
Scheduling in the Z-Polyhedral Model∗

Gautam1,2, DaeGon Kim1 and S. Rajopadhye1

{gautam|kim}@cs.colostate.edu, Sanjay.Rajopadhye@colostate.edu

1Colorado State University 2IRISA
Computer Science Department Université de Rennes I
Fort Collins, CO 80523, USA Rennes, France

Abstract

The polyhedral model is extensively used for analyses and
transformations of regular loop programs, one of the most im-
portant being automatic parallelization. The model, however,
is limited in expressivity and the need for the generalization
to more general class of programs has been widely known.
Analyses and transformations in the polyhedral model rely on
certain closure properties. Recently, these closure properties
were extended to programs where variables may be defined
over unions of Z-polyhedra which are the intersection of poly-
hedra and lattices.

We present the scheduling analysis for the automatic paral-
lelization of programs in the Z-polyhedral model, and obtain
multidimensional schedules through an ILP formulation that
minimizes latency. The resultant schedule can then be used to
construct a space-time transformation to obtain an equivalent
program in the Z-polyhedral model.

1. Introduction

The polyhedral model is a well developed formalism pro-
viding sophisticated analysis and transformations of the ker-
nels of many compute- and data- intensive applications. Pro-
grams in the polyhedral model essentially comprise of (i) vari-
ables representing collections of values defined over poly-
hedral domains1, and (ii) affine dependences between com-
putations. Feautrier [6] showed that an important class of
conventional imperative loop programs called affine control
loops (ACLs) can be transformed to programs in the polyhe-
dral model. Significant parts of the SpecFP and PerfectClub
benchmarks are ACLs [2].

∗This research was supported in part, by the National Science Foundation,
under the grant EI-030614: HiPHiPECS: High Level Programing of High
Performance Embedded Computing Systems

1These may be viewed as generalized multi-dimensional arrays, the
bounds of which are given by arbitrary affine inequalities.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Many computations can be expressed in the polyhe-
dral model, e.g., matrix multiplication, LU-decomposition,
Cholesky factorization, Kalman filtering, as well as algo-
rithms arising in RNA secondary structure prediction [18].
Nevertheless, the polyhedral model suffers from certain lim-
itations. Loop programs with a non-unit stride fall outside
the scope of the model. This is an important class of pro-
grams [25, 16, 30, 9] arising in situations such as the red-black
SOR computation for solving partial differential equations. As
a consequence, non-unimodular transformations are also dis-
allowed in the polyhedral model. Non-unimodular transfor-
mations are required for the derivation of parallel architectures
with periodic processor activity, such as multi-rate arrays [15]
and bidirectional systolic arrays.

It had long been conjectured that these limitations can be
resolved through the extension of variable domains to unions
of Z-polyhedra which are the intersection of polyhedra and
affine lattices. However, a key representation and interpre-
tation for Z-polyhedra and the associated family of depen-
dences was only recently provided [10] along with the proofs
of the required closure properties for Z-polyhedral domains
in this representation.

The Z-polyhedral model allows specifications with a more
general dependence pattern than the specifications in the poly-
hedral model.

Example 1 Consider the following loop program

for i = 1 to N
A[i] = (i%2==0?A[i/2]:0);

This program exhibits a dependence pattern that is richer
than the affine dependences of the polyhedral model. In other
words, it is impossible to write an equivalent program in the
polyhedral model, i.e., without the use of the mod operator
or non-unit stride loops, that can perform the required com-
putation. One may consider replacing the variable A by two
variables X and Y corresponding to the even and odd points
of A such that A[2i] = X [i] and A[2i − 1] = Y [i]. However,
the definition of X now requires the mod operator, because
X [2i] = X [i] and X [2i − 1] = Y [i].

In addition to expressibility, the Z-polyhedral model also
enables more sophisticated analyses and transformations by
providing greater information in the specifications viz., per-
taining to lattices.

Example 2 Consider the following loop that elaborates the
advantages of manipulating Z-polyhedral domains.

for i = 1 ... n
if ((i%2==0)||(i%3==0))
X[i] = X[i-1];

Note that the equation is not executed for every iteration of
the form 6j + 1 and 6j + 5 where j is an integer. Below is a
constant-time parallelization of this Θ(n) loop.

forall i = 2 ... n step 6
X[i] = X[i-1];

forall i = 6 ... n step 6
X[i] = X[i-1];

forall i = 3 ... n step 6
X[i] = X[i-1];

forall i = 4 ... n step 6
X[i] = X[i-1];

This parallelization, however, requires (i) value-based de-
pendence analysis, (ii) scheduling analysis and (iii) code gen-
eration of equations on variables defined over Z-polyhedral
domains. A polyhedral approximation of the domain of the
equation X[i]=X[i-1] would not yield a constant-time
parallelization.

