
Performance scalability of the JXTA P2P framework

Gabriel Antoniu1, Loïc Cudennec1, Mathieu Jan1 and Mike Duigou2

1 IRISA/INRIA 2 Project JXTA
Campus de Beaulieu Sun Microsystems

35042 Rennes Cedex, France Santa Clara, CA, U.S.A
Mathieu.Jan@irisa.fr Mike.Duigou@sun.com

Abstract

Features of the P2P model, such as scalability and
volatility tolerance, have motivated its use in distributed
systems. Several generic P2P libraries have been proposed
for building distributed applications. However, very few ex-
perimental evaluations of these frameworks have been con-
ducted, especially at large scales. Such experimental anal-
yses are important, since they can help system designers
to optimize P2P protocols and better understand the bene-
fits of the P2P model. This is particularly important when
the P2P model is applied to special use cases, such as grid
computing. This paper focuses on the scalability of two
main protocols proposed by the JXTA P2P platform. First,
we provide a detailed description of the underlying mecha-
nisms used by JXTA to manage its overlay and propagate
messages over it: the rendezvous protocol. Second, we de-
scribe the discovery protocol used to find resources inside
a JXTA network. We then report a detailed, large-scale,
multi-site experimental evaluation of these protocols, using
the nine clusters of the French Grid’5000 testbed.

1. Introduction

Programming distributed applications has always been
a difficult task. This difficulty is further increased when
systems target a large scale (i.e. millions of users). While
trying to address this problem, the Peer-to-Peer (P2P) ap-
proach is receiving a growing interest thanks to its prop-
erties, primarily scalability and volatility tolerance. Con-
sequently, by using a P2P model, applications can hope
to offer higher scalability and availability despite dynamic
changes in the underlying physical infrastructure. The P2P
model was initially used for large-scale applications over

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Internet (such as file sharing, instant messaging, etc.), but
has also been found attractive in the field of distributed sci-
entific simulation on grid infrastructures. As an example, it
can typically be used in connection with grid resource man-
agement middleware [9, 23].

Recently, a number of P2P libraries (e.g. Bamboo [28],
FreePastry [29], JXTA [27], etc.) providing basic sup-
port for P2P interaction (for example discovery mecha-
nisms) have been made available. Such libraries are in-
tended to serve as generic building blocks for higher-
level P2P services and applications. Among these P2P li-
braries, the JXTA framework is emerging as a de facto
standard for building services or applications in the indus-
trial world [30]. It is also used in various research projects,
[1, 2, 21] to cite a few (see [31] for a more detailed list).

However, before using such generic layers, it is impor-
tant to analyze their suitability with respect to the require-
ments of the target P2P service or application. Most pub-
lished papers introducing these libraries give the cost of
basic operations (e.g. routing and discovery) through com-
plexity analyses and simulations. These theoretical evalua-
tions are certainly necessary, but they clearly are only a pre-
liminary step. To fully understand the behavior of the pro-
posed P2P libraries, experimental evaluations on existing
distributed testbeds are unavoidable. Such practical eval-
uations make it possible to better tune the proposed algo-
rithms, depending for instance on the testbed scale or on
the underlying network topology targeted by applications.
For instance, the current convergence of grid computing and
P2P computing [10] calls for precise requirements and guar-
antees to be defined for P2P algorithms. This makes it pos-
sible to better understand the benefits of the P2P model in
such particular use cases.

In this work, we focus on the performance of the JXTA
protocols. JXTA is an open-source initiative, sparked by
Sun Microsystems. It was founded in order to develop a
set of standard open protocols for P2P network applica-
tions. To the best of our knowledge, it is the most ad-



vanced framework currently available for building services
and applications based on the P2P model. In its 2.0 ver-
sion, JXTA consists of a specification of six language- and
platform-independent, XML-based protocols [32] that pro-
vide basic services common to most P2P applications, such
as peer group organization, resource discovery, and inter-
peer communication. A more detailed overview of JXTA
can be found in [27]. In this paper, we focus on the per-
formance analysis of the so-called Loosely-Consistent Dis-
tributed Hash Table (LC-DHT) [26] at a large scale. This
mechanism has been introduced in JXTA 2.0 for resource
discovery.

In order to evaluate the cost of this LC-DHT, we bench-
mark the discovery protocol from an application point of
view. However, we also evaluate the underlying algorithms
used by the LC-DHT, i.e. the rendezvous protocol, used
to organize the JXTA overlay and propagate queries. We
perform multi-site tests over the Grid’5000 testbed [6], an
experimental grid platform consisting of 9 sites geographi-
cally distributed in France. Grid’5000 aims at gathering a
total of 5,000 CPUs in the near future. We vary parameters
of these algorithms: the overlay size and some parameters
controlling the algorithm behavior. We also experiment two
overlay topologies: chains and trees. These metrics are ap-
plied on the C reference implementation of the JXTA spec-
ifications, known as JXTA-C [25].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces related work: we discuss some existing
performance evaluations of DHTs as well as of JXTA. Sec-
tion 3 provides an overview of JXTA’s protocol stack, with
a focus on protocols involved in the management of the LC-
DHT evaluated in our experiments. Section 4 presents and
discusses scalability experiments for the rendezvous pro-
tocol and for the discovery protocol. Finally, Section 5
concludes the paper and suggests directions for further re-
search.

