF F

fOF F

16∑
i=1

(
wON

i

i · CPION

fON + wOF F
i

i · CPIOF F

fOF F

)
+ T (wOFF

PO , fOFF )

(13)

This application exhibits less than perfect performance:
workload with limited parallelization, significant overhead
for communication, and time consuming memory behavior.
Thus, the speedup predicted by Equation 13 is not a sim-
ple product of the individual speedups for parallelism and
frequency as it was for EP. In fact, the errors in Table 3 re-
flect the errors incurred when using this simple product to
predict the speedup.

Table 3 shows the errors for prediction of FT power-
aware speedup using Equation 13. Here, the errors are
reduced to a maximum of 3%. The power-aware speedup

3Admittedly, it would be nice to confirm this result on a larger power-
aware cluster. However, ours is one of only a few power-aware clusters
in the US and there are few (if any) larger than 16 or 32 nodes. We are
attempting to acquire a larger machine presently.

Table 3. To predict speedup, we use Equation
13. Each table entry is the error or the dif-
ference between the measured and predicted
speedup divided by the measured speedup.
600 MHz is used as the basis for comparison,
so its column shows no error since it effec-
tively varies only with number of nodes, ex-
emplifying traditional speedup.

N
Frequency (MHz)

600 800 1000 1200 1400
2 0% 0.2% 0.2% 0.2% 0.3%
4 0% 0% 0.1% 0.1% 0.2%
8 0% 0.4% 2.0% 1.2% 0.7%

16 0% 2.1% 2.2% 2.3% 1.4%

for FT captures all of the empirical observations we noted.
For example, the diminishing effects of frequency scaling
as number of nodes scale is due primarily to the increas-
ing impact of parallel overhead (T (wOFF

PO , fOFF ) ). For
small numbers of nodes, the effects are lessened since the

ON-chip workload
16∑

i=1

(
wON

i

i · CPION

fON

)
makes up a large

portion of total execution time. However, as the number of
nodes increases, this portion decreases. With this decrease,
parallel overhead eventually dominates. Thus the effects of
frequency diminish since wON

PO = 0 .

5 Power-aware Speedup Parameterizations

Though we have shown that our power-aware speedup
model is accurate, to this point we have purposely hidden
the details of how to obtain our model parameters on real
systems. In this section, we show how to derive model pa-
rameters and apply them in both equations to predict power-
aware speedup. We primarily use versions of Equations 10
and 11 to obtain speedup predictions. For this simplified
parameterizations, we make two assumptions.

Assumption 1: a majority of the workload can be com-
pletely parallelized, such that w =

∑m
i=1 wi = wN , where

N = m, and wi = 0 for i �= m. Under this assumption 4,
sequential execution time is simplified as

T1(w, f) =
[
T1(wON

N , fON ) + T1(wOFF
N , fOFF )

]

= wON
N · CPION

fON
+ wOFF

N · CPIOFF

fOFF

(14)

4Most speedup models are calculated only analytically. Thus, it is com-
mon to make the assumption that w = w1 + wN . In practice, speedup
analysis focuses solely on the parallelizable portion of the code and w1
is considered negligible. We follow this common practice, though we are
exploring ways to measure w1 directly.
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parallel execution time is simplified as

TN (w, f) =
[
TN (wON

N , fON ) + TN (wOFF
N , fOFF )

]
+

(
T (wON

PO , fON ) + T (wOFF
PO , fOFF )

)
=

T1(w, f)
N

+
(
T (wON

PO , fON ) + T (wOFF
PO , fOFF )

)
(15)

Assumption 2: parallel overhead is not affected by ON-
chip frequency [29], i.e. wON

PO = 0 . Under Assumption 2,
Equation 15 is reduces to

TN (w, f) =
T1(w, f)

N
+ T (wOFF

PO , fOFF ) (16)

Equation 16 holds for all the frequencies. Given the re-
lationship shown in Equation 16, we now describe how to
predict power-aware performance given a processor count
and frequency.

Step 1. Measure the sequential and parallel execution
time for each processor count running the workload at ON-
chip base frequency, TN (w, fON

0 ) = TN (wN , fON
0 ).

Step 2. Derive the parallel overhead time us-
ing the measured times from Step 1 and Equation 16
such that TN (wPO

OFF , fOFF ) is the parallel overhead
T (wOFF

PO , fOFF ) for processor count N :

TN (wOFF
PO , fOFF ) = TN (w, fON

0 ) − T1(w, fON
0 )

N
(17)

Step 3. Measure the sequential execution time
T1(w, f ) = T1(wN , f ) for each frequency running the
workload on 1 processor.

Step 4. Use the derived parallel overhead in Step 2 and
measured sequential execution time from Step 3 to predict
the parallel execution time TN (w, f)for any given combina-
tion of processor count (N > 1) and frequency (f > fON

0 ).