Automatic parallelization is one of the most important and
widely studied analysis in the polyhedral model [12, 13, 7,
8, 4, 24, 23, 3, 26, 27, 17, 20]. This paper presents an
algorithm for scheduling the more general programs of the
Z-polyhedral model. Our key contributions are (i) deriv-
ing precedence (causality) constraints for programs written
in the Z-polyhedral model, (ii) formulation of an integer lin-
ear program to obtain a schedule which is based on Farkas
method and minimizes latency, and (iii) the generalization of
the scheduling problem to multi-dimensional schedules (i.e.,
schedules where the “time instants” are multidimensional vec-
tors under lexicographic order, corresponding naturally to
nested loops). An important feature of our formulation is
that it seeks schedules that can be used to construct a pro-
gram transformation to obtain an equivalent specification in
the Z-polyhedral model (This has been a major drawback of
previous methods using rational schedules).

The remainder of this paper is organized as follows. In
the following section, we give an example to motivate the
scheduling problem for programs written in the Z-polyhedral
model. The mathematical background on lattices, polyhedra,
Z-polyhedra and generalized affine functions is described in

section 3. In section 4, we describe an equational language
for high level specifications in the Z-polyhedral model and
present reduced dependence graphs as the required abstrac-
tion for our analysis. In section 5, we derive precedence con-
straints and then formulate an ILP to obtain valid (multidimen-
sional) schedules. Finally, we discuss future and related work
and present our conclusions.

2. Motivating Example

Consider the following loop program.

for i = 0 to N
for j = 0 to N

X[i,j] = (i%2==0?X[i,j-1]:Y[i-1,j]);
for j = N downto 0

Y[i,j] = (i%2==0?X[i,j]:Y[i,j+1]);

In order to parallelize this affine loop program extracting
data dependence relations is a first and critical step. Such
dependence relations should be respected in any parallelized
program. Otherwise, the semantics of a program will not be
preserved.

In order to know dependence relations, we now apply
value-based dependence analysis [6], a well-known technique
for extracting dependence relations. The obtained data de-
pendence information are shown in Figure 1. A node in data
dependence graph represents an iteration point of a statement,
and the arrow between nodes specifies data-flow between two
operations.

Now, we want to parallelize this computation. Because of
the vertical dependence on X , the execution order of X will
be increasing order of j index. Similarly, the execution order
of Y will be decreasing order of j. Together with dependences
between X to Y , this computation must be done sequentially
exactly like the original loops, that is, for each i, first com-
puting X in the increasing of j and then computing Y in the
decreasing order of j, repeating this for i + 1 until the whole
computation finishes.

One may find one dimensional parallelism in the program
by distinguishing true dependence from false dependence as
shown in Figure 1. In the figure the true dependence are de-
noted with black arrows. The precise execution order can be
given by the following schedules

λX(i, j) =
{

i even : j
i odd : j + 2

λY (i, j) =
{

i even : j + 1
i odd : N − j

Here, λX(i, j) (respectively, λY (i, j)) represents the time
instant at which the computation X [i, j] (respectively, Y [i, j])
is executed. This execution order is realized by the paral-
lelized loop program given below.

i

j

X Y[0,0]

[0,-1]

X

Y

[0,1]
[-1,0]

(a) Data dependence graph

(b) Reduced dependence graph

{i, j | 0 ≤ i, j ≤ N} {i, j | 0 ≤ i, j ≤ N}

Figure 1. Motivating Example: Data dependence graph for N = 5 and Reduced Dependence Graph (RDG)
in the Polyhedral model

for j = 0 to N
forall i to (N/2) {
Y[2i+1,N-j]=Y[2i+1,N-j+1];
X[2i,j]=X[2i,j-1];
Y[2i,j]=Y[2i,j];
X[2i+1,j]=Y[2i,j];

}

Note that the loop program is correct only when N is odd.
For the sake of simplicity, we assume that N is odd. We also
assume that the statements within an iteration of the forall
loop are executed sequentially, i.e., there is synchronization
between statements.

The key idea of this detection is based on precise informa-
tion on dependence relations by separating a rectangle, called
polyhedron, into two disjoint rectangle with holes, called Z-
polyhedra. Note that the actual representation of data depen-
dence graph in Figure 1 is the RDG. Since N is not known
at compile time, the data dependence graph is not possible to
construct. The precise data dependence relations are shown in
Figure 2.

In this paper, we address the problem of scheduling to-
gether with constructing RDG in Z-polyhedral model. One
may argue that the example has an equivalent loop pro-
gram where parallelism can be detected even in Polyhedral
model. As we argue in the introduction, every program in
Z-polyhedral model does not have an equivalent program in
Polyhedral model. Also, it is not always obvious to write
programs so that parallelism can be detected in Polyhedral
model.

3. Mathematical Background

In this section, we will first provide the required mathemat-
ical background on linear algebra over integers. Then, we will
define the mathematical objects required in our analysis.

3.1. Matrices

As a convention, we will denote matrices with the upper-
case letters and vectors with the lower-case. Unless specif-
ically mentioned, all matrices and vectors have integer ele-
ments. We will denote the identity matrix by I . Syntactically,
the different elements of a vector v will be written as a list.

We will use the following concepts and properties of ma-
trices

• The kernel of a matrix T , written as ker(T) is the set of
all vectors z such that Tz = 0.

• A matrix is unimodular if it is square and its determinant
is either 1 or −1.