2. Related work

Papers introducing DHTs such as Pastry [19], have eval-
uated the benefits of this approach, but mainly through theo-
retical analyses and simulations. The most commonly used
metric to evaluate DHTs is the number of hops required to
look for a resource in a given overlay. Because of the use
of simulations, past evaluations usually assume a static net-
work. More recently, the impact of realistic conditions, such
as for instance churns, on the performance of the lookup
operation have been the subject of many papers [16,18,22].
Such work is sometimes based on theoretical analyses [17],
but more usually on laws modeling the session length of a
peer [16, 18] as well as on traces of existing deployed sys-
tems [22]. However, note that traces are subject to inaccu-
racies: only a subset of the network has been explored in

a time-constrained period and lookup patterns might there-
fore not be representative. Large-scale experimental eval-
uations of DHTs in controlled environments are therefore
required to compare any proposed improvements in a fair
manner as well as to report performances of DHTs using
traditional network metrics, such as latency, bandwidth, etc.
To the best of our knowledge, only [8] provides such exper-
imental evaluations, using 425 peers over 150 nodes of the
PlanetLab [7] testbed and takes into account underlying net-
work characteristics in the used metrics.

In the JXTA field, various implementations of the JXTA
specification have been evaluated [11, 12, 20] and com-
pared to other systems [5,14] (especially as regards JXTA-
J2SE). However most of these evaluations were performed
at application-level, without any analysis of the internal be-
havior of JXTA’s protocols. Such an analysis has recently
been provided for the performance of JXTA’s communica-
tion layers [3,4]. The goal of this paper is to bring a similar
contribution by analyzing and evaluating JXTA’s LC-DHT
mechanism, on which relies JXTA’s protocols for resource
publishing and discovery.

The LC-DHT has been introduced in JXTA-J2SE and
JXTA-C starting from versions 2.0 and 2.2 respectively.
The approach has been compared to a classical DHT-based
approach in [24], by modifying JXTA’s discovery proto-
col. However, no performance evaluation was reported.
In [13] authors compare the LC-DHT approach to a cen-
tralized or flooding approach (which was the strategy used
by JXTA 1.0), with respect to memory usage, reliabil-
ity and query response time for different configurations
of a JXTA virtual network. Benchmarks were performed
against JXTA-J2SE. However, no benchmarks have been
performed at a large-scale, as the experimental configura-
tions used up to 32 peers only, based on a LC-DHT dis-
tributed on 4 peers. One of the main goals of this paper is
precisely to test the scalability of the LC-DHT approach,
using much larger configurations.

3. Description of JXTA

3.1. General overview

JXTA relies on a set of basic concepts: a “peer” is
an entity able to communicate by exchanging messages;
a “peer group” (also called an overlay in the remainder
of this paper) is a set of peers with a common interest,
and providing common services; an “advertisement” is an
XML document describing a resource. JXTA specifies a set
of language- and platform-independent XML-based proto-
cols [32]. These protocols are used inside each peer group
to provide a rich set of building blocks (called services)
for the management of peer-to-peer systems: resource dis-

2



Physical transport protocol

Peer resolver protocol

Peer discovery protocol

Rendezvous protocol

Peer resolver protocol

Peer discovery protocol

Rendezvous protocol

TCP, HTTP, etc

Endpoint routing protocol

Physical transport protocol

Endpoint routing protocol

Figure 1. Partial view of JXTA’s protocol
stack as defined by the specification.

covery, overlay self-configuration, peer-to-peer communi-
cation, etc.

Figure 1 shows the stack of protocols defined by JXTA.
Above the physical transport protocols, the endpoint rout-
ing protocol (ERP) is used to find available routes from a
source peer to a destination peer. The rendezvous protocol is
responsible for message distribution and topology manage-
ment. On top of the rendezvous protocol, JXTA uses a stan-
dardized query/response protocol: the resolver protocol. It
provides a generic, topology-independent query/response
interface which other higher-level services may use to in-
voke various P2P operations. For instance, the discovery
protocol defines one such service, which provides a specific
API for publishing and discovery, which is implemented us-
ing the resolver protocol. The discovery protocol is used to
publish and to find available resources within a JXTA over-
lay. It relies on the use of resource advertisements, whose
life duration can be controlled via the discovery API. Dis-
covery resource announcements and queries are forwarded
by the underlying resolver protocol to the appropriate ren-
dezvous peers.

In this paper, we focus on the rendezvous protocol and
on the discovery protocol. Before introducing in more de-
tails these two protocols, let us stress that, for each pro-
tocol, JXTA only defines the syntax for queries and re-
sponses; it does not specify the behavior of algorithms used
by implementations willing to be compliant with the pro-
tocol specification. For instance, various message routing
approaches can be used by JXTA implementations, mak-
ing JXTA the perfect framework for testing topology-based
routing algorithms. Moreover, the specification does not
define the structure of a JXTA-based overlay. In current
implementations (JXTA-C or JXTA-J2SE), a JXTA over-
lay is a structured network based on the use of mainly two
peer types: super-peers, commonly called rendezvous peers,
and regular peers, called edge peers. Each edge peer is at-
tached to a rendezvous peer. Queries and responses are for-

warded among the super-peers using a Loosely-Consistent
Distributed Hash Table (LC-DHT), whose behavior is de-
tailed in Section 3.3. However, note that alternate imple-
mentations of JXTA may provide different types of over-
lays.