TN (w, f) =
T1(w, f)

N
+ TN (wOFF

PO , fOFF )

=
T1(w, f)

N
+

[
TN (w, fON

0 ) − T1(w, fON
0 )

N

] (18)

Tables 3 shows prediction errors for FT are less than
3% using this technique. With these results, our assump-
tions appear reasonable. In fact, this is a very practical
means of obtaining power-aware speedup. Nonetheless,
there are drawbacks to this approach. First, this technique
requires measurements for the sequential (T1(w, f)) and
parallel (TN (w, fON

0 ) execution time. Second, this tech-
nique does not separate in quantity ON-chip and OFF-chip
workloads. Thus, the effects of frequency are accounted for
but inseparable from the execution time. Third, the assump-
tions used are the root cause of observable error. Assuming

perfect parallelism means over estimating the effects of in-
creasing the number of processors. Assuming parallel over-
head is not affected by frequency means under estimating
the effects of increasing processor frequency. The afore-
mentioned problems can be partly resolved by a fine-grain
parameterizations with the aid of tools including hardware
counters PAPI [28], mpptest [19], and LMbenchmark [26].
Due to the page limitation, we will not present the details of
fine-grain parameterizations in this paper.

6 Predicting Optimal Energy-Performance
System Configuration

The system configuration with the minimum energy-
delay product 5 is optimal in energy-performance efficiency.
For applications with large workloads running on large-
scale systems, identifying the optimal system configura-
tions ahead of the actual executions conserves energy and
guarantees performance.

The identification of the optimal system configuration
consists of three steps. First, we predict the execution time
for each system configuration. Second, we estimate the
system-wide energy consumption. Third, we calculate and
evaluate energy-performance efficiencies and identify the
optimal configuration.

We predict the performance using the methodology pre-
sented in the preceding section, and estimate the energy
consumption using the same methodology presented in
work [27] based on empirical data on our system. The
power consumption on a single node varies with operations
with different access level and CPU frequency. However,
for simplicity, we assume there are only two different power
consumptions for a fixed CPU frequency: one is the power
consumption when the system is dedicated to computation,
and the other is the power consumption when the system is
dedicated to communication. The former varies with CPU
frequency, while the latter is independent with CPU fre-
quency, and both are independent with the number of pro-
cessors.

Figure 3 shows the EDP values for system configurations
in combinations of processors count and CPU frequency for
LU benchmark. We observe EDP decreases with processors
count and CPU frequency increases when processors count
is less than 128. When processors count reaches 256, EDP
decreases and then increases as CPU frequency increases.
Furthermore, EDP increases with processors count after it
exceeds 256. The optimal system configuration is the one
with 256 processors and 1200MHz. At this point the cost
of parallel overhead dominates computation time, and com-
munication/computation ratio is 1.73:1. The interesting ob-
servation is that the system slackness is reflected with EDP

5The product of energy in Joules (E) and delay in seconds (D).
Energy-delay product is usually denoted as E · D
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Figure 3. Energy-performance efficiencies
with EDP for different system configurations.
Optimal System Configuration is 256 proces-
sors with 1200MHz CPU Frequency.

on both processors count and CPU frequency. Increasing ei-
ther CPU frequency or processors count further beyond the
optimal configuration incurs larger EDP values. We would
also want to mention that our model can easily identify for
users the maximum speedup and system configuration given
an energy budget.

7 Related Work

We discuss the related work in two research areas: one is
in scalability and speedup models for parallel applications,
and the other in performance and energy tradeoffs in DVFS
capable power-aware high performance computing. These
work targeting at large scale high end computing systems
are closest related. There are some less related work in per-
formance and power consumption of large scale data cen-
ter[34], embedded systems[32], and mobile systems[33].

Several speedup models have been proposed for parallel
applications in high-performance computing[1, 9, 18, 20,
25, 30-32]. The first model is Amdahl’s law [1]. Amdahl’s
Law states that speedup is limited by the fraction of the
workload that can be computed in parallel. It addresses the
speedup for fixed problem size, and it is also called strong
scaling. Gustafson proposed a fixed time speedup model for
scaled problem size [20]. It quantifies the ability to scale
up the workload to improve accuracy within the same exe-
cution time when more computational nodes are available.
Sun et al have argued that the problem size can be scaled
further in large memory systems to gain more speedup and
improved accuracy [30]. They presented a speedup model
under which the scaled workload is constrained by memory.
While fixed-time speedup and memory-bounded speedup
address scaling workload to gain speedup and accuracy, the
isoefficiency metric proposed by Grama et al [18] studies
how to keep the same efficiency by scaling the workload.

Studies on power-aware high performance computing

are mainly focusing on reducing energy consumption with-
out affecting performance. Hsu and Kremer studied com-
piler directed dynamic voltage and frequency scheduling
for memory-bounded sequential workloads [21]. Cameron
et al have demonstrated significant energy saving could be
achieved with minimum performance impact by variable
DVS scheduling in parallel scientific computing [4, 6, 11,
14, 16]. Freeh et al studied potential energy savings in par-
allel MPI applications using the NPB benchmarks[12, 13,
29]. Chen et al suggested scaling down the CPU speed on
nodes that are not in the critical path to save energy without
performance penalty [7, 24].

8 Conclusions

In this paper, we present a power-aware speedup model
for emergent power-aware distributed systems. By decom-
posing the workload with DOP and ON-/OFF-chip char-
acteristics, this model takes into account the effects of
both parallelism and power aware techniques on speedup.
Our study of several NPB codes on a DVS-enabled power
aware cluster shows that our power-aware model is able
to capture application characteristics and their effects on
speedup. Coupled with an energy-delay metric, this new
speedup model can predict both the performance and the
energy/power consumption. In the future, we will further
refine our work by applying this power-aware model to code
segment granularity according to the workload characteris-
tics inside parallel applications.
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