• Two matrices L and L′ are said to be column equivalent
or right equivalent if there exists a unimodular matrix U
such that L = L′U .

• A unique representative element in each set of matrices
that are column equivalent is the one in Hermite normal
form [11].

X Y

Y ′

(i,j->i,j)

X ′

even i

i

j

(a) Data dependence graph

even i

odd i odd i

(i,j->i,j-1) (i,j->i,j+1)

(i,j->i-1,j)

Figure 2. Motivating Example: Data dependence graph for N = 5 and RDG in the Z-polyhedral model; In
RDG, two nodes above (respectively below) are associated with above (respectively below) Z-polyhedron

Definition 1 An n × m matrix H with column rank d is in
Hermite Normal Form, if

1. For columns 2, . . . , d, the first positive element is below
the first positive element for the previous column.
∀1 ≤ j ≤ d, ∃ij, 1 ≤ i1 < . . . < id ≤ n : Hij ,j > 0

2. In the first d columns, all elements above the first positive
element are zero.
∀1 ≤ j ≤ d, 1 ≤ i < ij : Hi,j = 0

3. The first positive entry in columns 1, . . . , d is the maximal
entry on its row. All elements are non-negative in this
row.
∀1 ≤ l < j ≤ d : 0 ≤ Hij ,l < Hij ,j

4. columns d + 1, . . .m are zero-columns
∀d + 1 ≤ j ≤ m, 1 ≤ i ≤ n : Hi,j = 0

� 0 0 0
� 0 0 0
� � 0 0
� � � 0
� � � 0
� � � 0

On the left is a template of a ma-
trix in Hermite normal form. In
the given template, � denotes the
maximal (non-negative) element in
the row, � denotes non-negative el-
ements that are not maximal in the
row and � denotes any integer.

For every matrix A, there exists a unique matrix H that is
in Hermite normal form and column equivalent to A i.e., there
exists a unimodular matrix U such that A = HU . Note that
the provided definition of the Hermite normal form does not
require the matrix A to have full row rank.

3.2. Affine Lattices

The lattice generated by a matrix L is the set of all integer
linear combinations of the columns of L. If the columns of
a matrix are linearly independent, they constitute a basis of
the generated lattice. The lattices generated by two matrices
are equal iff the submatrices corresponding to the non-zero
columns in their Hermite normal forms are equal. As a special
case, the lattices generated by two n × m matrices are equal
iff the matrices are column equivalent.

We use a generalization of the lattices generated by a ma-
trix, additionally allowing offsets by constant vectors. These
are called affine lattices. An affine lattice is a subset of Z

n

and can be represented as {Lz + l|z ∈ Z
m} where L and l

are an n × m matrix and n-vector respectively. We call z the
coordinates of the affine lattice.

The affine lattices {Lz + l|z ∈ Z
m} and {L′z′ + l′|z′ ∈

Z
m′} are equal iff the lattices generated by L and L′ are equal

and l′ = Lz0 + l for some constant vector z0 ∈ Z
m.

3.3. Integer Polyhedra

An integer polyhedron, P is a subset of Z
n that can be

defined by a finite number of affine inequalities (also called
affine constraints or just constraints when there is no ambigu-
ity) with integer coefficients. We follow the convention that
the affine constraint ci is given as (aT

i z + αi ≥ 0) where
z, ai ∈ Z

n, αi ∈ Z. The integer polyhedron, P , satisfying
the set of constraints C = {c1, . . . , cb} is often written as

{z ∈ Z
n|Qz+q ≥ 0} where Q = (a1 . . . ab)T is an b×n ma-

trix and q = (α1 . . . αb)T is an b-vector eg. {i, j|0 ≤ i, 0 ≤ j}
is the polyhedron corresponding to the first orthant.

We shall use the following properties and notation.

• The constraint c ≡ (aT z + α ≥ 0) of P is said to be
saturated iff (aT z + α = 0) ∩ P = P .

• The lineality space of P is defined as the linear part of
the largest affine subspace contained in P . It is given by
ker(Q).

• The context of P is defined as the linear part of the small-
est affine subspace that contains P . If the saturated con-
straints in C, are the rows of {Q0z + q0 ≥ 0}, then it is
ker(Q0).

3.4. Parameterized Integer Polyhedra

A parameterized integer polyhedron is an integer polyhe-
dron where some indices are interpreted as size parameters.
An equivalence relation can be defined on the set of itera-
tion points in a parameterized integer polyhedron such that
two iteration points are equivalent if they have identical val-
ues of size parameters. By this relation, a parameterized in-
teger polyhedron may be partitioned into a set of equivalence
classes, each of which is identified by the vector of size param-
eters. Equivalence classes correspond to program instances
and are called instances of the parameterized integer polyhe-
dron.

3.5. Z-Polyhedra

A Z-polyhedron is the intersection of an integer poly-
hedron and an affine lattice. It is also an integer polyhe-
dron when the affine lattice is the canonical lattice, Z

n. The
required closure properties on unions of Z-polyhedra were
based on the following representation for Z-polyhedra.