Let S be a JXTA overlay, composed of r rendezvous
peers and e edge peers. If rendezvous peers are noted R i,
and edge peers are noted Ej , then S is defined as follows:

S = {Ri, i = 1..r} ∪ {Ej, j = 1..e} (1)

3.2. The peerview protocol: managing the
overlay

As stated by the JXTA specifications, the rendezvous
protocol is divided into three sub-protocols:

1. the peerview protocol, used by rendezvous peers to
organize themselves by synchronizing their views of
each other;

2. the rendezvous lease protocol, used by edge peers to
subscribe to the reception of messages propagated by
the rendezvous peers;

3. the rendezvous propagation protocol, which enables
peers to manage the propagation of individual mes-
sages within a group.

In this paper, we focus on the first protocol: the peerview
protocol. This protocol allows rendezvous peers to work to-
gether to form a so-called global peerview: an ordered list
(by peer ID) of peers currently acting as rendezvous peers
within a given group. This list is used to route messages
within that group. Each rendezvous peer maintains a local
version of the list, which represents its view of the global
peerview. Let g be the size of the global peerview for a
given peer group S, and li the size of local peerview of ren-
dezvous peer Ri. Let T be the set of values that can take
the time during a given execution of a JXTA application.
The goal of the peerview protocol is to form and keep the
individual local peerviews consistent across all rendezvous
peers participating in a given group. This can be translated
in the following property:

∃ t1 ∈ T, ∀ t2 ∈ T, t2 > t1, ∀ Ri ∈ S : li = g (2)

We shall see in Section 3.3 that this consistency is required
for an optimal query propagation over a JXTA overlay.

To achieve this goal, rendezvous peers periodically probe
other members of the peerview. Algorithm 1 shows the
main steps of this process used by JXTA-C for this pur-
pose. The algorithm is run by every rendezvous peer of
S. The elapsed time between two iterations of the al-
gorithm is controlled by the PEERVIEW_INTERVAL con-
stant (set by default to 30 seconds). Note that the algorithm

3



Algorithm 1: Pseudo-code of the main steps of the
periodic algorithm used for the convergence of local
peerviews of Ri.

repeat1

wait for PEERVIEW_INTERVAL;2

remove entries from the local peerview for which3

time > PVE_EXPIRATION;
li = size of the local peerview of Ri;4

for rdv ∈ {upper_rdv, lower_rdv} do5

if li < HAPPY_SIZE then6

probe rdv;7

else8

if rand () % 3 == 0 then9

update our entry in the peerview of10

rdv;
else11

probe rdv;12

if li < HAPPY_SIZE then13

probe initial rendezvous peers, called seed14

rendezvous;

until rendezvous service is stopped ;15

used by JXTA-J2SE is slightly different, but the variation
in behavior does not appear to be significant. Apart from
the peer running the algorithm, two other peers are mainly
involved: 1) the rendezvous peer whose peer ID immedi-
ately preceeds the local peer ID in the sorted list of peer
IDs, noted as lower_rdv in the algorithm and 2) the ren-
dezvous peer whose peer ID immediately follows the local
peer ID in the same list, noted as upper_rdv in the al-
gorithm. Theses two rendezvous peers, if present (peers at
each end of the sorted list will have only one peer to probe),
are more actively probed if the size of the peerview has not
reached a configurable minimum threshold: HAPPY_SIZE
(by default set to 4). A probe is a peerview message that
contains a rendezvous advertisement describing the sender
(let us call this peer A). In response to a probe, the receiver
(also a rendezvous peer, let us call it B) returns its own ren-
dezvous advertisement. In a separate message, peer B will
also return a randomly chosen rendezvous advertisement for
another rendezvous peer in his list (C). This second mes-
sage is known as a referral response. This way, the initiator
of the probe (A) may learn about a new rendezvous peer.
However, before adding this new rendezvous advertisement
in its local peerview, peer A will probe peer C, which will
also send a referral response publishing the identity of yet
another rendezvous peer (D), and so on. The default life-
time of rendezvous advertisements in the peerview is con-
trolled via a constant (PVE_EXPIRATION, by default set
to 20 minutes). This tunable constant is used at line 3 of

Algorithm 1 to remove expired peerview entries.

3.3. The discovery protocol: publishing and
discovering resources

An overview of the LC-DHT algorithm. The LC-DHT
algorithm (for Loosely-Consistent Distributed Hash Table)
defines a mechanism for publishing and discovering re-
sources within a JXTA overlay. Each resource made avail-
able is described by an advertisement. Each type of adver-
tisement defines a set of attributes by which instances of the
advertisement are indexed. Peers maintain and publish at-
tribute tables for their advertisements. An attribute table
consists of tuples (index attribute, value), each of which
is associated to a life duration and to the identity of the
publishing peer. These attribute tables are published by
the edge peers to their associated rendezvous peers. Ren-
dezvous peers which receive such publication requests keep
a copy of the tuples and then replicate them across the en-
tire network of rendezvous by applying a hash function on
each tuple, in order to determine on which rendezvous peer
to replicate the table. Such a rendezvous peer designated by
the LC-DHT algorithm as responsible for an advertisement
is called replica peer for that advertisement. The hash func-
tion (detailed below) shows that the mapping of indexes to
the appropriate replica peer is based on the use of the local
peerview (we remind the reader that l i is the size of the local
peerview):

Function ReplicaPeer(tuple) applied by peer R i

member of S to find the replica peer for a given adver-
tisement.
hash = SHA-1 (tuple);1

pos = floor(hash ∗ li
MAX_HASH );2

Return peerview entry at position pos;3

The hash is actually applied on a string obtained by con-
catenating the type of the advertisement, the name of the
attribute used for indexing and its value. The maximum
value the hash function of the LC-DHT can return is noted
MAX_HASH.