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (1)

where L has full column rank and the polyhedron Pc =
{z|Qz + q ≥ 0, z ∈ Z

m} has a context that is the uni-
verse, Z

m. Pc is called the coordinate polyhedron of the Z-
polyhedron. The Z-polyhedron for which L has no columns
has a coordinate polyhedron in Z

0. The empty Z-polyhedron
is denoted by {|}. The interpretation is that the Z-polyhedral
representation is said to be based on the affine lattice given by
{Lz+l|z ∈ Z

m}. Iteration points of the Z-polyhedral domain
are points of the affine lattice corresponding to valid coordi-
nates. The set of valid coordinates is given by the coordinate
polyhedron.

3.6. Parameterized Z-Polyhedra

A parameterized Z-polyhedron is a Z-polyhedron where
some rows of its corresponding affine lattice are interpreted

as size parameters. Similar to parameterized integer polyhe-
dra, an equivalence relation may be defined on the set of it-
eration points in a parameterized Z-polyhedron such that two
iteration points are equivalent if they have identical values of
size parameters. Thus, a parameterized Z-polyhedron may be
partitioned into a set of equivalence classes, each of which is
called an instance and identified by the vector of size parame-
ters.

For the sake of explanation, and without loss of generality,
we may impose that the rows that denote size parameters are
before all non-parameter rows. The equivalent Z-polyhedron
based on the Hermite normal form of such a lattice has an
important property that will used in our analysis; all points
of the coordinate polyhedron with identical values of the first
few indices belong to the same instance of the parameterized
Z-polyhedron.

Example 3 Consider the Z-polyhedron given by the inter-
section of the polyhedron {p, i|0 ≤ i ≤ p} and the lattice
{j + k, j − k}2. It may be written as

{j +k, j−k|0 ≤ j−k ≤ j +k} = {j +k, j−k|0 ≤ k ≤ j}
Now, suppose the first index, p, in the polyhedron is the size

parameter. Similarly, the first row in the lattice {j + k, j −
k} corresponding to the Z-polyhedron is the size parameter.
The Hermite normal form of this lattice is {j′, j′ + 2k′}. The
equivalent Z-polyhedron is

{j′, j′ + 2k′|k′ ≤ 0 ≤ j′ + 2k′}
The iterations of this Z-polyhedron belong to the same pro-

gram instance iff they have the same coordinate index j′. In
this example, valid values of the parameter row trivially have
a one-to-one correspondence with values of j′; identity being
the required bijection.

It is not always possible to obtain identity as the required
bijection. For an example, study the following Z-polyhedron
with the first two rows considered as size parameters.

{m, m + 2n, i + m, j + n|0 ≤ i ≤ m; 0 ≤ j ≤ n}
Here too, valid values of the parameter rows have a one-

to-one correspondence with the values of m and n but it is
impossible to obtain identity as the required bijection.

3.7. Affine Lattice Functions

An (standard) affine function is of the form (z → Tz + t)
where T is an n×m matrix and t is an n vector. Affine lattice
functions are of the form (Kz + k → Rz + r), where K has
full column rank. Such functions provide a mapping from the
iteration Kz + k to the iteration Rz + r. We have imposed
that K have full column rank to guarantee that (Kz + k →

2For both the polyhedron and the affine lattice, the specification of the
space Z

2 is redundant. It can be derived from the number of indices and is
therefore dropped for the sake of brevity.

Rz + r) be a function and not a relation, mapping any point
in its domain to a unique point in its range. All standard affine
functions are also affine lattice functions. For any function f ,
f−1 will denote its relational inverse.

4. Equational Specification

An intuitive and general way of specifying programs in the
Z-polyhedral model is through a list of high level (mutually
recursive) equations.

Consider the red-black SOR [29] for the iterative compu-
tation of partial differential equations. Iterations in the (i, j)-
plane are divided into “red” points and “black” points, similar
to the layout of squares in a chess board. First, black points
(at even i + j) are computed using the four neighbouring red
points (at odd i + j), then the red points are computed us-
ing its four neighbouring black points. These two phases are
repeated until convergence. Introducing an additional dimen-
sion, k to denote the iterative application of the two phases,
we get the following equation

Ci,j,k =

i + j even : 1
4 (Ci−1,j,k−1 + Ci+1,j,k−1

+Ci,j−1,k−1 + Ci,j+1,k−1) // black
i + j odd : 1

4 (Ci−1,j,k + Ci+1,j,k

+Ci,j−1,k + Ci,j+1,k) // red

This equation, with appropriate syntactic sugaring, is our
preferred program in the Z-polyhedral model. Here, C
and the two branches of the equation are defined over Z-
polyhedral domains. A Z-polyhedral domain is a union of
Z-polyhedra.

In general, the input for our scheduling analysis is a finite
list of equations of the form

V =

.
DV,i : op(. . . , U.(Lz + l → Rz + r), . . .)
.

(2)

where V and U are variables declared over the Z-polyhedral
domains DV and DU respectively, DV,i is the Z-polyhedral
domain of the corresponding branch of the equation and op
is an arbitrary, atomic, iteration-wise, single-valued function
that takes a single time-step to evaluate. The affine lattice
function (Lz + l → Rz + r) is a dependence such that the
value of the (sub)expression, U.(Lz + l → Rz + r) at Lz + l
equals the value of U at Rz + r. The domains of different
branches of an equation are disjoint and satisfy

⊎DV,i = DV

to ensure that any variable is not under- or over-defined. Vari-
ables that are not defined by an equation are treated as in-
put. These equations can be obtained from the more general
equational language presented in [10] through a transforma-
tion based on the closure properties of Z-polyhedral domains,
called normalization.

Parameterized equational specifications in the Z-
polyhedral model are based on parameterized Z-polyhedra.
An instance of a parameterized specification is called a

program instance. Every program instance in a parameterized
specification is independent, thus, all dependences should
map consumer iterations to producer iterations within the
same program instance.

Our presentation of the equational specification is based on
the ALPHA language [19, 14] and the MMALPHA framework
for manipulating ALPHA programs, which relies on a library
for manipulating polyhedra [28].

4.1. Basic Reduced Dependency Graph

A directed multi-graph called the reduced dependence
graph, RDG, precisely describes the dependences between it-
erations of variables. It is defined as follows

• For every variable in the specification, there is a vertex in
the RDG labeled by its name and annotated by its domain.
We will refer to vertices and variables interchangeably.

• For every dependence of the variable V on U , there is an
edge from V to U . It is annotated by the corresponding
dependence function. We will refer to edges and depen-
dences interchangeably.

At a finer granularity, every branch of an equation is associ-
ated to dependences between computations. Thus, a precise
analysis would dictate that dependences be expressed sep-
arately for every branch. Again, for reasons of precision,
we will express dependences of a variable separately for ev-
ery element in the Z-polyhedral domain of the corresponding
branch of its equation. To enable these, we will replace a vari-
able by a set of new variables as elaborated below.

In Equation (2), let DV,i be written as a disjoint union of
Z-polyhedra given by

⊎
j Zj . The variable V in the domain

Zj is replaced by a new variable, say Xj . Similarly, let U
be replaced by new variables given as Yk. The dependence
of V in DV,i on U is replaced by dependences from all Xj

on all Yk. An edge from Xj to Yk may be omitted if there
are no iterations in Xj that map to Yk (mathematically, if the
preimage of Yk by the dependence function does not intersect
with Xj).

A naive construction following these rules results in the ba-
sic reduced dependence graph. Figure 3a gives the basic RDG

for example 1 which can be written as the following equation.

A =
{ {2i|1 ≤ 2i ≤ n} A.(2i → i)

{2i − 1|1 ≤ 2i − 1 ≤ n} 0.(i →)

Let the two branches of the expression be denoted by X
and Y respectively. Next, we will study a refinement on this
RDG.

4.2. Refined Reduced Dependence Graph

In the RDG for the generic specification given in Equation
(2), let X be a variable derived from V and defined on ZX ∈

(a) Basic RDG

{2i|1 ≤ 2i ≤ n}

{2i → i}
{2i → i}

{2i − 1|1 ≤ 2i − 1 ≤ n}
X

(b) Refined RDG

XY
{2i − 1|1 ≤ 2i − 1 ≤ n} {2i|1 ≤ 2i ≤ n}

{4i → 2i}
{4i − 2 → 2i − 1}

Y

Figure 3. Basic and Refined Reduced Dependence Graphs for example 1.

DV,i, and let Y be a variable derived from U defined on ZY ∈
DU where ZX and ZY are given as follows

ZX = {LXzX + lX |zX ∈ Pc
X}

ZY = {LY zY + lY |zY ∈ Pc
Y }

A dependence of the form (Lz + l → Rz + r) is directed
form X to Y . X at (Lz + l) ∈ ZX cannot be evaluated before
Y at (Rz + r) ∈ ZY . The affine lattice {Lz + l|z ∈ Z

n} may
contain points that do not lie in the affine lattice {LXzX +
lX |zX ∈ Z

nX}. Similarly, the affine lattice {Rz + r|z ∈
Z

n} may contain points that do not lie in the affine lattice
{LY zY + lY |zY ∈ Z

nY }. As a result, the dependence may be
specified on a finer lattice than necessary and may safely be
replaced by dependence of the form (L′z′ + l′ → R′z′ + r′)
where

L′ = LXS, l′ = LXs + lX
R′ = LY S′, r′ = LY s′ + lY

(3)

where S and S′ are matrices and s and s′ are integer vectors.
The refined RDG is a refinement of the basic RDG where ev-
ery dependence has been replaced by a dependence satisfying
Equation (3). Figure 3b gives the refined RDG for example 1.

5. The Scheduling Problem

Here, we will present the precedence imposed by depen-
dences and then formulate an integer linear program to obtain
valid schedules.

5.1. Causality Constraints

Dependences between the different iterations of variables
impose an ordering on their evaluation. A valid schedule of
the evaluation of these iterations is the assignment of an exe-
cution time to each computation so that precedence (causality)
constraints are satisfied.