Let us take an example to illustrate both publish and
lookup operations for a resource (with S = {R i, i =
1..6} ∪ {Ej , j = 1..2}). In our example, the resource
is a peer represented by a peer advertisement Adv (so the
peer type is Peer); let us assume that the index attribute is
Name and its associated value is Test. The hash function
will then be applied to the string: “PeerNameTest”. Let us
assume that the output hash value is 116, that MAX_HASH
equals 200 and that the property (2) is satisfied (l i = g = 6).
Consequently, the Table 1 shows local peerviews of each R i

member of S.

4



Peerview entry 0 1 2 3 4 5
Peer ID (Ri) 006 (R1) 020 (R2) 036 (R3) 050 (R4) 088 (R5) 180 (R6)

Table 1. Local peerview used by each Ri

member of S for both publish and lookup op-
erations of tuple (116, E1).

Publishing. The top side of Figure 2 shows the main
steps for publishing this advertisement, which are described
below.

1. The tuple is first sent by the edge peer E1 to its as-
sociated rendezvous peer R1, which can compute the
appropriate replica peer for the advertisement. Ac-
cording to the replica peer function (position =
� 116∗6

200 � = 3), the tuple (116, E1) will get replicated
onto the third peer in R1’s peerview, which is ren-
dezvous peer R4 (see Table 1). The tuple (116, E1)
is also stored by R1 to increase its availability for edge
peers connected to the same rendezvous peer.

2. The tuple (116, E1) is therefore sent on the rendezvous
peer R4.

Discovery. The goal of the peer discovery protocol is
to find resources within the group. It makes use of the tu-
ples described above. Edge peers specify queries by indicat-
ing index attributes and desired values for those attributes.
This is expressed as a discovery protocol message, which is
propagated over a JXTA overlay according to the following
steps (bottom side of Figure 2).

1. The message is first forwarded by the edge peer to
its rendezvous peer via the resolver protocol (for ren-
dezvous peers this step is not necessary as they act as
their own rendezvous). In our example, edge peer E 2

is looking up for Adv: the discovery request is sent to
R2, which is E2’s rendezvous peer.

2. Rendezvous peer R2 first checks if it has a local hash
value of 116. In that case, R2 can directly forwards the
query to E1 and the lookup process continues at step 4.
If no local matching hash value if found, R2 applies the
same hash function as used for publication upon the
query expression elements. Consequently, the query is
forwarded to the resulting replica peer: R4.

3. As R4 is indeed the correct replica peer for this query,
the query is forwarded to the edge peer that has pub-
lished the Adv advertisement: E1.

4. Finally, edge peer E1 sends its advertisement to the
requesting edge peer (E2).

publishing

Adv 020

036

050

088

180

2

1

(116, E1)

(PeerNameTest, E1)

006

SHA−1(Adv) = 116

E1

R1

R

R

R

R

R

2

3

4

5

6

upper and lower rendezvous link

discovering

6

Adv

036

050

088

180

2
3

4

1

020

SHA−1(expression) = 116

expression = PeerNameTest

E 1

006

ER

R

R

R

R

R

1

22

3

4

5

Figure 2. Main steps for publishing (top) and
looking up (bottom) a resource advertise-
ment over the network of rendezvous peers.
In this example, the advertisement has a
hash value of 116.

5



Link with the peerview protocol. When publishing or
looking up for advertisements, local peerviews of ren-
dezvous peers are used to forward messages to replica peers.
However, if rendezvous peers have different local peerviews
they will route messages to different destination rendezvous
peers: this is due to the fact that the replica peer is com-
puted based on the rank of the rendezvous peers in the lo-
cal peerviews. If local peerviews differ on the rendezvous
peer performing the publication and on the rendezvous peer
in charge of performing the corresponding discovery query,
the replica peer computed at publication will not match the
one computed during the discovery process. However, upon
failing to find a resource on a replica peer, a backup mech-
anism is used: the query will be forwarded to the upper and
lower rendezvous peers, which may store the resource. The
query is said to walk the whole peerview in both directions:
towards upper values in the hash space starting from the
upper_rdv rendezvous peer, and towards lower values in
the hash space starting from the lower_rdv rendezvous
peer.

Complexity. On an overlay gathering n nodes, classical
DHTs have a complexity in O(log n) for publishing re-
sources1, whereas LC-DHT have a complexity in O(1) (2
messages in the worst case). However for discovery, a LC-
DHT based approach does not offer the same O(log n)
query guarantee that other DHT systems provide. Current
implementations of JXTA provide a O(r) query guaran-
tee, where r is the number of rendezvous peers. The worst
case corresponds to the use of the walk mechanism upon
failure of the hash-based discovery (due to high churn),
more precisely when the rendezvous peer responsible for
the searched advertisement is diametrically opposed in the
peerview of the rendezvous peer computed by the hash
function. Therefore the peerview must be walked and the
number of hops used is then O(r). In practice, with the
help of advertisement replication, this number of hops is
much less than r. Finally, note that if local peerviews of all
rendezvous peers of a given group satisfy the property (2),
the complexity is only in O(1) (actually 4 messages in the
worst case, as illustrated on the bottom side of Figure 2).

The LC-DHT approach avoids the expensive traffic (and,
often more importantly, latency overhead) required by clas-
sical DHTs to maintain consistency. On the other hand, if
rendezvous peers are volatile, peerviews may change, and
computed replica peers may not be correct, as it would be
theoretically the case with classical DHTs. However, stud-
ies of these classical DHTs showed that their maintenance
mechanisms are unable to cope with churns of a few tens of
minutes [18], which most peers of existing systems follow
according to the same paper. Note that JXTA edge peers
periodically push tuples of updated or new indexes to their

1With respect to the number of required hops.

rendezvous peers (by default every 30 seconds). However,
this is only done if advertisements have changed or have
been explicitly republished by applications. Consequently,
this may lead to the computation of new replica peers, to al-
low future discovery requests to complete correctly. On the
other hand, edge peers also publish their tuples whenever
they connect to a new rendezvous peer.

The drawback of this LC-DHT approach is therefore that
it is possible to deliver incomplete results in the case of
highly inconsistent peerviews. This explains the name given
to this approach: loosely-consistent DHT, whose aim is to
cope with highly-dynamic peer-to-peer networks.

4. Scalability evaluation of JXTA-C protocols

Experimental setup. Nodes used for the experiments
mainly consist of machines using dual or quadri 2.2 GHz
AMD Opteron, dual 900 MHz Intel Itanium2, outfitted with
up to 4 GB of RAM each, and running a 2.6 version Linux
kernel; the hardware network layer used is a Giga Ether-
net (1 Gb/s) network. All 9 sites of the Grid’5000 testbed
were used: Bordeaux, Grenoble, Lille, Lyon, Nancy, Or-
say, Rennes, Sophia and Toulouse. Tests were executed us-
ing JXTA-C version 2.3 (released the 15th of December
2005), used and configured to use TCP as the underlying
transport protocol. JXTA-C benchmarks are compiled us-
ing gcc 4.0 with the -O2 level of optimization. Finally,
for the deployment of JXTA overlays, we used the generic
deployment tool ADAGE [15]. In order to do this, we de-
veloped a JXTA plug-in for ADAGE so that overlays can
be described in a concise manner, and generation of con-
figuration files for JXTA automated. We performed two
different kind of tests, as detailed below.

4.1. Evaluation of the peerview protocol

Benchmark description. The goal of this benchmark is
to measure the time it takes for the peerview protocol to
make the LC-DHT consistent across rendezvous peers, that
is to say the time for the property (2) to be satisfied. Each
time a rdv peer is added to, or removed from the local
peerview of a rendezvous peer, the elapsed time since the
beginning of the test is logged, as well as the type of event.
We performed benchmarks using an increasing number of
rendezvous peers, with different logical topologies (chain
or tree) and for different values of the PVE_EXPIRATION
constant. As in Section 3.1, we note r the number of ren-
dezvous peers in a peer group (noted S as introduced in the
same Section) and l the size of the local peerview of a ren-
dezvous peer. Finally, note that in our benchmark S is only
made of rendezvous peers (S = {Ri, i = 1..r}).

6



Scalability of the peerview protocol. The top side of
Figure 3 shows the evolution of l according to r. Both
chains (r equals to 10, 45, 50, 80, 160, 580) and trees
(160, 220, 338) topologies have been tested, revealing that
this initial parameter has no significant influence on the
peerview behavior. For a same experiment, the value l of
each rendezvous peer belonging to S evolves in the same
way. When r ≥ 45, the property (2) is not satisfied. More-
over, only three experiments (r equals to 10, 45 and 50)
reach the maximal possible value for S. This maximal pos-
sible value, noted m, is equal to r − 12. Finally, the ex-
periment with n = 580 enables to clearly distinguish three
phases in the setup on the local peerview of a rendezvous
peer.

1. An increase of l. This phase lasts as long as the lifetime
duration of the advertisements of rendezvous peers
(controlled by the constant PVE_EXPIRATION, see
Section 3.2), which is 20 minutes for the given experi-
ment.

2. A decrease of l. This phase starts at the time PVE_
EXPIRATION. If after this time the rendezvous asso-
ciated to its entry in the peerview is not probed by the
algorithm of the peerview, the entry is removed from
it.

3. A fluctuation of l around a given value, depending of
the value of n. In our case, l is around 300. In the
worst case, this phase starts at a time around twice the
value of PVE_EXPIRATION in minutes (experiment
with r = 580).

The bottom side of Figure 3 shows the distribution of
adding and removal events (respectively depicted by rhom-
bus and cross) of rendezvous peers in the local peerview of
a rendezvous peer (where r = 580). More precisely, on
the y axis is shown the number of a given rendezvous peer 3

of the experiment. Results show that almost all rendezvous
peers are getting in touch with all other rendezvous peers.
The maximal given number of the last known rendezvous
peer is indeed 577, that is to say 2 rendezvous peers were
not discovered. This occurs 117 minutes after the beginning
of the experiment. Two phases can also be observed for this
curve:

1. First, only adding events of rendezvous peers in the
peerview occur. This phase lasts PVE_EXPIRATION
(20 minutes in our experiment). It starts with a curve
of adding events in local peerviews, as shown by the
first curve, made of rhombus, on the bottom side of
Figure 3.

2Our measurement excludes the local rendezvous peer from the size of
the peerview.

3For each new rendezvous peer added in the peerview, a number is
given to the rendezvous peer starting from 1.