Let X and Y be two variables in the refined RDG defined
on {LXzX + lX |zX ∈ Pc

X} and {LY zY + lY |zY ∈ Pc
Y }

respectively. We seek to find schedules on X and Y of the
following form

λ′
X(zX) = (LXzX + lX → λX(zX))

λ′
Y (zY) = (LY zY + lY → λY (zY)) (4)

where λX and λY are affine functions on zX and zY respec-
tively. Our motivation for such schedules is that all vectors
and matrices comprise of integer scalars. If we seek sched-
ules of the form λ′(z′) where λ′ is an affine function and z′ is
an iteration in the domain of a variable, then we may poten-
tially assign execution times to “holes” or computations that
do not exist. In general, we seek multidimensional schedules
in the form of affine functions on coordinate indices.

We will now formulate causality constraints using the re-
fined RDG. Consider dependences from X to Y . All such
dependences can be written as

(LX(Sz + s) + lX → LY (S′z + s′) + lY)

where S and S′ are matrices and s and s′ are vectors. The
execution time for Y at LY (S′z + s′) + lY should precede
the execution time for X at LX(Sz + s) + lX . With the na-
ture of the schedules presented in Equation (4), our causality
constraint becomes

λX(Sz + s) − λY (S′z + s′) ≥ 1 (5)

5.2. ILP Formulation

Here, we extract ILP (integer linear programming) con-
straints from causality constraints, as well as non-negativity
of schedule. Then, we complete the ILP formulation with an
objective function. Since our aim is using the PIP (Parameter
Integer Programming) solver [5], the ILP formulation will be
suitable form for the solver. We also show how a multidimen-
sional schedule can be obtained in this model.

First, consider the non-negativity of schedule and therefore
of the affine function λ. For each variable X , we want to
impose the following condition:

∀z ∈ Pc
X , λX(z) ≥ 0

By affine form of Farkas Lemma, this condition holds
when λX(z) is a non-negative affine combination of the con-
straints C of Pc

X , i.e.

λX(z) ≡ λX,0 +
bX∑
k=1

λX,k(aT
X,kz+αX,k)

where λX,i ≥ 0 for all i = 0, . . . , bX and aT
X,kz + αX,k ≥ 0

is the k-th constraint of C. From now on, this is a prototype of
affine schedule functions.

Now, consider the causality constraint presented in Equa-
tion (5) for the dependence from X to Y .

λX,0 +

(
bX∑
k=1

λX,k(aT
X,k(Sz + s) + αX,k)

)
− λY,0

−
(

bY∑
k=1

λY,k(aT
Y,k(S′z + s′) + αY,k)

)
− 1 ≥ 0

where Sz + s ∈ Pc
X and S′z + s′ ∈ Pc

Y . Equivalently, we
may say z ∈ P ′

X ∩P ′
Y where P ′

X and P ′
Y are the preimage of

Pc
X by (z → Sz + s) and Pc

Y by (z → S′z + s′) respectively.
Now, first we will illustrate how to formulate the ILP con-

straints with the help of an example. Then, we will introduce
an objective function for minimizing latency.

Consider Example 1 and its refined RDG given in Figure
3b. By the non-negativity constraints, the affine functions λX

and λY will be of the form

λX = λX0 + λX1(2i − 1) + λX2(N − 2i)

λY = λY 0 + λY 1(2i − 2) + λY 2(N − 2i + 1)

For the edge (4i− 2 → 2i− 1) from X to Y , the causality
constraint is

λX0 + λX1(4i − 3) + λX2(N − 4i + 2)
−λY 0 − λY 1(2i − 1) − λY 2(N − 2i − 1) ≥ 1 (6)

Similarly, an ILP constraint for the edge (4i → 2i) trans-
lates into the following condition

λX0 + λX12i + λX2(N − 4i)
−λX0 − λX1i − λX2(N − 2i) ≥ 1 (7)

where all the unknowns are non-negative. Since Y is assigned
to a constant, one possibility is λY 0 = λY 1 = λY 2 = 0. In
this case, Equation (6) can be simplified to the following form

(λX0 − λX1 + λX2 − 1) + (2λX1 − λX2)(2i − 1)
+(λX2)(N − 2i) ≥ 0

Similarly, Equation (7) also simplifies to

(λX1 − λX2 − 1) + (λX1 − λX2)(2i − 1) ≥ 0

Now, we have the following inequalities

λX0 − λX1 + λX2 − 1 ≥ 0
2λX1 − λX2 ≥ 0

λX0 ≥ 0
λX1 − λX2 − 1 ≥ 0

λX1 − λX2 ≥ 0

(8)

All these steps for deriving ILP constraints can be per-
formed automatically and these inequalities can be system-
atically solved by standard ILP solvers.

Now, we present an objective function when all domains
are bounded. In this case, there exists an affine expression
L of the program parameters such that L − λX(z) ≥ 0 for
all z ∈ Pc

X if there exists an affine function λX . So, it does
not restrict the space of valid affine function λX . We want to
minimize the total latency by minimizing L. In order to use
the PIP solver, for each variable X we first add L−λX(z) ≥ 0
to the constraints, and the unknown variables in L are placed
into the outermost dimensions because PIP solver gives the
lexicographic minimum of a given parameterized polyhedron.

Let us continue Example 1. For the minimum latency affine
schedule, we add the following constraints from L(= µ0N +
µ1) − λX(z). Here, (µ0N + µ1) is the prototype of latency
and µ0 and µ1 are unknown constants. Solving, we get

µ0N + µ1 − λX0 − λX1(2i − 1) − λX1(N − 2i) ≥ 0
or (µ0 − λX0)(N − 2i) + (µ0 − λX1)(2i − 1)

+(µ0 + µ1 − λX0) ≥ 0

which implies the following

µ0 − λX0 ≥ 0
µ0 − λX1 ≥ 0

µ0 + µ1 − λX0 ≥ 0
(9)

Note that for the sake of simplicity, we do not consider
the variable Y that is constant on all its iterations. In fact,
Equations (8) and (9) define a polyhedron. Since we put µ0

into the first dimension index, the lexicographic minimum of
this polyhedron will provide minimum latency schedules for
each variable. Finally, we will get the following schedules for
X and Y

λ′
X : (2i → i)

λ′
Y : (2i + 1 → 0)

Now, consider multidimensional schedules in this model.
The basic idea is the same as that in Polyhedral model. Thus,
rather than presenting technical details, we just provide a pre-
cise and intuitive (maybe inefficient) formulation for multi-
dimensional schedules. The basic idea of the following ILP

formulation is satisfying as many dependences as possible and
the theory justifying this formulation is given by Feautrier [8].

max
∑
e∈E

xe

subject to 0 ≤ xe ≤ 1
λX(Sz + s) − λY (S′z + s′) − 1 ≥ xe

λX(z) ≥ 0

A new variable xe for each e ∈ E is introduced. When
xe = 1, the dependence associated to edge e will be satisfied.
The objective function maximizes the number of the edges
that are satisfied. The multidimensional time can be obtained
in this model by the same way in the polyhedral model.

The purpose of this section was to present the transforma-
tion of causality constraints into ILP constraints precisely and

the illustration of this step with the help of an example. For
technical details on Farkas scheduling algorithm, please refer
to [7] by Feautrier.

6. Related Work

The scheduling problem is one of the most widely studied
problems in the polyhedral model. For a detailed exposition
of the various scheduling techniques, we would like to refer
the interested reader to the text by Darte et al. [4].

The scheduling problem on recurrence equations with uni-
form (constant-sized) dependences was originally presented
by Karp et. al. [12]. A similar problem was posed by Lam-
port [13] for programs with uniform dependences. Quinton
showed how these techniques can be used for systolic syn-
thesis [21, 22]. Shang and Fortes [27] and Lisper [17] pre-
sented optimal linear schedules for uniform dependence al-
gorithms. Rao [26] first presented affine by variable sched-
ules for uniform dependences and also proposed an improve-
ment of the technique by Karp et al. [12] for multidimensional
schedules. The first result of scheduling programs with affine
dependences was solved by Rajopadhye and Fujimoto [24],
and independently by Quinton and Van Dongen [23]. These
results were generalized to variable dependent schedules by
Mauras et. al. [20]. Feautrier presented the optimal solution
to the affine scheduling problem (by variable) [7]. Feautrier
also provided the extension to multidimensional time [8].

Darte and Robert [3] (as well as Feautrier [7] and Quin-
ton [22]) formulate the schedule as the floor of a rational affine
function, thus enabling LP rather than ILP to be used for ef-
ficient solutions. However, given a rational schedule, it is
not known how to produce a space-time mapping and subse-
quently generate code. The schedules that we construct from
the techniques presented in this paper can be used to perform
appropriate program transformations to obtain an equivalent
specification that can be input directly to the final code gen-
eration step, which has already been solved by Bastoul [1].
Also, we have extended the scheduling analysis to a class of
programs that is strictly more general than those considered
previously.

7. Conclusions and Future Work

The polyhedral model has been widely studied for the au-
tomatic parallelization of loop programs. However, it is lim-
ited in expressivity. It was recently extended to Z-polyhedral
domains [10]. In this paper, we presented the scheduling
analysis for the Z-polyhedral model, a strict generalization
of the polyhedral model, to obtain multidimensional sched-
ules with minimum latency. Our schedules are of the form
λ′(z) = (Lz + l → λ(z)) where {Lz + l|z ∈ Z

n} is the lat-
tice corresponding to the Z-polyhedron and λ(z) is the affine
function (comprising of integer scalars) on the coordinates of
this lattice. As a result, an important property of our ILP for-
mulation is that it searches only in the space of functions that

can subsequently be used to construct a space-time transfor-
mation of the program.

Our schedules express unbounded parallelism and thus
cannot directly be realized in any parallel hardware. How-
ever, such parallelism detection is the crucial precursor to any
resource constrained analysis.

Future work involves the implementation of these transfor-
mations into a compiler optimization framework.

References

[1] C. Bastoul. Code generation in the polyhedral model is easier
than you think. In IEEE PACT, pages 7–16, 2004.