580

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60

N
um

be
r 

of
 k

no
w

n 
re

nd
ez

vo
us

Time in minutes

10
45
50
80

160
220
338

 0

Remove event

 100

 200

 300

 400

 500

 600

 20  40  60  80  100  120

R
en

de
zv

ou
s 

nu
m

be
r

Time in minutes

Add event

 0

Figure 3. Evolution of the size l of the
peerview of a rendezvous peer according to
the total number r of rendezvous peers in the
system (top). Distribution of add and remove
events of rendezvous peers in the peerview
of a rendezvous-peer (bottom).

2. Both adding and removal events of rendezvous peers
in the peerview are observed. This phase starts at time
PVE_EXPIRATION and lasts till the end of the ex-
periment. It starts with a curve of removal events in
local peerviews, as shown by the second curve, made
of crosses, on the bottom side of Figure 3.

Figure 3 (bottom side) explains the third phase in the setup
of the peerview of a rendezvous peer. The fluctuation of the
value m corresponds indeed to the adding and removal of
entries in the peerview, which occur in this second and last
phase. This indicate the incapacity of the peerview protocol
to probe all the entries of the peerview, in a time shorter than
the value of the constant PVE_EXPIRATION. Moreover,
this figure also explains why the value of m culminates in
time to the value of the constantPVE_EXPIRATION. After
this time, the curve of adding events counterbalances the
curve of removal events, thereby explaining the phase 3 in
the setup of a local peerview.

7



Discussion. This benchmark allows to characterize the
behavior of the algorithm of the peerview protocol of
JXTA-C. It tries to give a reliable answer to the follow-
ing question: how many rendezvous peers can be deployed
in a JXTA group? This question is frequently asked in the
mailing lists of JXTA and until now answered without any
proof. The peerview algorithm was believed to work well
for values of n as high as 100 or 150. However, our evalua-
tion shows that even for n greater than 45, the property (2),
which expresses the goal of the peerview protocol, is not
satisfied. Consequently, with parameters of the peerview
protocol set to default values, a JXTA group made of 45
rendezvous peers is not able to optimally organize itself.
Therefore, the most efficient routing of requests is not guar-
anteed, leading to an increase in the number of hops needed
for a discovery request for example (see Section 3.3).

A solution is to modify the value of the constant PVE_
EXPIRATION, as shown by the following experiment. Fig-
ure 4 shows the evolution of the value of m on a rendezvous
peer (with r = 50), according to two different values for
the constant PVE_EXPIRATION. By changing this con-
stant to a time greater than the duration of the experiment
(60 minutes in our case), l reaches its maximum possible
value: r − 1, which in our case is 49. In Property (2), t1 is
therefore equal to 17 minutes. Another solution to support a
higher number of rendezvous peers is to decrease the inter-
val of time between the iterations of the peerview algorithm
loop (constant PEERVIEW_INTERVAL, see Section 3.2).
Note that both parameters can be tuned at the same time.

In all cases, a compromise must be reached between
freshness (and thereby reliability of information in the
peerview) on one side and bandwidth consumption on the
other side. The freshness of information decreases when
the value of the constant PVE_EXPIRATION increases,
whereas the bandwidth consumption increases whenever
the value of the constant PEERVIEW_INTERVAL in-
creases.

4.2. Evaluation of the discovery protocol

Benchmark description. The goal of this benchmark is
to evaluate the time t needed for an edge peer to retrieve
an advertisement. In our setup, a network of r rendezvous
peers is deployed to route discovery messages. One edge
peer (called publisher) connects to this network and pub-
lishes a specific advertisement that is then searched by an-
other edge peer (called searcher). All measurements are
calculated based on 100 consecutive queries, each of them
followed by a flush of the local searcher cache, in order
to avoid cache speedup. Publishing and searching jobs de-
lay their execution time after that local peerviews of ren-
dezvous peer entered their phase 3 (see explanations of Fig-
ure 3). A first set of experiments involves a publisher,

Peerview size of 50 (tuned PVE_EXPIRATION)
 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60

N
um

be
r 

of
 k

no
w

n 
re

nd
ez

vo
us

Time in minutes

Peerview size of 50 (default value)

 0

50 edges, 5000 fake advertisements (B)

 15

 20

 25

 30

 35

 40

 45

 50

 0  20  40  60  80  100  120  140  160  180  200
A

ve
ra

ge
 ti

m
e 

to
 d

is
co

ve
r 

an
 a

dv
er

tis
em

en
t (

m
s)

Number of rendezvous peers

no edges, no fake advertisements (A)

 10

Figure 4. Evolution of the size l of the
peerview of a rendezvous peer, for a P2P
system made of 50 rendezvous peers, ac-
cording to the value of the parameter PVE_
EXPIRATION (top). Time t to discover an ad-
vertisement depending on the number of ren-
dezvous peers r, edge peers and fake adver-
tisements f (bottom).

a searcher and an increasing number of rendezvous peers
(configurationA). No edge peers are attached to rendezvous
peers but the publisher and the searcher (S = {Ri, i =
1..r} ∪ {Ej , j = 1..2}). The second set of experiments ex-
tends the first one by adding edge peers to some rendezvous
peers (configuration B). More precisely, 50 edge peers
will connect to 5 rendezvous peers amongst the r available
(S = {Ri, i = 1..r} ∪ {Ej , j = 1..52}). Each peer of
this class, called noisers, publish a specified number of ran-
dom advertisements f , called fake advertisement, to its ren-
dezvous peer. The goal of this second experiment is to stress
the discovery protocol by running it in more realistic con-
ditions, where applications publish multiple advertisements
concurrently. This will allow us to measure the impact of
concurrency on the discovery time.