[2] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam.
Putting polyhedral loop transformations to work. In Languages
and Compilers for Parallel Computers, pages 209–225, Oct
2003.

[3] A. Darte and Y. Robert. Affine-by-statement scheduling of uni-
form and affine loop nests over parametric domains. J. Parallel
Distrib. Comput., 29(1):43–59, 1995.

[4] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic
Parallelization. Birkhäuser, 2000.

[5] P. Feautrier. Parametric integer programming. Opera-
tionnelle/Operations Research, 22(3):243–268, 1988.

[6] P. Feautrier. Dataflow analysis of array and scalar references.
Int. Journal of Parallel Programming, 20(1):23–53, 1991.

[7] P. Feautrier. Some efficient solutions to the affine scheduling
problem. part I. one-dimensional time. Int. Journal of Parallel
Programming, 21(5):313–348, Oct 1992.

[8] P. Feautrier. Some efficient solutions to the affine scheduling
problem. part II. multidimensional time. Int. Journal of Paral-
lel Programming, 21(6):389–420, Dec 1992.

[9] A. Fernández, J. M. Llabería, and M. Valero-García. Loop
transformation using nonunimodular matrices. IEEE Trans.
Parallel Distrib. Syst., 6(8):832–840, 1995.

[10] Gautam and S. Rajopadhye. The Z-polyhedral model. In
PPoPP’07: Symposium on Principles and Practice of Paral-
lel Programming (accepted), 2007.

[11] C. Hermite. Sur l’introduction des variables continues dans
la theorie des nombres. J. Reine Angew. Math., 41:191–216,
1851.

[12] R. M. Karp, R. E. Miller, and S. V. Winograd. The organiza-
tion of computations for uniform recurrence equations. JACM,
14(3):563–590, July 1967.

[13] L. Lamport. The parallel execution of DO loops. Communica-
tions of the ACM, pages 83–93, February 1974.

[14] H. Le Verge. Un environnement de transformations de pro-
grammmes pour la synthèse d’architectures régulières. PhD
thesis, L’Université de Rennes I, IRISA, Campus de Beaulieu,
Rennes, France, Oct 1992.

[15] P. Lenders and S. V. Rajopadhye. Multirate VLSI arrays and
their synthesis. Technical Report 94-70-01, Oregon State Uni-
versity, December 1994.

[16] W. Li and K. Pingali. A singular loop transformation frame-
work based on non-singular matrices. Int. J. Parallel Program.,
22(2):183–205, 1994.

[17] B. Lisper. Linear programming methods for minimizing ex-
ecution time of indexed computations. In Int. Workshop on
Compilers for Parallel Computers, 1990.

[18] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. Fast eval-
uation of internal loops in rna secondary structure prediction.
Bioinformatics, 15(6):440–445, 1999.

[19] C. Mauras. ALPHA: un langage équationnel pour la con-
ception et la programmation d’architectures parallèles syn-
chrones. PhD thesis, L’Université de Rennes I, Rennes, France,
December 1989.

[20] C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter.
Scheduling affine parametrized recurrences by means of vari-
able dependent timing functions. In International Confer-
ence on Application Specific Array Processing, pages 100–110,
1990.

[21] P. Quinton. Automatic synthesis of systolic arrays from uni-
form recurrent equations. In ISCA ’84: Proceedings of the
11th annual international symposium on Computer architec-
ture, pages 208–214, 1984.

[22] P. Quinton. The systematic design of systolic arrays. In F. Fo-
gelman Soulie, Y. Robert, and M. Tchuente, editors, Automata
Networks in Computer Science, chapter 9, pages 229–260.
Princeton University Press, 1987. Preliminary versions appear
as IRISA Tech Reports 193 and 216, 1983, and in the proceed-
ings of the IEEE Symposium on Computer Architecture, 1984.

[23] P. Quinton and V. Van Dongen. The mapping of linear re-
currence equations on regular arrays. Journal of VLSI Signal
Processing, 1(2):95–113, 1989.

[24] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On
synthesizing systolic arrays from recurrence equations with
linear dependencies. In Foundations of Software Technology
and Theoretical Computer Science, pages 488–503, 1986.

[25] J. Ramanujam. Beyond unimodular transformations. J. Super-
comput., 9(4):365–389, 1995.

[26] S. K. Rao. Regular Iterative Algorithms and their Implemen-
tations on Processor Arrays. PhD thesis, Stanford University,
Information Systems Lab., Stanford, Ca, October 1985.

[27] W. Shang and J. Fortes. Time optimal linear schedules for al-
gorithms with uniform dependencies. IEEE Transactions on
Computers, 40(6):723–742, June 1991.

[28] D. Wilde. A library for doing polyhedral operations. Technical
Report PI 785, IRISA, Rennes, France, Dec 1993.

[29] B. Wilkinson and M. Allen. Parallel programming: techniques
and applications using networked workstations and parallel
computers. Prentice-Hall, Inc., 1999.

[30] J. Xue. Automating non-unimodular loop transformations
for massive parallelism. Parallel Computing, 20(5):711–728,
1994.