8



Scalability of the discovery protocol. The bottom side of
Figure 4 shows the average time t needed to discover a given
advertisement, according to the number of rendezvous peers
r. For each value of r we measure the discovery time with
(B) and without (A) extra “noise” produced by 50 noiser
edges (with f = 100). The (A) curve shows that adding up
to 50 rendezvous peers does not significantly increase the
discovery time: t remains around 12 ms. From 50 to 200
rendezvous peers, the discovery time grows linearly. This is
explained by the behavior described above for the peerview
protocol: when using such a large number of rendezvous
peers, Property (2), which is related to the stabilization
of the peerview, cannot be satisfied. Therefore, the local
peerviews of rendezvous peers are not consistent, forcing
the LC-DHT algorithm to walk the global peerview. This
represents a linear cost with respect to the number of ren-
dezvous peers r, as stated in the complexity discussion of
Section 3.3. The (B) curve shows the impact of the “noise”
on the discovery time, while a total of 5,000 fake adver-
tisements are published by the 50 noisers. The maximum
overhead is measured for r = 5 (30 ms), i.e. when nois-
ers are attached to each rendezvous peer of the network.
Then, for values of r up to 150, this overhead slightly de-
creases. This can be explained by the load balancing of pub-
lishing queries onto different replica peers, as we use the
same number of edge peers e (always equal to 50). From
r = 150 to r = 200, publishing fake advertisements no
longer influence the discovery time.

Discussion. As seen in Section 2, DHT algorithms are
usually benchmarked using the number of hops required to
perform a lookup. In addition to such an analysis of the
discovery protocol (see Section 3.3), we could measure and
explain the latency of discovery requests. Such results en-
able to tune applications based on this protocol depending
on the network size (r) and on the number of published ad-
vertisements. Therefore, they help finding an answer to the
following question: when should the application re-launch
a discovery query?

5. Conclusion

The interesting features of the P2P model have made it
attractive for both the academic and industrial world. Sev-
eral generic P2P frameworks are now available to develop-
ers wishing to use this model for their applications. How-
ever, very few experimental evaluations of these P2P li-
braries have been reported, especially at large scales.

In this paper, we focus on a de facto standard of P2P
programming: JXTA specifications. We provide a detailed
analysis of the protocol used to manage a JXTA overlay,
namely the peerview protocol. We also perform an anal-
ysis of the protocol used to lookup for resources: the dis-

covery protocol. The theoretical behavior of both protocols
is described and multi-site experimental tests are reported,
using the French Grid’5000 testbed with various JXTA-C
overlay configurations. The goal of these benchmarks is to
answer a common and unanswered question on the JXTA
mailing lists: how many rendezvous peers are supported by
JXTA in a given group? Our results show that with de-
fault values for parameters of the peerview protocol, the
goal of the algorithm is not achieved, even with as few as
45 rendezvous peers. However, parameter tuning makes it
possible to reach larger configurations in terms of number
of rendezvous peers. For the discovery protocol, we show
that discovery time is rather smaller, provided that all ren-
dezvous peers satisfy a given property. These results give
developers a better view of the scalability of JXTA proto-
cols.

Nevertheless, considering all the factors explored in this
paper, this research is not an exhaustive evaluation of the
scalability of JXTA protocols. In particular, no volatility
was introduced during the experiments. For instance, it
would be interesting to evaluate the behaviour of fall-back
mechanism used for resource discovery under high volatil-
ity. Further experiments should also evaluate the mecha-
nisms used by JXTA-C to address complex queries, such
as range queries.

References

[1] M. Amoretti, G. Conte, M. Reggiani, and F. Zanichelli. Ser-
vice Discovery in a Grid-based Peer-to-Peer Architecture. In
International Workshop on e-Business and Model Based IT
Systems Design, Saint Petersburg, Russia, Apr. 2004.

[2] G. Antoniu, L. Bougé, and M. Jan. JuxMem: An Adaptive
Supportive Platform for Data Sharing on the Grid. Scalable
Computing: Practice and Experience, 6(3):45–55, Septem-
ber 2005.

[3] G. Antoniu, P. Hatcher, M. Jan, and D. A. Noblet. Per-
formance Evaluation of JXTA Communication Layers. In
Proc. Workshop on Global and Peer-to-Peer Computing
(GP2PC 2005), pages 251–258, Cardiff, UK, May 2005.
Held in conjunction with the 5th IEEE/ACM Int. Symp. on
Cluster Computing and the Grid (CCGrid 2005).

[4] G. Antoniu, M. Jan, and D. A. Noblet. Enabling the P2P
JXTA Platform for High-Performance Networking Grid In-
frastructures. In Proc. of the first Intl. Conf. on High Perfor-
mance Computing and Communications (HPCC ’05), num-
ber 3726 in Lect. Notes in Comp. Science, pages 429–440,
Sorrento, Italy, September 2005. Springer.

[5] S. Baehni, P. T. Eugster, and R. Guerraoui. OS Sup-
port for P2P Programming: a Case for TPS. In 22nd In-
ternational Conference on Distributed Computing Systems
(ICDCS ’02), pages 355–362, Vienna, Austria, July 2002.
IEEE Computer Society.

[6] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mornet,

9



R. Namyst, P. Primet, and O. Richard. Grid’5000: A Large
Scale, Reconfigurable, Controlable and Monitorable Grid
Platform. In Proceedings of the 6th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid ’05), pages 99–
106, Seattle, WA, USA, Nov. 2005.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):3–12, July 2003.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for Low Latency and High
Throughput. In Proc. of the 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), pages
85–98, San Francisco, CA, USA, Mar. 2004. USENIX.

[9] N. Drost, R. van Nieuwpoort, and H. E. Bal. Simple
Locality-Aware Co-allocation in Peer-to-Peer Supercom-
puting. In Proceedings of the 6th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CC-
Grid ’06), May 2006.

[10] I. Foster and A. Iamnitchi. On Death, Taxes, and the Con-
vergence on Peer-to-Peer and Grid Computing. In 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’03),
number 2735 in Lect. Notes in Comp. Science, Berkeley,
CA, USA, Feb. 2003. Springer.

[11] E. Halepovic and R. Deters. The Cost of Using JXTA.
In 3rd International Conference on Peer-to-Peer Computing
(P2P ’03), pages 160–167, Linköping, Sweden, Sept. 2003.
IEEE Computer Society.

[12] E. Halepovic and R. Deters. JXTA Performance Study. In
IEEE Pacific Rim Conference on Communications, Comput-
ers and Signal Processing (PACRIM ’03), pages 149–154,
Victoria, B.C., Canada, Aug. 2003. IEEE Computer Society.

[13] E. Halepovic, R. Deters, and B. Traversat. Performance
Evaluation of JXTA Rendezvous. In International Sympo-
sium on Distributed Objects and Applications (DOA ’04),
pages 1125–1142, Agia Napa, Cyprus, Oct. 2004. Springer.

[14] M. Junginger and Y. Lee. The Multi-Ring Topology - High-
Performance Group Communication in Peer-to-Peer Net-
works. In 2nd International Conference on Peer-to-Peer
Computing (P2P ’02), pages 49–56, Linköping, Sweden,
Sept. 2002. IEEE Computer Society.

[15] S. Lacour, C. Pérez, and T. Priol. Generic application de-
scription model: Toward automatic deployment of applica-
tions on computational grids. In 6th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid2005), Seattle,
WA, USA, November 2005. Springer.

[16] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M.
Gil. A performance vs. cost framework for evaluating
DHT design tradeoffs under churn. In Proc. 24th Conf. on
the IEEE Computer and Communications Societies (INFO-
COM 2005), pages 225–236. IEEE Computer Society, Mar.
2005.

[17] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis
of the evolution of peer-to-peer systems. In Proc. of the 21th
annual symposium on Principles of distributed computing
(PODC ’02), pages 233–242, Monterey, CA, USA, 2002.
ACM Press.

[18] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in DHT. Technical Report UCB/CSD-03-1299, Uni-
veristy of California, Computer Science Division (EECS),
Berkeley, CA, USA, Dec. 2003.

[19] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware 2001), volume 2218 of Lecture Notes in Com-
puter Science, pages 329–250, Heidelberg, Germany, Nov.
2001. Springer.

[20] J.-M. Seigneur, G. Biegel, and C. D. Jensen. P2P with
JXTA-Java pipes. In 2nd international Conference on Prin-
ciples and Practice of Programming in Java (PPPJ ’03),
pages 207–212, Kilkenny City, Ireland, 2003. Computer Sci-
ence Press, Inc.

[21] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based
Middleware Enabling Transfer and Aggregation of Com-
putational Resources. In Proc. Workshop on Global and
Peer-to-Peer Computing (GP2PC 2005), pages 259–266,
Cardiff, UK, May 2005. Held in conjunction with the 5th
IEEE/ACM Int. Symp. on Cluster Computing and the Grid
(CCGrid 2005).

[22] D. Stutzbach and R. Rejaie. Improving lookup performance
over a widely-deployed DHT. In Proc. 25th Conf. on Com-
puter Communications (INFOCOMM 2006), Barcelona,
Spain, Apr. 2006. IEEE Computer Society.

[23] D. Talia and P. Trunfio. Toward a Synergy Between P2P and
Grids. IEEE Internet Computing, 7(4):94–96, 2003.

[24] N. Théodoloz. DHT-based Routing and Discovery in JXTA.
Master’s thesis, School of Computer and Communication
Sciences, Feb. 2004.

[25] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-C.
Hugly, and E. Pouyoul. Project JXTA-C: Enabling a Web
of Things. In 36th Annual Hawaii International Confer-
ence on System Sciences (HICSS ’03), page 282b, Big Is-
land, Hawaii, Jan. 2003. IEEE Computer Society.

[26] B. Traversat, M. Abdelaziz, and E. Pouyoul. Project JXTA:
A Loosely-Consistent DHT Rendezvous Walker. http://
www.jxta.org/docs/jxta-dht.pdf, Mar. 2003.

[27] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou,
C. Haywood, J.-C. Hugly, E. Pouyoul, and B. Yea-
ger. Project JXTA 2.0 Super-Peer Virtual Network.
http://www.jxta.org/project/www/docs/
JXTA2.0protocols1.pdf, May 2003.

[28] Bamboo. http://bamboo-dht.org/.
[29] FreePastry. http://freepastry.rice.edu/.
[30] JXTA Company Spotlight. http://www.jxta.org/

companies/companyarchive.html.
[31] JXTA University Spotlight. http://www.jxta.org/

universities/universityarchive.html.
[32] JXTA specification project. http://spec.jxta.org/.

10



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


